09.11.2014 Views

The Helminthological Society of Washington - Peru State College

The Helminthological Society of Washington - Peru State College

The Helminthological Society of Washington - Peru State College

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Volume 66<br />

JOURNAL<br />

<strong>of</strong><br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong><br />

A semiannual journal <strong>of</strong>^research devoted to<br />

Helminthology and all branches <strong>of</strong> Parasitology<br />

Supported in part by the<br />

Braytbn H. Ransom Memorial Trust Fund<br />

.-- '< K - r ^ CONTENTS }<br />

-FiORlLLO, -R. /A;, AND W. F. FONT. - Seasonal Dynamics >and Community Structure <strong>of</strong><br />

Helminths <strong>of</strong> Spotted Surifish, JLepomis miriiatus (Osteichthys: Centrarchidae)<br />

from an Oligohaline Estuary in Southeastern Louisiana, U;S. A ....... ------ __.~.H_ 101<br />

YABSLEY, M. J., AND G. P. NOBLET. Nematodes and Acanthocephalans <strong>of</strong> Raccoons<br />

(Procyon lotor), with a New Geographical .Record for Centrorhynchus conspectus<br />

(Acanthoeephala) in South Carolina, U.S.A. —,---------*.---------—.— ~- — ~ —.i- 111~<br />

JVluzZALL, P. M.^Nematode Parasites <strong>of</strong> Yellow Perch, Perca flavescens, from the ,<br />

^aurentian Great Lakes ___ .____________________. ----------- •-— ~ —-,-/..... — 115 •<br />

AMIN, O. M., A. G. CANARIS, AND J. M. KINSELLA. A Taxoriomic Reconsideration (<strong>of</strong><br />

the Genus Plagiorhynchus s. lat. (Acanthoeephala: Plagiorhynchidae), with De- _<br />

- scriptions <strong>of</strong> South African Plagiorhynchus (Prosthorhynchus) cylindraceus from<br />

Shore Birds and P. (P.) malayensis, and a -Key to the Species <strong>of</strong> the Subgenus<br />

"- ProsthorhyncHus _____ .__ ~ _______________ ^ -------- —— ~^-------- ~— . ~, ------ 123<br />

REGO, A.yA., P. M. MACHADO, AND'G. C. PAVANELLI. Sciadocephalus megalodiscus<br />

Diesing, 1 850 (Cestoda: ;Corall6bothriinae), a Parasite <strong>of</strong> Cichla monoculiis Spix,<br />

1831 -(Cichlidae), in the Parana River, <strong>State</strong> <strong>of</strong> Parana, Brazil ______________s^_L£ 133<br />

KRITSKY, D. VC., AND S.-D. KULO. Revisions <strong>of</strong> Protoancylodiscoides and Bagrobdella,<br />

with Redescriptions <strong>of</strong> P. chrysichthes and B. auchenoglanii ^


-• THE SOCIETY meets in October, November, February, April, and May 'for the presentation and<br />

discussion <strong>of</strong> papers in any and all branches <strong>of</strong> parasitology or related sciences. All interested persons<br />

are, invited to attend. ~ -•-.-. ~~ • *•<br />

Persons .interested in membership in the <strong>Helminthological</strong> <strong>Society</strong> ~qf <strong>Washington</strong> may obtain application<br />

blanks in recent issues;<strong>of</strong> the Journal. A year's subscription to the Journal is included in the<br />

annual dues <strong>of</strong> $25.00 domestic ^nd $28.00 foreign. Institutional subscriptions are $50.00 per year.<br />

Applications for membership, accompanied by payments, may be sent .to the Corresponding Secretary-<br />

Treasurer, Nancy D. Pacheco, 9708 DePaul Drive, Bethesda, MD 20817, U.S.A.<br />

:•-<br />

<strong>The</strong> HelmSoc internet home page is located at http://www.gettysburg.edu/~shendrix/helmsoc.html<br />

President: ERIC P. HOB ERG<br />

Vice President: 'RONALD NEAFIE<br />

Corresponding Secretary-Treasurer: NANCY D. PACHECO<br />

Recording Secretary: W. PATRICK CARNEY ; .^<br />

Archivist/Librarian: PATRICIA A. PILITT ~ - _'<br />

Custodian <strong>of</strong> Back Issues: J. RALPH-LICHTENFELS ,<br />

: _<br />

Representative to the American <strong>Society</strong> <strong>of</strong> Parasitologists: ERIC P. HOB ERG __' / ••/•<br />

Executive Committee Members-at-Large: LYNN K. CARTA, 1999<br />

; MARK C. JENKINS, 1999 :>.'<br />

- .. WILLIAM E. MOSER, 2000, N "V<br />

•u DENNIS J. RICHARpSONr2000<br />

Immediate Past President: ELLEN ANDERSEN c , _x - ;; - ,<br />

THE JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

<strong>The</strong> Journal -is published semiannually at Lawrence, Kansas -by the HelmiiKhologidal <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong>. -Papersvrieed not-be presented^ a meeting^o be published in the Journal. Effective;with<br />

the January, 2000 issue, the Journal name will be changed to COMPARATIVE PARASITOLOGY.<br />

MANUSCRIPTS should "be sent to the EDITORS, Drs. Willis A- Reid, Jr., and Janet W Reid, 6210<br />

Hollins Drive, Bethesda, MD 20817. email: jwrassoc@erols.com. Manuscripts must be typewritten,<br />

double -spaced, and .in finished form. Consult ^recent issues ,<strong>of</strong>; the /Journal for ^format and style/<strong>The</strong><br />

original and two copies are required. Photocopies <strong>of</strong> drawings•, may,be submitted for review purposes<br />

^but. glossy prints <strong>of</strong> halftones are required; originals will be requested after acceptance <strong>of</strong> the manuscript.<br />

Papers are accepted with the understanding that they-will be published .only in the Journal.<br />

REPRINTS may be ordered from the PRINTER at the same time the corrected'pro<strong>of</strong> is/returned to<br />

the EDITORS. ' ' • • • _ ' ' ,<br />

. JOHN S. MACKIEWICZ<br />

/ BRENT B.NICKOL ,<br />

•-v •:"" 2000<br />

, _ROY C. ANDERSON v <<br />

^ RALPH ;P ECKERLIN v "<br />

RONALD PAYER<br />

•A: MORGAN GOLDEN - > ".<br />

^' ROBIN N: HUETTEL<br />

- - FUAD M. NAHHAS \Y B. PENCE<br />

VASSILIOS THEODORIDES , i<br />

JOSEPH F. URBAN .---<br />

' •" ". - / '<br />

<strong>The</strong> Helfmnthological <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 1999 '<br />

ISSN 1049-233X<br />

This paper meets the requirements <strong>of</strong> ANSI/NISO Z39.48-1992 (Permanence <strong>of</strong> Paper).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 101-110<br />

Seasonal Dynamics and Community Structure <strong>of</strong> Helminths <strong>of</strong><br />

Spotted Sunfish, Lepomis miniatus (Osteichthyes: Centrarchidae)<br />

from an Oligohaline Estuary in Southeastern Louisiana, U.S.A.<br />

RlCCARDO A. FlORILLO1 AND WILLIAM F. FONT<br />

Department <strong>of</strong> Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402 U.S.A. (email:<br />

raf3@ra.msstate.edu and wffont@selu.edu).<br />

ABSTRACT: <strong>The</strong> seasonal dynamics <strong>of</strong> the helminth community <strong>of</strong> the spotted sunfish Lepomis miniatus Warren,<br />

1992, from an oligohaline estuary were investigated over a 1-yr period. From 26 May 1991 to 25 May 1992, 7<br />

helminth species (3 Trematoda, 2 Nematoda, 2 Acanthocephala) were recovered from the gastrointestinal tracts<br />

<strong>of</strong> 200 specimens <strong>of</strong> L. miniatus. <strong>The</strong> parasite community <strong>of</strong> this host was dominated by the trematodes Barbulostomum<br />

cupuloris and Genarchella sp. Both helminths were recruited and matured in this host throughout<br />

the year, but their times <strong>of</strong> peak abundance differed. Barbulostomum cupuloris was most abundant in February-<br />

May, whereas Genarchella sp. abundance peaked in November-February. Camallanus oxycephalus and Leptorhynchoides<br />

thecatus showed a similar pattern <strong>of</strong> seasonal abundance, which was highest in May-August for<br />

both species. <strong>The</strong> remaining 3 helminths, Crepidostomutn cornutum, Neoechinorhyncus cylindratus, and Spinitectus<br />

carolini, were too rare to detect annual patterns <strong>of</strong> abundance. Infra- and component community diversity<br />

and richness did not vary seasonally, but infracommunity predictability was greatest in February-May.<br />

KEY WORDS: parasite, helminth, seasonal dynamics, Centrarchidae, Lepomis miniatus, estuary, infracommunity,<br />

component community, community, Louisiana, USA.<br />

Seasonal fluctuations in prevalence and abundance<br />

are common in many helminths <strong>of</strong> freshwater<br />

fishes (Eure, 1976; Chubb, 1979), but the<br />

mechanisms influencing seasonality are sometimes<br />

difficult to identify. Chubb (1979) concluded<br />

that, in general, seasonal patterns <strong>of</strong> occurrence<br />

<strong>of</strong> helminths are <strong>of</strong>ten species-specific<br />

and dependent upon: 1) how the helminth invades<br />

its host, 2) helminth growth and maturation,<br />

3) accumulation <strong>of</strong> eggs, and 4) loss <strong>of</strong><br />

gravid worms. Abiotic factors such as temperature<br />

may also affect the seasonal cycles <strong>of</strong> many<br />

helminths (Chappell, 1969; Anderson, 1974,<br />

1976; Eure, 1976; Granath and Esch, 1983a-c).<br />

Seasonal patterns <strong>of</strong> abundance <strong>of</strong> the helminths<br />

<strong>of</strong> centrarchid fishes in freshwater environments<br />

have been previously examined<br />

(McDaniel and Bailey, 1974; Cloutman, 1975;<br />

Eure, 1976), but studies addressing temporal<br />

variability <strong>of</strong> helminths in nongame centrarchids<br />

are lacking. More importantly, the helminth fauna<br />

<strong>of</strong> centrarchid fishes inhabiting estuarine environments<br />

has received little attention. Fiorillo<br />

and Font (1996) characterized the helminth communities<br />

<strong>of</strong> 4 species <strong>of</strong> Lepomis from a lowsalinity<br />

estuary and showed that the compound<br />

1 Present address <strong>of</strong> corresponding author: Department<br />

<strong>of</strong> Biological Sciences, Drawer GY, Mississippi<br />

<strong>State</strong> University, Mississippi <strong>State</strong>, Mississippi 39762.<br />

community <strong>of</strong> centrarchid fishes in brackish water<br />

habitats differed from that <strong>of</strong> centrarchids in<br />

freshwater environments.<br />

In this study, we examined the seasonal pattern<br />

<strong>of</strong> abundance <strong>of</strong> all helminths that utilize<br />

Lepomis miniatus Warren, 1992, as a definitive<br />

host in an oligohaline estuary. In addition, we<br />

used community measures to investigate seasonal<br />

fluctuations in the infracommunity and component<br />

community structure <strong>of</strong> L. miniatus.<br />

Materials and Methods<br />

From 26 May 1991 to 25 May 1992, 200 specimens<br />

<strong>of</strong> L. miniatus were collected from a 1.1-km section <strong>of</strong><br />

a canal along Interstate Highway 55 located between<br />

the south bank <strong>of</strong> Pass Manchac and Ruddock, Louisiana,<br />

in St. John the Baptist Parish. This man-made<br />

canal is part <strong>of</strong> the oligohaline Lake Pontchartrain-<br />

Lake Maurepas estuary located in southeastern Louisiana.<br />

<strong>The</strong> salinity <strong>of</strong> this large estuary ranges from 0<br />

ppt at the western shore <strong>of</strong> Lake Maurepas to 15 ppt<br />

at the eastern shore <strong>of</strong> Lake Pontchartrain, but at our<br />

study site, salinity never exceeded 3 ppt. Temporal variation<br />

in water temperature was determined using a<br />

Datasonde 3® water quality data logger (Hydrolab Corporation,<br />

Austin, Texas) located near our study site at<br />

the Turtle Cove Research Station on Pass Manchac,<br />

Louisiana.<br />

Our 1-yr collection period was divided into 4 periods<br />

<strong>of</strong> equal duration. Forty-five specimens were collected<br />

during the May-August period (May 26-August<br />

26), 53 during August-November (August 27-November<br />

26), and 51 each during the November—February<br />

101<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


102 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

(November 27-February 26) and February-May (February<br />

27-May 25) periods. <strong>The</strong>re was a minimum interval<br />

<strong>of</strong> 1 mo between collections made in different<br />

time periods. All hosts were captured by angling or<br />

with hoop nets and crab traps baited with cat food and<br />

checked at 1-2-day intervals. <strong>The</strong> sex and standard<br />

length <strong>of</strong> each fish were recorded, and the stomach,<br />

pyloric ceca, and intestinal tract were examined for<br />

adult helminths. Trematodes were fixed in Berland's<br />

solution (9 parts acetic acid, 1 part 37% formaldehyde)<br />

and stored in AFA (alcohol-formalin-acetic acid).<br />

Nematodes were fixed in Berland's solution and placed<br />

in glycerine alcohol. After acanthocephalans were refrigerated<br />

in distilled water overnight to extrude the<br />

proboscis, several small holes were made in the body<br />

wall with fine dissecting pins prior to fixation in AFA.<br />

Trematodes and acanthocephalans were stained with<br />

Semichon's carmine, dehydrated in a graded alcohol<br />

series, cleared in xylene, and mounted in Permount®.<br />

Nematodes were cleared and mounted in glycerine jeliy-<br />

<strong>The</strong> influence <strong>of</strong> host body size (standard length,<br />

mm) on helminth abundance and community attributes<br />

was examined with Pearson's correlations. <strong>The</strong> prevalence<br />

and abundance (Bush et al., 1997) <strong>of</strong> all helminths<br />

were calculated overall and for each time period.<br />

Helminth abundance data were square root transformed<br />

prior to statistical analyses. Seasonal patterns<br />

<strong>of</strong> helminth prevalence and abundance were analyzed<br />

with chi-square tests and ANOVA or ANCOVA, respectively.<br />

Because Barbidostomum cupuloris and Genarchella<br />

sp. were the most abundant helminths in the component<br />

community <strong>of</strong> this host, a contingency table analysis<br />

was used to examine for concurrent patterns <strong>of</strong><br />

infection. Based on gonadal development, these 2<br />

trematodes were assigned to 1 <strong>of</strong> 3 developmental<br />

stages. Specimens <strong>of</strong> B. cupuloris were scored as immature,<br />

mature, or gravid, and specimens <strong>of</strong> Genarchella<br />

sp. were categorized as nongravid, gravid, or<br />

heavily gravid. Immature specimens <strong>of</strong> B. cupuloris<br />

were defined as individuals having incomplete gonadal<br />

development and lacking vitellaria. Mature worms<br />

were characterized by complete gonadal development,<br />

but egg production had not yet begun. Individuals with<br />

eggs and highly packed vitellaria were classified as<br />

gravid. Specimens <strong>of</strong> Genarchella sp. that possessed<br />

incompletely developed gonads and lacked eggs were<br />

classified as nongravid. Gravid worms were characterized<br />

by completely formed testes and ovary, but the<br />

lobes <strong>of</strong> the vitellaria <strong>of</strong> these specimens were not<br />

clearly distinct. <strong>The</strong> uteri <strong>of</strong> these gravid specimens<br />

contained eggs, but they were only slightly convoluted<br />

and well confined within the intercecal space. Heavily<br />

gravid worms were characterized by vitellaria possessing<br />

distinct lobes. <strong>The</strong> uteri <strong>of</strong> heavily gravid specimens<br />

were distended with eggs, highly convoluted,<br />

and typically extended laterally beyond the ceca. <strong>The</strong><br />

seasonal patterns <strong>of</strong> abundance <strong>of</strong> these developmental<br />

stages were examined with ANOVA or ANCOVA.<br />

Voucher specimens <strong>of</strong> all species and developmental<br />

stages have been deposited in the U.S. National Parasite<br />

Collection (USNPC), Beltsville, Maryland, under<br />

USNPC accession numbers 84483-84485, 84489,<br />

84490, 88573 and 88574.<br />

Overall and within each time period, Brillouins's diversity<br />

index, which is appropriate for fully censused<br />

communities (Pielou, 1977), was used to estimate infracommunity<br />

and component community diversity.<br />

Seasonal mean infracommunity diversity was compared<br />

using ANOVA. As a measure <strong>of</strong> infracommunity<br />

predictability, Renkonen's coefficient <strong>of</strong> similarity was<br />

used to determine overall and within-season infracommunity<br />

similarity. Seasonal mean infracommunity similarity<br />

was compared using ANOVA, and in addition,<br />

Renkonen's coefficient <strong>of</strong> similarity was used to compare<br />

the component community <strong>of</strong> this host among<br />

time periods.<br />

Results<br />

Seven helminth species (3 Trematoda, 2 Nematoda,<br />

2 Acanthocephala), Barbidostomum cupuloris,<br />

Genarchella sp., Crepidostomum cornutum,<br />

Camallanus oxycephalus, Spinitectus<br />

carolini, Leptorhynchoides thecatus, and Neoechinorhyncus<br />

cylindratus, were recovered from<br />

the alimentary tracts <strong>of</strong> 200 L, miniatus (standard<br />

length in mm: x ± SE, range; 96.9 ± 0.91,<br />

68-126) collected from the Lake Pontchartrain-<br />

Lake Maurepas estuary. Host body size differed<br />

significantly among seasons (ANOVA, P <<br />

0.05). <strong>The</strong> largest hosts were collected in the<br />

May-August time period (104 ± 1.51, 84.5-<br />

126). Host body size decreased through August-<br />

November (101 ± 1.3, 83.1-121) and November-February<br />

(99.1 ± 1.42, 78.1-118) and was<br />

lowest in February-May (84.0 ± 1.6, 68.0-109).<br />

Water temperature in this oligohaline estuary<br />

was highest in July and gradually decreased to<br />

its lowest value in January (Fig. 1).<br />

With the exception <strong>of</strong> C. cornutum, whose<br />

abundance was greater in female hosts (x ± SE,<br />

range; 0.12 ± 0.04, 0-3) (male hosts, 0.02 ±<br />

0.02, 0-2) (r-test, P < 0.05), there were no sexrelated<br />

differences in helminth abundance. In<br />

addition, only C. cornutum (x2 = 5.137, P <<br />

0.05) and L. thecatus (x2 = 10.442, P < 0.05)<br />

showed host sex-related differences in prevalence,<br />

and as a result, both sexes were pooled<br />

for subsequent statistical analyses.<br />

Only the abundance <strong>of</strong> B. cupuloris displayed<br />

a statistically significant relationship with host<br />

body size (overall, r = -0.254, P < 0.01). In<br />

addition, no statistically significant correlations<br />

between host size and helminth species abundance<br />

were found within each collecting period<br />

(P > 0.05).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 103<br />

35<br />

30<br />

^•1 All stages<br />

I I IMM<br />

f~1 MAT<br />

1777, GRV<br />

25<br />

E 20<br />

15<br />

10<br />

Ifeii<br />

May-Aug Aug-Nov Nov-Feb Feb-May<br />

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr<br />

Figure 1. Mean monthly water temperature<br />

(°C) in Lake Pontchartrain-Lake Maurepas estuary<br />

(1992-1995). Vertical hars represent ±1 standard<br />

error <strong>of</strong> the mean.<br />

All stages<br />

NGR<br />

GRV<br />

HGR<br />

Helminth seasonal dynamics<br />

Prevalence <strong>of</strong> B. cupuloris differed significantly<br />

among time periods (x2 = 28.98, P <<br />

0.05). Thirty-six percent <strong>of</strong> hosts examined in<br />

May-August harbored at least 1 specimen. Prevalence<br />

increased to 40% in August-November<br />

and 41% in November-February before reaching<br />

82% in February-May. Irrespective <strong>of</strong> developmental<br />

stage, B. cupuloris was most abundant<br />

in February-May (8.8 ± 1.28, 0-37), displaying<br />

an 82% increase in abundance from the<br />

previous November-February time period (1.6<br />

± 0.47, 0-20) and a considerable decrease in the<br />

subsequent May-August period (1.1 ± 0.4, 0-<br />

15) (2-way ANCOVA, P < 0.05) (Fig. 2a).<br />

Abundance also differed with respect to developmental<br />

stage (2-way ANCOVA, P < 0.05),<br />

but no interaction effect was found (2-way AN-<br />

COVA, P > 0.05). Mature specimens were most<br />

abundant (1.5 ± 0.24, 0-21), followed by gravid<br />

specimens (1.4 ± 0.22, 0-18) and immature<br />

worms (0.6 ± 0.13, 0-14). In addition, each developmental<br />

stage <strong>of</strong> B. cupuloris showed a statistically<br />

significant seasonal cycle <strong>of</strong> abundance<br />

(ANCOVA, P < 0.05 for each stage). <strong>The</strong> abundance<br />

<strong>of</strong> each stage was lowest in May-August,<br />

remained low in the following August-November<br />

and November-February periods, and<br />

reached maximum abundance in February-May<br />

(Fig. 2a).<br />

Thirteen percent <strong>of</strong> hosts in May-August<br />

May-Aug Aug-Nov Nov-Feb Feb-May<br />

Figure 2. Seasonal abundances <strong>of</strong> (a) Barbulostomum<br />

cupuloris (all stages) and each developmental<br />

stage (IMM, immature; MAT, mature; GRV,<br />

gravid); (b) Genarchella sp. (all stages) and each<br />

developmental stage (NGR, nongravid; GRV, gravid;<br />

HGR, heavily gravid). Vertical bars represent<br />

± 1 standard error <strong>of</strong> the mean.<br />

were infected with Genarchella sp. Prevalence<br />

increased through August-November (34%) to<br />

reach a peak in November-February (49%) before<br />

decreasing in February-May (39%) (x2 =<br />

13.69, P < 0.05). Genarchella sp. was most<br />

abundant in November—February (6.9 ± 1.62,<br />

0-41), a 44% increase from the previous August—November<br />

time period (3.9 ± 1.39, 0—43)<br />

and showed its lowest abundance in May—August<br />

(1.4 ± 0.74, 0-23) (2-way ANOVA, P <<br />

0.05) (Fig. 2b). Overall, there was no difference<br />

in abundance among developmental stages and<br />

no interaction effect (2-way ANOVA, P ><br />

0.05). Both nongravid and gravid worms showed<br />

statistically significant seasonal cycles <strong>of</strong> abundance<br />

(ANOVA, P < 0.05 for each stage). Nongravid<br />

and gravid worms were most abundant in<br />

November-February (2.5 ± 0.89, 0-27) and Au-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


104 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

gust-November (2.2 ± 0.94, 0-41), respectively,<br />

and least abundant in May-August (nongravid:<br />

0.09 ± 0.09, 0-4; gravid: 0.1 ± 0.08, 0-3)<br />

(Fig. 2b).<br />

Camallanus oxycephalus was most prevalent<br />

and abundant in May-August (36%) (0.7 ±<br />

0.26, 0-11). Prevalence and abundance declined<br />

throughout the year and were lowest in February-May<br />

(10%) (0.1 ± 0.05, 0-2), (x2 = 12.888,<br />

P < 0.05) (ANOVA, P < 0.01), respectively<br />

(Table 1, Fig. 3). Prevalence <strong>of</strong> L. thecatus did<br />

not change seasonally (x2 = 5.278, P > 0.05)<br />

(Table 1), but its abundance did vary among<br />

time periods and peaked in May-August (0.6 ±<br />

0.19, 0-5) (ANOVA, P < 0.05) (Fig. 3). Crepidostomum<br />

cornutum, S. carolini, and N. cylindratus<br />

were uncommon (prevalence <strong>of</strong> each,<br />

< 7%), and too few individuals (abundance <strong>of</strong><br />

each, < 0.1) were recovered to determine seasonal<br />

patterns <strong>of</strong> prevalence and abundance (Table<br />

1).<br />

Parasite abundance (overall: 8.2 ± 0.8, 0—56)<br />

differed significantly among time periods (AN-<br />

COVA, P < 0.05). Abundance was lowest in<br />

May-August (4.0 ± 0.87, 0-26), increased during<br />

August-November (7.3 ± 1.66, 0-53) and<br />

November-February (8.5 ± 1.54, 0-45), and<br />

reached its highest value during February-May<br />

(12.8 ± 1.81, 0-56).<br />

Infracommunity analysis<br />

Overall, host body size was correlated with<br />

infracommunity diversity (r = 0.18, P < 0.05),<br />

but this relationship was not significant within<br />

time periods. <strong>The</strong> most diverse infracommunity<br />

was found in November-February (1.294 ±<br />

0.197, 0.0-4.14), whereas in February-May, infracommunity<br />

diversity was lowest (0.689 ±<br />

0.136, 0.0—3.35). <strong>The</strong> remaining 2 time periods,<br />

May—August and August-November, showed intermediate<br />

levels <strong>of</strong> infracommunity diversity<br />

(0.889 ± 0.151, 0.0-3.40 and 0.959 ± 0.185,<br />

0.0-4.01, respectively). However, infracommunity<br />

diversity did not differ significantly among<br />

time periods (ANCOVA, P > 0.05). Overall infracommunity<br />

diversity was 0.963 ± 0.087 (0.0-<br />

4.14).<br />

Both overall and within time periods, host<br />

body size did not influence infracommunity species<br />

richness. Helminth richness was lowest in<br />

May-August (1.244 ± 0.143, 0-4) and increased<br />

in August—November (1.302 ± 0.139,<br />

0-3) and November-February (1.353 ± 0.096,<br />

0-3). Infracommunity richness was greatest in<br />

February-May (1.549 ± 0.113, 0-3). However,<br />

infracommunity species richness did not differ<br />

significantly among time periods (ANOVA, P ><br />

0.05). Overall infracommunity species richness<br />

was 1.365 ± 0.062 (0-4). Infracommunity predictability<br />

differed significantly among time periods<br />

(ANOVA, P < 0.001). Infracommunity<br />

similarity was greatest in February-May (0.56<br />

± 0.01, 0-1) and lowest in May-August (0.22<br />

± 0.01, 0-1). In August-November and November-February,<br />

infracommunity similarity values<br />

were intermediate (0.31 ± 0.01, 0-1 and 0.34 ±<br />

0.01, 0-1, respectively). Overall infracommunity<br />

similarity was low (0.31 ± 0.003, 0-1).<br />

Component community analysis<br />

<strong>The</strong> trematodes B. cupuloris and Genarchella<br />

sp. were the most prevalent and abundant helminths<br />

and dominated the component community<br />

<strong>of</strong> Lepomis miniatus (Table 1). Barbulostomum<br />

cupuloris was most prevalent (50%), and<br />

although Genarchella sp. was recovered from<br />

fewer hosts (35%), its overall abundance (3.9 ±<br />

0.64, 0-43) did not differ significantly from that<br />

<strong>of</strong> B. cupuloris (3.5 ± 0.46, 0-37) (Mest, P ><br />

0.05). Although together these 2 trematodes accounted<br />

for 1,485 <strong>of</strong> the total 1,662 worms recovered<br />

during this study (89%), no significant<br />

association was found between them with respect<br />

to concurrent patterns <strong>of</strong> infection (x2 =<br />

0.032, P > 0.05). <strong>The</strong> nematode C. oxycephalus<br />

was recovered from 24% <strong>of</strong> hosts examined, but<br />

its abundance was low (0.4 ± 0.08, 0-11). <strong>The</strong><br />

remaining 4 helminth species showed low prevalence<br />

and abundance and, together with C. oxycephalus,<br />

represented only 11 % <strong>of</strong> the total helminth<br />

specimens recovered (Table 1).<br />

Component community diversity was low<br />

(0.47). It was greatest in February-May (1.16),<br />

progressively declined through May-August<br />

(0.63) and August-November (0.45), and was<br />

lowest in November-February (0.34). Component<br />

community species richness changed slightly<br />

over the year. Six helminth species were recovered<br />

during May—August, August—November,<br />

and November-February, whereas 7 helminth<br />

species were found in February-May<br />

(Table 1). <strong>The</strong> trematode C. cornutum and the<br />

acanthocephalan TV. cylindratus were the only<br />

helminths not found in all 4 time periods (Table<br />

1). Component community comparisons among<br />

time periods were made using Renkonen's co-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 105<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


106 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 2. Renkonen's coefficients <strong>of</strong> component<br />

community similarity <strong>of</strong> helminths <strong>of</strong> Lepomis miniatus<br />

between paired time periods.<br />

Caox<br />

Leth<br />

May-Aug.<br />

Aug.—Nov.<br />

Nov.-Feb.<br />

Aug.-Nov. Nov.—Feb. Feb.—May<br />

0.46 0.41<br />

0.77<br />

0.46<br />

0.62<br />

0.45<br />

suit, the nature <strong>of</strong> the observed seasonal patterns<br />

<strong>of</strong> this and all other helminth species is biological<br />

and not a result <strong>of</strong> changes in host demographics.<br />

May-Aug Aug-Nov Nov-Feb Feb-May<br />

Figure 3. Seasonal abundance <strong>of</strong> Camallanus<br />

oxycephalus (Caox) and Leptorhynchoides thecatus<br />

(Leth). Vertical bars represent ±1 standard error<br />

<strong>of</strong> the mean.<br />

efficient <strong>of</strong> similarity. Mean seasonal component<br />

community similarity was 0.53 ± 0.058, 0.41-<br />

0.77. <strong>The</strong> helminth community <strong>of</strong> L. miniatus in<br />

August-November and November-February<br />

showed the greatest similarity (0.77), whereas<br />

the May-August and November-February communities<br />

were least similar (0.45). <strong>The</strong> remaining<br />

comparisons are shown in Table 2.<br />

Discussion<br />

<strong>The</strong> species composition, richness, and diversity<br />

<strong>of</strong> the helminth community <strong>of</strong> L. miniatus<br />

were similar throughout the year. Species-specific<br />

and overall abundance <strong>of</strong> these helminths,<br />

infracommunity similarity, and host body size<br />

did vary somewhat with season. <strong>The</strong> trematodes<br />

B. cupuloris, described from L. miniatus (as Lepomis<br />

punctatus (Valenciennes, 1831)) collected<br />

within our study site (Ramsey, 1965), and Genarchella<br />

sp. were the most prevalent and abundant<br />

helminths recovered in this study. <strong>The</strong>se<br />

parasites have been reported only in estuarine<br />

centrarchid fishes (Fiorillo and Font, 1996), in<br />

which they showed distinct seasonal cycles <strong>of</strong><br />

prevalence and abundance.<br />

Barbulostomum cupuloris was the only helminth<br />

to show, possibly as a result <strong>of</strong> an ontogenetic<br />

shift in diet, a significant relationship<br />

with host body size. However, the influence <strong>of</strong><br />

host size was removed statistically from the subsequent<br />

seasonal abundance analysis. As a re-<br />

Seasonal dynamics <strong>of</strong> helminth infections<br />

Conditions were optimal for the recruitment<br />

and maturation <strong>of</strong> B. cupuloris in February-<br />

May, when prevalence was greatest, and each<br />

developmental stage <strong>of</strong> this worm displayed<br />

maximum abundance. Following that period, the<br />

abundance <strong>of</strong> each developmental stage and the<br />

overall prevalence declined to their lowest values<br />

(Fig. 2a). Overall, most B. cupuloris specimens<br />

recovered were mature or gravid. <strong>The</strong>se<br />

data suggest that B. cupuloris matures quickly<br />

after recruitment. Immature, mature, and gravid<br />

specimens were recovered in all 4 collecting periods,<br />

indicating that recruitment and egg production<br />

occurred throughout the year, irrespective<br />

<strong>of</strong> water temperature. Because <strong>of</strong> south Louisiana's<br />

near-subtropical climate, seasonal<br />

changes in water temperature are not extreme<br />

(Fig. 1). Although water temperature does not<br />

affect egg production in B. cupuloris, temperature<br />

can influence timing and rate <strong>of</strong> cercarial<br />

production and dispersal (Chappell, 1969; review<br />

in Chubb, 1979) and the seasonal abundance<br />

<strong>of</strong> first or second intermediate hosts (Fernandez<br />

and Esch, 199la, b). It is likely that both<br />

factors interact to affect the seasonal abundance<br />

<strong>of</strong> B. cupuloris in its definitive host.<br />

Similarly, water temperature did not affect recruitment<br />

and maturation <strong>of</strong> Genarchella sp. in<br />

L. miniatus. As with B. cupuloris, all 3 developmental<br />

stages <strong>of</strong> Genarchella sp. were found<br />

throughout the year, but this helminth showed a<br />

more gradual increase in recruitment, which<br />

peaked in November-February (Fig. 2b). At that<br />

time <strong>of</strong> year, many gravid worms were also recovered.<br />

<strong>The</strong> seasonal cycles <strong>of</strong> Genarchella sp.<br />

and B. cupuloris were asynchronous. Unlike B.<br />

cupuloris, which showed maximum prevalence<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 107<br />

and abundance in February-May, Genarchella<br />

sp. was more common and numerous in November—February<br />

(Fig. 2a, b). However, as in B. cupuloris,<br />

the seasonal cycle <strong>of</strong> Genarchella sp. in<br />

L. rniniatus may be linked to the seasonal dynamics<br />

<strong>of</strong> cercarial production and dispersal and<br />

to the abundance <strong>of</strong> the intermediate host.<br />

<strong>The</strong> life cycles <strong>of</strong> B. cupuloris and Genarchella<br />

sp. are not known but are probably dependent<br />

on brackish water food webs for successful<br />

transmission (Ramsey, 1965; Fiorillo and<br />

Font, 1996). <strong>The</strong> lack <strong>of</strong> a concurrent pattern <strong>of</strong><br />

infection, as well as the apparent asynchrony in<br />

the seasonal cycles <strong>of</strong> these trematodes, suggest<br />

that they do not share the same intermediate<br />

hosts.<br />

A qualitative analysis <strong>of</strong> the gut contents <strong>of</strong><br />

L. miniatus in May-August showed that this<br />

centrarchid preyed primarily on amphipods<br />

(Fiorillo and Font, 1996). Similarly, Levine<br />

(1980) reported that amphipods made up 75% <strong>of</strong><br />

all prey items <strong>of</strong> L. miniatus in the Lake Pontchartrain-Lake<br />

Maurepas estuary. However,<br />

Fiorillo and Font (1996) showed that in May-<br />

August, both helminths were much more prevalent<br />

and abundant in redear sunfish Lepomis<br />

microlophus (Giinther, 1859), a host well known<br />

for its specialized diet <strong>of</strong> bivalves and other mollusks<br />

(Wilburn, 1969; Lauder, 1983). In this estuary,<br />

Levine (1980) reported that the diet <strong>of</strong> L.<br />

microlophus consisted primarily <strong>of</strong> molluscs, but<br />

some amphipods were also taken. A qualitative<br />

gut analysis in May-August showed that L. microlophus<br />

preyed on amphipods, isopods, and<br />

bivalves (Fiorillo and Font, 1996). <strong>The</strong>se data<br />

suggest that amphipods and bivalves may represent<br />

potential second intermediate hosts for<br />

these 2 trematodes.<br />

<strong>The</strong> nematode C. oxycephalus was most prevalent<br />

and abundant in May-August. Prevalence<br />

and abundance declined through the subsequent<br />

time periods and were lowest in February-May.<br />

It is likely that the seasonal dynamics <strong>of</strong> C. oxycephalus<br />

in this estuary are dependent on the<br />

seasonal abundance <strong>of</strong> its copepod intermediate<br />

host as shown by Stromberg and Crites (1975)<br />

in Lake Erie. Unfortunately, we have no data on<br />

the seasonal dynamics <strong>of</strong> copepod populations<br />

in the Lake Ponchartrain-Lake Maurepas estuary<br />

to support this assumption, but, generally, zooplankton<br />

populations in temperate climates increase<br />

in the summer months (Pennak, 1989).<br />

Although in our study C. oxycephalus abundance<br />

was low, we did recover gravid specimens,<br />

suggesting that L. miniatus is a suitable<br />

host for this nematode.<br />

As in C. oxycephalus, abundance <strong>of</strong> L. thecatus<br />

was low, but this acanthocephalan did<br />

show a seasonal cycle <strong>of</strong> abundance that peaked<br />

in May-August. Fiorillo and Font (1996)<br />

showed that, in this estuary, L. thecatus was<br />

much more prevalent and abundant in redear<br />

sunfish, L. microlophus, and C. oxycephalus occurred<br />

more frequently in bluegill, L. macrochirus<br />

Rafinesque, 1819, suggesting that L. miniatus<br />

is a suitable rather then a required host for<br />

these helminths. Leong and Holmes (1981) suggested<br />

that, within its environment, the seasonal<br />

cycle <strong>of</strong> a helminth is mostly determined by its<br />

seasonal dynamics within its most common host<br />

in which the parasite can become reproductive<br />

(required host). <strong>The</strong>refore, the seasonal cycles <strong>of</strong><br />

L. thecatus and C. oxycephalus in L. miniatus<br />

may not be indicative <strong>of</strong> the seasonal pattern<br />

found in L. microlophus and L. macrochirus, respectively.<br />

Too few specimens <strong>of</strong> the remaining<br />

3 helminth species were found to determine seasonal<br />

cycles <strong>of</strong> prevalence and abundance, but<br />

all are common parasites <strong>of</strong> centrarchids and<br />

other fishes from freshwater environments (see<br />

H<strong>of</strong>fman, 1967) (Table 1).<br />

Mostly because <strong>of</strong> increases in abundance <strong>of</strong><br />

B. cupuloris and Genarchella sp. (Fig. 2a, b),<br />

the overall parasite abundance was greatest in<br />

February-May. That time <strong>of</strong> year is generally<br />

associated with an increase in the feeding activity<br />

<strong>of</strong> fishes in Louisiana as water temperature<br />

begins to rise (Fig. 1) and many centrarchid species<br />

approach the reproductive season (Carlander,<br />

1977). Many invertebrate potential intermediate<br />

hosts also show seasonal changes in<br />

density, with abundance peaks in early spring<br />

(Heard, 1982). Seasonal dynamics <strong>of</strong> invertebrate<br />

intermediate hosts, coupled with seasonal<br />

variation in feeding rates and diet <strong>of</strong> L. miniatus,<br />

may play an important role in determining the<br />

seasonal cycles <strong>of</strong> abundance <strong>of</strong> these helminths.<br />

Infracommunity structure<br />

Kennedy (1990) characterized the helminth<br />

community <strong>of</strong> freshwater fishes as depauperate<br />

and isolationist. <strong>The</strong> infracommunity <strong>of</strong> L. miniatus<br />

displayed both characteristics. Infracommunities<br />

were characterized by a lack <strong>of</strong> helminth<br />

interactions, were species-poor, and included<br />

a small number <strong>of</strong> worms. Consequently,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


108 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

overall mean infracommunity diversity and species<br />

richness <strong>of</strong> L. miniatus were low, similar to<br />

other freshwater fishes (Kennedy et al., 1986).<br />

Most fish display indeterminate growth (Wooten,<br />

1990), so that body size is <strong>of</strong>ten highly correlated<br />

with age (Ricker, 1979; Swales, 1986).<br />

In the present study, larger hosts harbored a<br />

more diverse infracommunity. This was probably<br />

because <strong>of</strong> greater exposure time, which may<br />

increase the probability <strong>of</strong> these hosts being colonized<br />

by the less common helminth species.<br />

Cloutman (1975) noted a similar relationship between<br />

age and helminth diversity in largemouth<br />

bass, Micropterus salmoides (Lacepede, 1802).<br />

Seasonality did not affect infracommunity diversity<br />

and species richness. With the exception<br />

<strong>of</strong> C. cornutum and TV. cylindratus, all remaining<br />

helminths were recovered in all time periods,<br />

suggesting that the larval forms <strong>of</strong> the majority<br />

<strong>of</strong> these helminths are capable <strong>of</strong> colonizing L.<br />

miniatus year-round. However, the proportion <strong>of</strong><br />

infected intermediate hosts, as shown by Fernandez<br />

and Esch (199la, b), may have changed<br />

seasonally, resulting in the discrete cycles <strong>of</strong><br />

abundance shown by some <strong>of</strong> these helminths.<br />

Overall, the infracommunity structure <strong>of</strong> L.<br />

miniatus was not highly predictable, suggesting<br />

that each infracommunity represented a random<br />

subset <strong>of</strong> the parasites found in the component<br />

community <strong>of</strong> this host. Poulin (1997) noted that<br />

low infracommunity predictability is also a characteristic<br />

<strong>of</strong> isolationist communities, because<br />

helminth interactions, which <strong>of</strong>ten result in more<br />

predictably structured assemblages, are lacking.<br />

Infracommunity predictability did differ<br />

among time periods. Infracommunity structure<br />

was most and least predictable in February—May<br />

and May—August, respectively. In February-<br />

May, increases in prevalence and abundance <strong>of</strong><br />

B. cupuloris were largely responsible for the<br />

greatest degree <strong>of</strong> infracommunity similarity,<br />

whereas reductions in prevalence and abundance<br />

<strong>of</strong> this trematode, along with Genarchella sp.,<br />

may have contributed to low infracommunity<br />

predictability in the following season. <strong>The</strong> greater<br />

predictability in February-May suggests that<br />

larval helminths are more prevalent in their intermediate<br />

hosts during that time <strong>of</strong> year so that<br />

the probability <strong>of</strong> individual hosts acquiring a<br />

similar suite <strong>of</strong> parasites is greater.<br />

Component community structure<br />

<strong>The</strong> trematodes B. cupuloris and Genarchella<br />

sp. were the dominant species in the component<br />

community <strong>of</strong> L. punctatus and accounted for<br />

the majority <strong>of</strong> all worms recovered during this<br />

year-long study. <strong>The</strong>se helminths are not found<br />

in freshwater centrarchids but have been reported<br />

from other Lepomis spp. in the Lake Pontchartrain-Lake<br />

Maurepas estuary (Fiorillo and<br />

Font, 1996). Ramsey (1965) noted that B. cupuloris<br />

was replaced by the closely related Homalometron<br />

armatum (MacCallum, 1895) in centrarchid<br />

hosts collected in freshwater ponds located<br />

near this estuary. In this estuary, B. cupuloris<br />

and Genarchella sp. are more prevalent<br />

and abundant in L. microlophus (Fiorillo and<br />

Font, 1996), suggesting that L. miniatus is a suitable<br />

but not a required host for these trematodes<br />

(Leong and Holmes, 1981). However, the specificity<br />

<strong>of</strong> B. cupuloris and Genarchella sp. for<br />

estuarine hosts reaffirms the importance <strong>of</strong> ecological<br />

associations to the component community<br />

structure <strong>of</strong> L. miniatus.<br />

<strong>The</strong> remaining 5 helminths recovered from L.<br />

miniatus are common parasites <strong>of</strong> freshwater<br />

centrarchid fishes (see H<strong>of</strong>fman, 1967). Although<br />

mature forms were found in L. miniatus,<br />

these helminths showed low prevalence and<br />

abundance (Table 1). However, all 5 species<br />

were more prevalent and abundant in other Lepomis<br />

spp. from this estuary (Fiorillo and Font,<br />

1996). <strong>The</strong>se patterns suggest that L. miniatus is<br />

a suitable host for these helminths (Leong and<br />

Holmes, 1981) but that their occurrence in L.<br />

miniatus may represent accidental infections.<br />

Component community diversity was low and<br />

similar to that <strong>of</strong> other freshwater fishes (Kennedy<br />

et al., 1986). Qualitatively, component diversity<br />

varied seasonally and was greatest in<br />

February—May when B. cupuloris and Genarchella<br />

sp. occurred frequently and abundances<br />

were high. <strong>The</strong> component community <strong>of</strong> this<br />

host in August-November and November-February<br />

was most similar. In those time periods,<br />

most <strong>of</strong> the helminths recovered displayed similar<br />

measures <strong>of</strong> prevalence and abundance (Table<br />

1), resulting in a greater degree <strong>of</strong> similarity.<br />

Overall, the helminth species composition <strong>of</strong><br />

L. miniatus was similar to that <strong>of</strong> other centrarchid<br />

hosts in this estuary (see Fiorillo and Font,<br />

1996). All helminths found in the present study<br />

were also recovered in L. macrochirus and, with<br />

the exception <strong>of</strong> C. cornutum, in L. megalotis.<br />

However, compared to L. miniatus, species richness<br />

was much lower in L. microlophus. Dietary<br />

differences between and among hosts may ac-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 109<br />

count for this result (Bell and Burt, 1991), but<br />

unequal sampling effort may have biased this<br />

pattern (see Levine, 1980; Fiorillo and Font,<br />

1996, for diet analyses).<br />

Further studies are necessary to determine the<br />

life cycles <strong>of</strong> B. cupuloris and Genarchella sp.<br />

Knowledge <strong>of</strong> the intermediate hosts <strong>of</strong> these<br />

trematodes and their seasonal patterns <strong>of</strong> abundance,<br />

as well as <strong>of</strong> temporal changes in the trophic<br />

interactions <strong>of</strong> intermediate hosts and fish,<br />

is essential to our understanding <strong>of</strong> the mechanisms<br />

that determine the seasonal dynamics <strong>of</strong><br />

these helminths and the parasite community<br />

structure <strong>of</strong> this centrarchid host. In addition, a<br />

better understanding <strong>of</strong> these life cycles and seasonal<br />

patterns <strong>of</strong> incidence and abundance<br />

would further elucidate the importance <strong>of</strong> L.<br />

miniatus to the circulation <strong>of</strong> these helminths in<br />

this estuarine ecosystem.<br />

Acknowledgments<br />

We thank G. W. Childers, R. A. Seigel, R. W.<br />

Hastings, and G. P. Shaffer for their counsel and<br />

support. We thank Bill Lutterschmidt, Becky<br />

Fiorillo, John Chelchowski, Scott Thompson,<br />

and Kelley Smith for their help in the field. We<br />

are especially grateful to Tom Blanchard for his<br />

relentless help in the field and support throughout<br />

the duration <strong>of</strong> this study and to an anonymous<br />

reviewer for a critical and perceptive review<br />

<strong>of</strong> the manuscript and recommendations<br />

for its improvement.<br />

Literature Cited<br />

Anderson, R. M. 1974. Population dynamics <strong>of</strong> the<br />

cestode Caryophyllaeus laticeps (Fellow, 1781) in<br />

the bream (Abramus brama L.). Journal <strong>of</strong> Animal<br />

Ecology 43:305-321.<br />

. 1976. Seasonal variation in the population dynamics<br />

<strong>of</strong> Caryophyllaeus laticeps. Parasitology<br />

72:281-305.<br />

Bell, G., and A. Burt. 1991. <strong>The</strong> comparative biology<br />

<strong>of</strong> parasite species diversity: internal helminths <strong>of</strong><br />

freshwater fish. Journal <strong>of</strong> Animal Ecology 60:<br />

1047-1064.<br />

Bush, A. O., K. D. Lafferty, J. M. Lotz, and A. W.<br />

Shostak. 1997. Parasitology meets ecology on its<br />

own terms: Margolis et al. revisited. Journal <strong>of</strong><br />

Parasitology 83:575-583.<br />

Carlander, K. D. 1977. Handbook <strong>of</strong> Freshwater<br />

Fishery Biology. Life History Data on Centrarchid<br />

Fishes <strong>of</strong> the United <strong>State</strong>s and Canada. Iowa<br />

<strong>State</strong> University Press, Ames, Iowa. 431 pp.<br />

Chappell, L. H. 1969. <strong>The</strong> parasites <strong>of</strong> the threespined<br />

stickleback Gasterosteus aculeatus L. from<br />

a Yorkshire pond. I. Seasonal variation <strong>of</strong> parasite<br />

fauna. Journal <strong>of</strong> Fish Biology 1:137-152.<br />

Chubb, J. S. 1979. Seasonal occurrence <strong>of</strong> helminths<br />

in freshwater fishes. Part II. Trematoda. Pages<br />

141-313 in W. H. R. Lumsden, R. Muller, and J.<br />

R. Baker, eds. Advances in Parasitology. Vol. 17.<br />

Academic Press, London. 415 pp.<br />

Cloutman, D. G. 1975. Parasite community structure<br />

<strong>of</strong> largemouth bass, warmouth, and bluegill in<br />

Lake Fort Smith, Arkansas. Transactions <strong>of</strong> the<br />

American Fisheries <strong>Society</strong> 104:277-283.<br />

Eure, H. 1976. Seasonal abundance <strong>of</strong> Neoechinorhyncus<br />

cylindratus from the largemouth bass<br />

(Micropterus salmoides) in a heated reservoir.<br />

Parasitology 73:355-370.<br />

Fernandez, J., and G. W. Esch. 199la. Guild structure<br />

<strong>of</strong> larval trematodes in the snail Helisoma<br />

anceps and its impact on fecundity <strong>of</strong> the snail<br />

host. Journal <strong>of</strong> Parasitology 77:528-539.<br />

, and . 1991b. <strong>The</strong> component community<br />

structure <strong>of</strong> larval trematodes in the pulmonate<br />

snail Helisoma anceps. Journal <strong>of</strong> Parasitology<br />

77:540-550.<br />

Fiorillo, R. A., and W. F. Font. 1996. Helminth community<br />

structure <strong>of</strong> four species <strong>of</strong> Lepomis (Osteichthyes:<br />

Centrarchidae) from an oligohaline estuary<br />

in southeastern Louisiana. Journal <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 64:24-<br />

30.<br />

Granath, W. O., and G. W. Esch. 1983a. Temperature<br />

and other factors that regulate the composition<br />

and infrapopulation densities <strong>of</strong> Bothriocephalus<br />

acheilognathi (Cestoda) in Gambusia affinis<br />

(Pisces). Journal <strong>of</strong> Parasitology 69:1 1 16-1124.<br />

, and . 1983b. Survivorship and parasite-induced<br />

mortality among mosquito fish in a<br />

predator-free, North Carolina cooling reservoir.<br />

American Midland Naturalist 110:314-323.<br />

, and . 1983c. Seasonal dynamics <strong>of</strong><br />

Bothriocephalus acheilognathi in ambient and<br />

thermally altered areas <strong>of</strong> a North Carolina cooling<br />

reservoir. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 50:205-218.<br />

Heard, R. W. 1982. Guide to common tidal marsh<br />

invertebrates <strong>of</strong> the northeastern Gulf <strong>of</strong> Mexico.<br />

Mississippi Alabama Sea Grant Consortium Publication<br />

79-004. 82 pp.<br />

H<strong>of</strong>fman, G. L. 1967. Parasites <strong>of</strong> North American<br />

Freshwater Fish. University <strong>of</strong> California Press,<br />

Berkeley. 486 pp.<br />

Kennedy, C. R. 1990. Helminth communities in freshwater<br />

fish: structured communities or stochastic<br />

assemblages? Pages 131-156 in G. W. Esch, O.<br />

Bush, and J. M. Aho, eds. Parasite Communities:<br />

Patterns and Process. Chapman and Hall, London.<br />

335 pp.<br />

, A. O. Bush, and J. M. Aho. 1986. Patterns<br />

in helminth communities: why are birds and fish<br />

different? Parasitology 93:205-215.<br />

Lauder, G. V. 1983. Functional and morphological<br />

bases <strong>of</strong> trophic specialization in sunfishes (Teleostei,<br />

Centrarchidae). Journal <strong>of</strong> Morphology<br />

178:1-21.<br />

Leong, T. S., and J. C. Holmes. 1981. Communities<br />

<strong>of</strong> metazoan parasites in open water fishes <strong>of</strong> Cold<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


110 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Lake, Alberta. Journal <strong>of</strong> Fish Biology 18:693-<br />

713.<br />

Levine, S. J. 1980. Gut contents <strong>of</strong> 44 Lake Pontchartrain<br />

fish species. Pages 973-1029 in J. H.<br />

Stone, ed. Environmental Analysis <strong>of</strong> Lake Pontchartrain,<br />

Louisiana, Its Surrounding Wetlands<br />

and Selected Land Uses. Vol. 2. Coastal Ecology<br />

Laboratory, Center for Wetland Resources, Louisiana<br />

<strong>State</strong> University, Baton Rouge, Louisiana.<br />

Technical Report 899-1030. 1219 pp.<br />

McDaniel, J. S., and H. H. Bailey. 1974. Seasonal<br />

population dynamics <strong>of</strong> some helminth parasites<br />

<strong>of</strong> centrarchid fishes. Southwestern Naturalist 18:<br />

403-416.<br />

Pennak, R. W. 1989. Fresh-water Invertebrates <strong>of</strong> the<br />

United <strong>State</strong>s: Protozoa to Mollusca, 3rd ed. John<br />

Wiley & Sons, New York. 628 pp.<br />

Pielou, E. C. 1977. Mathematical Ecology. John Wiley<br />

& Sons, New York. 385 pp.<br />

Poulin, R. 1997. Species richness <strong>of</strong> parasite assemblages:<br />

evolution and patterns. Annual Review <strong>of</strong><br />

Ecology and Systematics 28:341-358.<br />

Ramsey, J. S. 1965. Barbulostomiim cupuloris gen. et<br />

sp. n. (Trematoda: Lepocreadiidae) from sunfishes<br />

(Lepomis spp.) in Lake Pontchartrain, Louisiana.<br />

Journal <strong>of</strong> Parasitology 51:777-780.<br />

Ricker, W. E. 1979. Growth rates and models. Pages<br />

677-743 in W. S. Hoar, D. J. Randall, and J. R.<br />

Brett, eds. Fish Physiology. Vol. 8. Academic<br />

Press, London. 792 pp.<br />

Stromberg, P. C., and J. L. Crites. 1975. An analysis<br />

<strong>of</strong> the changes in the prevalence <strong>of</strong> Camallanus<br />

oxycephalus (Nematoda: Camallanidae) in western<br />

Lake Erie. Ohio Journal <strong>of</strong> Science 75:1-6.<br />

Swales, S. 1986. Population dynamics, production and<br />

angling catch <strong>of</strong> brown trout, Salmo trutta, in a<br />

mature upland reservoir in Mid-Wales. Environmental<br />

Biology <strong>of</strong> Fishes 16:279-293.<br />

Wilbur, R. L. 1969. <strong>The</strong> Redear Sunfish in Florida.<br />

Florida Game and Fish Commission Fisheries<br />

Bulletin 5. 64 pp.<br />

Wootton, R. J. 1990. An Ecology <strong>of</strong> Teleost Fishes.<br />

Chapman and Hall, New York. 404 pp.<br />

Editors' Acknowledgments<br />

In addition to the members <strong>of</strong> the Editorial Board, we would like to acknowledge, with thanks,<br />

the following persons for providing their valuable help and insights in reviewing manuscripts for<br />

the Journal: Jasem Abdul-Salam, Martin Adamson, Omar Amin, James Baldwin, Diane Barton,<br />

George Benz, Ian Beveridge, Walter Boeger, Burton Bogitsh, Daniel Brooks, Charles Bursey, Albert<br />

Bush, Gilbert Castro, Hilda Ching, Rebecca Cole, Bruce Conn, John Crites, John Cross, Murray<br />

Dailey, Tommy Dunagan, Donald Forrester, Stephen Goldberg, David Hall, Hideo Hasegawa, Richard<br />

Heard, Gary Hendrickson, Sherman Hendrix, Russell Hobbs, Jane Huffman, Hugh Jones,<br />

James Joy, Michael Kinsella, Thomas Klei, Delane Kritsky, Ralph Lichtenfels, Donald Linzey,<br />

Jeffrey Lotz, Eugene Lyons, David Marcogliese, Gary MacCallister, Donald McAlpine, Lena Measures,<br />

Frantisek Moravec, Darwin Murrell, Patrick Muzzall, Brent Nickol, Thomas Nolan, Paul<br />

Nollen, David Oetinger, Robin Overstreet, Raphael Payne, Danny Pence, Thomas Platt, Mark Pokras,<br />

Dennis Richardson, Guillermo Salgado-Maldonado, Gerhard Schad, Mark Siddall, Donald<br />

Smith, Marilyn Spalding, George Stewart, Michael Sukhdeo, Dennis Thoney, John Ubelaker.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 11 1-114<br />

Nematodes and Acanthocephalans <strong>of</strong> Raccoons (Procyon lotor}, with<br />

a New Geographical Record for Centrorhynchus conspectus<br />

(Acanthocephala) in South Carolina, U.S.A.<br />

MICHAEL J. YABSLEY AND GAYLE PITTMAN NoBLET1<br />

Department <strong>of</strong> Biological Sciences, Clemson University, Clemson, South Carolina 29634-1903, U.S.A. (e--<br />

mail: myabsle@clemson.cdu; gnoblet@clemson.edu)<br />

ABSTRACT: From April 1997 through April 1998, 128 raccoons (Procyon lotor (Linnaeus)) collected from 7<br />

sites representing 4 physiographic areas in South Carolina were examined for gastrointestinal helminth parasites.<br />

Four species <strong>of</strong> nematodes (Gnathostoma procyonis (Chandler), Physaloptera rara Hall and Wigdor, Arthrocephahis<br />

lotoris (Schwartz), and Molineus barhatus Chandler) and 2 species <strong>of</strong> acanthocephalans (Macracanthorhynchus<br />

ingens (von Linstow) and Centrorhynchus conspectus Van Cleave and Pratt) were collected. <strong>The</strong><br />

finding <strong>of</strong> 11 immature C. conspectus in 3 South Carolina raccoons represents a new geographical record for<br />

this species.<br />

KEY WORDS: Centrorhynchus conspectus, raccoon, Procyon lotor, Nematoda, Acanthocephala, helminths,<br />

Gnathostoma procyonis, Physaloptera rara, Arthrocephalus lotoris, Molineus barbatus, Macracanthorhynchus<br />

ingens, South Carolina, U.S.A.<br />

<strong>The</strong> raccoon (Procyon lotor (Linnaeus, 1758))<br />

is an omnivore that ranges over most <strong>of</strong> North<br />

America and occurs in both rural and urban settings.<br />

Consequently, the range <strong>of</strong> zoonoses for<br />

raccoons is important in assessing risk to humans<br />

and domestic animals. In South Carolina,<br />

only limited studies on helminth parasites <strong>of</strong> raccoons<br />

have been reported previously (Harkema<br />

and Miller, 1964; Stansell, 1974). More recent<br />

reports <strong>of</strong> serious human illnesses from the<br />

northern and midwestern United <strong>State</strong>s, such as<br />

cerebrospinal nematodiasis because <strong>of</strong> infection<br />

with the gastrointestinal nematode Baylisascaris<br />

procyonis (Stefanski and Zarnowski, 1951), led<br />

to the current study, which includes raccoons<br />

collected statewide from a wide variety <strong>of</strong> habitats<br />

(e.g., mountains, farms, urban areas, beaches,<br />

swamps, and barrier islands), allowing for a<br />

comparison <strong>of</strong> parasite burdens and consideration<br />

<strong>of</strong> human health risks associated with these<br />

parasites (Williams et al., 1997; Boschetti and<br />

Kasznica, 1995).<br />

Materials and Materials<br />

Raccoons (n = 128) were collected between April<br />

1997 and April 1998 with foot-hold traps or wire livetraps.<br />

Traps were set at 7 sites that included 4 <strong>of</strong> the<br />

5 physiographic areas <strong>of</strong> South Carolina. Site 1 included<br />

both urban and waterfowl management areas<br />

(WMA) in Pickens County (Foothills); Site 2 was a<br />

WMA in Union County (Piedmont); Site 3 was inland<br />

1 Corresponding author.<br />

111<br />

farm areas <strong>of</strong> Horry County (Lower Coastal Plains<br />

North, LCPN); Site 4 included both beach and wooded<br />

habitats in the tourist area <strong>of</strong> Myrtle Beach, Horry<br />

County (LCPN); Site 5 was a swamp located on the<br />

Savannah River in Hampton County (Lower Coastal<br />

Plains South, LCPS); and Sites 6 and 7 were both on<br />

barrier islands located in Charleston County (LCPS).<br />

John's Island (Site 6), next to and continuous with the<br />

mainland at times <strong>of</strong> low tide, is primarily forest and<br />

farmland with many freshwater ponds, whereas Seabrook<br />

Island (Site 7) is a small residential island about<br />

1.5 km <strong>of</strong>fshore, which lacks freshwater habitats. Each<br />

raccoon was subjected to multiple evaluations, which<br />

included not only our study <strong>of</strong> gastrointestinal helminth<br />

parasites, but also seroprevalence, culture and<br />

DNA studies for Trypanosoma cruzi, and museum<br />

study specimens. In addition, most animals were included<br />

in a trap-type capture effectiveness study conducted<br />

by the South Carolina Department <strong>of</strong> Natural<br />

Resources (SCDNR).<br />

Raccoons were either euthanized by intramuscular<br />

injection <strong>of</strong> 0.2 ml/kg ketamine/xylazine followed by<br />

intraperitoneal injection <strong>of</strong> 1 ml/kg sodium pentobarbital,<br />

or were hunter-shot. Stomach and intestines from each<br />

animal were examined as soon as possible after death<br />

(within 1-2 hr). However, animals from 2 <strong>of</strong> the physiographic<br />

regions (Sites 3-7) were frozen at — 4°C for<br />

1-3 mo prior to examination for helminths because <strong>of</strong><br />

the use <strong>of</strong> the animals for a trap-type study conducted<br />

by the International Association <strong>of</strong> Fish and Wildlife<br />

Agencies. <strong>The</strong>refore, trematodes and cestodes were excluded<br />

from the overall analyses because freezing <strong>of</strong> a<br />

large number <strong>of</strong> hosts resulted in difficult collection<br />

and unreliable identification <strong>of</strong> flatworms.<br />

All nematodes collected from the stomachs and<br />

small intestines <strong>of</strong> raccoons were preserved and stored<br />

in a 70% ethanol-5% glycerine solution. Representative<br />

specimens <strong>of</strong> each nematode were mounted in glycerine<br />

jelly. Acanthocephalans collected from the small<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


M<br />

*<br />

12 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

intestine were placed in water until the proboscis everted,<br />

preserved in acetic acid-formalin-alcohol (AFA),<br />

and stored in 70% ethanol. Temporary wet mounts and<br />

permanent Mayer's acid carmine-stained mounts in<br />

Canada balsam were made for identification. Voucher<br />

specimens deposited at the U.S. National Parasite Collection<br />

in Beltsville, Maryland, have been assigned<br />

USNPC accession numbers 87838-87843. Fisher's exact<br />

test was used to detect significant differences (P <<br />

0.05) in helminth prevalence (%) between study sites.<br />

Two-thirds <strong>of</strong> the animals caught were male, and 85%<br />

<strong>of</strong> all animals were mature. Because <strong>of</strong> the large bias<br />

toward males and adults, no statistical analyses were<br />

performed.<br />

Results and Discussion<br />

Of the 128 raccoons examined, 103 (80%)<br />

were infected with 1 or more <strong>of</strong> the 4 nematodes<br />

and 2 acanthocephalans listed in Table 1. Gnathostoma<br />

procyonis Chandler, 1942, and Physaloptera<br />

rara Hall and Wigdor, 1918, were recovered<br />

primarily from the stomach. Arthrocephalus<br />

(=Placoconus) lotoris (Schwartz, 1925)<br />

and Molineus barbatus Chandler, 1942, were<br />

collected from the posterior and anterior ends <strong>of</strong><br />

the small intestine, respectively. Both Macracanthorhynchus<br />

ingens (von Linstow, 1879) and<br />

Centrorhynchus conspectus Van Cleave and<br />

Pratt, 1940, were recovered exclusively from the<br />

small intestine. Interestingly, 96.1% <strong>of</strong> raccoons<br />

examined from Sites 1-6 were infected with at<br />

least 1 helminth species, whereas only 5 <strong>of</strong> 26<br />

(19.2%) raccoons examined from Seabrook Island<br />

(Site 7) were infected.<br />

Gnathostoma procyonis, a stomach nematode<br />

that forms large nodules in the mucosa, was<br />

found at Sites 3 and 5 in significantly larger<br />

numbers than at other sites (Table 1). Extensive<br />

freshwater habitats were present at both sites,<br />

providing a favorable environment for the required<br />

first intermediate host, which is 1 <strong>of</strong> several<br />

species <strong>of</strong> cyclopoid copepods (Miyazaki,<br />

1960). In contrast, no infections <strong>of</strong> G. procyonis<br />

were observed at 2 coastal locations (Sites 4 and<br />

7), which lacked permanent freshwater habitats.<br />

Physaloptera rara, a spirurid nematode recovered<br />

from both the stomach and small intestine<br />

<strong>of</strong> hosts, does not require the presence <strong>of</strong> freshwater<br />

habitats, because raccoons become infected<br />

by ingestion <strong>of</strong> various terrestrial arthropods<br />

(e.g., Gryllus pennsylvanicus Burmeister, 1838,<br />

Pennsylvania field cricket; Blattella germanica<br />

(Linnaeus, 1767), German cockroach; and Centophiles<br />

spp., camel crickets) (Lincoln and Anderson,<br />

1973). Compared to all other sites, a sig-<br />

"E a<br />

^N<br />

OJj<br />

3<br />

o<br />

5<br />

t^<br />

sON<br />

iH<br />

9 c a<br />

E o£a<br />

j30<br />

«<br />

U<br />

—*j<br />

o<br />

JS<br />

i<br />

1"o 0<br />

c ,g<br />

~<br />

|><br />

1<br />

Qq<br />

e<br />

o<br />

u<br />

u<br />

03<br />

£<br />

00<br />

E<br />

0<br />

tM<br />

C<br />

JS<br />

a<br />

u<br />

o<br />

1<br />

s<br />

•o ea<br />

VI<br />

0<br />

a u<br />

X s<br />

*o<br />

" CN<br />

1)<br />

.S II<br />

00 ^<br />

c .<br />

fll ^<br />

.« o<br />

oo J-<br />

OJ<br />

a<br />

D.<br />

O<br />

X<br />

tL)<br />

u<br />

a.<br />

00<br />

NO<br />

>O C — ^J" ^j" CO<br />

— — oo ON •* ON<br />

J. J. J. J. ' '<br />

__<br />

V") t~-; NO ON CO P~;<br />

O V~l CO NO •— CN<br />

+1 +1 +1 +1 +1 +1<br />

CN r- ON NO r- t-<br />

•^t oo ON CO ON CO<br />

CO — CN<br />

— 00 00 CO CO ^^<br />

^t CO CN -^<br />

V~) CN<br />

CN ON NO NO OO CO<br />

IO ^1" CO • — ' NO<br />

^^ >-^ ^-~. ^^<br />

o o ** c<br />

C O — O<br />

r-~ ^^<br />

— o<br />

TJ- C<br />

!o oo ^ ^ in ^<br />

V) — ^ ^t ON i/~) ON<br />

NO CN >/1 — NO —<br />

-^ ^<br />

f^ C S o ^-.<br />

oo r- CN — oo o<br />

ON >O t —• "^" 00 O<br />

CN CN N<br />

C 00 CN — NO C<br />

O — CO CN OO O<br />

^ ^ ^^ ^ ^ ^<br />

r — r^- CN t — NO —<br />

— — CO — ON (N<br />

0 ^ O ^ O ^<br />

•* O •* O CN C<br />

CN O CN O<br />

— O<br />

. — X , — s , * ^ — s<br />

— CO O CO -3" C<br />

*t O >/~> OO CN O<br />

CN —<br />

•—<br />

__<br />

tjo<br />

^<br />

oo oo" oo So<br />

>•<br />

oo oo<br />

c^<br />

I; 5<br />

-Ii ^<br />

'S -^2 ^ Ci.<br />

K c -^ K<br />

G<br />

s *»<br />

s ~?<br />

S<br />

"B "5<br />

S "*-<br />

^ "5<br />

3*<br />

•S X *^- ^ Q" S ^<br />

S^"^J"-* CJ "^"^<br />

^<br />

"O ^; *^. O ^ O C ^<br />

2*5i?h^ -^ P § ^ t: £ ^^§<br />

£


YABSLEY AND NOBLET—HELMINTHS OF RACCOONS 13<br />

nificantly higher prevalence <strong>of</strong> P. ram was observed<br />

in raccoons trapped at Site 1, with urbancaptured<br />

animals dominating the number <strong>of</strong><br />

infected animals. Because broad host specificity<br />

has been documented for physalopteroids, domesticated<br />

animals could accumulate large numbers<br />

<strong>of</strong> these worms by ingesting an infected intermediate<br />

host that commonly occurs in urban<br />

settings (Morgan, 1941).<br />

High prevalences <strong>of</strong> both the raccoon hookworm,<br />

A. lotoris, and the trichostrongylid, M.<br />

barbatus, frequently have been reported in previous<br />

surveys (Harkema and Miller, 1964; Cole<br />

and Shoop, 1987). In the present study, however,<br />

overall prevalence <strong>of</strong> A. lotoris and M. barbatus<br />

was 28.1 and 12.5%, respectively (Table 1).<br />

Data from Seabrook Island are consistent with<br />

those <strong>of</strong> Harkema and Miller (1962), who previously<br />

reported an almost complete absence <strong>of</strong><br />

A. lotoris and M. barbatus from Cape Island,<br />

South Carolina. <strong>The</strong>se investigators suggested<br />

that the low prevalence <strong>of</strong> these 2 nematodes on<br />

coastal islands was due possibly to the detrimental<br />

effect <strong>of</strong> high tides, salinity <strong>of</strong> soil, and<br />

dry habitats on the free-living larval stages <strong>of</strong><br />

these helminths. Additionally, seasonal variations<br />

have been documented, with lower prevalence<br />

during winter months (Smith et al., 1985),<br />

which could have contributed to the lower numbers<br />

observed in the current survey.<br />

Although B. procyonis was not collected from<br />

any raccoon examined in this study, surveillance<br />

for this parasite should be continued because <strong>of</strong><br />

its medical and veterinary significance and its<br />

reported widespread distribution in the United<br />

<strong>State</strong>s (Kazacos and Boyce, 1989). Based on reports<br />

from southeastern states, Jones and Mc-<br />

Ginnes (1983) suggested that B. procyonis was<br />

found primarily in the more mountainous regions.<br />

<strong>The</strong> northwestern range <strong>of</strong> our study site,<br />

although classified as "Foothills," is not truly<br />

mountainous, which might account for the lack<br />

<strong>of</strong> B. procyonis. In contrast, however, B. procyonis<br />

recently was found in 70% <strong>of</strong> 33 raccoons<br />

examined in southern coastal Texas (Kerr<br />

et al., 1997). <strong>The</strong>se investigators suggested that<br />

the nematode could have been acquired by ingestion<br />

<strong>of</strong> larvae in migratory wild birds, introduced<br />

from infected translocated raccoons, or<br />

the result <strong>of</strong> a northern expansion from Latin<br />

America. This recent finding <strong>of</strong> B. procyonis in<br />

southern Texas and limited reports from the adjacent<br />

state <strong>of</strong> Georgia (only 2 reports, each <strong>of</strong><br />

a single infected raccoon [Babero and Shepperson,<br />

1958; Kazacos and Boyce, 1989]) suggests<br />

the possibility <strong>of</strong> introduction <strong>of</strong> this nematode<br />

into South Carolina.<br />

<strong>The</strong> most prevalent parasite collected was the<br />

acanthocephalan M. ingens. Infections occurred<br />

in raccoons from all study sites, with an overall<br />

prevalence <strong>of</strong> 53%. Although not considered a<br />

threat to public health, M. ingens infection in<br />

humans has been reported (Dingley and Beaver,<br />

1985).<br />

Six species <strong>of</strong> the acanthocephalan genus<br />

Centrorhynchus have been reported from North<br />

American birds <strong>of</strong> prey; however, little is known<br />

about the life cycle, geographical distribution, or<br />

prevalence <strong>of</strong> these acanthocephalan species.<br />

Read (1950) demonstrated experimentally that<br />

Centrorhynchus spinosus (Kaiser, 1893) was capable<br />

<strong>of</strong> developing to adults in laboratory rats,<br />

suggesting that members <strong>of</strong> this genus have the<br />

ability to complete development not only in bird<br />

definitive hosts, but also in mammalian hosts.<br />

One raccoon from John's Island (Site 6) and 2<br />

raccoons from the Horry County inland site (Site<br />

3) were infected with immature C. conspectus.<br />

Prior to the current study, immature forms <strong>of</strong> C.<br />

conspectus had been reported from 26 mammals<br />

representing 6 host species (3 Didelphis virginiana<br />

Kerr, 1792, Virginia opossum; 3 P. lotor,<br />

raccoon; 17 Mustela vison Schreber, 1775, mink;<br />

1 Spilogale putorius (Linnaeus, 1758), spotted<br />

skunk; 1 Blarina brevicauda Gray, 1838, shorttailed<br />

shrew; and 1 Urocyon cinereoargenteus<br />

Schreber, 1775, gray fox) from 5 states (Virginia,<br />

Arkansas, North Carolina, Ohio, and Florida)<br />

(Nickol, 1969; see Richardson and Nickol,<br />

1995). <strong>The</strong> largest number <strong>of</strong> worms previously<br />

reported from any individual mammalian host<br />

was 2 worms, whereas 1 raccoon in the current<br />

survey from the inland Horry County site (Site<br />

3) was infected with 9 C. conspectus (see Richardson<br />

and Nickol, 1995). Several owl species,<br />

including Bubo virginianus (Gmelin, 1788), the<br />

great horned owl; Otus asio (Linnaeus, 1758),<br />

the eastern screech owl; and Strix varia Barton,<br />

1799, the barred owl, have been reported as definitive<br />

hosts for C. conspectus (Richardson and<br />

Nickol, 1995). No intermediate host has been<br />

identified, although cystacanths <strong>of</strong> C. conspectus<br />

have been found in paratenic hosts (Nerodia sipedon<br />

(Linnaeus, 1758), the water snake, from<br />

North Carolina; Rana clamitans Latreille, 1801,<br />

the aquatic green frog, from Virginia; and Des-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


114 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

inognathus fuscus (Green, 1818), the northern<br />

dusky salamander and Plethodon glutinosus<br />

(Green, 1818), the slimy salamander from Louisiana)<br />

(Nickol, 1969; see Richardson and Nickol,<br />

1995). <strong>The</strong> finding <strong>of</strong> 11 immature C. conspectus<br />

in 3 South Carolina raccoons represents<br />

a new geographical record for this species. <strong>The</strong><br />

collection only <strong>of</strong> immature C. conspectus from<br />

raccoons in this study supports earlier reports<br />

that suggested that wild mammals are aberrant<br />

hosts for this parasite (Richardson, 1993).<br />

Acknowledgments<br />

<strong>The</strong> authors thank Osborne E. (Buddy) Baker<br />

III, SCDNR, for aid in procuring coastal raccoon<br />

specimens, and Dr. William C. Bridges, Jr., Department<br />

<strong>of</strong> Experimental Statistics, Clemson<br />

University, for assistance with statistical methods.<br />

Literature Cited<br />

Babero, B. B., and J. R. Shepperson. 1958. Some<br />

helminths <strong>of</strong> raccoons in Georgia. Journal <strong>of</strong> Parasitology<br />

44:519.<br />

Boschetti, A., and J. Kasznica. 1995. Visceral larva<br />

migrans induced eosinophilic cardiac pseudotumor:<br />

a cause <strong>of</strong> sudden death in a child. Journal<br />

<strong>of</strong> Forensic Sciences 40:1097-1099.<br />

Cole, R. A., and W. L. Shoop. 1987. Helminths <strong>of</strong><br />

the raccoon (Procyon lotor) in western Kentucky.<br />

Journal <strong>of</strong> Parasitology 73:762-768.<br />

Dingley, D., and P. C. Beaver. 1985. Macracanthorhynchus<br />

ingens from a child in Texas. American<br />

Journal <strong>of</strong> Tropical Medicine and Hygiene 34:<br />

918-920.<br />

Harkema, R., and G. C. Miller. 1962. Helminths <strong>of</strong><br />

Procyon lotor solutus from Cape Island, South<br />

Carolina. Journal <strong>of</strong> Parasitology 48:333-335.<br />

, and . 1964. Helminth parasites <strong>of</strong> the<br />

raccoon, Procyon lotor, in the southeastern United<br />

<strong>State</strong>s. Journal <strong>of</strong> Parasitology 50:60-66.<br />

Jones, E. J., and B. S. McGinnes. 1983. Distribution<br />

<strong>of</strong> adult Baylisascaris procyonis in raccoons from<br />

Virginia. Journal <strong>of</strong> Parasitology 69:653.<br />

Kazacos, K. R., and W. M. Boyce. 1989. Baylisascaris<br />

larva migrans. Journal <strong>of</strong> the American Veterinary<br />

Medical Association 195:894-903.<br />

Kerr, C. L., S. C. Henke, and D. B. Pence. 1997<br />

Baylisascariasis in raccoons from southern coastal<br />

Texas. Journal <strong>of</strong> Wildlife Diseases 33:653-655.<br />

Lincoln, R. C., and R. C. Anderson. 1973. <strong>The</strong> relationship<br />

<strong>of</strong> Physaloptera maxillaris (Nematoda:<br />

Physalopteroidea) to skunk (Mephitis mephitis).<br />

Canadian Journal <strong>of</strong> Zoology 51:437-441.<br />

Miyazaki, I. 1960. On the genus Gnathostoma and<br />

human gnathostomiasis, with special reference to<br />

Japan. Experimental Parasitology 9:338-370.<br />

Morgan, B. B. 1941. A summary <strong>of</strong> Physalopterinae<br />

(Nematoda) <strong>of</strong> North America. Proceedings <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 8:28-30.<br />

Nickol, B. B. 1969. Acanthocephala <strong>of</strong> Louisiana Caudata<br />

with notes on the life history <strong>of</strong> Centrorhynchus<br />

conspectus. American Midland Naturalist 81:<br />

262-265.<br />

Read, C. P. 1950. <strong>The</strong> rat as an experimental host <strong>of</strong><br />

Centrorhynchus spinosus (Kaiser, 1893), with remarks<br />

on host specificity <strong>of</strong> the Acanthocephala.<br />

Transactions <strong>of</strong> the American Microscopical <strong>Society</strong><br />

69:179-182.<br />

Richardson, D. J. 1993. Acanthocephala <strong>of</strong> the Virginia<br />

opossum (Didelphis virginiand) in Arkansas,<br />

with a note on the life history <strong>of</strong> Centrorhynchus<br />

wardae (Centrorhynchidae). Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 60:128-130.<br />

, and B. B. Nickol. 1995. <strong>The</strong> genus Centrorhynchus<br />

(Acanthocephala) in North America<br />

with description <strong>of</strong> Centrorhynchus robustus n.<br />

sp., redescription <strong>of</strong> Centrorhynchus conspectus,<br />

and a key to species. Journal <strong>of</strong> Parasitology 81:<br />

737-772.<br />

Smith, R. A., M. L. Kennedy, and W. E. Wilhelm.<br />

1985. Helminth parasites <strong>of</strong> the raccoon (Procyon<br />

lotor) from Tennessee and Kentucky. Journal <strong>of</strong><br />

Parasitology 71:599-601.<br />

Stansell, K. B. 1974. Internal parasites <strong>of</strong> coastal raccoons<br />

with notes on changes in parasite burdens<br />

after transportation and release in the upper Piedmont<br />

section <strong>of</strong> South Carolina. <strong>State</strong>wide Wildlife<br />

Research Project, South Carolina Wildlife and<br />

Marine Resources Department, 112 pp.<br />

Williams, C. K., R. D. McKown, J. K. Veatch, and<br />

R. D. Applegate. 1997. Baylisascaris sp. found<br />

in a wild northern bobwhite (Colinus virginianus).<br />

Journal <strong>of</strong> Wildlife Diseases 33:158-160.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 115-122<br />

Nematode Parasites <strong>of</strong> Yellow Perch, Perca flavescens, from the<br />

Laurentian Great Lakes<br />

PATRICK M. MUZZALL<br />

Department <strong>of</strong> Zoology, Natural Science Building, Michigan <strong>State</strong> University, East Lansing, Michigan 48824<br />

U.S.A. (e-mail: muzzall@pilot.msu.edu)<br />

ABSTRACT: Yellow perch, Perca flavescens (Mitchill), from 4 localities in the Laurentian (North American)<br />

Great Lakes were examined for nematodes: from eastern Lake Michigan in 1990; from southern Lake Michigan<br />

in 1991; from <strong>The</strong> Black Hole, Saginaw Bay, Lake Huron in 1991; and from Oak Point, Saginaw Bay, Lake<br />

Huron in 1996. Dichelyne cotylophora (Ward and Magath) infected perch from each location and had the highest<br />

prevalence, mean intensity, and mean abundance at Oak Point. Eustrongylides tubifex (Nitzsch) Jagerskiold was<br />

a common parasite <strong>of</strong> perch from Saginaw Bay, but it infrequently infected Lake Michigan perch. Philometra<br />

cylindracea (Ward and Magath) Van Cleave and Mueller was found in perch only from Saginaw Bay. Contracaecum<br />

sp. infrequently infected perch from Lake Michigan and <strong>The</strong> Black Hole. A comparative summary <strong>of</strong><br />

the literature on nematodes infecting yellow perch from the Great Lakes is presented, listing 27 studies published<br />

since 1917. Four nematode genera utilize perch as intermediate hosts, and 5 genera utilize them as definitive<br />

hosts. Information on the life cycles and pathology caused by nematodes infecting yellow perch is presented.<br />

KEY WORDS: Yellow perch, Perca flavescens, Percidae, Pisces, parasites, nematodes, Laurentian Great Lakes,<br />

Lake Michigan, Lake Huron, Saginaw Bay.<br />

Several nematodes have been reported from<br />

yellow perch, Perca flavescens (Mitchill, 1814)<br />

(Percidae), in the Laurentian (North American)<br />

Great Lakes. In recent years, federal and state<br />

fisheries personnel, aquaculturists, and anglers<br />

have asked me to identify nematodes infecting<br />

yellow perch from the Great Lakes and to answer<br />

questions about them. Declines in the catch<br />

rates <strong>of</strong> perch have been reported in southern<br />

Lake Michigan; Saginaw Bay, Lake Huron; and<br />

western Lake Erie (Francis et al., 1996). <strong>The</strong><br />

present study reports on the occurrence <strong>of</strong> Dichelyne<br />

cotylophora (Ward and Magath, 1917);<br />

Eustrongylides tubifex (Nitzsch, 1819) Jagerskiold,<br />

1909; Philometra cylindracea (Ward and<br />

Magath, 1917) Van Cleave and Mueller, 1934;<br />

and Contracaecum sp. in yellow perch from<br />

Lake Michigan and Saginaw Bay, Lake Huron.<br />

A summary <strong>of</strong> the nematodes infecting yellow<br />

perch from the Great Lakes is presented, with<br />

accompanying information on their life cycles<br />

and pathology. <strong>The</strong> possible relationship between<br />

the decline <strong>of</strong> yellow perch populations<br />

in some areas <strong>of</strong> the Great Lakes and the occurrence<br />

<strong>of</strong> parasitic nematodes is also discussed.<br />

Materials and Methods<br />

A total <strong>of</strong> 364 yellow perch was collected by beach<br />

seine and trawl from southern Lake Michigan (Michigan<br />

City, Indiana) in 1991; eastern Lake Michigan<br />

(Ludington, Michigan) in 1990; Saginaw Bay, Lake<br />

Huron (<strong>The</strong> Black Hole) in 1991; and Saginaw Bay,<br />

Lake Huron (Oak Point) in 1996. Ludington is approximately<br />

247 km north <strong>of</strong> Michigan City. Fish were<br />

sampled from the open water in Lake Michigan and<br />

also along the shore at Ludington. Saginaw Bay, a<br />

large shallow eutrophic bay divided into inner and outer<br />

areas, is the southwestern extension <strong>of</strong> Lake Huron<br />

located in east central Michigan. <strong>The</strong> inner area is shallower<br />

and warmer than the outer area, and is enriched<br />

with domestic, agricultural, and industrial inputs from<br />

the Saginaw River. <strong>The</strong> Black Hole in the Inner Saginaw<br />

Area and Oak Point in the Outer Saginaw Area<br />

are approximately 50 km apart.<br />

Perch were put on ice in the field, frozen at the<br />

laboratory, and measured and sexed at necropsy when<br />

the abdominal cavity, viscera, muscle, gastrointestinal<br />

tract, and head were examined. Dichelyne cotylophora,<br />

Eustrongylides tubifex, and Contracaecum sp. were<br />

preserved in 70% alcohol and later cleared in glycerin<br />

for identification. Philometra cylindracea were broken<br />

during necropsy and pieces were placed in glycerin on<br />

a glass slide, allowed to clear, and examined with a<br />

light microscope; specimens were not kept. Prevalence<br />

is the percentage <strong>of</strong> fish infected in each sample, mean<br />

intensity is the mean number <strong>of</strong> nematodes <strong>of</strong> a species<br />

per infected fish, and mean abundance is the mean<br />

number <strong>of</strong> worms per examined fish. Voucher specimens<br />

have been deposited in the United <strong>State</strong>s National<br />

Parasite Collection (USNPC), Beltsville, Maryland<br />

20705: Dichelyne cotylophora (USNPC 88506)<br />

and Eustrongylides tubifex (USNPC 88507).<br />

Results<br />

Yellow perch from 2 locations in Lake Michigan<br />

and 2 locations in Saginaw Bay, Lake Huron,<br />

were examined for nematodes (Table 1).<br />

115<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


116 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Number, collection time, and mean total length (mm) <strong>of</strong> Perca flavescens examined from Lake<br />

Michigan and Saginaw Bay, Lake Huron.<br />

Location<br />

Month(s), year<br />

Mean total length<br />

± SD (range, 95%<br />

confidence interval)<br />

Michigan City, Indiana, southern Lake Michigan (100)* August 1991<br />

Ludington, Michigan, eastern Lake Michigan (64)* May-September 1990<br />

<strong>The</strong> Black Hole, inner Saginaw Bay, Lake Huron, Michigan September 1991<br />

(100)*<br />

Oak Point, outer Saginaw Bay, Lake Huron, Michigan (100)* August 1996<br />

154 ± 67(50-280, 141-168)<br />

136 ± 23(105-177, 131-142)<br />

172 ± 36(110-278, 164-178)<br />

202 ± 23(170-287,197-206)<br />

* (Number <strong>of</strong> yellow perch examined.)<br />

<strong>The</strong>re was a significant difference in the lengths<br />

<strong>of</strong> perch between locations (analysis <strong>of</strong> variance,<br />

F = 35.9, P < 0.0001) with those from Oak<br />

Point being larger. Forty-eight percent (48) <strong>of</strong><br />

yellow perch from Michigan City in 1991, 26%<br />

(17) from Ludington in 1990, 96% (96) from<br />

<strong>The</strong> Black Hole in 1991, and 98% (98) from<br />

Oak Point in 1996 were infected with 1 or more<br />

nematodes.<br />

Gravid Dichelyne cotylophora infected the intestines<br />

<strong>of</strong> yellow perch from each location (Table<br />

2). It was significantly more prevalent in<br />

perch from Michigan City than from Ludington,<br />

Michigan (chi-square, x2 = 26.6, P < 0.005);<br />

intensities were not significantly different, but<br />

abundances were (Mann-Whitney test, U =<br />

9,187, P < 0.0001). In Saginaw Bay, prevalence<br />

(chi-square, x2 = 128.6, P < 0.005) and abundance<br />

(Mann-Whitney test, U = 6,064, P <<br />

0.0001) <strong>of</strong> D. cotylophora were significantly<br />

higher in perch from Oak Point than from <strong>The</strong><br />

Black Hole. Contracaecum sp. infrequently occurred<br />

encysted on the surface <strong>of</strong> the heart, in<br />

the liver, and associated with the mesentery <strong>of</strong><br />

perch from Lake Michigan and <strong>The</strong> Black Hole.<br />

Eustrongylides tubifex was most common in<br />

perch from Saginaw Bay. <strong>The</strong> intensity (Mann-<br />

Whitney test, U = 9,773, P < 0.0001) and abundance<br />

(Mann-Whitney test, U = 12,798, P <<br />

0.0001) <strong>of</strong> E. tubifex were significantly higher<br />

in perch from <strong>The</strong> Black Hole than from Oak<br />

Point. Larvae occurred in capsules associated<br />

with the mesentery on the surface <strong>of</strong> the ovaries,<br />

testes, liver, spleen, and gastrointestinal tract and<br />

free in the body cavity, viscera, and muscle. Of<br />

the 303 E. tubifex found in perch from Oak Point<br />

in 1996, 92% <strong>of</strong> the worms or capsules with<br />

worms were seen with the unaided eye, whereas<br />

8% were detected only with a dissecting microscope.<br />

Small and large E. tubifex were found in<br />

perch from both Saginaw Bay locations.<br />

Philometra cylindracea, some <strong>of</strong> which were<br />

larvigerous, occurred free in the body cavity <strong>of</strong><br />

perch only from Saginaw Bay, and was most<br />

common at Oak Point. Remains <strong>of</strong> crenulated<br />

and hardened masses <strong>of</strong> nematodes, probably<br />

dead P. cylindracea from past infections, were<br />

found in the body cavities and viscera <strong>of</strong> yellow<br />

perch from <strong>The</strong> Black Hole and Oak Point. All<br />

perch from Saginaw Bay in 1991 and 69% <strong>of</strong><br />

them in 1996 that were infected with P. cylindracea<br />

were concurrently infected with E. tubifex.<br />

Ninety-six percent <strong>of</strong> Oak Point perch harbored<br />

at least 1 E. tubifex or P. cylindracea or<br />

remains <strong>of</strong> dead P. cylindracea.<br />

<strong>The</strong>re were no significant differences in the<br />

prevalence (chi-square analysis, P > 0.05) and<br />

intensity or abundance (Mann-Whitney test, P<br />

> 0.05) <strong>of</strong> D. cotylophora, E. tubifex, P. cylindracea,<br />

and Contracaecum sp. between female<br />

and male perch at any location. <strong>The</strong>re were no<br />

significant correlations between the intensities <strong>of</strong><br />

each nematode species and host length.<br />

Discussion<br />

At least 27 studies mentioning the nematode<br />

parasites <strong>of</strong> yellow perch from the Great Lakes<br />

have been published since 1917. <strong>The</strong> number <strong>of</strong><br />

studies (in parentheses) performed in each Great<br />

Lake and associated connecting waters are: Lake<br />

Michigan (5), Lake Superior (1), St. Marys River<br />

(1), Lake Huron (7), Lake St. Clair (1), Lake<br />

Erie (12), and Lake Ontario (3) (Table 3). Many<br />

<strong>of</strong> these investigations did not report the number,<br />

length, and age <strong>of</strong> perch. Rosinski et al. (1997)<br />

reported that the nematode fauna <strong>of</strong> yellow<br />

perch in Saginaw Bay, Lake Huron, and Lake<br />

Huron proper are similar.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


MUZZALL—NEMATODES OF YELLOW PERCH 17<br />

S3<br />

E<br />

o<br />

CM<br />

55<br />

^U<br />

1<br />

4<br />

AS<br />

M<br />

U<br />

cS<br />

*aa 0)<br />

1<br />

cd<br />

e<br />

'o<br />

I<br />

4><br />

U<br />

1<br />

T3 C<br />

S<br />

e<br />

E<br />

•a<br />

3-<br />

^n<br />

0)<br />

A<br />

3<br />

S<br />

E<br />

3<br />

•g<br />

03<br />

*<br />

HH<br />

^ •4J OB<br />

11<br />

I.S<br />

c «<br />

1 £<br />

g^" fe, £<br />

rti<br />

C3<br />

u C<br />

It cs cfl<br />

£"§<br />

CL, a<br />

e<br />

as<br />

.C u<br />

cc 12<br />

H fi<br />

N §0<br />

^<br />

2<br />

^<br />

><<br />

1<br />

Q<br />

CO<br />

+1<br />

§<br />

0.<br />

u<br />

S •*<br />

oo<br />

•*' (^ d<br />

+1 +1 +1<br />

*o ^ NO<br />

(N C<br />

^t r*"<br />

..<br />

^ ^<br />

(N —<br />

(N<br />

d<br />

, £<br />

+ 1 +1 +1<br />

O O O<br />

in ^t _;<br />

Q CO<br />

+1<br />

-^<br />

^<br />

,— s<br />

o<br />

c ,—,<br />

•^ X<br />

a<br />

0. _§<br />

O<br />

Q<br />

CO<br />

03"<br />

CO<br />

+1<br />

S<br />

D-<br />

Q<br />

CO<br />

fe 1<br />

^<br />

X<br />

a<br />

§<br />

I<br />

03<br />

Q<br />

CO<br />

03"<br />

00 +1<br />

S<br />

0.<br />

Q<br />

CO<br />

+1<br />

<<br />

•1—<br />

2<br />

ff ^_^<br />

S- X d<br />

J<br />

S Q<br />

CO<br />

+1<br />

§<br />

Cu<br />

Q<br />

CO<br />

+1<br />

*<br />

-1-<br />

2<br />

x-^<br />

•:•:•<br />

U<br />

§<br />

_J<br />

rt r<br />

d<br />

d d r-<br />

+1 +1 +1 +1<br />

•3- >n o O O vO —<br />

d d 06 d<br />

O O<br />

ON —<br />

NO<br />

NO<br />

d ri<br />

+ 1 +1<br />

in oo<br />

— r-<br />

d d<br />

^ 00<br />

CM r-<br />

+1 +1<br />

S o (N<br />

(N •*<br />

OO<br />

ON<br />

CN OO r<br />

d m —<br />

+1 +1 +1<br />

co in c*<br />

O — C i<br />

d IN d<br />

ON*<br />

+ 1<br />

O<br />

- **' -<br />

m r- rn<br />

><br />

d|||<br />

|<br />

«<br />

| |-5 "^<br />

U<br />

a ~<br />

g "f'<br />

If<br />

5 •-« » '1^<br />

(J Q t<br />

3 a,<br />

H<br />

'1<br />

a<br />

O<br />

^«<br />

03<br />

CS<br />

C<br />

'5b<br />

«<br />

CO<br />

II<br />

OH<br />

0<br />

n<br />

CO<br />

r<br />

u<br />

"o<br />

X<br />

5<br />

u<br />

x<br />

H<br />

>><br />

1<br />

B<br />

'oo CS<br />

CO<br />

X<br />

03<br />

PQ<br />

CO<br />

B<br />

0<br />

00<br />

•a<br />

J<br />

c<br />

_M<br />

o<br />

S<br />

0)<br />

3<br />

j<br />

-<br />

j<br />

u<br />

c<br />

Cd '<br />

•<br />

00 -a<br />

•g B<br />

is 1 x<br />

- x ^n c D<br />

.*« -g ^<br />

•S i e<br />

§ r-J<br />

QJ O TD<br />

y — ] tu<br />

II "o J<br />

u s S<br />

s.li<br />

Si!<br />

•v- ^^ .{.}.<br />

A total <strong>of</strong> 15 nematode taxa has been reported<br />

from yellow perch in the Great Lakes (Table 3).<br />

Of these, Agamonema sp., Contracaecum sp., E.<br />

tubifex, Eustrongylides sp., Hysterothylacium<br />

brachyurum (Ward and Magath, 1917) Van<br />

Cleave and Mueller, 1934, Raphidascaris acus<br />

(Bloch, 1779) Railliet and Henry, 1915, and Raphidascaris<br />

sp. are represented by larval or immature<br />

stages. Of the 10 nematodes identified to<br />

species, 6 mature in the intestine <strong>of</strong> perch. Prevalence<br />

data from the literature indicate that D.<br />

cotylophora is the most common nematode infecting<br />

perch from Lake Michigan, R. acus is<br />

most common in Lake Superior perch, and D.<br />

cotylophora and E. tubifex are most common in<br />

perch from Lakes Huron and Erie. <strong>The</strong> nematodes<br />

<strong>of</strong> perch from Lake Ontario have prevalences<br />

<strong>of</strong> 8% or less. <strong>The</strong> report <strong>of</strong> Bangham and<br />

Hunter (1939) <strong>of</strong> Agamonema sp. from perch in<br />

Lake Erie refers to an unidentified larval form,<br />

an immature nematode (J. Crites, pers. comm.),<br />

and will not be considered further.<br />

In the present study, Contracaecum sp. is reported<br />

for the first time from perch in Lakes<br />

Michigan and Huron; all other nematodes found<br />

have been reported infecting perch from these<br />

lakes. Four nematode taxa were found in perch<br />

in the present study compared to the 15 nematode<br />

taxa reported in the literature. <strong>The</strong>re are<br />

several possible reasons for this, including 1) I<br />

only examined perch from 2 Lake Michigan locations<br />

and Saginaw Bay, 2) more parasitological<br />

studies have been done on perch in Lakes<br />

Erie and Huron, and 3) it is difficult to determine<br />

if fish were collected from different habitats. It<br />

is pointless to discuss whether some nematodes<br />

<strong>of</strong> yellow perch have disappeared in the Great<br />

Lakes, because so few studies have been done<br />

in the past to which I can compare this study.<br />

Dichelyne cotylophora infects yellow perch<br />

from all the Great Lakes and is commonly found<br />

in the anterior intestine. Visible lesions were not<br />

observed at the sites <strong>of</strong> adult attachment. I have<br />

found worms up to 8 mm in length. Based on<br />

experimental evidence, Baker (1984b) suggested<br />

that prey fish (cyprinid minnows) are intermediate<br />

hosts for D. cotylophora. This parasite is<br />

not host-specific to perch, since it has been reported<br />

from several fish species in Lake Michigan,<br />

St. Marys River, Lake Huron, Lake St.<br />

Clair, Lake Erie, and Lake Ontario (Ward and<br />

Magath, 1917; Pearse, 1924; Bangham, 1933,<br />

1955; Bangham and Hunter, 1939; Muzzall,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


118 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 3. Reported nematodes <strong>of</strong> Perca flavescens from the Laurentian Great Lakes.<br />

Species<br />

Lake*<br />

Prevalencet<br />

Locality<br />

Reference<br />

Agamonema sp.±<br />

E<br />

2(2/128)<br />

OH<br />

Bangham and Hunter, 1939<br />

Contracaecum sp.i<br />

M<br />

H<br />

3 (3/100)<br />

8 (5/640)<br />

4 (4/100)<br />

IN<br />

MI<br />

MI<br />

Michigan City, this study<br />

Ludington, this study<br />

<strong>The</strong> Black Hole, this study<br />

Camallanus oxycephalus<br />

H<br />

E<br />

— §<br />

2(1/45)<br />

5 (5/93)<br />

— S<br />

6 (45/735)<br />

7 (27/408)<br />

MI<br />

OH, ONT<br />

OH<br />

OH<br />

OH<br />

ONT<br />

Rosinski et al., 1997<br />

Bangham and Hunter, 1939<br />

Bangham, 1972<br />

Stromberg and Crites, 1972<br />

Cooper et al., 1977<br />

Dechtiar and Nepszy, 1988<br />

Dichelync cotylophora<br />

Eustrongylid.es tubifex'j.<br />

Eustrongylides sp . ±<br />

Hysterothylacium brachyiintm^<br />

Philometra cylindracea<br />

M<br />

S<br />

SMR<br />

H<br />

LSC<br />

E<br />

0<br />

M<br />

H<br />

E<br />

E<br />

0<br />

E<br />

S<br />

E<br />

O<br />

H<br />

—8<br />

9(1/11)<br />

47 (47/100)<br />

19(12/64)<br />

42(10/24)<br />

33 (24/73)<br />

— §<br />

55(110/201)<br />

2(3/134)<br />

— §<br />

4(4/100)<br />

68 (68/100)<br />

— §<br />

— S<br />

65 (45/69)<br />

10 (76/735)<br />

— §<br />

50(6/12)||<br />

6 (25/408)<br />

— §<br />

— S<br />

5 (7/150)<br />

2 (4/374)<br />

3 (3/100)<br />

35(293/831)<br />

2(3/134)<br />

80(193/240)<br />

95 (95/100)<br />

74 (74/100)<br />

38 (19/50)<br />

41 (304/735)<br />

—5<br />

— §<br />

50 (204/408)<br />

8(5/150)<br />

8 (8/98)<br />

33 (8/24)<br />

4(16/408)<br />

8(5/150)<br />

1 (2/201)<br />

4(5/134)<br />

— §<br />

24 (57/240)<br />

10(10/100)<br />

16(16/100)<br />

WI<br />

WI, IL<br />

IN<br />

MI<br />

ONT<br />

MI<br />

ONT<br />

ONT<br />

ONT<br />

MI<br />

MI<br />

MI<br />

—<br />

ONT<br />

OH, ONT,<br />

NY, PA<br />

OH<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

MI<br />

IN<br />

MI<br />

ONT<br />

MI<br />

MI<br />

MI<br />

OH<br />

OH<br />

OH<br />

OH<br />

ONT<br />

ONT<br />

OH<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

MI<br />

MI<br />

MI<br />

MI<br />

Pearse, 1924<br />

Amin, 1977<br />

Michigan City, this study<br />

Ludington, this study<br />

Dechtiar and Lawrie, 1988<br />

Muz/.all, 1984<br />

Smedley, 1934<br />

Bangham, 1955<br />

Dechtiar et al., 1988<br />

Rosinski et al., 1997<br />

<strong>The</strong> Black Hole, this study<br />

Oak Point, this study<br />

Ward and Magath, 1917<br />

Smedley, 1934<br />

Bangham and Hunter, 1939<br />

Cooper et al., 1977<br />

Baker, 1984a<br />

Baker, 1984b<br />

Dechtiar and Nepszy, 1988<br />

Tedla and Fernando, 1 969<br />

Tedla and Fernando, 1970<br />

Dechtiar and Christie, 1988<br />

Allison, 1966<br />

Michigan City, this study<br />

Allison, 1966<br />

Dechtiar et al., 1988<br />

Rosinski et al., 1997<br />

<strong>The</strong> Black Hole, this study<br />

Oak Point, this study<br />

Measures, 1988b<br />

Cooper et al., 1977<br />

Cooper et al., 1978<br />

Crites, 1982<br />

Dechtiar and Nepszy, 1988<br />

Dechtiar and Christie, 1988<br />

Bangham, 1972<br />

Dechtiar and Lawrie, 1988<br />

Dechtiar and Nepszy, 1988<br />

Dechtiar and Christie, 1988<br />

Bangham, 1955<br />

Dechtiar et al., 1988<br />

Salz, 1989<br />

Rosinski et al., 1997<br />

<strong>The</strong> Black Hole, this study<br />

Oak Point, this study<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


MUZZALL—NEMATODES OF YELLOW PERCH 19<br />

Table 3. Continued.<br />

Species<br />

Lake*<br />

Prevalencet<br />

Locality<br />

Reference<br />

Raphidascaris acus$<br />

Raphidascaris sp.t<br />

Rhabdochona canadensis<br />

Moravec and Aral, 1971<br />

Rhabdochona ovtfikanenta<br />

Weller, 1938<br />

Spinitectux carolini Roll,<br />

1928<br />

E<br />

0<br />

S<br />

11<br />

E<br />

M<br />

S<br />

E<br />

S<br />

1 (1/128)<br />

8 (62/735)<br />

— §<br />

10(40/408)<br />

5(8/150)<br />

63(15/24)<br />

2(3/134)<br />

— §<br />

8 (32/408)<br />

1 (1/136)<br />

8 (2/24)<br />

9 (6/69)<br />

8 (2/24)<br />

OH, ONT<br />

OH<br />

OH<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

Spinitectus gracilis Ward 0<br />

1 (2/150) ONT<br />

Dechtiar and Christie, 1988<br />

and Magath, 1917<br />

Spinitectus sp. 5 (5/98) OH Bangham, 1972<br />

* E, Lake Erie; M, Lake Michigan; H, Lake Huron; S, Lake Superior;<br />

Ontario.<br />

t Percent infected (number <strong>of</strong> fish infected/number <strong>of</strong> fish examined).<br />

± Larval stage.<br />

S Parasite present but prevalence not given.<br />

|| Prevalence calculated from winter 1984 sample.<br />

MI<br />

ONT<br />

MI<br />

ONT<br />

OH<br />

ONT<br />

Bangham and Hunter, 1939<br />

Cooper et al., 1977<br />

Crites, 1982<br />

Dechtiar and Nepszy, 1988<br />

Dechtiar and Christie, 1988<br />

Dechtiar and Lawrie, 1988<br />

Dechtiar et al., 1988<br />

Rosinski et al., 1997<br />

Dechtiar and Nepszy, 1988<br />

Weller, 1938<br />

Dechtiar and Lawrie, 1988<br />

Jilek and Crites, 1981<br />

Dechtiar and Lawrie, 1988<br />

SMR, St. Marys River; LSC, Lake St. Clair; O, Lake<br />

1984; Dechtiar and Christie, 1988). Cooper et<br />

al. (1977) demonstrated that the prevalence <strong>of</strong><br />

D. cotylophora in perch in the western basin <strong>of</strong><br />

Lake Erie decreased from 1927-1929, to 1957,<br />

to 1974.<br />

Rhabdochona spp. and Spinitectus spp. infrequently<br />

occur in yellow perch from Lakes Michigan,<br />

Superior, and Erie, and Lakes Superior,<br />

Erie, and Ontario, respectively. Both genera are<br />

found in the intestine <strong>of</strong> several fish species and<br />

do little or no damage to their hosts. <strong>The</strong>y utilize<br />

mayfly larvae and other arthropods as intermediate<br />

hosts.<br />

Species not found as adults in the intestine <strong>of</strong><br />

yellow perch are: H. brachyurum, R. acus, Raphidascaris<br />

sp., Contracaecum sp., P. cylindracea,<br />

E. tubifex, and Eustrongylides sp. Larval H.<br />

brachyurum have been reported in perch from 3<br />

<strong>of</strong> the Great Lakes. Dechtiar and Lawrie (1988)<br />

found H. brachyurum and R. acus larvae in the<br />

liver <strong>of</strong> perch from Lake Superior and suggested<br />

that moderate to heavy liver damage occurred<br />

with iibrosis. Similarly, encysted H. brachyurum<br />

caused liver damage to perch in Lake Ontario<br />

(Dechtiar and Christie, 1988). Piscivorous fishes<br />

serve as definitive hosts for H. brachyurum and<br />

Raphidascaris spp. Contracaecum spp. mature<br />

in piscivorous birds and mammals.<br />

<strong>The</strong> redworm nematode complex <strong>of</strong> yellow<br />

perch in the Great Lakes is composed <strong>of</strong> Camallanus<br />

oxycephalus, P. cylindracea, and E. tubifex.<br />

<strong>The</strong> term "redworm" was coined by anglers<br />

asking the question, "What are these red<br />

worms in my fish?" (J. Crites, pers. comm.). Camallanus<br />

oxycephalus has been reported from<br />

yellow perch in 2 <strong>of</strong> the Great Lakes. Stromberg<br />

and Crites (1974) found that during July and August<br />

in Lake Erie, female C. oxycephalus protrude<br />

from the anus <strong>of</strong> white bass, Morone chrysops,<br />

and rupture, releasing infective larvae that<br />

are ingested by copepods. <strong>The</strong> life cycle is completed<br />

when infected copepods or small paratenic<br />

forage fish hosts are eaten by larger fish. Cooper<br />

et al. (1977) found that the prevalence <strong>of</strong> C.<br />

oxycephalus in yellow perch in western Lake<br />

Erie increased from 1927-1929, to 1957, to<br />

1974.<br />

In the present study, P. cylindracea only occurred<br />

in yellow perch from Saginaw Bay. Copepods<br />

are intermediate hosts for P. cylindracea<br />

(see Molnar and Fernando, 1975; Crites, 1982).<br />

It is not known if P. cylindracea utilizes a trans-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


120 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

port host in its life cycle. Philometra cylindracea<br />

has been found in perch from 3 <strong>of</strong> the Great<br />

Lakes, occurring unencysted in the body cavity.<br />

This nematode matures in, and is host-specific<br />

to, yellow perch, since it has been reported from<br />

no other fish species. Mature females are about<br />

the same length as males (4 mm) or longer. Larvigerous<br />

females, which are delicate and have a<br />

thin transparent cuticle, may exceed 100 mm in<br />

length and are easily broken during host necropsy.<br />

Eustrongylides tubifex had significantly higher<br />

prevalences, mean intensities, and mean abundances<br />

in yellow perch from Saginaw Bay than<br />

in those from Lake Michigan. Karmanova<br />

(1968) and Measures (1988a, b) reported that<br />

tubificid oligochaetes serve as intermediate hosts<br />

for E. tubifex. Although Brinkhurst (1967) and<br />

Schneider et al. (1969) found large numbers <strong>of</strong><br />

tubificids in Saginaw Bay, Haas and Schaeffer<br />

(1992) did not find tubificids in perch stomachs<br />

in Saginaw Bay, and Rosinski et al. (1997)<br />

found them to be infrequent. <strong>The</strong> lack <strong>of</strong> tubificids<br />

in stomachs is surprising, since perch from<br />

Saginaw Bay and other areas <strong>of</strong> Lake Huron are<br />

heavily infected. Tubificids have been found in<br />

the stomachs <strong>of</strong> yellow perch from Lake Erie (J.<br />

Crites, pers. comm.), another lake where E. tubifex<br />

commonly occurs. <strong>The</strong> difference in infection<br />

values <strong>of</strong> E. tubifex between Saginaw Bay<br />

and Lake Michigan may be explained by the<br />

large number <strong>of</strong> tubificids in the bay and by the<br />

small numbers <strong>of</strong> them in Lake Michigan. Piscivorous<br />

birds (e.g., mergansers, Mergus merganser<br />

Linnaeus, 1758; see Measures, 1988c)<br />

serve as definitive hosts for E. tubifex, and differences<br />

in their numbers between these locations<br />

may also play a role in this difference.<br />

Eustrongylides tubifex has been reported from<br />

yellow perch in 4 <strong>of</strong> the Great Lakes. It is infrequent<br />

in Lake Michigan, and the small number<br />

<strong>of</strong> perch examined from Lake Superior may<br />

not reflect its absence. Allison (1966) reported<br />

perch from the Detroit River infected with E.<br />

tubifex. Dechtiar and Christie (1988) found E.<br />

tubifex in several fish species from Lake Ontario<br />

and suggested that it caused damage to perch.<br />

This nematode is very common in yellow perch<br />

from Lake Erie. Interestingly, Bangham and<br />

Hunter (1939) did not report E. tubifex in an<br />

extensive survey <strong>of</strong> parasites <strong>of</strong> Lake Erie fishes,<br />

including 128 yellow perch. Bangham (1972)<br />

was the first to report the occurrence <strong>of</strong> E. tubifex<br />

in yellow perch collected in 1957 from<br />

Lake Erie.<br />

Eustrongylides tubifex is pink to red in color<br />

and thicker than P. cylindracea. Larval E. tubifex<br />

in fish intermediate hosts can reach 10 cm in<br />

length. Cooper et al. (1978) and Crites (1982)<br />

demonstrated experimentally that E. tubifex can<br />

be transferred when a small infected fish is eaten<br />

by a larger one. Crites (1982) reported that E.<br />

tubifex can live in capsules <strong>of</strong> host origin for at<br />

least 1.5 yr and demonstrated that the walls <strong>of</strong><br />

the capsule have several different tissues and are<br />

furnished with capillaries. <strong>The</strong> larvae are nourished<br />

during their development and growth in<br />

these capsules. Measures (1988b) reported on<br />

the pathology <strong>of</strong> E. tubifex in fishes, including<br />

the yellow perch. It appears that E. tubifex infections<br />

in perch do not give rise to immunity,<br />

since larvae <strong>of</strong> different lengths were found in<br />

the same perch in the present study.<br />

Crites (1982) showed that E. tubifex and P.<br />

cylindracea were associated with weight loss in<br />

yellow perch. It is not known if this weight loss<br />

affected fecundity. In addition, P. cylindracea<br />

sometimes infected the ovaries <strong>of</strong> perch, but<br />

whether this impairs reproductive capacity was<br />

not determined. Allison (1966) and Salz (1989)<br />

suggested these E. tubifex and P. cylindracea<br />

play a role in reduced perch growth and high<br />

mortality.<br />

Excluding the Salmoniformes, percids are<br />

probably the most important group <strong>of</strong> fishes in<br />

the Great Lakes. Based on a review <strong>of</strong> the literature<br />

and the present study, it appears that<br />

nematodes do not greatly harm yellow perch, except<br />

for E. tubifex and P. cylindracea, which<br />

commonly infect perch in Saginaw Bay, other<br />

areas <strong>of</strong> Lake Huron, and Lake Erie (Allison,<br />

1966; Crites, 1982; Salz, 1989; Rosinski et al.,<br />

1997). <strong>The</strong>se are Great Lakes areas where the<br />

catch rates <strong>of</strong> perch have declined (Francis et al.,<br />

1996), but the direct effects <strong>of</strong> E. tubifex and P.<br />

cylindracea on reducing the numbers <strong>of</strong> perch<br />

in these areas are not known.<br />

Acknowledgments<br />

I thank Dan Brazo, Indiana Department <strong>of</strong><br />

Natural Resources, Michigan City, Indiana; Tom<br />

McComish, Ball <strong>State</strong> University, Muncie, Indiana;<br />

Rob Elliott and Doug Peterson, Michigan<br />

<strong>State</strong> University, East Lansing, Michigan; and<br />

Bob Haas, Jack Hodge, Dave Fielder, and Larry<br />

Shubel, Michigan Department <strong>of</strong> Natural Re-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


MUZZALL—NEMATODES OF YELLOW PERCH 121<br />

sources, Mt. Clemens and Alpena, Michigan, for<br />

providing the yellow perch; Bernadette Hermann<br />

for technical assistance in 1996; and John<br />

Crites for reviewing an early draft <strong>of</strong> the manuscript<br />

and sharing information on the nematodes<br />

<strong>of</strong> yellow perch in the Great Lakes.<br />

Literature Cited<br />

Allison, L. N. 1966. <strong>The</strong> redworm (Philometra cylindraced)<br />

<strong>of</strong> yellow perch (ferca flavescens) in<br />

Michigan waters <strong>of</strong> the Great Lakes. Michigan<br />

Department <strong>of</strong> Conservation Research and Development<br />

Report 53, Institute for Fisheries Report<br />

1712. 8 pp.<br />

Amin, O. M. 1977. Helminth parasites <strong>of</strong> some southwestern<br />

Lake Michigan fishes. Proceedings <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 44:210—<br />

217.<br />

Baker, M. R. 1984a. Redescription <strong>of</strong> Dichelyne (Cucullanellus)<br />

cotylophora (Ward and Magath,<br />

1917) (Nematoda: Cucullanidae) parasitic in<br />

freshwater fishes <strong>of</strong> eastern North America. Canadian<br />

Journal <strong>of</strong> Zoology 62:2053—2061.<br />

. 1984b. On the biology <strong>of</strong> Dichelyne (Cucullanellus)<br />

cotylophora (Ward and Magath, 1917)<br />

(Nematoda: Cucullanidae) in perch (Perca flavescens)<br />

from Lake Erie, Ontario. Canadian Journal<br />

<strong>of</strong> Zoology 62:2062-2073.<br />

Bangham, R. V. 1933. Parasites <strong>of</strong> the spotted bass,<br />

Micropterus pseudoalplites Hubbs, and summary<br />

<strong>of</strong> parasites <strong>of</strong> smallmouth and largemouth bass<br />

from Ohio streams. Transactions <strong>of</strong> the American<br />

Fisheries <strong>Society</strong> 63:220-227.<br />

. 1955. Studies on fish parasites <strong>of</strong> Lake Huron<br />

and Manitoulin Island. American Midland Naturalist<br />

53:184-194.<br />

. 1972. A resurvey <strong>of</strong> the fish parasites <strong>of</strong> western<br />

Lake Erie. Bulletin <strong>of</strong> the Ohio Biological<br />

Survey 4:1-23.<br />

-, and G. W. Hunter III. 1939. Studies on fish<br />

parasites <strong>of</strong> Lake Erie. Distribution studies. Zoologica<br />

24:385-448.<br />

Brinkhurst, R. O. 1967. <strong>The</strong> distribution <strong>of</strong> aquatic<br />

oligochaetes in Saginaw Bay, Lake Huron. Limnology<br />

and Oceanography 12:137-143.<br />

Cooper, C. L., R. R. Ashmead, and J. L. Crites.<br />

1977. Prevalence <strong>of</strong> certain endoparasitic helminths<br />

<strong>of</strong> the yellow perch from western Lake<br />

Erie. Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong> 44:96.<br />

, J. L. Crites, and D. J. Sprinkle-Fastkie.<br />

1978. Population biology and behavior <strong>of</strong> larval<br />

Eiistrongylides tubifex (Nematoda: Dioctophymatida)<br />

in poikilothermous hosts. Journal <strong>of</strong> Parasitology<br />

64:102-107.<br />

Crites, J. L. 1982. Impact <strong>of</strong> the nematode parasite<br />

Eiistrongylides tubifex on yellow perch in Lake<br />

Erie. U.S. Department <strong>of</strong> Commerce Commercial<br />

Fisheries Research and Developmental Project. 3-<br />

298-D. Clear Technical Report 258. 84 pp.<br />

Dechtiar, A. O., and W. J. Christie. 1988. Survey <strong>of</strong><br />

the parasite fauna <strong>of</strong> Lake Ontario fishes, 1961-<br />

1971. Great Lakes Fisheries Commission, Technical<br />

Report 51:66-106.<br />

, J. J. Collins, and J. A. Reckahn. 1988. Survey<br />

<strong>of</strong> the parasite fauna <strong>of</strong> Lake Huron fishes,<br />

1961-1971. Great Lakes Fisheries Commission,<br />

Technical Report 51:19-48.<br />

, and A. H. Lawrie. 1988. Survey <strong>of</strong> the parasite<br />

fauna <strong>of</strong> Lake Superior fishes, 1969-1975.<br />

Great Lakes Fisheries Commission, Technical Report<br />

51:1-18.<br />

, and S. J. Nepszy. 1988. Survey <strong>of</strong> the parasite<br />

fauna <strong>of</strong> selected fish species from Lake Erie,<br />

1970-1975. Great Lakes Fisheries Commission,<br />

Technical Report 51:49-65.<br />

Francis, J. T., S. R. Robillard, and J. E. Marsden.<br />

1996. Yellow perch management in Lake Michigan:<br />

a multi-jurisdictional challenge. Fisheries 21:<br />

18-20.<br />

Haas, R. C., and J. S. Schaeffer. 1992. Predator-prey<br />

and competitive interactions among walleye, yellow<br />

perch, and other forage fishes in Saginaw<br />

Bay, Lake Huron. Michigan Department <strong>of</strong> Natural<br />

Resources, Fisheries Division, Research Report<br />

1984. 135 pp.<br />

Jilek, R., and J. L. Crites. 1981. Prevalence <strong>of</strong> Spinitectus<br />

carolini Holl, 1928, and Spinitectus gracilis<br />

Ward and Magath, 1916 (Spirurida: Nematoda)<br />

in fishes from Lake Erie. Canadian Journal <strong>of</strong><br />

Zoology 59:141-142.<br />

Karmanova, E. M. 1968. Dioctophymidea <strong>of</strong> Animals<br />

and Man and Diseases Caused by <strong>The</strong>m. Fundamentals<br />

<strong>of</strong> Nematology. Vol. 20. Academy <strong>of</strong> Science<br />

<strong>of</strong> the USSR. Translated and published for<br />

U.S. Department <strong>of</strong> Agriculture. Amerind Publishing,<br />

New Delhi, 1985. 383 pp.<br />

Measures, L. N. 1988a. <strong>The</strong> development <strong>of</strong> Eiistrongylides<br />

tubifex (Nematoda: Dioctophymatoidea) in<br />

oligochaetes. Journal <strong>of</strong> Parasitology 74:296-304.<br />

. 1988b. Epizootiology, pathology, and description<br />

<strong>of</strong> Eustrongylides tubifex (Nematoda: Dioctophymatoidea)<br />

in fish. Canadian Journal <strong>of</strong> Zoology<br />

68:2212-2222.<br />

. 1988c. <strong>The</strong> development and pathogenesis <strong>of</strong><br />

Eustrongylides tubifex (Nematoda: Dioctophymatoidea)<br />

in piscivorous birds. Canadian Journal <strong>of</strong><br />

Zoology 66:2223-2232.<br />

Molnar, K., and C. H. Fernando. 1975. Morphology<br />

and development <strong>of</strong> Philometra cylindracea<br />

(Ward and Magath, 1916) (Nematoda: Philometridae).<br />

Journal <strong>of</strong> Helminthology 49:19-24.<br />

Muzzall, P. M. 1984. Helminths <strong>of</strong> fishes from the St.<br />

Marys River, Michigan. Canadian Journal <strong>of</strong> Zoology<br />

62:516-519.<br />

Pearse, A. S. 1924. <strong>The</strong> parasites <strong>of</strong> lake fishes. Transactions<br />

<strong>of</strong> the Wisconsin Academy <strong>of</strong> Sciences,<br />

Arts, and Letters 21:161-194.<br />

Rosinski, J. L., P. M. Muzzall, and R. C. Haas.<br />

1997. Nematodes <strong>of</strong> yellow perch from Saginaw<br />

Bay, Lake Huron with emphasis on Eustrongylides<br />

tubifex (Dioctophymatidae) and Philometra<br />

cylindracea (Philometridae). Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 64:96-101.<br />

Salz, R. J. 1989. Factors influencing growth and survival<br />

<strong>of</strong> yellow perch from Saginaw Bay, Lake<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Huron. Michigan Department <strong>of</strong> Natural Resourc- Magath, 1916 (Nematoda: Camallanidae). Journal<br />

es, Fisheries Division, Fisheries Research Report <strong>of</strong> Parasitology 60:117-124.<br />

1964. 80 pp. Tedla, S., and C. H. Fernando. 1969. Observations<br />

Schneider, J. C., F. C. Hooper, and A. M. Beeton. on the seasonal changes <strong>of</strong> the parasite fauna <strong>of</strong><br />

1969. <strong>The</strong> distribution and abundance <strong>of</strong> benthic yellow perch (Perca flavescens) from the Bay <strong>of</strong><br />

fauna in Saginaw Bay, Lake Huron. Proceedings Quinte, Lake Ontario. Journal <strong>of</strong> the Fisheries Re<strong>of</strong><br />

the 12th Conference <strong>of</strong> Great Lakes Research search Board <strong>of</strong> Canada 26:833-843.<br />

1969:80-90. , and . 1970. On the characterization <strong>of</strong><br />

Smedley, E. M. 1934. Some parasitic nematodes from the parasite fauna <strong>of</strong> the yellow perch (Perca flu-<br />

Canadian fishes. Journal <strong>of</strong> Helminthology 12: viatilis L.) in five lakes in southern Ontario, Can-<br />

205-220. ada. Helminthologia 11:23-33.<br />

Stromberg, P. C., and J. L. Crites. 1972. A new Ward, H. B., and T. B. Magath. 1917 (dated 1916).<br />

nematode Dichelyne bullocki sp. n. (Cucullanidae) Notes on some nematodes from freshwater fishes,<br />

from Fundulus heteroclitus (Linnaeus). Proceed- Journal <strong>of</strong> Parasitology 3:57-64.<br />

ings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> Washing- Weller, T. H. 1938. Description <strong>of</strong> Rhabdochona oviton<br />

39:131-134. filamenta n. sp. (Nematoda: <strong>The</strong>laziidae) with a<br />

, and . 1974. <strong>The</strong> life cycle and devel- note on the life history. Journal <strong>of</strong> Parasitology<br />

opment <strong>of</strong> Camallanus oxycephalus Ward and 24:403-408.<br />

NOTICE<br />

EFFECTIVE WITH THE JANUARY, 2000 (VOL. 67, NO. 1) ISSUE, THE<br />

JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

WILL BE RENAMED<br />

COMPARATIVE PARASITOLOGY<br />

THE FIRST VOLUME NUMBER WILL BE "VOLUME 67",<br />

INDICATING THAT<br />

COMPARATIVE PARASITOLOGY<br />

WILL BE<br />

"CONTINUING THE JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON'<br />

YOUR MEMBERSHIP IN THE SOCIETY WILL CONTINUE TO BRING YOUR SEMIANNUAL<br />

ISSUES OF COMPARATIVE PARASITOLOGY<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 123-132<br />

A Taxonomic Reconsideration <strong>of</strong> the Genus Plagiorhynchus s. lat.<br />

(Acanthocephala: Plagiorhynchidae), with Descriptions <strong>of</strong> South<br />

African Plagiorhynchus (Prosthorhynchus) cylindraceus from Shore<br />

Birds and P. (P.) malayensis, and a Key to the Species <strong>of</strong> the<br />

Subgenus Prosthorhynchus<br />

OMAR M. AMIN,M ALBERT G. CANARis,2 AND J. MICHAEL KINSELLAS<br />

1 Institute <strong>of</strong> Parasitic Diseases, P.O. Box 28372, Tempe, Arizona 85285 and Department <strong>of</strong> Zoology, Arizona<br />

<strong>State</strong> University, Tempe, Arizona 85287 U.S.A. (e-mail: omaramin@aol.com),<br />

2 P.O. Box 1479, Hamilton, Montana 59840-1479 U.S.A. (e-mail: acanaris@bitterroot.net), and<br />

3 2108 Hilda Avenue, Missoula, Montana 59801 U.S.A. (e-mail: wormdwb@aol.com)<br />

ABSTRACT: A population <strong>of</strong> Plagiorhynchus (Prosthorhynchus) cylindraceus (Goeze) Schmidt and Kuntz is<br />

described from 4 species <strong>of</strong> shore birds in South Africa. Specimens <strong>of</strong> 3 supposed synonyms <strong>of</strong> P. (P.) cylindraceus,<br />

namely P. (P.) formosus Van Cleave, P. (P.) taiwanensis Schmidt and Kuntz, and P. (P.) transversus<br />

(Rudolphi) Travassos, were studied and this synonymy was verified. <strong>The</strong> taxonomic status <strong>of</strong> Plagiorhynchus s.<br />

str. and <strong>of</strong> Prosthorhynchus was reconsidered, and both were retained as subgenera. Females <strong>of</strong> Plagiorhynchus<br />

(Prosthorhynchus) malayensis (Tubangui) Schmidt and Kuntz (nee malayense) are described for the first time;<br />

males are redescribed. A key to species <strong>of</strong> the subgenus Prosthorhynchus is provided.<br />

KEY WORDS: Acanthocephala, Plagiorhynchus (Prosthorhynchus) cylindraceus, description, South Africa,<br />

shore birds, Aves, subgenera Plagiorhynchus s. str. and Prosthorhynchus, Plagiorhynchus (Prosthorhynchus)<br />

malayensis, taxonomic key.<br />

A collection <strong>of</strong> acanthocephalans was made<br />

by one <strong>of</strong> us (A.G.C.) from 7 species <strong>of</strong> shore<br />

birds in South Africa in 1981. All 7 species<br />

yielded a new centrorhynchid acanthocephalan,<br />

Neolacunisoma geraldschmidti Amin and Canaris,<br />

1997. Additionally, 5 <strong>of</strong> these 7 host species<br />

harbored 2 species <strong>of</strong> plagiorhynchid acanthocephalans.<br />

One unidentified species <strong>of</strong> Plagiorhynchus<br />

infected 1 host species, and the other 4 host species<br />

were infected with Plagiorhynchus (Prosthorhynchus)<br />

cylindraceus (Goeze, 1782)<br />

Schmidt and Kuntz, 1966. <strong>The</strong> study <strong>of</strong> the latter<br />

species, a number <strong>of</strong> its synonyms, and various<br />

plagiorhynchid species prompted reconsideration<br />

<strong>of</strong> the generic-subgeneric status <strong>of</strong> Plagiorhynchus<br />

and Prosthorhynchus and the construction<br />

<strong>of</strong> a key to species <strong>of</strong> the latter subgenus.<br />

Among the acanthocephalans borrowed for this<br />

study were a few specimens <strong>of</strong> Plagiorhynchus<br />

(Prosthorhynchus) malayensis (Tubangui, 1935)<br />

Schmidt and Kuntz, 1966 (nee malayense), that<br />

were sufficiently informative to describe females<br />

for the first time and redescribe males. This paper<br />

reports on these findings.<br />

4 Corresponding author.<br />

Materials and Methods<br />

Twenty-eight individuals (12 males and 16 females)<br />

<strong>of</strong> P. (P.) cylindraceus were recovered from 4 species<br />

<strong>of</strong> shore birds (Charadriiformes) collected by one <strong>of</strong><br />

us (A.G.C.) from the Berg River, Cape Province, South<br />

Africa, between 24 May and 31 July 1981. <strong>The</strong> host<br />

species were the curlew sandpiper (Calidris ferruginea<br />

(Pontoppidan, 1763), 1 individual infected with 25<br />

acanthocephalans); Kittlitz' plover (Charadrius pecuarius<br />

(Temminck, 1823), 1 <strong>of</strong> 4 individuals infected<br />

with 1 acanthocephalan); triple-banded plover (Charadrius<br />

tricollaris (Vieillot, 1818), 1 <strong>of</strong> 5 individuals<br />

infected with 1 acanthocephalan); and blacksmith plover<br />

(Holopterus armatus (Burchell, 1822), 1 <strong>of</strong> 7 individuals<br />

infected with 1 acanthocephalan). In addition,<br />

26 unidentifiable plagiorhynchid acanthocephalans<br />

were collected by A.G.C. from 2 white-fronted<br />

sand plovers (Charadrius marginatus Vieillot, 1818)<br />

and 10 uninformative plagiorhynchid acanthocephalans<br />

from the stilt (Himantopus hirnantopus (Linnaeus,<br />

1758)), H. armatus, Charadrius pallidus Strickland,<br />

1852, and C. pecuarius. <strong>The</strong>se unidentified specimens<br />

are in the collection <strong>of</strong> M. Kinsella, Missoula, Montana.<br />

Specimens were processed by the late Gerald D.<br />

Schmidt. We do not know the processing method used.<br />

Measurements, made using an ocular micrometer and<br />

conversion table, are in micrometers unless otherwise<br />

stated. Width measurements refer to maximum width.<br />

Most specimens were deposited in the United <strong>State</strong>s<br />

National Parasite Collection (USNPC), Beltsville,<br />

Maryland, and a few were retained in the collection <strong>of</strong><br />

the first author (O.M.A.). A few study specimens were<br />

123<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


124 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

loaned from USNPC, but most were from the Harold<br />

W. Manter Laboratory Collection (HWMLC), University<br />

<strong>of</strong> Nebraska <strong>State</strong> Museum, Lincoln, Nebraska.<br />

We report the results <strong>of</strong> examination <strong>of</strong> the specimens<br />

collected from the South African shore birds.<br />

Results and Discussion<br />

Plagiorhynchus (Plagiorhynchus} sp.<br />

<strong>The</strong> 26 specimens <strong>of</strong> Plagiorhynchus (Plagiorhynchus)<br />

sp. collected from C. marginatus<br />

were slender, with the proboscis wider near its<br />

middle, long lemnisci and uterus, a near-terminal<br />

female gonopore, elliptical eggs with polar prolongation<br />

<strong>of</strong> the fertilization membrane, and cement<br />

glands <strong>of</strong> unequal length and altogether<br />

about as long as the 2 testes. <strong>The</strong> specimens<br />

were not sufficiently informative to make a specific<br />

designation.<br />

Plagiorhynchus (Prosthorhynchus)<br />

cylindraceus (Goeze, 1782) Schmidt and<br />

Kuntz, 1966<br />

Except for 1 female in the ovarian ball stage,<br />

all 13 other female and 11 male P. (P.) cylindraceus<br />

collected from the single curlew sandpiper<br />

examined were sexually mature adults<br />

with ripe eggs and sperm, respectively. Of the<br />

other 3 host species examined, 1 individual <strong>of</strong><br />

each was infected with 1 immature female. <strong>The</strong><br />

curlew sandpiper appears to be the natural host<br />

<strong>of</strong> P. (P.) cylindraceus in South Africa.<br />

Our South African specimens were diagnosed<br />

as P. (P.) cylindraceus based on their close similarities<br />

with that species and taxa now synonymized<br />

with it, as listed in Amin (1985) and<br />

compared herein (Table 1). Measurements <strong>of</strong> the<br />

1 available female Plagiorynchus (Prosthorhynchus)<br />

transversus (Rudolphi, 1819) Travassos,<br />

1926, the other supposed synonym (USNPC<br />

#65269) agreed with those listed in the table.<br />

Some <strong>of</strong> the specimens examined, and particularly<br />

European P. (P.) cylindraceus, however,<br />

appeared less robust and more slender, and females<br />

as long as 40 mm were reported (Golvan,<br />

1956, Fig. 1). Another difference was related to<br />

the roots <strong>of</strong> the middle proboscis hooks, which<br />

were longer than the blades in European P. (P.)<br />

cylindraceus (see Golvan, 1956, pi. 1A). This<br />

was also observed in some but not all P. (P.)<br />

cylindraceus from Long Island, New York, and<br />

New Hampshire, U.S.A. (HWMLC 33444-<br />

33452), but not in specimens from Israel<br />

(HWMLC 34871). Golvan's specimens reached<br />

lengths <strong>of</strong> 15 mm in males and 40 mm in females<br />

and had as many as 24 longitudinal rows<br />

<strong>of</strong> proboscis hooks. In all other respects, the synonymy<br />

<strong>of</strong> P. (P.) cylindraceus, P. (P.) transversus,<br />

Plagiorhynchus (Prosthorhynchus) formosus<br />

Van Cleave, 1918, and Plagiorhynchus<br />

(Prosthorhynchus) taiwanensis Schmidt and<br />

Kuntz, 1966, was upheld.<br />

Description <strong>of</strong> South African Plagiorhynchus<br />

(Prosthorhynchus) cylindraceus<br />

GENERAL: Specimens robust and bluntly<br />

pointed, females not much longer but more<br />

plump than males. Subdermal nuclei discoidal,<br />

in shallow ameboid branched interconnected<br />

vesicles, appearing rod-shaped in pr<strong>of</strong>ile, with<br />

vertical orientation at almost regular intervals<br />

from anterior end <strong>of</strong> trunk to short distance from<br />

posterior end. Secondary lacunar vessels transverse<br />

throughout trunk. Proboscis hooks in<br />

straight longitudinal rows, without dorsoventral<br />

or any other differentiation. Blades generally<br />

similar in length, but becoming slightly shorter<br />

abruptly anteriorly and more gradually posteriorly<br />

(Table 1). Hook roots simple, posteriorly<br />

directed, and usually about as long as or slightly<br />

shorter than blades. Posterior 2 hooks <strong>of</strong> each<br />

row spiniform, second to last hook with short<br />

root which may be further reduced to large<br />

knob; last hook rootless and invariably with<br />

small knob instead. Lemnisci long and slender,<br />

much longer than proboscis receptacle, nucleated,<br />

subequal, sometimes branched or multiple,<br />

may extend past posterior end <strong>of</strong> posterior testis.<br />

Testes ovoid, contiguous, usually in anterior half<br />

<strong>of</strong> trunk. Four cement glands in 2 sets <strong>of</strong> 2 each,<br />

originating at various levels beginning anteriorly<br />

near posterior end <strong>of</strong> posterior testis. Four separate<br />

cement gland ducts originating anteriorly<br />

at level <strong>of</strong> anterior end <strong>of</strong> Saefttigen's pouch and<br />

joining pouch at its posterior end. Gonopore<br />

near-terminal in adult males but distinctly subterminal<br />

in adult females, vagina usually curved<br />

anteriad in a 90 degree angle. Ripe eggs mostly<br />

elliptical with concentric shell and no polar prolongation<br />

<strong>of</strong> fertilization membrane. Fertilization<br />

membrane <strong>of</strong> a few eggs in gravid females (5—<br />

15%) may exhibit unipolar or, less frequently,<br />

bipolar prolongation.<br />

SPECIMENS DEPOSITED: USNPC 88031 (10<br />

males and 10 females on 10 slides from Calidris<br />

ferruginea in the Berg River, Cape Province,<br />

South Africa).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


Table 1. Comparison between the South African Plagiorhynchus (Prosthorhynchus) cylindraceus and<br />

paper) in selected diagnostic characteristics.<br />

South Africa,<br />

this paper<br />

(n = 23)<br />

P. cylindraceus<br />

Golvan,<br />

1956<br />

(n = ?)<br />

This paper<br />

(n = 20)<br />

P. formosus<br />

Van Cleave, 1918, 1942;<br />

Schmidt and Olsen,<br />

1964 (n = ?)<br />

This pape<br />

(n = 20)<br />

Trunk (mm)<br />

Males<br />

Females<br />

7.79-0.15<br />

8.97-11.06<br />

X 1.67-1.88<br />

X 2.06-2.55<br />

Proboscis (mm)<br />

Males 1.15-1.21 X 0.21-0.24<br />

Females 1.24-1.39 X 0.24-0.27<br />

Proboscis hooks<br />

Rows (no.) 14-17<br />

10-15 X<br />

20-40 X<br />

14-20, up<br />

to 24<br />

Hooks/row 15-18 10-18<br />

Proboscis hooks (mean length from anterior)<br />

M(ll)* 59 62 64 68 68 71 70 71 69 72 71 69 68 62 59 56 53 Eggs 64-78 F(12)* 56 66 69 69 69 73 75 76 76 73 73 73 69 66 62 60 60 X 25-28 M<br />

NGt<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

80 X<br />

F<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

30<br />

4.545-10.45<br />

5.15-12.12<br />

X 0.61-1.82<br />

X 0.45-2.818<br />

0.88-1.03 X 0.24-0.33<br />

0.97-1.15 x 0.27-0.33<br />

M(8)<br />

53<br />

66<br />

67<br />

66<br />

70<br />

70<br />

69<br />

74<br />

71<br />

67<br />

71<br />

71<br />

66<br />

66<br />

56<br />

—<br />

—<br />

42-70 X<br />

16-17<br />

13-15<br />

F(12)<br />

55<br />

67<br />

66<br />

72<br />

73<br />

79<br />

79<br />

78<br />

82<br />

80<br />

75<br />

72<br />

64<br />

63<br />

61<br />

—<br />

—<br />

12-34<br />

8-13 X 1.5-2.5<br />

9-15 X 2-3<br />

0.80-1.10 X 0.25-0.33<br />

0.80-1.10 X 0.25-0.33<br />

V.C.<br />

71<br />

77<br />

83<br />

83<br />

83<br />

83<br />

83<br />

83<br />

83<br />

77<br />

77<br />

77<br />

65<br />

—<br />

—<br />

—<br />

—<br />

40-75+<br />

15-18<br />

11-15<br />

S.&O.<br />

60<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

60<br />

60<br />

—<br />

—<br />

X 18-30+<br />

5.61-12.42<br />

8.03-13.32<br />

X 1.2<br />

X 1.3<br />

0.94-1.12 X 0.2<br />

1.00-1.21 X 0.<br />

M(10)<br />

56<br />

56<br />

62<br />

70<br />

72<br />

73<br />

77<br />

77<br />

75<br />

73<br />

75<br />

69<br />

66<br />

63<br />

60<br />

—<br />

—<br />

56-73<br />

13-17<br />

13-15<br />

F<br />

X 25-<br />

* Numbers in parentheses indicate the numbers <strong>of</strong> specimens used for determination.<br />

t ?, Number <strong>of</strong> specimens examined not given.<br />

± NG, not given.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


126 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 1-8. Species <strong>of</strong> Plagiorhynchus (Prosthorhynchus) and /*. (Plagiorhynchus). 1-5. Plagiorhynchus<br />

(Prosthorhynchus) inalayensis, female. 1. Lateral view <strong>of</strong> whole specimen. 2. Posterior end and reproductive<br />

system. 3. Egg from the body cavity. 4. Proboscis. 5. Proboscis hook numbers 1, 4, 8, 13, 18, 20 <strong>of</strong> 1 row.<br />

6. Plagiorhynchus (Prosthorhynchus) bullocki, egg from the body cavity <strong>of</strong> a gravid female. 7, 8. Plagiorhynchus<br />

(Plagiorhynchus) paulus. 7. Egg from the body cavity <strong>of</strong> a gravid female. 8. Posterior end and<br />

reproductive system <strong>of</strong> a female, showing the subterminal position <strong>of</strong> the gonopore.<br />

SPECIMENS EXAMINED: P. (P.) cylindraceus<br />

adults: HWMLC 33443-33449, 33451, 35658,<br />

36785 (Nebraska, New Hampshire, New York,<br />

U.S.A.); 34871, 34882 (Israel). P. (P.)formosus<br />

adults: USNPC 4598 (syntypes), 60023;<br />

HWMLC 30539, 30978, 30983, 30987, 31037,<br />

33877, 33938-33941, 34480, 34652, 35005<br />

(Colorado, Oregon, and Kansas, U.S.A.), many<br />

slides <strong>of</strong> larvae from various intermediate hosts.<br />

HWMLC 30975, 30978, 30983, 30987, 31037,<br />

31037, 31061 labeled "Plagiorhynchus formosus<br />

ex. Sturnus vulgaris, intestine; Kansas"<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


AMIN ET AL.—PLAGIORHYNCHUS IN SOUTH AFRICA AND REVIEW 127<br />

were clearly misidentified and placed in the<br />

wrong genus as judged by their thin body form<br />

and small size, proboscis size and armature, and<br />

eggs; some had spiny trunks. P. (P.) taiwanensis<br />

adults: USNPC 60718 (paratypes). HWMLC<br />

34124-34126 (paratypes). P. (P.) transversus<br />

adult: USNPC 65269.<br />

<strong>The</strong> examined specimens provided additional<br />

data that are not included in Table 1: 1 P. (P.)<br />

transversus female (USNPC 65269) had hook<br />

roots that were considerably longer than the<br />

blades and eggs with concentric membranes,<br />

with no more than 5% having polar prolongation<br />

<strong>of</strong> the fertilization membrane. <strong>The</strong> position <strong>of</strong><br />

the gonopore was obscured. <strong>The</strong> P. (P.) formosus<br />

specimens had proboscides with only up to<br />

15 hooks per row. <strong>The</strong> roots <strong>of</strong> the middle proboscis<br />

hooks were longer than the blades in<br />

some specimens. Gravid females had up to 10%<br />

<strong>of</strong> their ripe eggs showing some polar prolongation<br />

<strong>of</strong> the fertilization membrane. <strong>The</strong> female<br />

gonopore was invariably and definitively subterminal.<br />

<strong>The</strong> P. (P.) taiwanensis specimens were<br />

robust and almost identical to P. (P.) formosus.<br />

Distinct differences in lemniscal length, which<br />

were used to justify the designation <strong>of</strong> P. (P.)<br />

taiwanensis as a separate species (Schmidt and<br />

Kuntz, 1966), were not observed in this study,<br />

in agreement with later observations by Schmidt<br />

(1981). <strong>The</strong> proboscis had only up to 15 hooks<br />

per row. <strong>The</strong> roots <strong>of</strong> the middle proboscis<br />

hooks were invariably slightly shorter than the<br />

blades. Up to 15% <strong>of</strong> the ripe eggs had some<br />

polar prolongation <strong>of</strong> the fertilization membrane.<br />

<strong>The</strong> female gonopore was definitively subterminal.<br />

Plagiorhynchus (Prosthorhynchus) malayensis<br />

(Tubangui, 1935) Schmidt and Kuntz, 1966<br />

(Figs. 1-5)<br />

GENERAL: Tubangui (1935) originally described<br />

this species from 1 male specimen obtained<br />

from the gruiform bird, the banded landrail<br />

Gallirallus (=Hypotaenidia) philippensis<br />

Linnaeus, 1766, in Luzon, Philippines, as Oligoterorhynchus<br />

malayensis. It was later transferred<br />

to the genus Prosthorhynchus by Yamaguti<br />

(1963) because <strong>of</strong> its cylindrical proboscis.<br />

Schmidt and Kuntz (1966) redescribed the males<br />

based on 2 new specimens (USNPC 60730) collected<br />

from 2 other species <strong>of</strong> gruiform birds<br />

from Taiwan (the white-breasted water hen,<br />

Amauromis phoenicurus chinensis (Boddaert,<br />

1783) and the banded crake, Rallina eurozonoides<br />

formosana Seebohm, 1894) and on the original<br />

description. <strong>The</strong> female remained unknown.<br />

Eleven specimens (6 males and 5 females on 8<br />

slides) <strong>of</strong> the same species, all from the G. D.<br />

Schmidt collection, became available for this<br />

study (10 specimens from HWMLC, 1 from<br />

USNPC). Seven <strong>of</strong> the 8 slides were dated 1965;<br />

the remaining slide (1 male specimen) was dated<br />

1972. One <strong>of</strong> the 2 males described by Schmidt<br />

and Kuntz (1966) (USNPC 60730) was also dated<br />

1965. <strong>The</strong> 5 female specimens in this collection<br />

were adequate for description. <strong>The</strong> 6 male<br />

specimens in the same collection also provided<br />

additional new information.<br />

FEMALE: Trunk elongate, slender, cylindrical<br />

(Fig. 1), 11.5-18.2 (Jc = 15.1) mm long by 1.12-<br />

1.37 (1.23) mm wide. Proboscis cylindrical,<br />

rounded anteriorly 1.06-1.30 (1.18) mm long by<br />

0.26-0.30 (0.28) mm wide (Fig. 4), with 19<br />

hook rows, each with 20-21 hooks. All hooks<br />

similar in shape, except basal hooks spiniform.<br />

Hooks increasing in size posteriorly to hooks 4-<br />

8, then gradually decreasing to hooks 20, 21,<br />

reaching size <strong>of</strong> anterior hooks. Lengths <strong>of</strong> 1<br />

row <strong>of</strong> hooks <strong>of</strong> 1 female (Figs. 1, 4, 5) from<br />

anterior 48, 53, 56, 56, 62, 62, 62, 64, 62, 62,<br />

62, 59, 56, 56, 56, 56, 56, 53, 53, 50, 50. Roots<br />

<strong>of</strong> posterior 4 hooks in each row greatly and<br />

more progressively reduced posteriorly, well developed<br />

in all other hooks, and with anterior manubria<br />

in anterior 4-6 hooks; manubria most developed<br />

anteriorly (Fig. 5). Neck <strong>of</strong> same female<br />

303 long by 333 wide. Proboscis receptacle<br />

1.97-2.03 (2.00) mm long by 0.27-0.48 (0.37)<br />

mm wide. Lemnisci narrow and much longer<br />

than proboscis receptacle, 4.30-5.45 (4.74) mm<br />

long by 0.12 mm wide. Reproductive system<br />

short, robust with well-developed vagina, very<br />

short uterus, and comparatively large uterine<br />

bell, 757 long (5% <strong>of</strong> trunk length). Gonopore<br />

decidedly subterminal (Fig. 2). Eggs elongate<br />

ovoid, 53-84 (64) long by 22-31 (28) wide; external<br />

shell sculptured with elevated ridges and<br />

grooves particularly at poles, all shells concentric<br />

(Fig. 3) with less than 5% <strong>of</strong> ripe eggs showing<br />

mild to moderate polar prolongation <strong>of</strong> fertilization<br />

membrane.<br />

FEMALE (Fig. 1): HWMLC 36329.<br />

OTHER FEMALES: HWMLC 33878, 36327,<br />

36328.<br />

HOST: Amauromis phoenicurus (Boddaert,<br />

1783).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

SITE OF INFECTION: Intestine.<br />

17, 16) and most ripe eggs (at least 80%)<br />

LOCALITY: Borneo, Indonesia; Taiwan. showed mild to strong polar prolongation <strong>of</strong> the<br />

MALE: Trunk slender, cylindrical, 10.0-13.0 fertilization membrane (Fig. 6). Schmidt and<br />

(11.5) mm long by 0.82-1.42 (1.09) mm wide.<br />

Proboscis cylindrical with rounded anterior end,<br />

1.00-1.21 (1.11) mm long by 0.20-0.24 (0.23)<br />

mm wide. Proboscis with 16-21 longitudinal<br />

rows <strong>of</strong> 20-22 hooks each. Differences between<br />

anterior, middle, and posterior hook sizes and<br />

shape and size <strong>of</strong> roots comparable to females.<br />

Lengths <strong>of</strong> hooks from anterior 42 (42), 48-56<br />

(52), 53-56 (54), 53-59 (56), 50-59 (54), 50-<br />

62 (57), 50-56 (54), 48-59 (54), 48-64 (57),<br />

Kuntz (1966) did not refer to a polar prolongation<br />

<strong>of</strong> the fertilization membrane, and their figure<br />

11 shows none. <strong>The</strong> gonopore <strong>of</strong> both sexes<br />

is decidedly subterminal. <strong>The</strong> above 2 traits are<br />

in conflict with the traditional criteria for the<br />

subgenus Prosthorhynchus (females with subterminal<br />

gonopore and eggs with concentric shells)<br />

or the subgenus Plagiorhynchus (females with<br />

terminal gonopore and eggs with polar prolongation<br />

<strong>of</strong> fertilization membrane). See Remarks<br />

48-56 (53), 45-56 (52), 45-59 (53), 48-56 (53), following.<br />

48-56 (53), 48-56 (53), 45-56 (51), 45-56 (50), SPECIMENS EXAMINED: HWMLC 34074,<br />

45-56 (51), 45-53 (49), 45-50 (47), 42-48 (45). 34133.<br />

Neck 151-242 (181) long by 212-333 (273)<br />

wide. Proboscis receptacle 1.88-2.12 (1.98) mm<br />

long by 0.30-0.42 (0.34) mm wide. Lemnisci<br />

narrow and markedly longer than proboscis receptacle,<br />

2.36-3.33 (2.82) mm long. Testes<br />

ovoid, contiguous, at middle <strong>of</strong> trunk. Anterior<br />

testis 0.94-1.15 (1.05) mm long by 0.45-0.70<br />

(0.52) mm wide. Posterior testis 0.91-1.88<br />

(1.14) mm long by 0.45-0.73 (0.55) mm wide.<br />

Four tubular cement glands, 2.12-4.24 (3.14)<br />

mm long by 0.09-0.30 (0.18) mm wide; cement<br />

glands begin at posterior end <strong>of</strong> posterior testis<br />

and join into 2 cement ducts posteriorly at level<br />

<strong>of</strong> anterior end <strong>of</strong> Saefftigen's pouch, which they<br />

join at its posterior end. Saefftigen's pouch<br />

1.21-1.36 (1.29) mm long by 0.45-0.48 (0.47)<br />

mm wide. Bursa 0.94—1.36 (1.15) mm long by<br />

0.97-1.21 (1.09) mm wide.<br />

SPECIMENS EXAMINED: USNPC 60730;<br />

HWMLC 33878, 36327, 36328, 36329.<br />

Other species <strong>of</strong> the 2 Plagiorhynchus subgenera<br />

were studied to help with the construction<br />

<strong>of</strong> the following key. This study produced<br />

the following unexpected information, which<br />

demonstrated the wide variability within the genus<br />

Plagiorhynchus and provided a context<br />

against which its taxonomic complexity could be<br />

evaluated.<br />

Plagiorhynchus (Prosthorhynchus) bullocki<br />

Schmidt and Kuntz, 1966<br />

<strong>The</strong> specimens (5 males and 4 females from<br />

the Formosan hill partridge, Arborophilia crudigularis<br />

(Swinhoe, 1864) from Taiwan) were in<br />

general agreement with the original description,<br />

except that proboscis hooks numbered 17—18 in<br />

each <strong>of</strong> 14-16 longitudinal rows (instead <strong>of</strong> 16-<br />

Plagiorhynchus (Prosthorhynchus) gracilis<br />

(Petrochenko, 1958) Schmidt and Kuntz, 1966<br />

One male from the intestine <strong>of</strong> the masked<br />

lapwing, Vanellus miles (Boddaert, 1783), in<br />

Tasmania was slender and somewhat robust anteriorly,<br />

with lemnisci about as long as the proboscis<br />

receptacle. <strong>The</strong> proboscis had 21 rows <strong>of</strong><br />

more than 15 hooks each and 6 tubular cement<br />

glands. All <strong>of</strong> Petrochenko's (1958) male specimens<br />

were "wrinkled," and the resulting "corrugation"<br />

affected the "subsequent distribution<br />

<strong>of</strong> internal organs." His males had 20 proboscis<br />

hook rows, each with 16 hooks and only 3 tubular<br />

cement glands (Petrochenko, 1958, p.<br />

182).<br />

SPECIMEN EXAMINED: HWMLC 39385.<br />

Plagiorhynchus (Prosthorhynchus) golvani<br />

Schmidt and Kuntz, 1966<br />

Observations on 1 male from the intestine <strong>of</strong><br />

a collared bush-robin, Tarsiger (=Erithacus)<br />

johnstoniae (Ogilvie-Grant, 1906) (Turdidae), in<br />

Taiwan were in agreement with the original description.<br />

SPECIMEN EXAMINED: HWMLC 34299.<br />

Plagiorhynchus (Plagiorhynchus) charadrii<br />

(Yamaguti, 1939) Van Cleave, 1951<br />

<strong>The</strong> specimens (9 males and 12 females on 10<br />

slides), dated 1965 to 1978 and collected from<br />

shore birds in Taiwan, Hawaii, and Tasmania,<br />

generally agreed with the descriptions <strong>of</strong> Yamaguti<br />

(1939) and Schmidt and Kuntz (1966).<br />

<strong>The</strong> proboscides had 17-18 rows <strong>of</strong> 14-15<br />

hooks each. <strong>The</strong> gonopore was terminal in both<br />

sexes, but eggs varied considerably in size and<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


AMIN ET M_.—PLAGIORHYNCHUS IN SOUTH AFRICA AND REVIEW 129<br />

degree <strong>of</strong> polar prolongation <strong>of</strong> the middle membrane,<br />

if any. For example, females collected<br />

from the Kentish plover, Charadrius alexandrinus<br />

Deignan, 1941, and the golden plover Pluvialis<br />

dominica Gmelin, 1789, in Taiwan and<br />

Hawaii had eggs up to 85 X 28 and 132 X 50,<br />

respectively. <strong>The</strong>se eggs mostly had a polar prolongation<br />

<strong>of</strong> the middle membrane as described<br />

by Yamaguti (1939) and Schmidt and Kuntz<br />

(1966), whose specimens' eggs measured 105-<br />

120 X 30-45. Some females from the redcapped<br />

plover, Charadrius (Alexandrinus) ruficapillus<br />

Temminck, 1822, in Tasmania had larger<br />

eggs, up to 168 X 67, that mostly had no<br />

visible prolongation <strong>of</strong> the fertilization membrane.<br />

In most other females examined, however,<br />

about 80% <strong>of</strong> the eggs normally had no<br />

polar prolongation. This extreme variation in the<br />

polar swelling <strong>of</strong> the fertilization membrane poses<br />

taxonomic problems and is clearly not related<br />

to egg size or maturity. It may be associated<br />

with host species or with unknown geographical<br />

factors.<br />

SPECIMENS EXAMINED: HWMLC 34128, 34747,<br />

39347, 39374.<br />

Plagiorhynchus (Plagiorhynchus) paulus Van<br />

Cleave and Williams, 1951<br />

Measurements <strong>of</strong> 2 males and 2 females from<br />

the varied thrush, Zoothera (=Ixoreus) naevius<br />

(Gmelin, 1784), in the <strong>State</strong> <strong>of</strong> <strong>Washington</strong>,<br />

U.S.A., did not agree with the original description.<br />

For example, testes were longer (anterior<br />

0.848 X 0.364 mm, posterior 0.666 X 0.364<br />

mm), proboscis receptacle 1.060 X 0.212 mm in<br />

1 male and 1.394 X 0.273 mm in 1 female, cement<br />

glands 0.697 X 0.106 mm to 1.515 X<br />

0.121 mm and eggs 50-76 (66) X 14-28 (19)<br />

(n = 8). A few (5-10%) <strong>of</strong> the eggs showed no<br />

polar prolongation <strong>of</strong> the fertilization membrane,<br />

but most did (Fig. 7). <strong>The</strong> female gonopore was,<br />

however, not terminal as would be expected in<br />

a species placed in Plagiorhynchus. <strong>The</strong> female<br />

gonopore was actually subterminal (Fig. 8). No<br />

reference to the position <strong>of</strong> the female gonopore<br />

was made in the original description (Van<br />

Cleave and Williams, 1951) or in subsequent accounts<br />

by other authors (e.g., Petrochenko,<br />

1958). Based on this character alone, this species<br />

would be assigned to Prosthorhynchus.<br />

However, the polar prolongation <strong>of</strong> the egg fertilization<br />

membrane, among other factors discussed<br />

below, further complicates the issue. No<br />

reassignment is made at this time.<br />

SPECIMEN EXAMINED: HWMLC 34333.<br />

Inclusion <strong>of</strong> species in the key<br />

Amin (1985) listed 19 species in the subgenus<br />

Prosthorhynchus, and Golvan (1994) listed 27,<br />

while Hoklova (1986) listed 11 species from<br />

land vertebrates. Part <strong>of</strong> this discrepancy is because<br />

<strong>of</strong> synonyms not acknowledged by Golvan<br />

(1994) or Hoklova (1986) and hence not included<br />

in the key. <strong>The</strong> following species are not recognized<br />

as valid: P. (P.) formosus, P. (P.) taiwanensis,<br />

and P. (P.) transversus (synonyms <strong>of</strong><br />

P. (P.) cylindraceus, see this paper; Schmidt,<br />

1981; Amin, 1985). Other synonyms <strong>of</strong> P. (P.)<br />

cylindraceus noted by Golvan (1994) are P. (P.)<br />

rosai (Porta, 1910) Meyer, 1932, and P. (P.)<br />

upupae Lopez-Neyra, 1946. Rhadinorhynchus<br />

asturi Gupta and Lata, 1967, was erroneously<br />

named Prosthorhynchus asturi by Golvan<br />

(1994); this species, with a spinose trunk, is<br />

clearly a rhadinorhynchid. Golvan (1956) proposed<br />

other synonymies that he later retracted<br />

(Golvan, 1994). Plagiorhynchus (Prosthorhynchus}<br />

pupa (von Linstow, 1905) Meyer, 1931, is<br />

a synonym <strong>of</strong> Polymorphic pupa (von Linstow,<br />

1905) Kostylev, 1922 (see Amin, 1992). Golvan<br />

(1994) removed Prosthorhynchus (Prosthorhynchus}<br />

limnobaeni Tubangui, 1933, to the subgenus<br />

Plagiorhynchus despite the fact that this<br />

species is known from only 2 males. This reassignment<br />

to Plagiorhynchus is unjustified, and<br />

the species is retained in the subgenus Prosthorhynchus.<br />

It is not, however, included in the<br />

key because <strong>of</strong> controversy regarding the only<br />

usable diagnostic trait, the proboscis armature.<br />

Tubangui (1933) indicated that proboscis hooks<br />

are "in forty-three alternating anteroposterior<br />

rows <strong>of</strong> eight hooks each," but his Plate 5, Figure<br />

1 shows a proboscis with about 18-20 longitudinal<br />

rows, each with 30 hooks. Golvan<br />

(1956) accepted the 43 X 8 formula and Petrochenko<br />

(1958, after Meyer, 1932-1933) indicated<br />

16 longitudinal rows <strong>of</strong> 17 hooks each. Yamaguti<br />

(1963) quoted both figures, 43 X 8 and<br />

16 x 17. Both Petrochenko (1958) and Yamaguti<br />

(1963) retained the species in Prosthorhynchus<br />

as originally described. Golvan (1956,<br />

1994) synonymized P. (Prosthorhynchus) rectus<br />

Sphern, 1942 nee Linton, 1892, with "Prosthorhynchus<br />

schmidti nom. nov." This entity,<br />

originally described as Echinorhynchus rectus<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


130 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Linton, 1892, was declared incertae sedis by Posterior 1-8 hooks smaller, spine-like, with<br />

Schmidt<br />

o i- •_! b»"ock! Sc^1 d Kunt7' 196J<br />

Proboscis with 1-4 spine-like hooks 6<br />

(1994) also listed "Prosthorhynchus luehei Tra- 6 Proboscis with 3_4 spine-like hooks having<br />

vassos, 1916" (=Echinorhynchus spirilla Ru- greatly reduced but definite roots<br />

dolphi, 1819; E. spirilla Linstow, 1878, 1897;<br />

P- (P.) malayensis<br />

Gigantorhynchus spirula Porta, 1908, 1909; (Tubangui, 1935) Schmidt and Kuntz, 1966<br />

_ , , . , , . „ ir,nr n ; Proboscis with 1-3 spine-like hooks having<br />

Prosthenorchis luhei Travassos, 1916; Prosthor- underdeveloped, rudimentary, or no roots 7<br />

hynchus spiralis (Rudolphi, 1809) Schmidt and 7 Adults very long (males 45 mm, females 60<br />

Kuntz, 1966). <strong>The</strong> species is considered incertae mm) P. (P.) scolopacidis<br />

sedis (Schmidt and Kuntz, 1966) and is not in- (Kostylev, 1915) Schmidt and Kuntz, 1966<br />

eluded in the key because its inadequate descrip- Adults sj°rter (alef UP to 30 mm' females o<br />

,, . , . . , , up to 40 mm long) 8<br />

tion does not allow its placement in either <strong>of</strong> the g Eggs large> 125_i3o x 45-50 ..... P. (P.) pittamm<br />

2 subgenera <strong>of</strong> Plagiorhynchus. Another spe- (Tubangui, 1935) Schmidt and Kuntz, 1966<br />

cies, Plagiorhynchus kuntzi Gupta and Fatma, Eggs smaller than 125-130 x 45-50 9<br />

1988, is not included in the key because it is not 9- Proboscis with 8 rows <strong>of</strong> hooks, posterior<br />

assignable to either subgenus. <strong>The</strong> position <strong>of</strong> ho°ks with very short roots; most eggs with<br />

; , . , , , , . , polar prolongation or fertilization memthe<br />

female gonopore was described as terminal brane<br />

or subterminal"; the description was based on .... p. (/>.) ,-usselli (Tadros, 1970) Golvan, 1994<br />

only 1 female and 1 male (Gupta and Fatma, Proboscis with 14 or more rows <strong>of</strong> hooks, pos-<br />

1988). Petrochenko (1958) and Yamaguti (1963) terior hooks with greatly reduced, rudimenlisted<br />

22 and 21 species <strong>of</strong> Prosthorhynchus, re- ^ or no roots; most e§§s with Concentric<br />

, shells<br />

spectively, but the taxonomic status and assign- 1Q Vaginal sphincter strongly developed on 1 side<br />

10<br />

ment <strong>of</strong> many <strong>of</strong> these species also has been p. (/>.) asymmetricus Belopolskaja, 1983<br />

changed since. Vaginal sphincter symmetrical 11<br />

Based on the above account, 21 species are 1L Lemnisci considerably shorter than proboscis<br />

considered valid and are included in the follow- receptacle; proboscis with 18 rows, each<br />

. _ _ , , , /ir> each with 10-22 hooks 12<br />

cies from the former U.S.S.R., some <strong>of</strong> which 12' Ventral surface <strong>of</strong> female gonopore with elevated<br />

papilla<br />

are synonyms. p (/)) genitopapillosus Lundstrom, 1942<br />

No papilla at female gonopore 13<br />

Key to Species <strong>of</strong> the Subgenus 13. Proboscis small, 640-770 x 190-230, with 18<br />

Prosthorhynchus rows <strong>of</strong> hooks P. (P.) ogati (Fukui<br />

and Morisita, 1936) Schmidt and Kuntz, 1966<br />

1. Proboscis with 30 rows <strong>of</strong> hooks; eggs small Proboscis larger, with 14-20 rows <strong>of</strong> hooks 14<br />

(40 X 20); trunk pigmented 14. Proboscis less than 1.0 mm long 15<br />

P. (P.) pigmentatus Proboscis 1.0 mm long, or longer 16<br />

(Marval, 1902) Meyer, 1932 15. Proboscis 800-900 X 200 with 16-18 rows <strong>of</strong><br />

Proboscis with 8-21 rows <strong>of</strong> hooks; eggs larg-<br />

15-18 hooks each, hooks very small, middle<br />

er; trunk not pigmented 2 and posterior hooks 23 and 4 long; females<br />

2. All proboscis hooks <strong>of</strong> almost uniform size 17 mm long; eggs 70 X 10 P. (P.) rheae<br />

(50-54 long), with rectangular well-devel- (Marval, 1902) Schmidt and Kuntz, 1966<br />

oped roots P. (P.) limnobaeni Proboscis 957 X 65 with 16—18 rows <strong>of</strong> 20—<br />

(Tubangui, 1933) Golvan, 1956 22 hooks each, middle and posterior hooks<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


AMIN ET AL.—PLAGIORHYNCHUS IN SOUTH AFRICA AND REVIEW 131<br />

39 and 13 long; females 4.6 mm long; eggs<br />

44-46 X 26-28 P. (P.) rossicus<br />

(Kostylev, 1915) Schmidt and Kuntz, 1966<br />

16. Proboscis consistently longer than 1.0 mm ___ 17<br />

Proboscis length averaging about 1.0 mm ..... 20<br />

17. Proboscis with 18-20 rows <strong>of</strong> hooks 18<br />

Proboscis with 14-16 rows <strong>of</strong> hooks 19<br />

18. Proboscis 1.25-1.44 X 0.33 mm with 18-20<br />

rows <strong>of</strong> 15 hooks each, middle hooks 58-59<br />

long, posterior 3 hooks rootless<br />

- P. (P.) gallinagi (Schachtachtinskaia, 1953)<br />

Schmidt and Kuntz, 1966<br />

Proboscis 1.18 X 0.260-0.033 mm with 20<br />

rows <strong>of</strong> 16 hooks each, middle hooks 71-77<br />

long, posterior 3 hooks with underdeveloped<br />

but definite roots<br />

P. (P.) gracilis<br />

(Petrochenko, 1958) Schmidt and Kuntz, 1966<br />

19. Proboscis 1.0-1.3 mm long with 16-17 hooks<br />

per row, 1—3 basal hooks with broadened<br />

base but no definite root; females 12-15 mm<br />

long; eggs 80 X 40 P. (P.) reticulatus<br />

(Westrumb, 1821) Golvan, 1956<br />

Proboscis 1.1 X 0.3 mm with 14-15 hooks per<br />

row, posterior hooks spiniform and rootless;<br />

females 7.0-8.5 mm long; eggs 70 X 35<br />

P. (P.) nicobarensis (Soota and Kansal, 1970)<br />

Zafar and Farooqi, 1981<br />

20. Proboscis 0.96-1.1 X 0.19-0.22 mm with 20<br />

rows <strong>of</strong> 19-20 hooks each, most posterior<br />

hooks rootless; proboscis receptacle 1.8 mm<br />

long; males 7 X 1.1 mm, females 8X1.1<br />

mm<br />

P. (P.) longirostris<br />

(Travassos, 1927) Amin, 1985<br />

Proboscis 0.8-1.3 X 0.2-0.36 mm with 14-20<br />

(usually 14-18) rows <strong>of</strong> 10-18 (usually 13-<br />

18) hooks each, posterior 1-3 spiniform<br />

hooks with greatly reduced or no roots; proboscis<br />

receptacle 2.0-2.5 mm long; males<br />

4.5-30 X 0.6-2.4 mm, females 5-40 X 0.4-<br />

3.2 mm P. (P.) cylindraceus<br />

(Goeze, 1782) Schmidt and Kuntz, 1966<br />

Remarks<br />

Plagiorhynchinae was established by Meyer<br />

(1931) as a subfamily <strong>of</strong> Polymorphidae, within<br />

which he included the genera Plagiorhynchus<br />

Liihe, 1911, and Prosthorhynchus Kostylew<br />

1915, as well as Sphaerechinorhynchus Johnston<br />

and Deland, 1929, and Porrorchis Fukui, 1929.<br />

Golvan (1956, 1960) erected 2 new subfamilies,<br />

Porrorchinae and Sphaerechinorhynchinae, to<br />

accommodate forms with short spheroid proboscides.<br />

This left only 2 genera, Plagiorhynchus<br />

and Prosthorhynchus, in the Plagiorhynchinae.<br />

Petrochenko (1956) established the family Prosthorhynchidae<br />

to contain Prosthorhynchus,<br />

among other genera, that infect terrestrial vertebrates<br />

as adults and terrestrial insects as larvae<br />

and that have eggs with concentric shells and no<br />

polar prolongations. Yamaguti (1963) placed<br />

Plagiorhynchidae Golvan, 1960 emend, in Echinorhynchidea<br />

Southwell and Macfie, 1925, in<br />

which adult and larval worms infected aquatic<br />

vertebrates and crustaceans, respectively, and<br />

eggs had a polar prolongation <strong>of</strong> the middle<br />

membrane. Schmidt and Kuntz (1966) synonymized<br />

Prosthorhynchus with Plagiorhynchus<br />

and reduced the 2 genera to subgenera <strong>of</strong> the<br />

genus Plagiorhynchus s. lat. Schmidt and Kuntz<br />

(1966) observed that the only 2 consistent morphological<br />

differences between the 2 taxa, the<br />

position <strong>of</strong> the female genital pore and the presence<br />

or absence <strong>of</strong> polar swelling in the egg fertilization<br />

membrane, were "not invariable."<br />

Amin (1982, 1985) accepted Schmidt and<br />

Kuntz's (1966) classification, and additional<br />

documentation was produced by this study. Hoklova<br />

(1986) and Golvan (1994), however, preferred<br />

to retain the original independent status<br />

<strong>of</strong> the 2 genera in Polymorphidae.<br />

In the present work, an examination <strong>of</strong> many<br />

specimens and a review <strong>of</strong> relevant literature<br />

provided additional documentation and justification<br />

<strong>of</strong> Schmidt and Kuntz's (1966) decision<br />

to reduce Plagiorhynchus s. str. and Prosthorhynchus<br />

to subgenera <strong>of</strong> the genus Plagiorhynchus<br />

s. lat. All characteristics examined were<br />

found to vary considerably within each taxon,<br />

and to overlap between the 2 taxa. Characters<br />

found with some degree <strong>of</strong> variation and with<br />

very little but evident overlap include hosts, egg<br />

membranes, and female gonopore. Species <strong>of</strong><br />

the subgenus Plagiorhynchus s. str. normally infect<br />

shore and aquatic arthropods (crustaceans<br />

and insects) as larvae, have a terminal gonopore<br />

in the female, and have eggs with polar prolongation<br />

<strong>of</strong> the fertilization membrane. Species <strong>of</strong><br />

subgenus Prosthorhynchus normally infect terrestrial<br />

birds and occasionally mammals as<br />

adults and terrestrial arthropods as larvae, have<br />

a subterminal gonopore in the female, and have<br />

eggs with concentric shells showing no prolongation<br />

<strong>of</strong> any membrane. Despite Golvan's<br />

(1994) assertions and Hoklova's (1986) reservations,<br />

we have found exceptions to each <strong>of</strong><br />

these 3 more stable characteristics, constituting<br />

an overlap between the concept <strong>of</strong> Plagiorhynchus<br />

s. str. and that <strong>of</strong> Prosthorhynchus. Our P.<br />

(Prosthorhynchus) cylindraceus specimens from<br />

South Africa were collected from 5 species <strong>of</strong><br />

shore birds, suggesting an aquatic life cycle in<br />

the definitive and intermediate hosts. <strong>The</strong> same<br />

specimens and many others reported as syno-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


132 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

nyms <strong>of</strong> the same species included females having<br />

up to 15% <strong>of</strong> their eggs with polar prolongation<br />

<strong>of</strong> the fertilization membrane. Most eggs<br />

(at least 80%) <strong>of</strong> the P. (Prosthorhynchus) bullocki<br />

female specimens examined also had polar<br />

prolongation <strong>of</strong> the fertilization membrane. Females<br />

<strong>of</strong> P. (Prosthorhynchus) bullocki have a<br />

definite subterminal gonopore; thus, this taxon<br />

remains in limbo between the 2 subgenera. Similarly,<br />

females <strong>of</strong> P. {Plagiorhynchus) paulus<br />

with eggs mostly having prolongation <strong>of</strong> the fertilization<br />

membrane have a subterminal gonopore.<br />

Because the eggs vary in size, shape, and<br />

the presence and degree <strong>of</strong> polar prolongation<br />

and because host ecological parameters are not<br />

consistent within each subgenus, the position <strong>of</strong><br />

the female gonopore becomes the only remaining<br />

reliable trait distinguishing the 2 subgenera.<br />

Examples <strong>of</strong> the limitations to sole use <strong>of</strong> this<br />

characteristic include that <strong>of</strong> P. (P.) paulus and<br />

the fact that males cannot be keyed out. Variability<br />

within and between the 2 subgenera in all<br />

3 characteristics (host, female gonopore, eggs)<br />

should be considered in toto while considering<br />

the limitations inherent in each.<br />

Despite the above documented variations and<br />

limitations, no new subgeneric diagnoses are<br />

given or believed necessary; those provided by<br />

Schmidt and Kuntz (1966) are considered adequate.<br />

Literature Cited<br />

Amin, O. M. 1982. Acanthocephala. Pages 933-941<br />

in S. P. Parker, ed. Synopsis and Classification <strong>of</strong><br />

Living Organisms. McGraw-Hill Book Company,<br />

New York.<br />

. 1985. Classification. Pages 27-72 in D. W. T.<br />

Crompton and B. B. Nickol, eds. Biology <strong>of</strong> the<br />

Acanthocephala. Cambridge University Press,<br />

London.<br />

-. 1992. Review <strong>of</strong> the genus Polymorphus<br />

Liihe, 1911 (Acanthocephala: Polymorphidae),<br />

with the synonymization <strong>of</strong> Hexaglandula Petrochenko,<br />

1950, and Subcorynozoma Hoklova,<br />

1967, and a key to the species. Qatar University<br />

Science Journal 12:115-123.<br />

Golvan, Y. J. 1956. Acanthocephales d'oiseaux. Troisieme<br />

note. Revision des especes Europeennes de<br />

la sous-famille de Plagiorhynchinae A. Meyer<br />

1931 (Polymorphidae). Annales de Parasitologie<br />

Humaine et Comparee 31:351-384.<br />

. 1960. Le phylum des Acanthocephala. Troisieme<br />

note. La classe de Palaeacanthocephala<br />

(Meyer 1931). Annales de Parasitologie Humaine<br />

et Comparee 35:350-386.<br />

-. 1994. Nomenclature <strong>of</strong> the Acanthocephala.<br />

Research and Reviews in Parasitology 54:35-205.<br />

Gupta, V. and S. Fatma. 1988. On four acanthocephalan<br />

parasites <strong>of</strong> vertebrates from Uttar Pradesh<br />

and Tamil Nadu. Indian Journal <strong>of</strong> Helminthology<br />

(1987) 39:128-142.<br />

Hoklova, I. G. 1986. <strong>The</strong> Acanthocephalan Fauna <strong>of</strong><br />

Terrestial Vertebrates <strong>of</strong> S.S.S.R. Nauka Press,<br />

Moscow. 276 pp.<br />

Meyer, A. 1931. Neue Acanthocephalen aus dem Berliner<br />

Museum. Begrundung eines neuen Acanthocephalensystems<br />

auf Grund einer Untersuchung<br />

der Berliner Sammlung. Zoologische Jahrbucher,<br />

Abteilung fiir Systematik, Okologie und Geographic<br />

der Tiere 62:53-108.<br />

. 1932-1933. Acanthocephala. Pages 1-582 in<br />

Dr. H. G. Bronn's Klassen und Ordnungen des<br />

Tier-Reichs. Vol. 4. Akademisch Verlagsgesellschaft<br />

MBH, Leipzig.<br />

Petrochenko, V. I. 1956. Acanthocephala <strong>of</strong> Domestic<br />

and Wild Animals. Vol. 1. Izdatel'stvo Academii<br />

Nauk S.S.S.R., Moscow. 465 pp. (English translation<br />

by Israel Program for Scientific Translations<br />

Ltd., 1971)<br />

. 1958. Acanthocephala <strong>of</strong> Domestic and Wild<br />

Animals. Vol. 2. Izdatel'stvo Akademii Nauk<br />

S.S.S.R., Moscow. 478 pp. (English translation by<br />

Israel Program for Scientific Translations Ltd.,<br />

1971)<br />

Schmidt, G. D. 1981. Plagiorhynchus formosus Van<br />

Cleave, 1918, a synonym <strong>of</strong> Plagiorhynchus cylindraceus<br />

(Goeze, 1782) Schmidt and Kuntz,<br />

1966. Journal <strong>of</strong> Parasitology 67:597-598.<br />

, and R. E. Kuntz. 1966. New and little-known<br />

plagiorhynchid Acanthocephala from Taiwan and<br />

the Pescadores Islands. Journal <strong>of</strong> Parasitology 52:<br />

520-527.<br />

-, and O. W. Olsen. 1964. Life cycle and development<br />

<strong>of</strong> Prosthorhynchus formosus (Van<br />

Cleave, 1918) Travassos, 1926, an acanthocephalan<br />

parasite <strong>of</strong> birds. Journal <strong>of</strong> Parasitology 50:<br />

721-730.<br />

Tubangui, M. A. 1933. Notes on Acanthocephala in<br />

the Philippines. Philippine Journal <strong>of</strong> Science 50:<br />

115-128, 6 plates.<br />

. 1935. Additional notes on Philippine Acanthocephala.<br />

Philippine Journal <strong>of</strong> Science 56:13-<br />

17, 2 plates.<br />

Van Cleave, H. J. 1918. <strong>The</strong> Acanthocephala <strong>of</strong> North<br />

American birds. Transactions <strong>of</strong> the American Microscopical<br />

<strong>Society</strong> 37:19-47.<br />

. 1942. A reconsideration <strong>of</strong> Plagiorhynchus<br />

formosus and observations <strong>of</strong> Acanthocephala<br />

with atypical lemnisci. Transactions <strong>of</strong> the American<br />

Microscopical <strong>Society</strong> 61:206-210.<br />

Yamaguti, S. 1939. Studies on the helminth fauna <strong>of</strong><br />

Japan. Part 29. Acanthocephala, II. Japanese Journal<br />

<strong>of</strong> Zoology 13:317-351.<br />

. 1963. Systema Helminthum. Vol. 5. Acanthocephala.<br />

Interscience Publishers, New York. 423<br />

pp.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 133-137<br />

Sciadocephalus megalodiscus Diesing, 1850 (Cestoda:<br />

Corallobothriinae), a Parasite <strong>of</strong> Cichla monoculus Spix, 1831<br />

(Cichlidae), in the Parana River, <strong>State</strong> <strong>of</strong> Parana, Brazil<br />

AMILCAR ARANDAS REGO,' PATRICIA MIYUKI MACHADO,2 AND GILBERTO CEZAR<br />

PAVANELLI2-3<br />

1 Department <strong>of</strong> Helminthology, Fundacao Institute Oswaldo Cruz (FIOCRUZ), Rua Marques de Valen9a, 25,<br />

Apt. 1004, 20550-030, Rio de Janeiro, Rio de Janeiro, Brazil (e-mail: arego@openlink.com.br)<br />

2 Center for Research in Limnology, Ichthyology and Aquaculture (NUPELIA), <strong>State</strong> University <strong>of</strong> Maringa,<br />

87020-900 Maringa, Parana, Brazil (e-mail: gcpavanelli@ppg.uem.br)<br />

ABSTRACT: Sciadocephalus megalodiscus Diesing, gen. et sp. inquirenda, is redescribed from the tucunare,<br />

Cichla monoculus Spix, collected in the Parana River, Brazil. <strong>The</strong> position <strong>of</strong> the reproductive system <strong>of</strong> the<br />

parasite is clarified, thus revalidating the genus and species. Sciadocephalus megalodiscus is recorded from the<br />

Parana River for the first time.<br />

KEY WORDS: Cestoda, Proteocephalidae, Sciadocephalus megalodiscus, Cichla monoculus, Cichlidae, Teleostei,<br />

Parana River, Brazil.<br />

<strong>The</strong> basis <strong>of</strong> the taxonomy <strong>of</strong> the South American<br />

cestodes <strong>of</strong> the Order Proteocephalidea<br />

Mola, 1928, parasitizing freshwater fishes was<br />

established by W. N. F. Woodland, who, in a<br />

series <strong>of</strong> studies published in the 1930's, described<br />

numerous proteocephalid parasites <strong>of</strong><br />

fishes <strong>of</strong> the Amazon basin. Some older species<br />

were described by Diesing (1850, 1855). Interest<br />

in these helminths has increased recently, and<br />

new cestodes are frequently being added to the<br />

South American species list (Rego et al., 1999).<br />

Some <strong>of</strong> the older species were placed as species<br />

inquirenda, as is the case with Sciadocephalus<br />

megalodiscus Diesing, 1850, which Diesing<br />

(1850) described from the tucunare, Cichla monoculus<br />

Spix, 1831, collected in the state <strong>of</strong> Mato<br />

Grosso, Brazil. This parasite was later found by<br />

Woodland (1933) in Amazonia from the same<br />

fish species. Because there were doubts as to the<br />

subfamily to which this species belonged, because<br />

the position <strong>of</strong> the reproductive organs (a<br />

fundamental character in classification <strong>of</strong> the<br />

taxon) was unclear, Wardle and McLeod (1952)<br />

and Rego (1994) preferred to treat it as genus<br />

and species inquirenda.<br />

Sciadocephalus megalodiscus had not previously<br />

been found in the Parana River. It is important<br />

to note that C. monoculus is not native<br />

to the Parana River, where it was introduced<br />

some years ago. Recently, one <strong>of</strong> us (P.M.M.)<br />

had the opportunity to collect several specimens<br />

1 Corresponding author.<br />

<strong>of</strong> this parasite, and with the present description,<br />

the genus and species are revalidated.<br />

Materials and Methods<br />

A total <strong>of</strong> 136 C. monoculus were caught in the<br />

Parana River from July 1996 through October 1997.<br />

After removal from the intestine, the cestodes were<br />

fixed in 4% hot formalin. Cestodes were stained with<br />

alcoholic carmine or Dclafield's hematoxylin, dehydrated<br />

in an alcohol series, cleared in Eugenol® or in<br />

beech creosote, and mounted in Canada balsam. Cestodes<br />

for histological sections were embedded in paraffin,<br />

cut in 8 (Jim cross-sections, and stained with hematoxylin<br />

and eosin. Illustrations were made with the<br />

aid <strong>of</strong> a drawing tube. Measurements are in millimeters<br />

(mm). Photomicrographs were made with a scanning<br />

electron microscope (SEM). <strong>The</strong> terms "prevalence"<br />

and "mean intensity <strong>of</strong> infection" are used according<br />

to Bush et al. (1997). Representative specimens were<br />

deposited in the <strong>Helminthological</strong> Collection <strong>of</strong> the<br />

Funda?ao Institute Oswaldo Cruz (FIOCRUZ), Rio de<br />

Janeiro, state <strong>of</strong> Rio de Janeiro, Brazil, under accession<br />

numbers 33951, 33952, and 33953a-c.<br />

Results<br />

Proteocephalidae La Rue, 1911<br />

Corallobothriinae Freze, 1965<br />

Sciadocephalus megalodiscus Diesing, 1850<br />

(Figs. 1-7)<br />

Description<br />

GENERAL (based on 11 specimens): Strobila<br />

6.1-9.3 (7.9) long X 1.1-1.7 (1.3) wide. Strobila<br />

comprised <strong>of</strong> 17—22 proglottids, including 6—8<br />

(7) immature proglottids, 4-6 (5) mature proglottids,<br />

8-12 (10) gravid proglottids. All proglottids<br />

several times wider than long. Scolex<br />

133<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


134 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 1, 2. SEM photomicrographs <strong>of</strong> Sciadocephalus inegalodiscus Diesing, 1850. 1. Small specimen<br />

(entire). 2. Scolex and metascolex. Apical view.<br />

wider than strobila, with umbrella-shaped metascolex<br />

with borders turned upwards. Scolex<br />

enveloped by these borders, comprised <strong>of</strong> 4<br />

muscular suckers and 1 apical sucker (Figs. 1-<br />

3). Scolex and metascolex 1.4-2.2 (1.9) long X<br />

2.8-2.9 (2.8) wide; suckers 0.385-0.515 (0.454)<br />

in diameter and apical sucker 0.115 in diameter.<br />

Neck inconspicuous. Immature proglottids wider<br />

than long, 0.1 X 1.8 to 0.2 X 1.4 (0.2 X 1.6).<br />

Gravid proglottids wider than long, 0.3 X 1.8 to<br />

0.9 X 1.4 (0.6 X 1.7). Last few proglottids more<br />

Figure 3. SEM photomicrograph <strong>of</strong> the scolex,<br />

detail <strong>of</strong> a sucker and apical sucker <strong>of</strong> Sciadocephalus<br />

inegalodiscus Diesing, 1850.<br />

or less rectangular. Genital opening in anterior<br />

Vs <strong>of</strong> proglottid, alternating irregularly. Vagina<br />

opening anterior or posterior to cirrus pouch.<br />

Vaginal sphincter inconspicuous. Cirrus pouch<br />

long and narrow, 0.3 X 0.1 to 0.4 X 0.1 (0.4 X<br />

0.1). Cirrus pouch about 0.2 times width <strong>of</strong> proglottid.<br />

Testes about 26, medullar, 0.07 in diameter,<br />

arranged in 2 distinct fields, separated by<br />

ovary. Ovary medullar, compact, indistinctly bilobate,<br />

central, 0.415-0.465 (0.442) in width.<br />

Vitellaria medullar, diffuse, not forming follicles,<br />

occupying lateral body region. Uterus medullar,<br />

rapidly resolving into capsules containing<br />

varying numbers <strong>of</strong> eggs. In last segments, some<br />

capsules not containing eggs and modified in<br />

form (Figs. 4, 7). Some capsules passing from<br />

medulla to cortex, opening through tegument.<br />

Eggs not containing developed embryos. Hexacanth<br />

hooks not observed. Musculature with numerous<br />

isolated longitudinal fibers, distributed<br />

throughout entire proglottid. Demarcation between<br />

medulla and cortex indicated by delicate<br />

transverse fibers situated next to longitudinal fibers<br />

(Fig. 6). Tegument <strong>of</strong> strobila with 2-4 longitudinal<br />

sulci (Fig. 5).<br />

Taxonomic summary<br />

HOST: Cichla monoculus Spix, 1831 (Cichlidae),<br />

"tucunare."<br />

LOCALITY: Parana River, region <strong>of</strong> Porto<br />

Rico, <strong>State</strong> <strong>of</strong> Parana, Brazil.<br />

SITE OF INFECTION: Intestine.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


REGO ET AL.—SC/ADOCEPHALUS MEGALODISCUS IN C1CHLA MONOCULUS 135<br />

Vit ex<br />

-<br />

tf<br />

ex<br />

Vit<br />

eoc<br />

Figures 4—7. Sciadocephalus megalodiscus Diesing, 1850. Scales in millimeters (mm). 4. Entire specimen;<br />

note that most proglottids are gravid. 5. Small specimen; note small sulci present on tegument (tc).<br />

6. Cross-section <strong>of</strong> gravid proglottid, showing vitellaria (Vit), excretory canal (ex), testes (t), transverse<br />

fibers (tf), uterus (u), ovary (ov), longitudinal fibers (If). 7. Gravid proglottid; note some ovigerous capsules<br />

with eggs and others without eggs and modified; empty ovigerous capsule (eoc), cirrus pouch (cp).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


136 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

PREVALENCE: 13.2%.<br />

MEAN INTENSITY OF INFECTION:<br />

8.6.<br />

Discussion<br />

This is the third report <strong>of</strong> S. megalodiscus.<br />

<strong>The</strong> species was initially described by Diesing<br />

(1850) from C. monoculus in the state <strong>of</strong> Mato<br />

Grosso, Brazil. Woodland (1933) redescribed it<br />

from the same fish species in Brazilian Amazonia.<br />

<strong>The</strong> latter author's description <strong>of</strong> the arrangement<br />

<strong>of</strong> the reproductive system was incomplete<br />

in that he did not note whether this<br />

system is medullar or cortical. Woodland (1933,<br />

p. 193) stated that "It is important to note that<br />

a definite band <strong>of</strong> longitudinal muscle fibres is<br />

entirely absent, though individual fibres may be<br />

scattered in the parenchyma. <strong>The</strong>re is no question<br />

as to organs being medullary or cortical in<br />

position." <strong>The</strong> classification system for proteocephalids<br />

(sensu Freze, 1965) defined 2 families,<br />

Proteocephalidae and Monticelliidae, according<br />

to whether the gonads are located in the medullar<br />

or cortical parenchyma. For this reason,<br />

some authors (Wardle and McLeod, 1952; Rego,<br />

1994) considered the genus and species as inquirenda.<br />

Sciadocephalus megalodiscus have no groups<br />

<strong>of</strong> longitudinal fibers separating the cortex from<br />

the medulla (Woodland, 1933). However, as described<br />

in the present work (Fig. 6), the isolated<br />

fibers, together with the transverse fibers, sufficiently<br />

delimit the medulla from the cortex. We<br />

can therefore determine that the gonads and the<br />

vitelline glands are entirely medullar. Vitellaria<br />

do not form true follicles as in the majority <strong>of</strong><br />

the proteocephalids, but appear as diffuse bodies,<br />

arranged laterally in the proglottids.<br />

<strong>The</strong> metascolex is the most interesting characteristic<br />

<strong>of</strong> this species. Its umbrella form is<br />

different from typical "collar-type" metascolices<br />

found in genera <strong>of</strong> proteocephalids such as<br />

Amphoteromorphus Woodland, 1935; Goezeella<br />

Fuhrmann, 1916; and Spatulifer Woodland,<br />

1934. Rego (1999) defined the metascolex as<br />

"any development <strong>of</strong> folds and wrinkles in the<br />

posterior part <strong>of</strong> the scolex or on the surface <strong>of</strong><br />

the scolex proper, encircling the suckers or not."<br />

<strong>The</strong>re are several types <strong>of</strong> metascolex, as many<br />

as the number <strong>of</strong> described species with metascolices.<br />

<strong>The</strong> scolex <strong>of</strong> Sciadocephalus has some<br />

resemblances to that <strong>of</strong> Corallotaenia Freze,<br />

1965. Brooks and Deardorff (1980) reported an<br />

unidentified Corallotaenia sp. from the flatnose<br />

catfish, Ageneiosus caucanus Steindachner,<br />

1880, in Colombia. Unfortunately, the authors<br />

did not provide a formal description <strong>of</strong> the<br />

worms. Sciadocephalus differs from Corallotaenia<br />

by the umbrella-shaped metascolex, the<br />

disposition <strong>of</strong> the ovary, the nonfolliculate vitellaria,<br />

and the uterus resolving into ovigerous<br />

capsules. It is important to emphasize that the<br />

other South American genera that possess a metascolex<br />

have the reproductive systems arranged<br />

variously, but partly or entirely located in the<br />

cortical parenchyma. Sciadocephalus megalodiscus<br />

is an exception; the gonads and vitellaria<br />

are entirely medullar.<br />

Brooks and Rasmussen (1984) stated the importance<br />

<strong>of</strong> the metascolex to eliminate cases <strong>of</strong><br />

parallel evolution in a cladogram. However, subsequent<br />

authors did not attribute much importance<br />

to these structures, probably because <strong>of</strong><br />

difficulties in characterizing the metascolex<br />

types. Rego et al. (1999) produced a phylogenetic<br />

analysis <strong>of</strong> the subfamilies <strong>of</strong> Proteocephalidea,<br />

but in regard to the character metascolex,<br />

they stated: "only two states (presence<br />

versus absence) were considered until such time<br />

as the various forms <strong>of</strong> metascolices are clearly<br />

defined and distinguished." <strong>The</strong> preliminary results<br />

<strong>of</strong> a phylogenetic analysis <strong>of</strong> South American<br />

genera (Rego et al., unpubl.) indicate a<br />

closer phylogenetic relationship between Sciadocephalus<br />

and Megathylacus Woodland, 1935.<br />

It therefore becomes necessary to present a new<br />

generic diagnosis in order to revalidate the genus.<br />

Sciadocephalus Diesing, 1850<br />

GENERIC DIAGNOSIS: Strobila small. Scolex<br />

wider than strobilus. Metascolex umbrellashaped,<br />

sometimes with edges turned upwards.<br />

Suckers muscular, round, and turned upwards.<br />

Apical sucker conspicuous. Genital openings alternating<br />

in regular fashion. Ovary compact,<br />

central. Testes in 2 fields, separated by ovary.<br />

Vitellaria diffuse, not forming follicles. Cirrus<br />

pouch elongate. Vaginal opening posterior or anterior<br />

to cirrus pouch. Uterus rapidly resolving<br />

into ovigerous capsules, with varying numbers<br />

<strong>of</strong> eggs. Eggs not embryonated. Longitudinal canals<br />

in tegument <strong>of</strong> strobilus. Gonads and vitellaria<br />

entirely medullar. Musculature consisting<br />

<strong>of</strong> numerous isolated, irregularly arranged longitudinal<br />

fibers, present in medullar parenchyma,<br />

but concentrated in cortex/medulla separa-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


REGO ET AL.—SC/ADOCEPHALUS MEGALODISCUS IN CICHLA MONOCULUS 137<br />

tion. Cortex/medulla separation best characterized<br />

by presence <strong>of</strong> transverse fibers.<br />

Acknowledgments<br />

We are grateful to Dr. Alain de Chambrier,<br />

Geneva, Switzerland, for preparing the SEM micrographs,<br />

and to Dr. Ricardo Massato Takemoto,<br />

<strong>State</strong> University <strong>of</strong> Maringa, for assistance<br />

in preparing drawings and sectioning proglottid<br />

material. <strong>The</strong> editors, Drs. Janet W. Reid<br />

and Willis A. Reid, Jr., assisted in translating the<br />

text into English.<br />

Literature Cited<br />

Brooks, D. R., and T. L. Deardorff. 1980. Three proteocephalids<br />

from Colombian siluriform fishes, including<br />

Nomimoscolex alovarius sp.n. (Monticelliidae:<br />

Zygobothriinae). Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 47:15-21.<br />

, and G. Rasmussen. 1984. Proteocephalidean<br />

cestodes from Venezuelan siluriform fishes, with<br />

a revised classification <strong>of</strong> the Monticelliidae. Proceedings<br />

<strong>of</strong> the Biological <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

97:748-760.<br />

Bush, A. O., K. D. Lafferty, J. M. Lotz, and A. W.<br />

Shostak. 1997. Parasitology meets ecology on its<br />

own terms: Margolis et al. revisited. Journal <strong>of</strong><br />

Parasitology 83:575-583.<br />

Diesing, K. M. 1850. Systema Helminthum. Vol. 1.<br />

Wilhelm Braumuller, Vindobonae. 679 pp.<br />

. 1855. Sechzehn Gattungen von Binnewurmen<br />

und ihre Arten. Denkschriften der Kaiserlichen<br />

Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche<br />

Classe 13:556-616.<br />

Freze, V. I. 1965. Essentials <strong>of</strong> Cestodology. Vol. 5.<br />

Proteocephalata in Fish, Amphibians and Reptiles.<br />

Izdatel'stvo Nauka, Moscow. 538 pp. (In Russian;<br />

English translation, Israel Program for Scientific<br />

Translation, 1969.)<br />

Rego, A. A. 1994. Order Proteocephalidea Mola,<br />

1928. Pages 257-293 in L. F. Khalil, A. Jones,<br />

and R. A. Bray, eds. Keys to the Cestode Parasites<br />

<strong>of</strong> Vertebrates. Commonwealth Agricultural Bureaux<br />

International, St. Albans, U.K.<br />

. 1999. Scolex morphology <strong>of</strong> proteocephalid<br />

cestode parasites <strong>of</strong> neotropical freshwater fishes.<br />

Memorias do Institute Oswaldo Cruz 94:37-52.<br />

, J. Chubb, and G. C. Pavanelli. 1999. Ces<br />

todes in South American freshwater fishes: keys<br />

to genera and brief descriptions <strong>of</strong> species. Revista<br />

Brasileira de Zoologia 16(2):(in press)<br />

, A. de Chambrier, V. Hanzelova, E. Hoberg,<br />

T. Scholz, P. Weekes, and M. Zehnder. 1998.<br />

Preliminary phylogenetic analyses <strong>of</strong> subfamilies<br />

<strong>of</strong> the Proteocephalidea (Eucestoda). Systematic<br />

Parasitology 40:1-19.<br />

Wardle, R. A., and J. A. McLeod. 1952. <strong>The</strong> Zoology<br />

<strong>of</strong> Tapeworms. University <strong>of</strong> Minnesota<br />

Press, Minneapolis. 780 pp.<br />

Woodland, W. N. F. 1933. On the anatomy <strong>of</strong> some<br />

fish cestodes described by Diesing from the Amazon.<br />

Quarterly Journal <strong>of</strong> Microscopical Science<br />

76:175-208.<br />

Obituary Notice<br />

FRANCIS G. TROMBA<br />

1920-1999<br />

Elected to Membership in 1951;<br />

Recording Secretary, 1957;<br />

Vice President, 1962 President, 1963;<br />

Editor, 1967-1970; Life Member, 1983;<br />

Anniversary Award, 1991<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 138-145<br />

Revisions <strong>of</strong> Protoancylodiscoides and Bagrobdella, with<br />

Redescriptions <strong>of</strong> P. chrysichthes and B. auchenoglanii<br />

(Monogenoidea: Dactylogyridae) from the Gills <strong>of</strong> Two Bagrid<br />

Catfishes (Siluriformes) in Togo, Africa<br />

DELANE C. KRiTSKY1-3 AND SiM-Dozou KuLO2<br />

1 <strong>College</strong> <strong>of</strong> Health Pr<strong>of</strong>essions, Campus Box 8090, Idaho <strong>State</strong> University, Pocatello, Idaho 83209 U.S.A.<br />

(e-mail: kritdela@isu.edu) and<br />

2 Laboratoire de Parasitologie, Faculte des Sciences, Universite du Benin, B.P. 1515, Lome, Togo<br />

ABSTRACT: <strong>The</strong> generic diagnoses <strong>of</strong> Protoancylodiscoides Paperna and Bagrobdella Paperna, are emended<br />

based on the study and redescription <strong>of</strong> the respective type species: P. chrysichthes Paperna from the gills <strong>of</strong><br />

the bagrid catfishes Chrysichthys nigrodigitatus (Lacepede) and B. auchenoglanii Paperna from the gills <strong>of</strong><br />

Auchenoglanis occidentalis (Cuvier and Valenciennes) collected from Togo, Africa. Protoancylodiscoides is<br />

characterized by species possessing hook shanks comprised <strong>of</strong> 2 subunits (proximal subunit variably expanded)<br />

in hook pairs 1, 6, and 7; a dorsal striated pouch (onchium) through which the extrinsic dorsal muscles extend;<br />

a sinistral vaginal pore; a V-shaped ventral bar and straight dorsal bar; tandem (or slightly overlapping) gonads<br />

(germarium pretesticular); and 2 seminal vesicles. Bagrobdella includes species with tandem gonads (germarium<br />

pretesticular); a sinistral vaginal aperture; hook pairs 1-4, 6, and 7 with shank comprised <strong>of</strong> 2 subunits (basal<br />

subunit variably expanded); and straight bars. <strong>The</strong> ventral bar in species <strong>of</strong> Bagrobdella possesses a long<br />

anteromedial projection associated with a lightly sclerotized skirt; the dorsal bar is adorned with a shield-like<br />

projection originating from the posterior margin <strong>of</strong> the bar.<br />

KEY WORDS: Monogenoidea, Dactylogyridae, Protoancylodiscoides, Bagrobdella, Protoancylodiscoides chrysichthes,<br />

Bagrobdella auchenoglanii, Chrysichthys nigrodigitatus, Auchenoglanis occidentalis, catfish, Siluriformes,<br />

Bagridae, Pisces, Togo, Africa.<br />

This paper is a continuation <strong>of</strong> our series on<br />

dactylogyrid genera from Africa. Earlier papers<br />

dealt with Characidotrema Paperna and Thurston,<br />

1968, Quadriacanthus Paperna, 1961, and<br />

Schilbetrema Paperna and Thurston, 1968 (see<br />

Kritsky et al., 1987; Kritsky and Kulo, 1988;<br />

1992a, respectively). In addition, 2 new genera<br />

<strong>of</strong> African Dactylogyridae have been proposed:<br />

Quadriacanthoides Kritsky and Kulo, 1988 (a<br />

junior subjective synonym <strong>of</strong> Paraquadriacanthus<br />

Ergens, 1988; see Kritsky, 1990), and Schilbetrematoides<br />

Kritsky and Kulo, 1992 (see Kritsky<br />

and Kulo, 19925). In the present paper, Protoancylodiscoides<br />

Paperna, 1969, and Bagrobdella<br />

Paperna, 1969, are revised, and<br />

Protoancylodiscoides chrysichthes Paperna,<br />

1969, and Bagrobdella auchenoglanii Paperna,<br />

1969, the type species <strong>of</strong> their respective genera,<br />

are redescribed from the gills <strong>of</strong> siluriform fishes<br />

in Togo, Africa.<br />

Materials and Methods<br />

Fish hosts Chrysichthys nigrodigitatus (Lacepede,<br />

1803) and Auchenoglanis occidentalis (Cuvier and Va-<br />

Corresponding author.<br />

lenciennes, 1840) were collected from localities in<br />

Togo during 1995-1996. Methods <strong>of</strong> collection, preservation,<br />

mounting, and illustration <strong>of</strong> helminths were<br />

those described by Kritsky et al. (1987). Measurements,<br />

all in micrometers, were made with a filar micrometer<br />

according to procedures <strong>of</strong> Mizelle and Klucka<br />

(1953), except that length <strong>of</strong> the male copulatory<br />

organ (MCO) <strong>of</strong> P. chrysichthes is an approximation<br />

<strong>of</strong> total length obtained by using a calibrated Minerva<br />

curvimeter on camera lucida drawings. Average measurements<br />

are followed by ranges and the number (n)<br />

<strong>of</strong> specimens measured in parentheses. Flattened specimens<br />

mounted in Gray and Wess' medium were used<br />

to obtain measurements <strong>of</strong> the hooks, anchors, and the<br />

copulatory complex. All other measurements were obtained<br />

from unflattened specimens stained with Gomori's<br />

trichrome or Mayer's carmine and mounted in<br />

synthetic resin. Voucher specimens <strong>of</strong> P. chrysichthes<br />

and B. auchenoglanii collected from Togo were deposited<br />

in the U.S. National Parasite Collection<br />

(USNPC), the helminth collections <strong>of</strong> the H. W. Manter<br />

Laboratory (HWML) <strong>of</strong> the University <strong>of</strong> Nebraska<br />

<strong>State</strong> Museum, and the Musee Royal de 1'Afrique Centrale<br />

(MRAC) as indicated in the respective redescriptions.<br />

For comparative purposes, the following type<br />

specimens were examined: holotype and 3 paratypes<br />

(all on 1 slide) <strong>of</strong> Protoancylodiscoides mansourensis<br />

El-Naggar, 1987 (British Museum <strong>of</strong> Natural History<br />

[BMNH], London, 1985.1.8.1-2); 9 paratypes (all on<br />

1 slide) <strong>of</strong> Protoancylodiscoides malapteruri Bilong,<br />

Birgi, and Le Brim, 1997 (BMNH 1996.4.7.6-7); 17<br />

138<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 139<br />

paratypes (on 2 slides) <strong>of</strong> P. malapteruri (Museum National<br />

d'Histoire Naturelle [MNHN 113 HF], Paris);<br />

holotype <strong>of</strong> P. chrysichthes Paperna, 1969 (MRAC<br />

35.566); holotype <strong>of</strong> B. auchenoglanii Paperna, 1969<br />

(MRAC 35.581); holotype <strong>of</strong> Bagrobdclla fraudidenta<br />

Euxet and Le Brun, 1990 (MRAC 35.915).<br />

Results<br />

Class Monogenoidea Bychowsky, 1937<br />

Order Dactylogyridea Bychowsky, 1937<br />

Dactylogyridae Bychowsky, 1933<br />

Protoancylodiscoides Paperna, 1969<br />

EMENDED DIAGNOSIS: Body elongate, fusiform,<br />

comprised <strong>of</strong> cephalic region, trunk, peduncle,<br />

haptor. Tegument thin, smooth. Two terminal,<br />

2 bilateral cephalic lobes; head organs<br />

present; cephalic glands unicellular, lateral or<br />

posterolateral to pharynx. Two pairs <strong>of</strong> eyes;<br />

granules subspherical. Mouth subterminal, midventral;<br />

pharynx muscular, glandular; esophagus<br />

present; 2 intestinal ceca, confluent posterior to<br />

gonads, lacking diverticula. Genital pore midventral<br />

near level <strong>of</strong> intestinal bifurcation. Gonads<br />

intercecal, tandem or slightly overlapping;<br />

germarium pretesticular. Vas deferens looping<br />

left cecum, ascending to level <strong>of</strong> genital pore<br />

where it empties into saccate seminal vesicle;<br />

short duct arises from seminal vesicle dilating<br />

into large granule-filled vesicle that empties into<br />

base <strong>of</strong> male copulatory organ (MCO). Copulatory<br />

complex comprising nonarticulated tubular<br />

MCO, accessory piece; accessory piece serving<br />

as guide for MCO; 2 dorsal glandular masses<br />

lying immediately posterior to genital atrium;<br />

prostatic reservoir present. Seminal receptacle<br />

pregermarial; vaginal aperture sinistral. Vitellaria<br />

coextensive with intestine, frequently extending<br />

into peduncle. Haptor with dorsal, ventral<br />

anchor/bar complexes, 7 pairs <strong>of</strong> hooks with ancyrocephaline<br />

distribution (Mizelle, 1936; see<br />

Mizelle and Price, 1963); hook pairs 1, 6, 7 with<br />

shanks comprised <strong>of</strong> 2 subunits, proximal subunit<br />

expanded; pairs 2-5 with shanks <strong>of</strong> 1 subunit.<br />

Dorsal striated tissue pouch (onchium) present.<br />

Ventral bar V-shaped; dorsal bar straight.<br />

Parasites <strong>of</strong> gills <strong>of</strong> African siluriform fishes.<br />

TYPE SPECIES: Protoancylodiscoides chrysichthes<br />

Paperna, 1969, from Chrysichthys nigrodigitatus<br />

(Bagridae).<br />

OTHER SPECIES: Protoancylodiscoides malapteruri<br />

Bilong, Birgi, and Le Brun, 1997, from<br />

Malapterurus electricus Gmelin, 1789 (Malapteruridae);<br />

P. mansourensis El-Naggar, 1987,<br />

from Chrysichthys auratus Ge<strong>of</strong>frey, 1809<br />

(Bagridae).<br />

REMARKS: Paperna (1969) proposed Protoancylodiscoides<br />

for P. chrysichthes from the<br />

gills <strong>of</strong> Chrysichthys nigrodigitatus collected<br />

from 3 locations in Volta Lake, Ghana. He characterized<br />

the genus and differentiated it from<br />

Ancylodiscoides Yamaguti, 1937, by species<br />

having a "non-sclerotized bar" associated with<br />

the tip <strong>of</strong> the superficial root <strong>of</strong> each dorsal anchor,<br />

hooks <strong>of</strong> 2 different morphological types,<br />

and male reproductive organs shifted to the extreme<br />

posterior end <strong>of</strong> the body. Paperna (1969)<br />

clearly erred when describing the "non-sclerotized<br />

bars," as these structures represent the<br />

well-developed dorsal extrinsic muscles that insert<br />

on the tip <strong>of</strong> the superficial root <strong>of</strong> each<br />

dorsal anchor and extend to the midline <strong>of</strong> the<br />

haptor where their direction abruptly curves toward<br />

their origins in the peduncle or trunk (El-<br />

Naggar, 1987; Bilong et al., 1997). At the midline<br />

<strong>of</strong> the haptor, these muscles extend through<br />

a superficial dorsal pouch-like structure (onchium)<br />

before proceeding anteriorly toward their<br />

origins (Fig. 4). Contraction <strong>of</strong> the muscles apparently<br />

results in lateral displacement <strong>of</strong> the anchor<br />

points, thereby embedding its tip in host<br />

tissue during attachment.<br />

Apparently Paperna (1969) considered<br />

"hooks <strong>of</strong> two types" to refer to the hook shank<br />

being composed <strong>of</strong> either 1 or 2 subunits, with<br />

the proximal subunit (when present) dilated to<br />

varying degrees. However, the presence <strong>of</strong> multiple<br />

hook types within species <strong>of</strong> Dactylogyridae<br />

is common and should probably not be used<br />

to differentiate genera without determination <strong>of</strong><br />

the type present in homologous hook pairs.<br />

Hook types similar to those shown in Figures 5,<br />

6, 9, and 10 for hook pairs 1, 6, and 7 in Protoancylodiscoides<br />

chrysichthes are also found in<br />

some African and Asian species infesting siluriform<br />

fishes: Quadriacanthus Paperna, 1961<br />

(pairs 1, 6, and 7; see Kritsky and Kulo, 1988);<br />

Bychowskyella Achmerow, 1952 (pairs 1, 6, and<br />

7; see Lim, 1991); and Bagrobdella Paperna,<br />

1969 (pairs 1-4, 6, and 7). Also, in species <strong>of</strong><br />

Chauhanellus Bychowsky and Nagibina, 1969<br />

(all marine), and some (but not all) freshwater<br />

species <strong>of</strong> Demidospermus Suriano, 1983 (neotropical),<br />

all <strong>of</strong> which infest siluriform fishes,<br />

similar hooks have been reported (pairs 1-4, 6,<br />

and 7 in Chauhanellus; and pairs 1, 2, and 7 in<br />

Demidospermus (see Lim, 1994; Kritsky and<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


140 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Gutierrez, 1998, respectively). Based on hook<br />

types, therefore, species <strong>of</strong> Protoancylodiscoides<br />

show affinity to those <strong>of</strong> Quadriacanthus and<br />

Bychowskyella and perhaps those <strong>of</strong> Bagrobdella<br />

and Chauhanellus.<br />

Although Protoancylodiscoides chrysichthes<br />

and P. mansourensis have elongate MCOs that<br />

extend from the level <strong>of</strong> the ovary to that <strong>of</strong> the<br />

esophageal bifurcation, the positions <strong>of</strong> this and<br />

other male reproductive organs are not outstanding.<br />

<strong>The</strong> only "shifting" <strong>of</strong> organs posteriorly<br />

in these 2 species are those <strong>of</strong> the distal seminal<br />

vesicle and prostatic reservoir to near the body<br />

midlength; both shifts are apparently accommodations<br />

to the posterior position <strong>of</strong> the base<br />

<strong>of</strong> the elongate MCO. In P. malapteruri, with a<br />

comparatively shorter MCO, these organs lie in<br />

the usual position <strong>of</strong> the anterior trunk (Bilong<br />

et al., 1997). Although Paperna (1969) showed<br />

the testis far posterior to the germarium in his<br />

whole-mount drawing <strong>of</strong> P. chrysichthes, the<br />

specimen on which the drawing was based was<br />

clearly distorted and flattened, which may have<br />

produced the pattern illustrated. In the present<br />

specimens, including the types <strong>of</strong> P. mansourensis<br />

and P. malapteruri, the gonads are tandem<br />

or slightly overlapping.<br />

Based on its emended diagnosis, Protoancylodiscoides<br />

is now characterized by the combined<br />

presence <strong>of</strong> 1) hook shanks comprised <strong>of</strong><br />

2 subunits (proximal subunit expanded to varying<br />

amounts) in hook pairs 1, 6, and 7; 2) a<br />

striated pouch (onchium) on the dorsal surface<br />

<strong>of</strong> the haptor and through which the dorsal extrinsic<br />

muscles extend; 3) a sinistral vaginal<br />

pore; 4) a V-shaped ventral bar and a straight<br />

dorsal bar; 5) tandem (or slightly overlapping)<br />

gonads; and 6) a proximal saccate seminal vesicle<br />

followed by a fusiform distal vesicle.<br />

Protoancylodiscoides chrysichthes Paperna,<br />

1969<br />

(Figs. 1-14)<br />

HOST AND LOCALITY: Gills <strong>of</strong> Chrysichthys<br />

nigrodigitatus, Bagridae; Anie River, Kpehoun,<br />

Togo.<br />

PREVIOUS RECORDS: Chrysichthys nigrodigitatus<br />

from 3 localities on Volta Lake, Ghana<br />

(Paperna, 1969, 1979); C. auratus from Lake<br />

Tiga, Kano, northern Nigeria (Ndifon and Jimeta,<br />

1990).<br />

SPECIMENS STUDIED: Forty-nine voucher<br />

specimens, USNPC 88263, 88264, 88265,<br />

88266, 88267, HWML 39924, MRAC 37.422<br />

(all from Togo).<br />

REDESCRIPTION: Body 637 (410-884; n =<br />

29) long; greatest width 90 (73-115; n = 33)<br />

near midlength. Cephalic region ventrally concave,<br />

lobes moderately developed, 3 bilateral<br />

pairs <strong>of</strong> head organs. Members <strong>of</strong> posterior pair<br />

<strong>of</strong> eyes slightly larger, closer together than those<br />

<strong>of</strong> anterior pair; subspherical granules moderately<br />

large; accessory granules absent or few in cephalic<br />

region. Pharynx ovate, greatest diameter<br />

30 (23-43; n = 35); esophagus elongate. Peduncle<br />

elongate; haptor subhexagonal, 99 (79-140;<br />

n = 29) long, 94 (74-127; n = 23) wide. Ventral<br />

anchor 33 (29-38; n = 5) long; with differentiated<br />

roots connected by delicate or perforated<br />

web; thickened ridge originating from posterior<br />

margin <strong>of</strong> deep root, extending across base <strong>of</strong><br />

shaft; shaft curved, point elongate; base 20 (17-<br />

22; n = 3) wide. Dorsal anchor 64 (55-69; n =<br />

10) long, with elongate superficial root with<br />

curled tip, short truncate deep root, curved shaft,<br />

elongate point; base 31 (27-36; n = 6) wide.<br />

Ventral bar 68 (55-80; n = 12) long, 45 (35-<br />

69; n = 15) between ends, V-shaped, with slightly<br />

enlarged terminations; dorsal bar 41 (34-46;<br />

n = 20) long, straight, with short blunt anteromedial<br />

projection, pair <strong>of</strong> bilateral sliver-like<br />

projections frequently present on anterior margin,<br />

ends enlarged. Hook pairs 1, 6, 7 with shank<br />

<strong>of</strong> 2 subunits, proximal subunit lightly sclerotized,<br />

variably expanded, point delicate; hook<br />

pairs 2, 3, 4 with shank comprised <strong>of</strong> 1 subunit,<br />

slightly expanded; hook pair 5 delicate, with depressed<br />

thumb. Hook pair 1: 42 (38-45; n = 3);<br />

hook pairs 2, 3, 4: 16 (14-17; n = 12); hook<br />

pair 5: 18 (17-19; n = 4); hook pair 6: 23 (20-<br />

26; n = 6); hook pair 7: 30 (22-35; n = 4) long;<br />

Figures 1-14. Protoancylodiscoides chrysichthes Paperna, 1969. All figures are drawn to the 25 (Jim<br />

scale, except Figure 1 (200 u.m scale). 1. Whole mount (ventral, composite). 2. Vagina and distal seminal<br />

receptacle. 3. Copulatory complex (ventral). 4. Dorsal pouch, dorsal extrinsic muscle and hook pair 7. 5.<br />

Hook pair 1. 6. Hook pair 1 (variant). 7. Hook pair 5. 8. Hook pair 4. 9. Hook pair 7. 10. Hook pair 6.<br />

11. Ventral bar. 12. Dorsal bar. 13. Ventral anchor. 14. Dorsal anchor.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 141<br />

14<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


142 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

hook pair 1 (variant): 22 (n = 1) long. Filamentous<br />

booklet (FH) loop extending to proximal<br />

end <strong>of</strong> distal subunit <strong>of</strong> shank. MCO an elongate<br />

tube winding from base at level <strong>of</strong> germarium<br />

to genital atrium near level <strong>of</strong> intestinal bifurcation,<br />

base <strong>of</strong> MCO with sclerotized margin;<br />

MCO 255 (162-365: n = 5) long. Accessory<br />

piece variable, comprising 2 or 3 articulated subunits,<br />

elongate nipple (preputium) guiding distal<br />

portion <strong>of</strong> MCO shaft. Testis 50 (32-71; n = 8)<br />

long, 24 (21-32; n = 8) wide, elongate ovate;<br />

saccate proximal seminal vesicle subconical, lying<br />

sinistral to genital atrium, separated from<br />

distal vesicle by short duct with sphincter-like<br />

muscle; distal vesicle fusiform; prostatic reservoir<br />

fusiform, lying ventral to left cecum at midlength<br />

<strong>of</strong> body. Germarium fusiform, with irregular<br />

margins, 85 (61-113; n = 15) long, 31 (21-<br />

40; n — 15) wide; oviduct, ootype not observed;<br />

vaginal aperture at body midlength; vagina<br />

comprising distal thick-walled funnel, proximal<br />

coiled tube poorly sclerotized with 2-3 rings<br />

(ring direction counterclockwise proximally, reversing<br />

to a clockwise direction distally), emptying<br />

into subovate seminal receptacle overlying<br />

anterior extremity <strong>of</strong> germarium; diameter <strong>of</strong><br />

vaginal ring 16 (13-20; n = 26); vitellaria dense<br />

throughout trunk, extending into peduncle, absent<br />

in regions <strong>of</strong> other reproductive organs.<br />

REMARKS: Protoancylodiscoides chrysichthes<br />

is very similar to P. mansourensis, and differentiation<br />

<strong>of</strong> the 2 species is based on relatively<br />

few moiphometric characters. Comparison<br />

with the holotype and 3 paratypes <strong>of</strong> the latter<br />

species has revealed the following differences:<br />

1) in P. chrysichth.es, the coiled vagina has 2-3<br />

rings (4—5 rings in P. mansourensis); 2) the diameter<br />

<strong>of</strong> the rings <strong>of</strong> the vagina is greater in P.<br />

mansourensis (24 to 27 u.m) than in P. chrysichthes<br />

(13 to 20 |xm).<br />

In addition, El-Naggar (1987) differentiated<br />

the 2 species utilizing moiphometric features,<br />

the presence/absence <strong>of</strong> a "preputium" associated<br />

with the tip <strong>of</strong> the MCO, and a haptoral<br />

funnel-like structure through which the dorsal<br />

extrinsic muscles extend. However, our measurements<br />

<strong>of</strong> the type specimens <strong>of</strong> P. mansourensis<br />

showed that body length (497-650 fjim)<br />

does not differ from that <strong>of</strong> our specimens <strong>of</strong> P.<br />

chrysichthes (410-884 |xm). Indeed, our measurements<br />

<strong>of</strong> body length <strong>of</strong> the flattened holotype<br />

and paratypes <strong>of</strong> P. mansourensis did not<br />

fall within the range (710-1,000 u.m) reported<br />

by El-Naggar (1987), indicating that some <strong>of</strong> his<br />

conversions were in error. Although measurements<br />

<strong>of</strong> body length presented by Paperna<br />

(1969) for P. chrysichthes had only 1 significant<br />

digit, resulting in difficulty in determining the<br />

rounding effects, his range (400—500 u,m) falls<br />

within those reported herein for the types <strong>of</strong> P.<br />

mansourensis and for our specimens from Togo.<br />

With the exception <strong>of</strong> the total length <strong>of</strong> the<br />

dorsal anchor, differences in all other measurements<br />

<strong>of</strong> P. chrysichthes and P. mansourensis<br />

reported herein may be explained by potential<br />

rounding effects. In specimens <strong>of</strong> P. chrysichthes<br />

from Togo, the length <strong>of</strong> the dorsal anchor<br />

ranged from 55 to 69 |Jim, whereas our values<br />

for the type specimens <strong>of</strong> P. mansourensis<br />

were 78 to 83 u,m. Paperna (1969) reported 100<br />

to 110 u,m for this parameter, but this range does<br />

not necessarily exclude our measurements because<br />

<strong>of</strong> possible rounding effects. <strong>The</strong>refore,<br />

dorsal anchor length is problematic in differentiating<br />

P. mansourensis from P. chrysichthes.<br />

Although Paperna (1969) described a "preputium"<br />

associated with the distal end <strong>of</strong> the<br />

MCO, we were unable to find this structure in<br />

our specimens. However, it is likely that Paperna's<br />

"preputium" refers to a small, elongate, <strong>of</strong>ten<br />

longitudinally striated portion <strong>of</strong> the accessory<br />

piece through which the tip <strong>of</strong> the MCO<br />

projects. A similar component <strong>of</strong> the accessory<br />

piece is also visible in the holotype and paratypes<br />

<strong>of</strong> P. mansourensis. Finally, presence <strong>of</strong> a<br />

dorsal "funnel-like structure" (<strong>of</strong> El-Naggar,<br />

1987) or "onchium" (<strong>of</strong> Bilong et al., 1997)<br />

through which the dorsal extrinsic muscles <strong>of</strong><br />

the haptor extend is probably a generic character,<br />

because it also occurs in our specimens <strong>of</strong><br />

P. chrysichthes.<br />

It is clear that P. chrysichthes and P. mansourensis<br />

are poorly differentiated, and they<br />

may be synonyms. However, we do not feel that<br />

available information on the 2 forms (species)<br />

justifies proposal <strong>of</strong> synonymy at this time. Additional<br />

collections from throughout the range <strong>of</strong><br />

the host would be necessary to determine intraspecific<br />

variation within the species. If the 2 species<br />

are distinct, the record <strong>of</strong> P. chrysichthes<br />

from C. auratus in Nigeria (Ndifon and Jimeta,<br />

1990) must be confirmed.<br />

Protoancylodiscoides malapteruri is easily<br />

differentiated from the 2 species discussed<br />

above by the presence <strong>of</strong> a elongate proximal<br />

rod in the accessory piece (absent in P. chrys-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 143<br />

ichthes and P. mansourensis}. In P. malapteruri,<br />

the MCO is shorter and less convoluted than that<br />

<strong>of</strong> P. chrysichthes or P. mansourensis.<br />

Bagrobdella Paperna, 1969<br />

EMENDED DIAGNOSIS: Body robust, fusiform,<br />

comprised <strong>of</strong> broad cephalic region, trunk, peduncle,<br />

haptor. Tegument thin, smooth. Two terminal,<br />

2 bilateral cephalic lobes; head organs<br />

present; cephalic glands unicellular, posterolateral<br />

to pharynx. Two pairs <strong>of</strong> eyes; granules subspherical.<br />

Mouth subterminal, midventral; pharynx<br />

muscular, glandular; esophagus short; 2 intestinal<br />

ceca, confluent posterior to gonads, lacking<br />

diverticula. Genital pore dextroventral about<br />

Vi distance between germarium and intestinal bifurcation.<br />

Gonads intercecal, tandem; germarium<br />

pretesticular. Vas deferens looping left cecum;<br />

seminal vesicle a simple dilation <strong>of</strong> vas<br />

deferens. Copulatory complex a coiled tube with<br />

clockwise rings (see Kritsky et al., 1985), directed<br />

posteriorly from MCO base, lacking accessory<br />

piece; prostatic vesicle present. Seminal<br />

receptacle pregermarial; vaginal aperture sinistral.<br />

Vitellaria coextensive with intestine. Haptor<br />

with dorsal, ventral anchor/bar complexes, 7<br />

pairs <strong>of</strong> hooks with ancyrocephaline distribution<br />

(Mizelle, 1936; see Mizelle and Price, 1963);<br />

pairs 1-4, 6, 7 with shanks comprised <strong>of</strong> 2 subunits,<br />

proximal subunit expanded; pair 5 with<br />

shank <strong>of</strong> 1 subunit. Ventral bar straight, with<br />

long anterior projection associated with lightly<br />

sclerotized skirt; dorsal bar straight, with posterior<br />

shield-like projection. Parasites <strong>of</strong> gills <strong>of</strong><br />

siluriform fishes.<br />

TYPE SPECIES: Bagrobdella auchenoglanii<br />

Paperna, 1969, from Auchenoglanis occidentalis<br />

(Bagridae).<br />

OTHER SPECIES: Bagrobdella fraudulenta Euzet<br />

and Le Brun, 1990 (syn. B. auchenoglanii <strong>of</strong><br />

Paperna, 1971), B. anthopenis Euzet and Le<br />

Brun, 1990, both from Auchenoglanis occidentalis.<br />

REMARKS: Euzet and Le Brun (1990)<br />

emended the diagnosis <strong>of</strong> Bagrobdella and corrected<br />

some initial observations on internal anatomy<br />

and haptoral sclerites <strong>of</strong>fered by Paperna<br />

(1969). Our emendation adds to their diagnosis<br />

the morphologic differences between respective<br />

hook pairs and details <strong>of</strong> the coil <strong>of</strong> the MCO.<br />

Bagrobdella auchenoglanii Paperna, 1969<br />

(Figs. 15-24)<br />

HOST AND LOCALITY: Gills <strong>of</strong> Auchenoglanis<br />

occidentalis, Bagridae; Barrage du "Chantier<br />

Rouge," Kara River, Kara, Togo.<br />

PREVIOUS RECORDS: Auchenoglanis occidentalis,<br />

Volta Lake, Ghana (Paperna, 1969, 1979);<br />

Niger River at Bamako, Mali (Euzet and Le<br />

Brun, 1990).<br />

SPECIMENS STUDIED: Forty-four vouchers,<br />

USNPC 88258, 88259, 88260, 88261, 88262,<br />

HWML 39925, MRAC 37.423 (all from Togo).<br />

REDESCRIPTION: Body 457 (361-686; n =<br />

25) long; greatest width 103 (78-130; n = 25)<br />

in posterior trunk. Cephalic region broad; cephalic<br />

lobes well developed. Eyes subequal;<br />

members <strong>of</strong> posterior pair farther apart than<br />

members <strong>of</strong> anterior pair; granules small; accessory<br />

granules absent, infrequently few in cephalic<br />

region. Pharynx subspherical to ovate, 28<br />

(24-33; n = 24) in greatest diameter. Peduncle<br />

broad; haptor subhexagonal, 91 (78-113; n =<br />

25) long, 93 (79-104; n = 27) wide. Ventral<br />

anchor 42 (37-45; n = 11) long, with short<br />

roots, evenly curved elongate shaft abruptly<br />

flexed immediately distal to anchor base; tip <strong>of</strong><br />

point recurved; base 22 (19-24; n = 10) wide.<br />

Dorsal anchor 56 (50-58; n = 11) long, with<br />

poorly differentiated roots, curved shaft, long<br />

point; base 22 (18—25; n = 7) wide. Ventral bar<br />

46 (42-53; n = 17) long, with bifurcated ends<br />

surrounding superficial surface <strong>of</strong> anchor base;<br />

anteromedial projection 27 (24-31; n = 19)<br />

long, distally trifid; skirt delicate. Dorsal bar 59<br />

(53-65; n = 24) long, yoke shaped, with subtrapezoidal<br />

posterior shield; shield 35 (31-40; n<br />

= 25) long. Hook pair 1: 35 (30-37; n = 11),<br />

pairs 2, 3, 4: 21 (20-23; n = 14), pairs 6, 7: 29<br />

(26-36; n = 10) long, each with truncate thumb,<br />

delicate shaft, point, proximal subunit <strong>of</strong> shaft<br />

variable in length between hook pairs; hook pair<br />

5: 16-17 (n = 3) long, with delicate point, shaft,<br />

shank with 1 subunit; FH loop about length <strong>of</strong><br />

distal subunit <strong>of</strong> shank. MCO 63 (52-74; n =<br />

11) long, a coil <strong>of</strong> about 6 rings, proximal 3<br />

rings poorly defined, distal 3 rings with delicate<br />

cup-like processes; base expanded, lightly sclerotized.<br />

Testis 40 (28-53; n = 10) long, 28 (20-<br />

35; n — 7) wide, ovate; seminal vesicle ovate;<br />

prostatic reservoir elongate fusiform. Germarium<br />

pyriform, 44 (35-56; n = 22) long, 29 (20-<br />

42; n = 22) wide; oviduct broad; ootype not<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


144 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 15-24. Bagrobdella auchenoglanii Paperna, 1969. All figures are drawn to the 25 fjim scale,<br />

except Figure 15 (200 (Jim scale). 15. Whole mount (ventral, composite). 16. Hook pair 1. 17. Hook pair<br />

5. 18. Hook pairs 2, 3, 4, 7. 19. Hook pair 6. 20. Copulatory complex (ventral). 21. Ventral bar. 22. Dorsal<br />

bar. 23. Ventral anchor. 24. Dorsal anchor.<br />

observed; uterus delicate; vagina a simple nonsclerotized<br />

straight tube; seminal receptacle submedian,<br />

pregermarial. Vitellaria dense throughout<br />

trunk, except absent in regions <strong>of</strong> other reproductive<br />

organs.<br />

REMARKS: Measurements <strong>of</strong> specimens <strong>of</strong><br />

Bagrobdella auchenoglanii from Togo compare<br />

favorably with those reported by Euzet and Le<br />

Brun (1990) for their material from Mali. Paperna's<br />

(1969) measurements are generally greater<br />

than those reported herein. Reported differences<br />

between respective studies are not considered<br />

sufficient to separate the collections into<br />

separate species and likely represent intraspecific<br />

variability between geographic localities.<br />

Because Paperna's (1971) redescription <strong>of</strong><br />

Bagrobdella auchenoglanii from Auchenoglanis<br />

occidentalis in Lake Albert, Uganda, was based<br />

on specimens <strong>of</strong> B. fraudulenta (see Euzet and<br />

Le Brun, 1990), the Ugandan records reported<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 145<br />

by Paperna (1971, 1979) are for the latter species.<br />

Bagrobdella auchenoglanii is not known<br />

from Uganda.<br />

Acknowledgments<br />

We are grateful to J.-L. Justine (MNHN), F.<br />

Puylaert (MRAC), David Gibson (BMNH), and<br />

Eileen Harris (BMNH) for allowing us to examine<br />

type specimens in their care. Financial<br />

support for this study was provided, in part, by<br />

the Idaho <strong>State</strong> University Faculty Research<br />

Committee (award 740).<br />

Literature Cited<br />

Bilong, C. F. B., E. Birgi, and N. Le Brun. 1997.<br />

Protoancylodiscoides malapteruri n. sp. (Monogenea,<br />

Dactylogyridea, Ancyrocephalidae), parasite<br />

branchial de Malapterurus electricus Gmelin<br />

(Silurifonnes, Malapteruridae), au Cameroun.<br />

Systematic Parasitology 38:203-210.<br />

El-Naggar, M. M. 1987. Protoancylodiscoides mansourensis<br />

n. sp. A monogenean gill parasite <strong>of</strong> the<br />

Egyptian freshwater fish Chrysichthys auratus<br />

Ge<strong>of</strong>frey, 1809. Arab Gulf Journal <strong>of</strong> Scientific<br />

Research, Agricultural and Biological Science B5<br />

3:441-454.<br />

Euzet, L., and N. Le Brun. 1990. Monogenes du<br />

genre Bagrobdella Paperna, 1969 parasites branchiaux<br />

d'Auchenaglanis occidentalis (Cuvier et<br />

Valenciennes, 1840) (Teleostei, Siluriformes, Bagridae).<br />

Journal <strong>of</strong> African Zoology (Revue de<br />

Zoologie Africaine) 104:37-48.<br />

Kritsky, D. C. 1990. Synonymy <strong>of</strong> Paraquadriacanthus<br />

Ergens, 1988 and Quadriacanthoides Kritsky<br />

et Kulo, 1988 (Monogenea Dactylogyridae) and<br />

their type species. Folia Parasitologica 37:76.<br />

, W. A. Boeger, and V. E. Thatcher. 1985.<br />

Neotropical Monogenea. 7. Parasites <strong>of</strong> the pirarucu,<br />

Arapaima gigas (Cuvier), with descriptions<br />

<strong>of</strong> two new species and redescription <strong>of</strong> Dawestretna<br />

cycloancistrium Price and Nowlin, 1967<br />

(Dactylogyridae: Ancyrocephalinae). Proceedings<br />

<strong>of</strong> the Biological <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 98:321-<br />

331.<br />

, and P. A. Gutierrez. 1998. Neotropical Monogenoidea.<br />

34. Species <strong>of</strong> Demidospermus (Dactylogyridae,<br />

Ancyrocephalinae) from the gills <strong>of</strong><br />

pimelodids (Teleostei, Siluriformes) in Argentina.<br />

Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

65:147-159.<br />

, and S.-D. Kulo. 1988. <strong>The</strong> African species <strong>of</strong><br />

Quadriacanthus with proposal <strong>of</strong> Quadriacanthoides<br />

gen. n. (Monogenea: Dactylogyridae).<br />

Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> 55:175-187.<br />

, and . 1992a. A revision <strong>of</strong> Schilbetrema<br />

(Monogenoidea: Dactylogyridae), with descriptions<br />

<strong>of</strong> four new species from African Schilbeidae<br />

(Siluriformes). Transactions <strong>of</strong> the American<br />

Microscopical <strong>Society</strong> 111:278-301.<br />

, and . 1992b. Schilbetrematoides pseudodactylogyrus<br />

gen. et sp. n. (Monogenoidea,<br />

Dactylogyridae, Ancyrocephalinae) from the gills<br />

<strong>of</strong> Schilhe intermedium (Siluriformes, Schilbeidae)<br />

in Togo, Africa. Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 59:195-200.<br />

-, and W. A. Boeger. 1987. Resurrection<br />

<strong>of</strong> Characidotrema Paperna and Thurston,<br />

1968 (Monogenea: Dactylogyridae) with description<br />

<strong>of</strong> two new species from Togo, Africa. Proceedings<br />

<strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> 54:175-184.<br />

Lim, L. H. S. 1991. Three new species <strong>of</strong> Bvchowskyella<br />

Achmerow, 1952 (Monogenea) from peninsular<br />

Malaysia. Systematic Parasitology 19:33—<br />

41.<br />

. 1994. Chauhanellus Bychowsky & Nagibina,<br />

1969 (Monogenea) from ariid fishes (Siluriformes)<br />

<strong>of</strong> peninsular Malaysia. Systematic Parasitology<br />

28:99-124.<br />

Mizelle, J. D. 1936. New species <strong>of</strong> trematodes from<br />

the gills <strong>of</strong> Illinois fishes. American Midland Naturalist<br />

17:785-806.<br />

, and A. R. Klucka. 1953. Studies on monogenetic<br />

trematodes. XIV. Dactylogyridae from<br />

Wisconsin fishes. American Midland Naturalist<br />

49:720-733.<br />

, and C. E. Price. 1963. Additional haptoral<br />

hooks in the genus Dactylogyrus. Journal <strong>of</strong> Parasitology<br />

49:1028-1029."<br />

Ndifon, G. T., and R. S. Jimeta. 1990. Preliminary<br />

observations <strong>of</strong> the parasites <strong>of</strong> Chrysichthys auratus<br />

Ge<strong>of</strong>froy in Tiga Lake, Kano, Nigeria. Nigerian<br />

Journal <strong>of</strong> Parasitology 9-11:139-144.<br />

Paperna, I. 1969. Monogenetic trematodes <strong>of</strong> the fish<br />

<strong>of</strong> the Volta basin and south Ghana. Bulletin de<br />

1'Institut Francaise d'Afrique Noire (Serie A) 31:<br />

840-880.<br />

. 1971. Redescription <strong>of</strong> Bagrobdella auchenoglanii<br />

Paperna, 1969 (Monogenea, Dactylogyridae).<br />

Revue de Zoologie et de Botanique Africaines<br />

83:141-146.<br />

•. 1979. Monogenea <strong>of</strong> inland water fish in Africa.<br />

Annales-Serie IN-8°-Sciences Zoologiques,<br />

Musee Royal de 1'Afrique Centrale 226:1-131, 48<br />

plates.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 146-154<br />

Redescription <strong>of</strong> Pseudacanthostomum panamense Caballero, Bravo-<br />

Hollis, and Grocott, 1953 (Digenea: Acanthostomidae), a Parasite <strong>of</strong><br />

Siluriform Fishes <strong>of</strong> the Family Ariidae, with Notes on Its Biology<br />

TOMAS ScHOLZ,1-7 LEOPOLDINA AouiRRE-MACEDO,2 GUILLERMO SALGAOO-MALDONADO,3<br />

JOAQUIN VARGAS-VAZQUEZ,2 VICTOR VlDAL-MARTINEZ,2 JAN WOLTER,4 ROMAN KUCHTA,5<br />

AND WOLFGANG KoRTiNG6<br />

1 Institute <strong>of</strong> Parasitology, Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, Branisovska 31, 370 05 Ceske<br />

Budejovice, Czech Republic (e-mail: tscholz@paru.cas.cz),<br />

2 Center for Investigation and Advanced Studies <strong>of</strong> the National Polytechnic Institute (CINVESTAV-IPN)<br />

Unidad Merida, Carretera Antigua a Progreso Km 6, A.P. 73 "Cordemex," C.P. 97310 Merida, Yucatan,<br />

Mexico,<br />

3 Institute <strong>of</strong> Biology, National Autonomous University <strong>of</strong> Mexico (UNAM), A.P. 70-153, C.P. 04510,<br />

Mexico D.F., Mexico,<br />

4 Wexstrasse 39, 10715 Berlin, Germany,<br />

5 Faculty <strong>of</strong> Biology, University <strong>of</strong> South Bohemia, Branisovska 31, 370 05 Ceske Budejovice,<br />

Czech Republic, and<br />

6 Fish Diseases Research Unit, School <strong>of</strong> Veterinary Medicine, Biinteweg 17, 30559 Hannover, Germany.<br />

ABSTRACT: <strong>The</strong> acanthostomid trematode Pseudacanthostomum panamense Caballero, Bravo-Hollis, and Grocott<br />

is redescribed on the basis <strong>of</strong> examination <strong>of</strong> its holotype and new material from Galeichthys (=Ariopsis)<br />

seemani (Giinther) (type host) from Colombia (new geographical record), and Ariopsis assirnilis (Giinther) and<br />

Arius guatemalensis (Giinther) (new host records) (all Siluriformes: Ariidae) from the Atlantic and Pacific coasts<br />

<strong>of</strong> Mexico (new geographical record). It was found that P. panamense possesses intestinal ceca that are connected<br />

with the excretory bladder near the posterior extremity and opening outside by an uroproct. <strong>The</strong> actual number<br />

<strong>of</strong> circumoral spines <strong>of</strong> the holotype is 27; the number <strong>of</strong> spines is stable, with most specimens possessing 27<br />

spines and a very few 26 or 28. Pseudacanthostomum floridensis Nahhas and Short, described from Galeichthys<br />

(= Arius) fells (Linnaeus) from Florida, U.S.A., is considered a synonym <strong>of</strong> P. panamense. Metacercariae <strong>of</strong> P.<br />

panamense from the eleotrid fishes Dormitator latifrons (Richardson) and Gobiomorus maculatus (Giinther)<br />

from the Pacific coast <strong>of</strong> Mexico (Jalisco state) are described for the first time.<br />

KEY WORDS: Pseudacanthostomum panamense, Digenea, metacercariae, Acanthostomidae, taxonomy, catfish,<br />

Siluriformes, Ariidae, Pisces, Mexico, Colombia.<br />

During parasitological examination <strong>of</strong> fish and geographical regions. Metacercariae <strong>of</strong> this<br />

from Colombia and Mexico, acanthostomid trematode are described for the first time, and<br />

trematodes were found, both as adults in catfish the taxonomic status <strong>of</strong> Pseudacanthostomum<br />

<strong>of</strong> the family Ariidae and as metacercariae in floridensis Nahhas and Short, 1965, the only<br />

eleotrid fish. <strong>The</strong>y were identified as Pseuda- congeneric species, is discussed.<br />

canthostomum panamense Caballero, Bravo-<br />

Hollis, and Grocott, 1953, a species described<br />

Materials and Methods<br />

from Galeichthys (_= Ariopsis) seemani (Giinther, Trematodes studied were found in Ariopsis seemani<br />

1864) from Panama (Caballero et al., 1953). Ex- (7 specimens examined) from Colombia (locality not<br />

animation <strong>of</strong> the holotype <strong>of</strong> P. panamense known; May 1996)MnV^,, ///, (Cninther, 1864),<br />

, , . . . , , .. ., from Laguna Bacalar near the village <strong>of</strong> Bacalar, Qumshowed<br />

that its original description had not pro- tana Roo Mexico January 1995 (, specimen)> and<br />

vided data on some taxonomically important from Chetumal Bay, Quintana Roo, Mexico, October<br />

features such as the morphology <strong>of</strong> the intestinal 1996 (96 specimens); and Arius guatemalensis (Giinceca;<br />

in addition, no information about intraspe- ther' 1864>


SCHOLZ ET AL.—REDESCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 147<br />

Jalisco, Mexico, September 1995 (7 specimens); and<br />

in Gobiomorus maculatus (Giinther, 1859) from the<br />

Cuitzmala River at Emiliano Zapata, Jalisco, Mexico,<br />

January, March, and September 1995 (89 specimens).<br />

Holotypes <strong>of</strong> P. panamense from Ariopsis seemani<br />

from Panama (National <strong>Helminthological</strong> Collection <strong>of</strong><br />

the Institute <strong>of</strong> Biology, National Autonomous University<br />

<strong>of</strong> Mexico, Mexico City, Mexico-CNHE 947)<br />

and P. floridcnsis from Galeichthys (= Arius) felis<br />

(Linnaeus, 1766) from Florida (U.S. National Parasite<br />

Collection, Beltsville, Maryland, U.S.A.-USNPC<br />

60087) were compared with the present material.<br />

Measurements (length and width) <strong>of</strong> 59 undeformed,<br />

uncollapsed eggs <strong>of</strong> P. panamense (from Ariopsis seemani,<br />

Panama and Colombia and A. assimilis, Bacalar<br />

and Chetumal, Mexico) and P. floridensis (from Arius<br />

felis, Florida, U.S.A.) were compared by ANOVA (Tukey's<br />

HSD for unequal N; Spojotvoll/Stoline test).<br />

<strong>The</strong> specimens studied are deposited in the helminthological<br />

collections <strong>of</strong> the Institute <strong>of</strong> Parasitology,<br />

Ceske Budejovice, Czech Republic (IPCAS D-384);<br />

Institute <strong>of</strong> Biology, National Autonomous University<br />

<strong>of</strong> Mexico, Mexico City, Mexico (CNHE 3239); Laboratory<br />

<strong>of</strong> Parasitology, CINVESTAV-IPN Merida,<br />

Mexico (CHCM 181); and the U.S. National Parasite<br />

Collection, Beltsville, Maryland, U.S.A. (USNPC<br />

87809, 87810). <strong>The</strong> nomenclature <strong>of</strong> the fish hosts<br />

(catfish) follows that presented by Eschmeyer (1998).<br />

Measurements are in micrometers unless otherwise<br />

noted.<br />

Results<br />

Comparison <strong>of</strong> acanthostomid trematodes occurring<br />

in Ariopsis seemani from Colombia and<br />

A. assimilis and A. guatemalensis from Mexico<br />

with the holotype <strong>of</strong> Pseudacanthostomum panamense<br />

from A. seemani from Panama revealed<br />

their conspecificity (Figs. 1, 2; Table 1). All<br />

specimens, including the holotype <strong>of</strong> P. panamense<br />

(Fig. 1), possess long intestinal ceca connected<br />

near the posterior extremity with the excretory<br />

bladder, thus forming an uroproct (Figs.<br />

ID, 2D, F). Vitelline follicles are distributed between<br />

the ventral sucker and the anterior testis<br />

(Figs. IB, 2A, C, F, G), ventrally forming 2 separate<br />

fields and, in the same specimens, are dorsally<br />

confluent at the ovarian level (Figs. 1F-H,<br />

2C). <strong>The</strong> uterine loops are sinuous, filling the<br />

space between the ventral sucker and the posterior<br />

extremity (Figs. 1C, 2A, C, G). A thinwalled,<br />

coiled seminal vesicle is situated posterodextrally<br />

to the ventral sucker (Figs. IB, 2C,<br />

F), and a genital pore is located just anterior to<br />

the ventral sucker (Fig. IB). With the exception<br />

<strong>of</strong> 3 specimens, all trematodes (TV = 40), including<br />

the holotype (Fig. 1A), had 27 circumoral<br />

spines (Table 2).<br />

<strong>The</strong> present study also demonstrated that the<br />

trematodes studied are identical in all but 1 morphological<br />

and biometrical character to P. floridensis,<br />

a species described from Arius felis from<br />

Florida, U.S.A (Nahhas and Short, 1965; see Table<br />

1). No significant difference between these<br />

2 taxa was found in the size (length and width)<br />

<strong>of</strong> eggs (Fig. 3). <strong>The</strong> only difference between P.<br />

panamense and P. floridensis is the more anterior<br />

position <strong>of</strong> the vitelline follicles in the latter<br />

species. However, the distribution <strong>of</strong> the vitelline<br />

follicles is rather variable (Fig. 1E-H), and its<br />

suitability as a discriminative character between<br />

P. panamense and P. floridensis is doubtful.<br />

Consequently, P. floridensis is considered a junior<br />

synonym <strong>of</strong> P. panamense.<br />

Because the original description <strong>of</strong> P. panamense<br />

was incorrect in some features (the number<br />

<strong>of</strong> circumoral spines, the presence <strong>of</strong> an uroproct,<br />

and the spination <strong>of</strong> the posterior part <strong>of</strong><br />

the body), its redescription based on extensive<br />

material from 4 fish hosts is provided herein. In<br />

addition, metacercariae from the eleotrid fishes<br />

Donnitator latifrons and Gobiomorus maculatus<br />

from Mexico, considered to be conspecific with<br />

P. panamense, are described.<br />

Pseudacanthostomum panamense Caballero,<br />

Bravo-Hollis, and Grocott, 1953<br />

(Figs. 1, 2)<br />

SYNONYMS: Pseudacanthostomum floridensis<br />

Nahhas and Short, 1965 (new synonymy).<br />

Pseudacanthostomum sp. <strong>of</strong> Pineda-Lopez et<br />

al. (1985) (new synonymy).<br />

Pelaezia sp. <strong>of</strong> Scholz and Vargas-Vazquez<br />

(1998) (new synonymy).<br />

DESCRIPTION: Adult (measurements in Table<br />

1): Body elongate, densely covered with fine tegumental<br />

spines, including post-testicular region.<br />

Oral sucker terminal, cup-shaped, with large buccal<br />

cavity; ventral sucker small, pre-equatorial.<br />

Oral sucker surrounded by 1 row <strong>of</strong> 27 large,<br />

straight circumoral spines (Figs. 1A, 2B, J, K);<br />

exceptionally 26 or 28 spines present (Table 2).<br />

Prepharynx present and short (Fig. 1A) or absent<br />

(Fig. 2A); pharynx strongly muscular; esophagus<br />

very short. Intestinal bifurcation pre-equatorial;<br />

intestinal ceca long, connected with excretory<br />

bladder and opening outside by uroproct (Figs.<br />

ID, 2D). Testes tandem, close to posterior extremity.<br />

Vas deferens forming numerous loops,<br />

widened near ventral sucker to form coiled seminal<br />

vesicle; cirrus-sac lacking, ejaculatory duct<br />

slightly curved, opening into hermaphroditic<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


148 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figure 1. Pseudacanthostomum panamense. A-D, holotype from Galeichthys (=Arius) seemani, Panama<br />

(IBUNAM 947), ventral view. A: oral sucker; B: ventral sucker and terminal genitalia; C: anterior part<br />

<strong>of</strong> body; note extent <strong>of</strong> vitelline follicles; D: posterior extremity; note connection <strong>of</strong> intestinal ceca with<br />

excretory bladder and presence <strong>of</strong> uroproct; E-H, acetabular region; note variation in anterior extent <strong>of</strong><br />

vitelline follicles (E, F: specimens from Ariopsis assimilis, Mexico; G, H: specimens from A. seemani,<br />

Columbia; E: dorsal view, ventral follicles omitted; F, G: ventral view, dorsal follicles dashed; H: ventral<br />

view but dorsal follicles drawn in full and ventral follicles dashed). Scale bars in millimeters. Abbreviations:<br />

e, eggs; exb, excretory bladder; gp, genital pore; ic, intestinal ceca; sr, seminal receptacle; sv, seminal<br />

vesicle; u, uterus; up, uroproct; vf, vitelline follicles; vs, ventral sucker.<br />

duct; genital pore close to anterior margin <strong>of</strong> ventral<br />

sucker (Fig. IB). Ovary transversely elongate,<br />

slightly lobate (Fig. 1C) or with almost indistinct<br />

lobes (Fig. 2A), pretesticular. Seminal receptacle<br />

oval, preovarial or anterolateral to ovary<br />

(Fig. 1C). Vitelline follicles numerous, dorsally<br />

filling space between ventral sucker and ovary,<br />

ventrally forming 2 lateral bands starting at acetabular<br />

level or posterior to ventral sucker and<br />

reaching posteriorly to anterior margin <strong>of</strong> anterior<br />

testis (Figs. 1E-G, 2G); exceptionally, vitelline<br />

follicles preacetabular. Uterus sinuous, with numerous<br />

loops, reaching to body extremity posteriorly<br />

and completely filling body posterior to<br />

ovary (Fig. 2A, G, F). Metraterm thin-walled,<br />

opening into hermaphroditic duct. Eggs operculate,<br />

rather variable in size (Figs. 3, 4). Excretory<br />

bladder Y-shaped, long, with anterior branches<br />

anterolateral to intestinal ceca, reaching to pharynx<br />

(Figs. 1C, 2A, C, F).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SCHOLZ ET AL.—REDHSCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 149<br />

Figure 2. Pseudacanthostomum panamense. Adults from Ariopsis seemani, Colombia (A—D, G); nietacercariae<br />

from Dormltator latifrons, Mexico (E, H, I); adults from A. assimilis, Mexico (F, J, K). A, E, F:<br />

total view. B, H-K: oral sucker with circumoral spines. B: tegumental spines on only the right side and<br />

subtegumental gland cells on the left side are illustrated. C: detail <strong>of</strong> acetabular region with terminal<br />

genitalia; note connection <strong>of</strong> dorsal vitelline follicles (dashed) at level <strong>of</strong> ovary. D: posterior extremity with<br />

connection <strong>of</strong> intestinal ceca, opening to the outside, with the excretory bladder (uroproct). G: posterior<br />

part <strong>of</strong> body; note vitelline follicles reaching posteriorly to level <strong>of</strong> anterior testis. Scale bars in millimeters.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


150 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Measurements <strong>of</strong> Pseudacanthostomum panamense from different hosts* (in micrometers).<br />

Species<br />

Host<br />

Locality<br />

Author<br />

N<br />

Caballero<br />

et al., 1953<br />

3<br />

A. seemani<br />

Panama<br />

Present<br />

datat<br />

1<br />

P. panamense<br />

A. assimilis<br />

Mexico<br />

Present<br />

data<br />

8<br />

A. seemani<br />

Colombia<br />

Present<br />

data<br />

4<br />

P. floridensis<br />

A. fells<br />

U.S.A.<br />

Nahhas and<br />

Short, 1965<br />

2<br />

Present<br />

datav<br />

1<br />

Body length<br />

Body width<br />

Oral sucker<br />

Length<br />

Width<br />

Spines (no.)<br />

Spine length<br />

Spine width<br />

Prepharynx<br />

Pharynx<br />

Length<br />

Width<br />

Esophagus<br />

Ventral sucker<br />

Length<br />

Width<br />

Sucker ratio<br />

Anterior testis<br />

Length<br />

Width<br />

Posterior testis<br />

Length<br />

Width<br />

Ovary<br />

Length<br />

Width<br />

Eggs<br />

Length<br />

Width<br />

Uroproct<br />

2,440-2,540<br />

332-481<br />

76-133<br />

171-228<br />

26<br />

30-38<br />

11<br />

95-133<br />

122-171<br />

95-106<br />

11-19<br />

87-114<br />

106-114<br />

0.33-0.50<br />

175-232<br />

114-194<br />

194-285<br />

125-228<br />

103-129<br />

1 33-236<br />

19-21<br />

11<br />

absent<br />

2,784<br />

360<br />

21 1<br />

214<br />

27<br />

31-37<br />

12-13<br />

154<br />

125<br />

99<br />

14<br />

83<br />

86<br />

0.40<br />

173<br />

118<br />

202<br />

128<br />

112<br />

141<br />

21.5-25<br />

12.5-13.5<br />

present<br />

2,150-3,650<br />

230-370<br />

123-195<br />

130-238<br />

26-27<br />

28-45<br />

8-13<br />

30-138<br />

78-105<br />

63-98<br />

13-42<br />

70-103<br />

68-103<br />

0.41-0.68<br />

1 80-300<br />

78-180<br />

180-380<br />

1 1 5-220<br />

90-170<br />

55-190<br />

20-27.5<br />

10-14<br />

present<br />

1,850-2,580<br />

408-5 1 2<br />

186-208<br />

227-259<br />

27<br />

37-54<br />

9-12<br />

45-56<br />

99-122<br />

85-102<br />

22—23<br />

82-108<br />

83-118<br />

0.38-0.51<br />

214-250<br />

179-256<br />

208-272<br />

205-266<br />

99-122<br />

230-272<br />

23-28<br />

12-14.5<br />

present<br />

2,630-3,000<br />

489-750<br />

1 80-294<br />

309-330<br />

28<br />

42-60<br />

18-24<br />

—<br />

1 29-206<br />

—<br />

v. short<br />

118-155<br />

155-170<br />

0.54<br />

283-309<br />

1 80-283<br />

—<br />

—<br />

232-260<br />

298-309<br />

20-25<br />

1 1-14<br />

present<br />

3,050<br />

730<br />

266<br />

314<br />

28<br />

26-59<br />

15-19<br />

15<br />

218<br />

144<br />

—<br />

154<br />

170<br />

0.56<br />

278<br />

173<br />

317<br />

176<br />

224<br />

317<br />

23-26<br />

12-13.5<br />

present<br />

* Specimens from A. asximili.i from Bacalar, Mexico, are not included because they were flattened during fixation.<br />

t Measurements <strong>of</strong> the holotypes (CNHE 947 and USNPC 60087).<br />

Table 2. Number <strong>of</strong> circumoral spines <strong>of</strong> Pseudacanthostomum<br />

panamense.<br />

Host and country<br />

Ariopsix seemani (Panama)<br />

Ariopsis seemani (Colombia)<br />

Ariusfelis (U.S.A.)<br />

Ariopsis assimilis (Mexico)<br />

Arius gitatemalensis (Mexico)<br />

Dormitator latifrons* (Mexico)<br />

Total<br />

Metacercariae.<br />

Number<br />

<strong>of</strong> spines<br />

26 27 28<br />

— 1 —<br />

— 4 —<br />

— — 1<br />

1 14 2<br />

17<br />

4<br />

1 40 3<br />

Number<br />

<strong>of</strong><br />

specimens<br />

1<br />

4<br />

1<br />

17<br />

17<br />

4<br />

44<br />

HOSTS: Ariopsis seemani (type host), A. assimilis,<br />

Arius guatemalensis, and A. felis (all Siluriformes:<br />

Ariidae) (Table 3).<br />

SITE: Intestine.<br />

GEOGRAPHIC DISTRIBUTION: Panama Viejo,<br />

Pacific coast, Panama (type locality); Colombia;<br />

Mexico (states <strong>of</strong> Tabasco and Quintana Roo,<br />

Atlantic coast; state <strong>of</strong> Jalisco, Pacific coast),<br />

U.S.A. (state <strong>of</strong> Florida) (Caballero et al., 1953;<br />

Nahhas and Short, 1965; Yamaguti, 1971; Pineda-Lopez<br />

et al., 1985; Scholz and Vargas-<br />

Vazquez, 1998).<br />

METACERCARIA: (based on 4 specimens from<br />

Dormitator latifrons; Fig. 2E, H, I): Body <strong>of</strong><br />

excysted metacercariae elongate, 630-845 long<br />

by 147-182 wide. Oral sucker terminal, cup-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SCHOLZ ET AL.—REDESCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 15 1<br />

5 24<br />

z<br />

15.5<br />

14.5<br />

13.5<br />

11.5<br />

10.5<br />

9.5<br />

LENGTH<br />

A.a. MB A.a. MC A.s. C A.s. P A.f. U<br />

GROUP<br />

I Min-Max CH 25%-75% D Median value<br />

WIDTH<br />

8.5<br />

A.a. MB A.a. MC A.s. C A.s. P A.f. U<br />

GROUP<br />

Figure 3. Length (above) and width (below) <strong>of</strong><br />

eggs <strong>of</strong> Pscudacanthostomum panamense from different<br />

hosts and geographical regions. Measurements<br />

in micrometers. Groups: A.a. MB, Ariopsis<br />

assimilis, Bacalar, Mexico; A.a. MC, A. assimilis,<br />

Chetumal Bay, Mexico; A.s. C, A. seemani, Colombia;<br />

A.s. P, A. seemani, Panama (holotype: CNHE<br />

947); A.f. \J, Arius felis, Florida, U.S.A. (holotype <strong>of</strong><br />

P. floridensis: USNPC 60087).<br />

shaped, 111-124 long by 115-147 wide. Ventral<br />

sucker small, equatorial, 35-44 long by 35-41<br />

wide. Sucker ratio 1:0.31-0.34. Oral sucker<br />

armed with 1 circle <strong>of</strong> 27 spines; spines on dorsal<br />

side 21-28 long by 4-7 wide; on ventral side<br />

15-21 long by 4-5 wide. Prepharynx 49-90<br />

long; pharynx oval, 52-59 long by 36-52 wide;<br />

esophagus short. Intestinal ceca long, connected<br />

with excretory bladder near posterior extremity<br />

and opening outside by uroproct. Primordium <strong>of</strong><br />

ovary postacetabular; testis primordia tandem,<br />

near posterior extremity.<br />

HOSTS: Dormitator latifrons and Gobiomorus<br />

maculatus (both Perciformes: Eleotridae)<br />

(Table 3).<br />

SITE: Liver, more rarely musculature <strong>of</strong> gills,<br />

mesentery, intestinal wall, occasionally muscles,<br />

heart, gonads, fins, scales.<br />

GEOGRAPHICAL DISTRIBUTION: Mexico (state<br />

<strong>of</strong> Jalisco, Pacific coast).<br />

Discussion<br />

Acanthostomid trematodes from 3 different<br />

definitive hosts, the ariid catfish Ariopsis seemani,<br />

A. assimilis, and Arius guatemalensis, and<br />

2 geographical regions (Colombia and Mexico)<br />

were found to be conspecinc with Pseudacanthostornum<br />

panamense. Examination <strong>of</strong> the holotype<br />

<strong>of</strong> P. panamense has shown that the original<br />

description (Caballero et al., 1953) was incorrect<br />

in reporting the following characters: 1)<br />

26 circumoral spines (there are in fact 27 spines<br />

in the holotype; Fig. 1A); 2) the absence <strong>of</strong> tegumental<br />

spines in the post-testicular region,<br />

which is actually spined; and 3) the absence <strong>of</strong><br />

an uroproct (i.e., a connection <strong>of</strong> the intestinal<br />

ceca with the excretory bladder), which is actually<br />

present (Fig. ID). Consequently, the species<br />

diagnosis <strong>of</strong> P. panamense, the type species<br />

<strong>of</strong> the genus Pseudacanthostomum Caballero,<br />

Bravo-Hollis, and Grocott, 1953, is emended accordingly.<br />

In 1965, Nahhas and Short described another<br />

species, P. floridensis, to accommodate 2 specimens<br />

from Galeichthys (= Arius) felis from<br />

Florida, U.S.A. <strong>The</strong> authors differentiated this<br />

species from P. panamense by the number <strong>of</strong><br />

circumoral spines (28 compared with 26), the<br />

greater extent <strong>of</strong> the vitellaria, and the presence<br />

<strong>of</strong> an uroproct.<br />

<strong>The</strong> presence <strong>of</strong> an uroproct in P. panamense<br />

was not reported by Caballero et al. (1953), who<br />

stated that there is no connection between the<br />

intestinal ceca and excretory bladder ("Los ciegos<br />

intestinales . . . no se abren en la vesicula<br />

excretora" [p. 121] and "Los ciegos intestinales<br />

no desembocan a la vesicula excretora" [p.<br />

122]). However, this study has demonstrated that<br />

an uroproct is in fact present in P. panamense<br />

(Fig. ID). Consequently, P. panamense and P.<br />

floridensis do not differ in this character (Table<br />

1).<br />

Although the number <strong>of</strong> circumoral spines is<br />

fairly stable in acanthostomid trematodes and<br />

can be species-specific (Brooks, 1980), some<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


152 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

15.5<br />

15.0<br />

14.5<br />

14.0<br />

13.5<br />

13.0<br />

12.5<br />

JE 12.0<br />

Q 11.5<br />

% 11.0<br />

10.5<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

« n<br />

O 0<br />

o o o<br />

0 000<br />

o o o<br />

o o o<br />

o<br />

0 O O<br />

o<br />

o o o<br />

o<br />

o<br />

o<br />

o o<br />

o<br />

o o o o<br />

o o o o o<br />

o<br />

o o o<br />

o<br />

O O O 0<br />

18 19 20 21 22 24 25 26 27 28<br />

LENGTH<br />

Figure 4. Range <strong>of</strong> size <strong>of</strong> eggs (length and width) <strong>of</strong> Pseudacanthostomum panamense. Measurements<br />

<strong>of</strong> all eggs measured (N = 59) grouped together. Values in micrometers.<br />

o<br />

o<br />

variability apparently exists (Brooks and Overstreet,<br />

1977; Ostrowski de Nunez, 1984; Scholz<br />

et al., 1995a, b). This is also the case in the<br />

present material (Table 2). Although a majority<br />

<strong>of</strong> specimens (93%) had 27 spines, including the<br />

holotype <strong>of</strong> P. panamense (see Results and Fig.<br />

1A), a few specimens had a different number <strong>of</strong><br />

spines. One trematode from A. assimilis from<br />

Bacalar (Mexico) possessed 26 spines, and 2<br />

specimens from the same host (A. assimilis)<br />

from Chetumal (Mexico) had 28 spines (i.e., the<br />

identical number reported for P. floridensis) (Table<br />

2).<br />

<strong>The</strong> extent <strong>of</strong> distribution <strong>of</strong> vitelline follicles<br />

in the holotype <strong>of</strong> P. floridensis is actually more<br />

anterior than in P. panamense specimens. However,<br />

there is great variability in this feature.<br />

Trematodes from Ariopsis seemani have follicles<br />

reaching to the acetabular level (Fig. 1G) or<br />

even to the anterior margin <strong>of</strong> the ventral sucker<br />

(Fig. 1H), whereas those from A. assimilis have<br />

vitelline follicles mostly restricted to the postacetabular<br />

region (Fig. IE, F) with vitelline follicles<br />

reaching to the posterior border <strong>of</strong> the ventral<br />

sucker in only a few specimens. It also<br />

seems that contraction <strong>of</strong> the body influences the<br />

position <strong>of</strong> follicles; in contracted specimens vitelline<br />

follicles usually reach to the acetabular<br />

level (Fig. 1G, H), whereas in protracted worms,<br />

the follicles start rather far posterior to the ven-<br />

Table 3. Survey <strong>of</strong> hosts, localities, dates <strong>of</strong> collection, and parameters <strong>of</strong> infection with Pseudacanthostomum<br />

panamense.<br />

Host<br />

Country and locality<br />

No. <strong>of</strong><br />

fish Mean<br />

infected/ inten- Minimum-<br />

Date examined sity maximum<br />

Adults<br />

A riopsis see man i<br />

A riopsis assim His<br />

A rius guatemalensis<br />

Metacercariae<br />

Dormitator latifronx<br />

Gobiomorus maculatus<br />

Colombia<br />

Bacalar, Quintana Roo, Mexico<br />

Chetumal Bay, Quintana Roo, Mexico<br />

Marismas Chalacatepec, Jalisco, Mexico<br />

Marismas Chalacatepec, Jalisco, Mexico<br />

Rio San Nicolas, Jalisco, Mexico<br />

Rio Cuitzmala, Jalisco, Mexico<br />

Rio Cuitzmala, Jalisco, Mexico<br />

5/96<br />

1/95<br />

10/96<br />

3/95<br />

3/95<br />

11/94<br />

9/95<br />

9/95<br />

1/95<br />

3/95<br />

9/95<br />

4/7<br />

1/1<br />

39/96<br />

3/3<br />

1/24<br />

1/5<br />

2/16<br />

5/7<br />

0/25<br />

2/37<br />

22/31<br />

1.5 1-2<br />

12<br />

7.5 1-30<br />

24 9-52<br />

39 39<br />

52 52<br />

1 1<br />

(not counted)<br />

— —<br />

3 1-5<br />

(not counted)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SCHOLZ ET AL.—REDESCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 153<br />

tral sucker (Fig. IE). It is evident that this character<br />

is not sufficiently stable and its taxonomic<br />

importance is questionable. Because P. floridensis<br />

was described on the basis <strong>of</strong> only 2 specimens,<br />

the anterior position <strong>of</strong> vitellaria should<br />

be confirmed in much more extensive material.<br />

Statistical analysis <strong>of</strong> egg measurements has<br />

revealed a great intraspecific variability in egg<br />

length and width (Fig. 4). Nevertheless, this<br />

analysis has not demonstrated any significant<br />

differences in the length and width <strong>of</strong> eggs <strong>of</strong><br />

P. panamense and P. floridensis (Fig. 3). Eggs<br />

<strong>of</strong> P. panamense specimens from Colombia<br />

were larger than those <strong>of</strong> conspecific worms<br />

from Mexico, thus being more similar to eggs<br />

<strong>of</strong> P. floridensis (Fig. 3). Because <strong>of</strong> the identity<br />

<strong>of</strong> P. floridensis with P. panamense in almost all<br />

morphological and biometrical characters (the<br />

distribution <strong>of</strong> vitelline follicles is considered a<br />

doubtful and unsuitable taxonomic criterion for<br />

differentiation <strong>of</strong> these taxa), the former species<br />

is synonymized with P. panamense.<br />

On the basis <strong>of</strong> the proposed synonymy, the<br />

genus Pseudacanthostomum becomes monotypic,<br />

currently containing only 1 species, P. panamense.<br />

In the presence <strong>of</strong> an uroproct, P. panamense<br />

resembles members <strong>of</strong> the genus Pelaezia<br />

Lamothe-Argumedo and Ponciano-Rodriguez,<br />

1986, <strong>of</strong> the subfamily Acanthostominae<br />

Nicoll, 1914 (see Lamothe-Argumedo and Ponciano-Rodriguez,<br />

1986). However, Pelaezia differs,<br />

as all other genera <strong>of</strong> the Acanthostominae,<br />

in that the uterus is never situated posterior to<br />

the testes (mostly completely preovarial), whereas<br />

its loops reach to the posterior extremity in<br />

Pseudacanthostomum, the type genus <strong>of</strong> the subfamily<br />

Pseudacanthostominae Yamaguti, 1958.<br />

In addition, both species <strong>of</strong> Pelaezia, P. unami<br />

(Pelaez and Cruz-Lozano, 1953), the type species,<br />

and P. loossi (Perez-Vigueras, 1957), have<br />

different numbers <strong>of</strong> circumoral spines (30 and<br />

23, respectively; Pelaez and Cruz-Lozano, 1953;<br />

Perez-Vigueras, 1957; Brooks, 1980; Salgado-<br />

Maldonado and Aguirre-Macedo, 1991).<br />

<strong>The</strong> subfamily Pseudacanthostominae Poche,<br />

1926 contains only 2 genera, Pseudacanthostomum<br />

and Pseudallacanthochasmus Velasquez,<br />

1961, members <strong>of</strong> which parasitize marine fish<br />

in the Americas and Southeast Asia, respectively<br />

(Yamaguti, 1971). This subfamily differs from<br />

the Acanthostominae in possessing a long prepharynx<br />

(Yamaguti, 1971, p. 212). However, as<br />

demonstrated in this study, the prepharynx is<br />

usually short or even absent (Fig. 2A, F) in<br />

many P. panamense specimens. Moreover, the<br />

length <strong>of</strong> the prepharynx is highly variable, depending<br />

mainly on the state <strong>of</strong> contraction <strong>of</strong> the<br />

worms. <strong>The</strong>refore, this feature should not be<br />

used as a differential criterion for the diagnosis<br />

<strong>of</strong> this subfamily. In other features, the subfamiliar<br />

diagnosis presented by Yamaguti (1971)—<br />

i.e., the uterus extending to the posterior extremity<br />

(different from other acanthostomid subfamilies<br />

except for Anisocladiinae Yamaguti,<br />

1958)—the ceca being equal and reaching to the<br />

posterior extremity, the ventral sucker being<br />

well apart from the anterior extremity, and the<br />

vitelline follicles being both anterior and posterior<br />

to the ovary (differing from Anisocladiinae)<br />

well characterize the subfamily Pseudacanthostominae.<br />

Metacercariae found in eleotrid fishes from<br />

the Pacific coast <strong>of</strong> Mexico are considered to be<br />

conspecific with P. panamense because <strong>of</strong> their<br />

morphology (Fig. 2E, H, I), in particular the<br />

presence <strong>of</strong> 27 circumoral spines (Fig. 2H, I)<br />

and the morphology <strong>of</strong> the intestinal ceca, which<br />

are connected with the excretory bladder near<br />

the posterior extremity, thus forming an uroproct<br />

(Fig. 2E). This is the first record <strong>of</strong> P. panamense<br />

from the second intermediate host. It can<br />

be assumed that the life cycle <strong>of</strong> this taxon resembles<br />

that <strong>of</strong> other acanthostomid trematodes<br />

(Yamaguti, 1975). <strong>The</strong> first intermediate host is<br />

a mollusk (snail), in which the cercariae develop;<br />

the second intermediate hosts are fish in<br />

which the metacercariae are encysted. <strong>The</strong> definitive<br />

host, an ariid catfish, becomes infected<br />

by ingesting fish with metacercariae. Dormitator<br />

latifrons and Gobiomorus maculatus are fish living<br />

in brackish water, i.e., in the same habitat in<br />

which ariid catfish occur; the latter become infected<br />

after consuming prey fish harboring metacercariae.<br />

Pseudacanthostomum panamense seems to be<br />

a common parasite <strong>of</strong> catfishes <strong>of</strong> the family<br />

Ariidae. Existing records <strong>of</strong> P. panamense from<br />

the southern U.S.A. (Florida), Mexico (both Atlantic<br />

and Pacific coasts), Panama (Pacific<br />

coast), and Colombia indicate that it is a species<br />

with a wide distribution in the Neotropical zoogeographical<br />

region on both the Pacific and Atlantic<br />

coasts.<br />

Acknowledgments<br />

<strong>The</strong> authors are indebted to Elizabeth Mayen<br />

Pena, Guillermina Cabanas-Caranza, Juan Ma-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


154 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

nuel Caspeta-Mandujano, Rafael Baez-Vale, and<br />

Isabel Jimenez-Garcia, Institute <strong>of</strong> Biology, National<br />

Autonomous University <strong>of</strong> Mexico<br />

(UNAM), Mexico City, for help in sampling and<br />

examining fish in the state <strong>of</strong> Jalisco and to Raul<br />

Sima-Alvarez, Clara Margarita Vivas-Rodriguez,<br />

Ana Maria Sanchez-Manzanilla, Isabel Jimenez-Garcia,<br />

Sandra Martha Laffon-Leal, Sonia<br />

Zarate-Perez and Victor Ceja-Moreno, Center<br />

for Investigation and Advanced Studies <strong>of</strong> the<br />

National Polytechnic Institute (CINVESTAV-<br />

IPN), Unidad Merida, Mexico, for help in collecting<br />

fish in Quintana Roo. Thanks are due to<br />

Drs. J. Ralph Lichtenfels and Patricia Pilitt, U.S.<br />

National Parasite Collection, Beltsville, Maryland,<br />

U.S.A., and Dr. Rafael Lamothe-Argumedo<br />

and Luis Garcia-Prieto, Institute <strong>of</strong> Biology,<br />

National Autonomous University <strong>of</strong> Mexico<br />

(UNAM), Mexico City, for the loan <strong>of</strong> types <strong>of</strong><br />

Pseudacanthostomum species. Dr. Patricia Pilitt<br />

is further acknowledged for her valuable help<br />

with egg size analysis, Martina Borovkova (Institute<br />

<strong>of</strong> Parasitology, Ceske Budejovice) for<br />

excellent technical help, and Luis Garcia-Prieto<br />

for providing the original description <strong>of</strong> P. panamense.<br />

Literature Cited<br />

Brooks, D. R. 1980. Revision <strong>of</strong> the Acanthostominae<br />

Poche, 1926 (Digenea: Cryptogonimidae). Zoological<br />

Journal <strong>of</strong> the Linnean <strong>Society</strong> 70:313-<br />

382.<br />

, and R. M. Overstreet. 1977. Acanthostome<br />

digeneans from the American alligator in the<br />

southeastern United <strong>State</strong>s. Proceedings <strong>of</strong> the Biological<br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 90:1016-1029.<br />

Caballero y C., E., M. Bravo-Hollis, and R. G. Grocott.<br />

1953. Helmintos de la Republica de Panama.<br />

VII. Descripcion de algunos trematodos de peces<br />

marines. Anales del Institute de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie<br />

Zoologia 24:97-136.<br />

Eschmeyer, W. N. 1998. Catalog <strong>of</strong> Fishes. Vols. 1,<br />

2, 3. California Academy <strong>of</strong> Sciences, San Francisco,<br />

2905 pp.<br />

Lamothe-Argumedo, R., and G. Ponciano-Rodriguez.<br />

1986. Revision de la subfamilia Acanthostominae<br />

Nicoll, 1914 y establecimiento de dos<br />

nuevos generos. Anales del Instituto de Biologfa,<br />

Universidad Nacional Autonoma de Mexico, Serie<br />

Zoologia 56:301-322.<br />

Nahhas, F. M., and R. B. Short. 1965. Digenetic<br />

trematodes <strong>of</strong> marine fishes from Apalachee Bay,<br />

Gulf <strong>of</strong> Mexico. Tulane Studies in Zoology 12:<br />

39-50.<br />

Ostrowski de Nunez, M. 1984. Beitrage zur Gattung<br />

Acanthostomum (Trematoda, Acanthostomatidae)<br />

und zu den Entwicklungszyklen von A. marajoarum<br />

(Freitas & Lent, 1938) und A. loossi (Perez<br />

Vigueras, 1957) in Venezuela. Mitteilungen des<br />

Zoologisches Museum, Berlin 60:179-201.<br />

Pelaez, D., and F. Cruz-Lozano. 1953. Consideraciones<br />

sobre el genero Acanthostomum Looss,<br />

1899 (Trematoda: Acanthostomidae) con descripcion<br />

de 2 especies de Mexico. Memorias del VII<br />

Congreso Cientifico de Mexico, Ciencias Biologicas,<br />

National Autonomous LJniversity <strong>of</strong> Mexico,<br />

Mexico City 7:268-284.<br />

Perez-Vigueras, I. 1957. Contribucion al conocimiento<br />

de la fauna helmintologica cubana. Memorias<br />

de la Sociedad Cubana de la Historia Natural<br />

23(1): 1-36.<br />

Pineda-Lopez, R., V. Carballo, M. Fucugauchi, and<br />

L. Garcia M. 1985. Metazoarios parasites de peces<br />

de importancia comercial de la region de los<br />

Rios, Tabasco, Mexico. Usumacinta 1(1): 196-<br />

270.<br />

Salgado-Maldonado, G., and L. Aguirre-Macedo.<br />

1991. Metacercarias parasitas de Cichlasoma urophthalmus<br />

(Cichlidae) Pelaezici loossi n. comb, y<br />

Phagicola angrense con descripcion de adultos recuperados<br />

experimentalmente. Anales del Instituto<br />

de Biologia, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 62:391-407.<br />

Scholz, T., and J. Vargas-Vazquez. 1998. Trematodes<br />

from fishes <strong>of</strong> the Rio Hondo River and<br />

freshwater lakes <strong>of</strong> Quintana Roo, Mexico. Journal<br />

<strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

65:91-95.<br />

, , F. Moravec, C. Vivas-Rodriguez,<br />

and E. Mendoza-Franco. 1995a. Cenotes (sinkholes)<br />

<strong>of</strong> the Yucatan Peninsula, Mexico, as a habitat<br />

<strong>of</strong> adult trematodes <strong>of</strong> fish. Folia Parasitologica<br />

42:37-47.<br />

, , , , and . 1995b.<br />

Metacercariae <strong>of</strong> trematodes <strong>of</strong> fishes from cenotes<br />

(= sinkholes) <strong>of</strong> the Yucatan Peninsula, Mexico.<br />

Folia Parasitologica 42:173-192.<br />

Yamaguti, S. 1971. Synopsis <strong>of</strong> Digenetic Trematodes<br />

<strong>of</strong> Vertebrates. Parts I, II. Keigaku Publishing Co.,<br />

Tokyo. 1074 pp. + 347 plates.<br />

. 1975. A Synoptical Review <strong>of</strong> Life Histories<br />

<strong>of</strong> Digenetic Trematodes <strong>of</strong> Vertebrates. Keigaku<br />

Publishing Co., Tokyo. 590 pp. + 219 plates.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 155-174<br />

Ultrastructure <strong>of</strong> the Female Reproductive System <strong>of</strong> the Lesion<br />

Nematode, Pratylenchus penetrans (Nemata: Pratylenchidae)<br />

BURTON Y. ENDO', ULRICH ZuNKE2, AND WILLIAM P. WERGiN1-3<br />

1 U.S. Department <strong>of</strong> Agriculture, Agricultural Research Service, Plant Sciences Institute, Nematology<br />

Laboratory, Beltsville, Maryland 20705-2350, U.S.A., and<br />

2 Universtat Hamburg, Institut fur Angewandte Botanik, Marseiller Str. 7, 20355, Hamburg, Germany<br />

ABSTRACT: Transmission electron microscopy <strong>of</strong> the reproductive system <strong>of</strong> adult females <strong>of</strong> Pratvlenchus<br />

penetrans (Cobb) Filipjev and Schuurmans Stekhoven revealed details <strong>of</strong> oocyte development and the transformation<br />

<strong>of</strong> oocytes into eggs. Oogonial cell divisions were not observed; however, oogonial development into<br />

oocytes was distinctive in that most <strong>of</strong> the nuclei <strong>of</strong> ovarian cells were in the pachytene stage (i.e., prophase I<br />

<strong>of</strong> meiosis). In the midsection <strong>of</strong> the ovary, the oocytes increase in number, enlarge, and accumulate in a single<br />

row. Next, the oocytes enter a muscular oviduct and begin to accumulate lipid bodies and protein granules. <strong>The</strong><br />

plasma membrane <strong>of</strong> the oviduct becomes plicated and forms cisternae; centralized membrane junctions establish<br />

openings for oocytes to enter the spermatheca. Spermatozoa traverse the lumen <strong>of</strong> the uterus and accumulate in<br />

the spermatheca. Each oocyte then passes through the spermatheca proximally and then traverses between<br />

columnar cells. <strong>The</strong> posteriad regions <strong>of</strong> the columnar cells attach to other uterine cells to form the central<br />

lumen <strong>of</strong> the uterus that extends beyond the vaginal opening and into the postvulvar uterine branch <strong>of</strong> the<br />

reproductive system. <strong>The</strong> fertilized egg is deposited to the exterior after passing between cuticle-lined vaginal<br />

and vulval walls supported by anteriad and posteriad muscle bands, which have ventrosublateral insertions on<br />

the body wall.<br />

KEY WORDS: transmission electron microscopy, lesion nematode, female reproductive system, Pratylenchus<br />

penetrans, Nemata, Pratylenchidae.<br />

<strong>The</strong> lesion nematodes, Pratylenchus spp., are<br />

among the most destructive plant pathogenic<br />

nematodes world-wide (Mai et al., 1977; Dropkin,<br />

1989; Zunke, 1990a). Dropkin (1989) reviewed<br />

the disease symptoms and pathogenesis<br />

<strong>of</strong> Pratylenchus species, which occur as single<br />

parasites or in combination with other pathogens.<br />

<strong>The</strong> ectoparasitic and endoparasitic feeding<br />

behavior <strong>of</strong> Pratylenchus penetrans (Cobb,<br />

1917) Filipjev and Schuurmans Stekhoven,<br />

1941, has been studied using video-enhanced<br />

contrast light microscopy (Zunke and Institut fiir<br />

den Wissenschaftlichen Film, 1988; Zunke,<br />

1990b) and transmission electron microscopy<br />

(TEM) (Townshend et al., 1989). Light microscopic<br />

studies also have described embryogenesis<br />

and postembryogenesis, including the molting<br />

process and the development <strong>of</strong> the reproductive<br />

system, in several species <strong>of</strong> Pratylenchus<br />

(Roman and Hirschmann, 1969a, b). In a<br />

related study <strong>of</strong> Ditylenchus triformis, Hirschmann<br />

(1962) illustrated the development <strong>of</strong> male<br />

and female reproductive systems during postembryogenesis,<br />

beginning with the genital primordium.<br />

Recently, we used TEM to describe the<br />

1 Corresponding author.<br />

general anatomy <strong>of</strong> P. penetrans (Endo et al.,<br />

1997) and the development <strong>of</strong> the testis, including<br />

the production and morphology <strong>of</strong> spermatozoa<br />

(Endo et al., 1998). <strong>The</strong>se observations<br />

complement extensive studies on spermatogenesis<br />

and sperm ultrastructure <strong>of</strong> various species<br />

<strong>of</strong> cyst nematodes (Shepherd et al., 1973; Cares<br />

and Baldwin, 1994a, b, 1995). To extend these<br />

studies, TEM was used to describe the ultrastructure<br />

<strong>of</strong> the female reproductive system <strong>of</strong><br />

P. penetrans, with emphasis on oocyte development<br />

in the ovary and the morphology <strong>of</strong> the<br />

oviduct, spermatheca, columnar cells, and central<br />

uterus. <strong>The</strong> studies <strong>of</strong> development <strong>of</strong> the<br />

eggs include evaluation <strong>of</strong> egg shell depositions<br />

in the uterus and the vaginal and vulval muscle<br />

morphology as they relate to egg laying.<br />

Materials and Methods<br />

Infective and parasitic stages <strong>of</strong> P. penetrans were<br />

obtained from root cultures <strong>of</strong> corn (Zea mays Linnaeus<br />

'Ichief') grown in Gamborg's B-5 medium without<br />

cytokinins or auxins (Gamborg et al., 1976). Adults<br />

and juveniles were collected from infected root segments<br />

that were incubated in water. <strong>The</strong> samples were<br />

prepared for electron microscopy as previously described<br />

(Endo and Wcrgin, 1973; Wergin and Endo,<br />

1976). Briefly, nematodes, which were embedded in<br />

2% water agar or in infected roots, were chemically<br />

155<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


156 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

fixed in buffered 3% glutaraldehyde (0.05 M phosphate<br />

buffer, pH 6.8) at 22°C for 1.5 hr, washed for 1 hr in<br />

6 changes <strong>of</strong> buffer, postfixed in buffered 2% osmium<br />

tetroxide for 2 hr, dehydrated in an acetone series, and<br />

infiltrated with a low-viscosity embedding medium<br />

(Spurr, 1969). Silver-gray sections were cut on an ultramicrotome<br />

with a diamond knife and mounted on<br />

uncoated 75 X 300 mesh copper grids. <strong>The</strong> sections<br />

were stained with uranyl acetate and lead citrate and<br />

viewed in a Philips 400T® electron microscope operating<br />

at 60 kV with a 30-|xm objective aperture.<br />

Results<br />

<strong>The</strong> female reproductive system <strong>of</strong> P. penetrans<br />

has amphidelphic development during early<br />

stages <strong>of</strong> postembryogenesis. However, later<br />

in the adult development, the posterior region <strong>of</strong><br />

the ovary becomes reduced to a postvulvar uterine<br />

branch (Fig. 1). This change results in a telogonic<br />

gonad having a prodelphic orientation<br />

and a short postvulvar uterine branch that consists<br />

<strong>of</strong> epithelial cells. <strong>The</strong> cells in the anterior<br />

terminus <strong>of</strong> the ovary have spheroid nuclei, numerous<br />

polyribosomes, and high concentrations<br />

<strong>of</strong> rough endoplasmic reticulum (RER), mitochondria,<br />

Golgi, and electron-dense granules<br />

(Fig. 2 on Foldout 1). <strong>The</strong>se germinal cells are<br />

completely ensheathed by spindle-shaped epithelial<br />

cells (Figs. 2, 3, 5, 6 on Foldout 2) that<br />

lie adjacent to and between the ovarian cells. In<br />

longitudinal view, the anterior gonad occupies<br />

about half the diameter <strong>of</strong> the body cavity (Figs.<br />

1, 6, 7). Nuclear divisions <strong>of</strong> oogonia were not<br />

observed in the specimens studied. However, as<br />

the ovarian cells increase in number and size,<br />

the germ cells contribute to a double row <strong>of</strong><br />

overlapping oogonia (Figs. 3-5). Posteriorly, oocytes<br />

occur in a single row in the ovary and<br />

attain a slightly larger size than the germinal<br />

cells in the anterior region (Figs. 6-8 on Foldout<br />

3). <strong>The</strong> cellular organelles <strong>of</strong> the oocytes found<br />

in the midregion and proximal sites <strong>of</strong> the ovary<br />

are similar to those present in the oogonia (Figs.<br />

2—5). <strong>The</strong> well-defined nuclei <strong>of</strong> oocytes in the<br />

midregion <strong>of</strong> the ovary contain fragments <strong>of</strong><br />

synaptonemal complexes, indicating that the oocytes<br />

are at the pachytene stage <strong>of</strong> prophase I<br />

(Figs. 4, 5). <strong>The</strong> synaptonemal complex is a tripartite<br />

structure consisting <strong>of</strong> a central scalariform<br />

element and a pair <strong>of</strong> lateral elements. This<br />

complex is surrounded by condensed chromatin<br />

(Fig. 5). <strong>The</strong> nucleoli are prominent, large, and<br />

electron-dense (Figs. 3, 5-7). Nuclei occupy a<br />

major part <strong>of</strong> the enlarged volume <strong>of</strong> oocytes in<br />

the proximal region <strong>of</strong> the ovary (Fig. 7). In actively<br />

reproducing females, oocytes near the anterior<br />

entrance <strong>of</strong> the oviduct or within the oviduct<br />

channel have an accumulation <strong>of</strong> electrontranslucent<br />

lipid droplets (Fig. 10).<br />

Oviduct<br />

<strong>The</strong> oviduct (Fig. 11 on Foldout 4) consists<br />

<strong>of</strong> a series <strong>of</strong> irregularly shaped cells having plicated<br />

plasma membranes. Although adjacent<br />

cells are generally separated by many intercellular<br />

spaces, membrane junctions interconnect<br />

the cells and allow for the extensive opening <strong>of</strong><br />

the oviduct that is required during passage <strong>of</strong> the<br />

enlarged oocytes. Muscle filaments are associated<br />

with most <strong>of</strong> the cells along the length <strong>of</strong><br />

the oviduct (Fig. 9). Oviduct cells contain mitochondria<br />

and nuclei with irregularly shaped nuclear<br />

membranes lined with electron-dense chromatin.<br />

<strong>The</strong> cells occupy the ventral region <strong>of</strong> the<br />

body cavity and lie adjacent to the intestinal epithelium<br />

(Fig. 11). In the distal portion <strong>of</strong> the<br />

oviduct, the cells are more tightly packed and<br />

have centrally located membrane junctions (Fig.<br />

12). In this region, the cells are not associated<br />

with muscle filaments. <strong>The</strong>se closely arranged<br />

cells appear to function as a valve for the entry<br />

<strong>of</strong> oocytes into the spermatheca. Sperm were not<br />

observed on this side <strong>of</strong> the spermatheca.<br />

Spermatheca<br />

<strong>The</strong> terminal cells <strong>of</strong> the oviduct are attached<br />

closely to spindle-shaped cells <strong>of</strong> the spheroid<br />

spermatheca (Fig. 11). Membranes <strong>of</strong> the cells<br />

<strong>of</strong> the spermatheca are joined together with<br />

prominent lateral membrane junctions. Spermatozoa<br />

in the center <strong>of</strong> spermatheca have prominent<br />

masses <strong>of</strong> chromatin that are surrounded by<br />

clusters <strong>of</strong> mitochondria and widely dispersed<br />

fibrillar bundles (Fig. 11). <strong>The</strong>se structures are<br />

similar to the major sperm protein bodies that<br />

have been identified and described in other nematode<br />

species (Shepherd et al., 1973). <strong>The</strong> spermatozoa<br />

seem to be suspended in a moderately<br />

electron-dense fluid similar in appearance to the<br />

contents <strong>of</strong> the vas deferens <strong>of</strong> males. <strong>The</strong> posteriad<br />

boundary <strong>of</strong> the spermatheca joins a series<br />

<strong>of</strong> columnar cells <strong>of</strong> the uterus (Figs. 11, 13).<br />

Columnar cells <strong>of</strong> the uterus<br />

Columnar cells leading posteriad from the<br />

spermatheca have plicated limiting membranes<br />

(Fig. 15 on Foldout 5) similar to those <strong>of</strong> cells<br />

in the oviduct (Fig. 8) but differing by the ab-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


A<br />

ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 157<br />

B<br />

oviduct<br />

spermatheca<br />

columnar cells<br />

<strong>of</strong> uterus<br />

proximal region<br />

<strong>of</strong> uterus<br />

vulva<br />

$<br />

columnar cells<br />

<strong>of</strong> uterus<br />

post-vulvar<br />

uterine branch<br />

vagina<br />

postvulvar<br />

uterine branch<br />

anus<br />

I<br />

1<br />

Figure 1. Line drawings <strong>of</strong> the female reproductive system <strong>of</strong> Pratylenchus penetrans, illustrating the<br />

features <strong>of</strong> pseudomonodelphic reproductive development. (A) Anterior region <strong>of</strong> the gonad containing<br />

oogonial cells and oocytes in growth phase. (B) Posterior region <strong>of</strong> the reproductive system showing a<br />

postvulvar uterine branch. Posteriad to the oocytes are the oviduct, spermatheca, columnar cells <strong>of</strong> the<br />

uterus, and the vaginal-vulval regions.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


-<br />

•^ * x-<br />

^*"^ "^^ <<br />

:,>*%-;^ •T'jv-; -v-*. :«.v»"<br />

'^•F-•"•&**£. V; ,1y;.?-- - •'vV-»<br />

.;§ -/^-" -. '•&£<br />

•<br />

t-<br />

'<br />

. ^*@i<br />

"£-«;^<br />

- V.^---.'*X:'i> ."«,>*',«A .•••-•'•<br />

--"^'--V,''<br />

P<br />

-" ^--.v*'^<br />

fm.:< -,Vvx:.* '<br />

•*"<br />

**v<br />

L i ~, *?*• -C Al •*£&<br />

^"%.^<br />

* ,'<br />

-W& &<br />

-j.f> : •, ¥SB?*QF.'**••- «^v,<br />

^'W fp&'-S!<br />

Figure 2. Distal region <strong>of</strong> the ovary <strong>of</strong> P. /7cne/raws showing 3 enlarged distal cells. Germinal cells<br />

(GC) arc precursors to oocyte development. Cells <strong>of</strong> the gonad epithelium lie adjacent to linearly arranged<br />

germ cells (i.e., oogonia and oocytes). GEN, gonad epithelium nucleus; M, mitochondria. (Note: In this<br />

and in later longitudinal figures that are illustrated with fold-outs (Figs. 2, 6, 8, 11, 15, 20), the proximal<br />

or left axis is toward the head <strong>of</strong> the nematode, whereas the distal or right axis is toward the tail. In the<br />

longitudinal sections that are illustrated in the single plates, the head to tail orientation is top to bottom.)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


158 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figure 3. Longitudinal section through oocytes <strong>of</strong> P. pcnetrans in the region <strong>of</strong> their growth phase.<br />

Nucleoplasm with fragments <strong>of</strong> chromatin and electron-dense nucleolus (Nu). GEN, gonad epithelium<br />

nucleus; N, oocyte nucleus.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 159<br />

r^V;"'' " • «aH<br />

..• •" • " '>jK'a*' _-'Jr . JaO*<br />

..... .:; -.--"'v :. -••»• * ' T" • -<br />

c-/-Jx)>".<br />

•*>> 7^?S.'<br />

'- Hp%» ~- • - A*a<br />

'• '' * -v - • -, i<br />

i trv - -- i wdi<br />

rt-v*^4. •* v -1<br />

Figure 4. Longitudinal, submedian section <strong>of</strong> ovary <strong>of</strong> P. penetrans showing oocytes (O) during initial<br />

stages <strong>of</strong> meiosis. M, mitochondria; N, nucleus; SM, somatic muscles.<br />

13). However, a preformed lumen is not appar-<br />

ent. In this region, the spermatozoa may be dis-<br />

placed from the spermatheca as the oocyte<br />

moves through the central part <strong>of</strong> the uterus.<br />

sence <strong>of</strong> muscle filaments within their cell<br />

boundaries. Membrane junctions between cells<br />

near the spermatheca define the region in which<br />

a lumen may form during oocyte passage (Fig.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


160 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

. '~SM$mm^?i••<br />

/.r» •' ' '-'-'-^^^<br />

yfa *• ^iv ' ;^;;!^:^"!tS^^?^^^S^^ ^^'^^^P^ff<br />

Figure 5. Transverse section <strong>of</strong> midregion <strong>of</strong> an ovary <strong>of</strong> P. penetrans, showing oocytes at pachytene<br />

stage <strong>of</strong> meiosis. Oocytes (O) are surrounded by gonad epithelial cells (GE), whose cytoplasm extends<br />

between the germinal cells. GEN, gonad epithelium nucleus; G, Golgi apparatus; M, mitochondria; Nu,<br />

nucleolus; N, nucleus; SC, synaptonemal complex.<br />

uterus have dense clusters <strong>of</strong> mitochondria and<br />

numerous polyribosomes throughout the cyto-<br />

plasm (Figs. 13, 15). <strong>The</strong> distal columnar cells<br />

<strong>of</strong> the uterus contain relatively large clusters <strong>of</strong><br />

electron-dense material (Fig. 15). <strong>The</strong> lumen,<br />

When this occurs, the invagination <strong>of</strong> the plasma<br />

membrane <strong>of</strong> the columnar cell results in a spermatozoan<br />

that appears to have a double membrane<br />

(Fig. 13). Fertilization was not evident in<br />

the oocytes observed. Columnar cells <strong>of</strong> the<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


.- x<br />

^- -N<br />

Figure 6. Longitudinal section <strong>of</strong> the proximal region <strong>of</strong> the ovary <strong>of</strong> P. penetrans, illustrating growth<br />

stage <strong>of</strong> oocytes. GE, gonad epithelium; Nu, nucleolus; N, nucleus.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 161<br />

Figure 7. Longitudinal section <strong>of</strong> oocytes in proximal region <strong>of</strong> ovary <strong>of</strong> P. penetrans. An oocyte lies<br />

adjacent to the plicated cell membrane <strong>of</strong> the oviduct (Od).<br />

which forms as the egg passes into the columella,<br />

merges with the central, fluid-filled channel<br />

<strong>of</strong> the uterus (Fig. 15). <strong>The</strong> main channel <strong>of</strong><br />

the uterus continues posteriad as a flattened or<br />

collapsed region that extends across the ventral<br />

sector <strong>of</strong> the body, terminating in a postvulvar<br />

uterine branch (Figs. 17-19). <strong>The</strong> uterus opens<br />

ventrally through the cuticle-lined vagina and<br />

vulva (Fig. 16).<br />

Egg passage<br />

<strong>The</strong> traversing <strong>of</strong> an oocyte or egg through<br />

the spermatheca or between columnar cells compresses<br />

epithelial cells (Figs. 14, 20 on Foldout<br />

6). In the absence <strong>of</strong> an egg within the uterus,<br />

the abundance <strong>of</strong> mitochondria and ribosomes<br />

and the occurrence <strong>of</strong> scattered secretory globules<br />

suggest that the columnar cells are metabolically<br />

active (Fig. 15). In the presence <strong>of</strong> an<br />

egg in the uterine channel, secretory granules<br />

occur intracellularly in compressed regions <strong>of</strong><br />

uterine cells and extracellularly in the space between<br />

the surface <strong>of</strong> the egg and the limiting<br />

membrane <strong>of</strong> the columnar cells (Fig. 20). <strong>The</strong><br />

accumulated secretory granules appear to contribute<br />

to the electron-dense deposits that form<br />

the egg shell. <strong>The</strong>se deposits (Figs. 20, 21 on<br />

Foldout 6) accumulate on the vitelline layer,<br />

which is derived from the oolemma and has a<br />

unit membrane-like structure. Just below the vitelline<br />

layer is a chitinous layer followed by a<br />

lipid layer. <strong>The</strong> egg shell appears to be separated<br />

from the egg cytoplasm by a unit membrane.<br />

Tangential sections through the egg revealed<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


^•f^aj^a- 7<br />

aK^v"-^- r* ^fe2?lB^<br />

$K> - " IMfi*?*' .;&* - •«. - I<br />

$&»*,":: * rSjs^w > »<br />

%--^A4<br />

•^^ -<br />

" '•***.*'! ^PC^^ yfr'<br />

1<br />

ifr>">C?a 4^-^/<br />

^-•fs^iiri<br />

TV *-*, \-* * - ' A Jito -*. * !*j£3Ua***!K' • />//^< '<br />

t^ -•""-' Y "i* *<br />

L^ggfci<br />

8<br />

Figure 8. Longitudinal section <strong>of</strong> oviduct <strong>of</strong> P. penetrans. Plicated cell membranes (PCM) form cisternac-like<br />

invaginations among the enlarged irregularly shaped cells along the oviduct (Od), which lacks a<br />

preformed lumen.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


162 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2). JULY 1999<br />

Figure 9. Longitudinal section <strong>of</strong> P. penetrans showing the junction between an oocyte and the oviduct<br />

(Od) supported by plicated cell wall membranes (PCM). Some cells with plicated membranes are associated<br />

with muscle filaments (MF). N, nucleus.<br />

electron-transparent lipid bodies, numerous electron-dense<br />

protein granules (Fig. 20), and the<br />

sperm or egg nucleus, which contains prominent<br />

chromatin (Figs. 20, 22 on Foldout 6).<br />

<strong>The</strong> vaginal-vulvar region<br />

<strong>The</strong> wall <strong>of</strong> the vagina is continuous with the<br />

body cuticle (Fig. 16). Hemidesmosomes attach<br />

pairs <strong>of</strong> broad muscle bands to anteriad and posteriad<br />

portions <strong>of</strong> the vulva cuticle. <strong>The</strong>se 4 fiber<br />

bands extending anteriad are believed to correspond<br />

to the anterior dilatores vulvae, whereas<br />

the posteriad muscle fibers are the posterior dilatores<br />

vulvae (Fig. 16). <strong>The</strong> muscle bands project<br />

ventrolaterally and connect with somatic<br />

muscles along the body cuticle (Fig. 17). Adjacent<br />

and internal to the vulva wall muscles is a<br />

broad band <strong>of</strong> sphincter muscles or the constrictor<br />

vaginae. Adjacent and dorsal to the constrictor<br />

muscles are the anterior and posterior dilatores<br />

vaginae (Fig. 16). <strong>The</strong> cuticle <strong>of</strong> the vaginal<br />

wall is continuous with the ventral lining <strong>of</strong><br />

the uterine channel.<br />

Anal region<br />

<strong>The</strong> body wall cuticle forms the lining <strong>of</strong> the<br />

anus and invaginates into the body cavity to<br />

form the lining <strong>of</strong> the rectum, which extends<br />

dorsoanteriad and subterminally into the tail region<br />

(Fig. 23). Proximally, the cuticular rectal<br />

channel is flat and broad (Fig. 25); distally it<br />

becomes elongate and oblong (Fig. 24). <strong>The</strong><br />

noncuticularized region <strong>of</strong> the lumen is supported<br />

by rectal cells. <strong>The</strong> lumen may also be occluded<br />

by membrane evaginations <strong>of</strong> rectal cells<br />

joined laterally by membrane junctions. <strong>The</strong> H-<br />

shaped conformation <strong>of</strong> cells surrounding the<br />

rectum (Figs. 24, 25) coincides with the position<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 163<br />

mn^i*<br />

10<br />

Figure 10. Transverse section <strong>of</strong> an oocyte (O) within the oviduct <strong>of</strong> P. penetrans. <strong>The</strong> oocyte is filled<br />

with large merging lipid droplets (LD) and a few protein granules (PG) that lie within the cytoplasmic<br />

matrix.<br />

<strong>of</strong> the depressor ani muscles that connect the<br />

dorsal rectal cuticle to the dorsal lateral body<br />

cuticle via hemidesmosomes.<br />

Discussion<br />

In a study <strong>of</strong> postembryogenesis, Roman and<br />

Hirschmann (1969a) determined that several<br />

species <strong>of</strong> Pratylenchus, including P. vulnus, P.<br />

c<strong>of</strong>feae, P. penetrans, P. brachyurus, P. zeae, P.<br />

neglectus, and P. crenatus, have an amphidelphic<br />

pattern <strong>of</strong> gonad development. However, the<br />

monosexual species P. scribneri follows a monodelphic<br />

pattern. In the amphidelphic species, 2<br />

gonads develop until the fourth molt, then the<br />

posterior gonad deteriorates. <strong>The</strong> remaining gonad<br />

is prodelphic, similar to that <strong>of</strong> P. penetrans.<br />

<strong>The</strong> distal end <strong>of</strong> the telogonic gonad is occupied<br />

by an ovary with a short germinal zone and<br />

an elongated growth zone. <strong>The</strong> germinal zone<br />

contains oogonial cells that undergo rapid mitotic<br />

divisions. In the growth zone, the oocytes<br />

enlarge. <strong>The</strong> ovary is followed by a narrowly<br />

folded oviduct that is connected to the spermatheca<br />

by a 12-celled constriction (Roman and<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


11<br />

Figure 11. Longitudinal section <strong>of</strong> spermatheca <strong>of</strong> P. penetrans. <strong>The</strong> anterior boundary <strong>of</strong> the spermatheca<br />

(S) is surrounded by epithelial cells that are joined by membrane junctions (MJ). Spermatozoa<br />

(Sp) within the spermatheca contain electron-dense chromatin (C), mitochondria, and fihrHlar bundles<br />

(FB). <strong>The</strong> posteriad boundary <strong>of</strong> the spermatheca merges with enlarged columnar cells (CC) <strong>of</strong> the uterus.<br />

Columnar cells near the spermatheca contain enlarged electron-dense globules (EDG), numerous mitochondria,<br />

and ribosomes.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


164 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figure 12. Transverse section through cells at the proximal region <strong>of</strong> the oviduct and anterior region<br />

<strong>of</strong> the spermatheca <strong>of</strong> P. penetrans. Membrane junctions (MJ) join adjacent cells so that a lumen is formed<br />

for the oocyte passage into the spermatheca.<br />

•^^.^r\&^


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 165<br />

1:0 jum<br />

Figure 14. Longitudinal section <strong>of</strong> an egg emerging from a spermatheca in a female P. penetrans.<br />

Spermatozoa (Sp) remaining in spermatheca (S) after oocyte passage appear to be oriented toward the<br />

emerged egg (E). <strong>The</strong>ir electron-dense nuclei (N) and mitochondria adhere to the internal surface <strong>of</strong> the<br />

leading membrane <strong>of</strong> the spermatozoa. <strong>The</strong> membrane trailing the major body <strong>of</strong> the egg is intact and<br />

clearly separated from the spermatheca and its contents.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


15<br />

Submedian longitudinal section <strong>of</strong> columnar cells (CC) that delineate the lumen in the distal<br />

Figure 15.<br />

region <strong>of</strong> the uterus. <strong>The</strong> uterine channel (UC) posteriad from the columnar cells is filled with electrondense<br />

granular material (EDGM) that extends from beyond the vagina into the postvulvar uterine region<br />

<strong>of</strong> the reproductive system. This submedian section illustrates the continuity <strong>of</strong> the lining <strong>of</strong> the vaginal<br />

lumen (VO) with the body wall cuticle (C), but not with the lumen <strong>of</strong> the uterus. Tangential sections show<br />

muscle fibers that belong to the dilatorcs vaginae (DVa) and dilatores vulvae (DVu), which play a major<br />

role in egg deposition. EDGL, electron-dense globules; MJ, membrane junctions; PCM, plicated cell membranes;<br />

Vu, vulva.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


166 JOURNAL OF THE HRLMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

1.0 Jim<br />

Figure 16. Longitudinal section <strong>of</strong> the uterus and vagina <strong>of</strong> P. penetrans. <strong>The</strong> cuticular lining <strong>of</strong> the<br />

vagina is continuous with the body wall cuticle (C) and extends internally to join the uterine channel<br />

(UC). Hemidesmosomes (H) attach the dilatores vaginae (DVa) and dilatores vulvae (DVu) muscles to the<br />

cuticle lining the vulva and vagina. Constrictores vaginae (CV) or sphincters surround and attach to the<br />

cuticle that forms the inner region <strong>of</strong> the vagina.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


EN DO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 167<br />

17<br />

SM . -.-.<br />

tfPlBFti<br />

. " , >'> - ',<br />

Figure 17. Transverse section through columnar cells (CC) <strong>of</strong> the uterus surrounding the proximal<br />

end <strong>of</strong> the uterine channel (UC) <strong>of</strong> P. penetrans. Muscle elements adjacent to the columnar cells are<br />

extensions <strong>of</strong> dilatores vaginae (DVa) or dilatores vulvae (DVu) muscles. Other extensions <strong>of</strong> these muscles<br />

(DVa and DVu) contact the laterosubventral somatic muscles. SM, somatic muscles.<br />

Hirschmann, 1969b). <strong>The</strong> spermatheca, which is<br />

composed <strong>of</strong> about 10 epithelial cells, is followed<br />

by the uterus that consists <strong>of</strong> 2 portions.<br />

<strong>The</strong> distal portion is composed <strong>of</strong> 12 large gland<br />

cells arranged in 4 rows <strong>of</strong> 4 cells each (tricolumella)<br />

that could have a role in egg shell deposition.<br />

<strong>The</strong> proximal portion is a short tube<br />

lined with a flat epithelium. This portion enters<br />

the vagina, which is lined with cuticle and supported<br />

by muscles and opens through the vulva.<br />

Specialized muscles dilate the vulva during oviposition<br />

(Hirschmann, 1971).<br />

In the present study, the ultrastructural observations<br />

were <strong>of</strong> adult specimens <strong>of</strong> P. penetrans.<br />

<strong>The</strong> morphology <strong>of</strong> the reproductive system that<br />

we observed is similar to the modified amphidelphic<br />

mode <strong>of</strong> development described in previous<br />

studies. Briefly, in Pratylenchus crenatus<br />

and P. penetrans (Dickerson, 1962) and in a diverse<br />

group <strong>of</strong> Pratylenchus species (Roman and<br />

Hirschmann, 1969a), the reproductive system is<br />

comprised <strong>of</strong> a functional anterior ovary and a<br />

posterior branch <strong>of</strong> the ovary reduced to a postvulvar<br />

uterine branch. <strong>The</strong> mitotic divisions occur<br />

in the blunt anterior terminus <strong>of</strong> the developing<br />

ovary (Coomans, 1962; Dickerson, 1962;<br />

Hirschmann, 1962; Yuen, 1964; Roman and<br />

Hirschmann, 1969a). Mitotic divisions were not<br />

observed in distal cells <strong>of</strong> the ovary. <strong>The</strong>se<br />

events may occur rather quickly and may not<br />

have been captured at our fixation times. No distinction<br />

could be made between oogonial and<br />

oocyte cells in the anterior region <strong>of</strong> the ovary<br />

in several mature female specimens. However,<br />

lipid accumulations were observed among oocytes<br />

in the oviduct <strong>of</strong> an actively reproducing<br />

female. In addition, our observations suggest<br />

that extracellular lipid or protein granules could<br />

nourish the oocyte.<br />

Future work should involve labeling experiments<br />

to show the movement <strong>of</strong> secretory granules<br />

from ovarian epithelial cells across the limiting<br />

membranes <strong>of</strong> the oocyte. If this movement<br />

occurs, it could explain the accumulation <strong>of</strong> lipids<br />

and proteins that are associated with oocyte<br />

enlargement. Changes also appear to occur in<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


168 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

SM<br />

v&J'BM<br />

•M$&L,<br />

KK^P<br />

sac «*•<br />

1.0 jim<br />

Figure 18. Transverse section <strong>of</strong> the uterine channel (UC) and muscles associated with the dilation <strong>of</strong><br />

the vagina and vulva during egg deposition by P. penetrans. DVa, dilatores vaginae; DVu, dilatores vulvae;<br />

SM, somatic muscles.<br />

the morphology and porosity <strong>of</strong> the oocyte surface<br />

as it passes through the spermatheca, becomes<br />

fertilized by sperm, and begins to receive<br />

egg shell depositions from columnar cells prior<br />

to egg deposition. <strong>The</strong> electron-dense globules<br />

observed in some cells <strong>of</strong> the distal region <strong>of</strong><br />

the columnar cells are unusual and are dissimilar<br />

to secretory granules observed in the cells forming<br />

the oviduct and proximal regions <strong>of</strong> the uterus.<br />

In our study, nuclear divisions were not observed<br />

in the distal region <strong>of</strong> the ovary <strong>of</strong> the<br />

mature females. This observation is consistent<br />

with the observations <strong>of</strong> Roman and Hirschmann<br />

(1969a), who found that oogonial divisions<br />

occur in the germinal zone <strong>of</strong> the ovary <strong>of</strong><br />

fourth-stage juveniles and probably in young females,<br />

but not in mature, egg-laying females.<br />

Similarly, oogonial divisions were observed in<br />

populations <strong>of</strong> the soybean cyst nematode, Heterodera<br />

glycines, before and during the fourth<br />

molt. This species has a normal meiotic cycle<br />

and reproduces by cross-fertilization (Triantaphyllou<br />

and Hirschmann, 1962).<br />

<strong>The</strong> presence <strong>of</strong> synaptonemal complexes in<br />

many <strong>of</strong> the ovary cells proximal to the anterior<br />

end indicate that many <strong>of</strong> the oocytes are in the<br />

pachytene stage <strong>of</strong> prophase I. <strong>The</strong> presence <strong>of</strong><br />

the tripartite synaptonemal complex is consistent<br />

with observations <strong>of</strong> nuclei in the testes <strong>of</strong> P.<br />

penetrans. This tripartite pattern differs from<br />

that <strong>of</strong> most species <strong>of</strong> Meloidogyne, which have<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.— ULTRASTRUCTURE OF THE LESION NEMATODE 169<br />

uc |jy?<br />

1.0 jim<br />

Figure 19. Transverse section through the uterine channel (UC) <strong>of</strong> P. penetrans showing the broad<br />

opening for egg passage. <strong>The</strong> bands <strong>of</strong> muscles adjacent to the uterine channel are the dilatores vaginae<br />

(DVa). <strong>The</strong> bands <strong>of</strong> muscles midventral and close to the body wall cuticle constitute the vulval wall<br />

muscles, dilatores vulvae (DVu). I, intestine; U, uterus.<br />

a bipartite pattern consisting <strong>of</strong> 2 lateral elements<br />

but lacking striated central elements<br />

(Westergaard and von Wettstein, 1972; Goldstein<br />

and Triantaphyllou, 1995). Whether or not<br />

the tripartite pattern <strong>of</strong> the synaptonemal complex<br />

occurs in most species <strong>of</strong> Pratylenchus is<br />

not yet determined. Observations <strong>of</strong> Caenorhabditis<br />

elegans show that developing oocytes are<br />

arranged in single file along the proximal arm<br />

<strong>of</strong> the ovary, the site <strong>of</strong> gametogenesis in a hermaphrodite.<br />

Oocytes are arrested at diakinesis in<br />

meiotic prophase I. After the oocyte is fertilized,<br />

the zygote moves through the spermatheca to the<br />

uterus, where meiosis is completed (Kimble and<br />

Ward, 1988).<br />

In Xiphinema theresiae, the ovary has 2 types<br />

<strong>of</strong> cells: the ovarian epithelial cells and the germ<br />

cells (Van De Velde and Coomans, 1988). <strong>The</strong><br />

ovarian epithelial cells form a thin layer around<br />

the germ cells and have nuclei between some <strong>of</strong><br />

the germ cells. At some sites, processes <strong>of</strong> ovarian<br />

epithelial cells extend inward to form a central<br />

cytoplasmic mass, which has cytoplasmic<br />

contact with the germ cells. <strong>The</strong>se cells develop<br />

2 membrane-derived features, the villi and the<br />

small coated bulges, which are thought to play<br />

a role in transport. However, X. theresiae does<br />

not have a typical rachis, a large, clearly delineated<br />

structure, around which oogonia are arranged<br />

and make cytoplasmic contact.<br />

Bird and Bird (1991) described a typical rachis<br />

for the telogonic and didelphic reproductive<br />

system <strong>of</strong> the female root-knot nematode, Meloidogyne<br />

javanica. <strong>The</strong> oogonia are radially arranged<br />

around a central anucleate rachis to<br />

which oogonia are attached by cytoplasmic<br />

bridges. In C. elegans, which is monodelphic,<br />

mitotic germ cells occupy the distal end <strong>of</strong> the<br />

ovary, and meiotic cells occupy the remaining<br />

portion <strong>of</strong> the gonad (Kimble and White, 1981).<br />

A typical rachis was not observed in the female<br />

reproductive system <strong>of</strong> P. penetrans.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SM ,v<br />

20<br />

Figures 20-22. Section <strong>of</strong> an egg <strong>of</strong> Pratylcnchiis penetrans. 20. Tangential section through an egg within the postvulvar uterine branch. This section is from the same specimen shown<br />

shows an oocyte in the oviduct. <strong>The</strong> oocyte cytoplasm is filled primarily with lipid bodies. In contrast, the cytoplasm <strong>of</strong> the egg contains numerous irregularly shaped electron-translucent lip<br />

numerous electron-dense protein granules (PG) that generally occur around the lipid droplets. <strong>The</strong> nucleus (N) is located near one end <strong>of</strong> the egg. <strong>The</strong> egg shell (ES) has a well-defined<br />

vitelline layer and an electron-translucent inner chitinous layer. Electron-dense secretory granules (SG) accumulate on the surface <strong>of</strong> the egg. Similar granules occur singly or in clusters<br />

cells <strong>of</strong> the uterus or supporting cells <strong>of</strong> the uterine channel. <strong>The</strong> intercellular electron-dense granules originating in these cells appear to be secreted and deposited on the egg shell. C,<br />

muscle. 21. Enlargement <strong>of</strong> a portion <strong>of</strong> the egg shell shown in Figure 20. Secretory granules (SG) near the surface <strong>of</strong> the egg shell appear to contribute to the electron-dense outer vitelline<br />

easily distinguished from the electron-translucent inner chitinous layer (CL). 22. Enlargement <strong>of</strong> nucleus (N) <strong>of</strong> egg shown in Figure 20. Chromatin (Cr) occurs within the nucleoplasm.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


170 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 23-25. Section <strong>of</strong> the rectal region <strong>of</strong> Pratylenchus penetrans. 23. Longitudinal section <strong>of</strong> the<br />

rectal region <strong>of</strong> an adult female. <strong>The</strong> complex <strong>of</strong> membrane junctions denotes part <strong>of</strong> the rectal valve<br />

(RV). <strong>The</strong> rectal channel (RC) extends posteriad and is supported by the cell membranes and cuticle. <strong>The</strong><br />

depressor ani muscles (DM) are located on the dorsal surface <strong>of</strong> the rectal cuticle near the anal (A) opening.<br />

SM, somatic muscles; C, cuticle. 24. Transverse section <strong>of</strong> the rectal channel (RC) supported by rectal<br />

cells. 25. Transverse section <strong>of</strong> the rectal channel (RC) near the attachment <strong>of</strong> the depressor ani muscles<br />

(DM) to the cuticle lining <strong>of</strong> the channel. <strong>The</strong> depressor ani muscles have a dorsosublateral orientation.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 171<br />

<strong>The</strong> ovary <strong>of</strong> P. penetrans has cells that appeal'<br />

as single or double rows <strong>of</strong> germ cells enclosed<br />

by epithelial cells that are characterized<br />

by irregularly shaped nuclei. <strong>The</strong>se nuclei have<br />

electron-dense chromatin that tends to accumulate<br />

along the inner surface <strong>of</strong> the nuclear membrane.<br />

Cytoplasmic contact between germ cells<br />

and epithelial cells appears to be minimal and is<br />

not similar to that described for other species<br />

(Hirschmann, 1971). <strong>The</strong> distinctive morphology<br />

<strong>of</strong> epithelial cells <strong>of</strong> P. penetrans ovaries was<br />

also noted in the cluster <strong>of</strong> cells anteriad to the<br />

spermatheca. <strong>The</strong>se epithelial cells, in conjunction<br />

with oviduct cell wall, may affect movement<br />

<strong>of</strong> oocytes from the oviduct into the spermatheca.<br />

<strong>The</strong> plicated membranes <strong>of</strong> cells lining the<br />

oviduct and their capacity to expand and accommodate<br />

the moving oocyte were previously illustrated<br />

for Rotylenchus goodeyi (Coomans,<br />

1962) and the Hoplolaiminae (Yuen, 1964). This<br />

process may also operate in the spermatheca and<br />

columnar cells. However, a fundamental difference<br />

occurs in their cellular contents and functions.<br />

In P. penetrans, the presence <strong>of</strong> muscle<br />

filaments, which line the oviduct, suggests that<br />

they have an active role during oocyte passage<br />

toward the spermatheca. <strong>The</strong> cluster <strong>of</strong> cells,<br />

which have centralized membrane junctions at<br />

the anterior region <strong>of</strong> the spermatheca and are<br />

described as a 12-celled constriction in Pratylenchus<br />

spp. (Roman and Hirschmann, 1969b),<br />

may function as a valve, which opens or closes<br />

to regulate oocyte passage into the spermatheca.<br />

<strong>The</strong> female reproductive system <strong>of</strong> Xiphinema<br />

meridianum has an ovarial sac that is muscular<br />

and an outer membrane that is highly plicated.<br />

<strong>The</strong> proximal part <strong>of</strong> the oviduct is narrow and<br />

tube-like, but widens into the pars dilatata oviductus.<br />

<strong>The</strong> oviduct <strong>of</strong> X. meridianum lacks a<br />

preformed lumen except for the pars dilatata<br />

oviductus, where the lumen is narrow. <strong>The</strong> ultrastructure<br />

<strong>of</strong> the female gonoduct <strong>of</strong> X. theresiae<br />

is similar to that described for X. meridianum<br />

(Van De Velde et al., 1990a, b). In P. penetrans,<br />

the ultrastructure <strong>of</strong> the lumen <strong>of</strong> the<br />

oviduct and that <strong>of</strong> the columnar cells in the central<br />

region is similar to the plicated cell membranes<br />

described for Xiphinema, which also<br />

lacks a preformed oviduct lumen.<br />

Ward and Carrel (1979) described oocyte migration<br />

in the hermaphroditic species C. elegans.<br />

In this species, migration is accompanied by<br />

sporadic contractions <strong>of</strong> the oviduct walls and<br />

the oocyte cytoplasm. As contractions <strong>of</strong> the<br />

oviduct wall increase, the oocyte moves through<br />

the spermathecal constriction and into the spermatheca.<br />

A similar mechanism may propel oocytes<br />

through the muscular oviduct <strong>of</strong> P. penetrans.<br />

<strong>The</strong> spermatheca <strong>of</strong> P. penetrans is denned<br />

by the adjoining columella cells. Columella cells<br />

are joined by a junctional complex to form a<br />

continuous lumen between the spermatheca and<br />

the central uterus. <strong>The</strong> ultrastructure <strong>of</strong> the columella<br />

cells <strong>of</strong> the uterus is distinctly different<br />

from the cells forming the oviduct. In the uterus,<br />

the columella cells have more ribosomes, mitochondria,<br />

secretory granules, and membrane<br />

junctions than the cells adjoining the oviduct. In<br />

the female gonad <strong>of</strong> Rotylenchus goodeyi, the<br />

uterus has two regions: the quadricolumella and<br />

a thin-walled, muscular region that lies between<br />

the quadricolumella and the vagina (Coomans,<br />

1962). This muscular region was not observed<br />

in P. penetrans. However, the muscle bands that<br />

were found near the vagina and vulva appear to<br />

have a major role in the movement <strong>of</strong> the oocyte<br />

or egg through the genital tract as well as in<br />

dilation <strong>of</strong> the vagina and vulva during egg deposition.<br />

In a study <strong>of</strong> about 50 females <strong>of</strong> R. goodeyi,<br />

Coomans (1962) determined that the quadricolumella<br />

is a glandular region in the uterus and<br />

probably secretes the egg shell. <strong>The</strong> glandular<br />

region was particularly large and granular when<br />

a well-developed egg was found in the oviduct.<br />

As the egg passed into the uterus, the glandular<br />

cells appeared to empty and a thin layer formed<br />

around the egg shell. In P. penetrans, the uterus<br />

with eggs has electron-dense secretory granules<br />

in the columella cells, and cells <strong>of</strong> the uterine<br />

wall are appressed and flattened by passage <strong>of</strong><br />

an egg. At this time, the secretory granules are<br />

found between the uterine wall and the limiting<br />

membrane <strong>of</strong> the egg.<br />

We concur that the columella cells serve a<br />

functional role in providing secretions that contribute<br />

to formation <strong>of</strong> the egg shell, as proposed<br />

by Coomans (1962) for R. goodeyi and by investigators<br />

<strong>of</strong> other nematode species (Coomans,<br />

1965; Bleve-Zacheo et al., 1976; McClure and<br />

Bird, 1976; Bird and Bird, 1991). This hypothesis<br />

is further supported by ultrastructural examinations<br />

<strong>of</strong> cross sections <strong>of</strong> egg shells <strong>of</strong> P.<br />

penetrans (Hilgert, 1976). Our study illustrates<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


172 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

sites where secretory granules appear to merge<br />

with the electron-dense outer layer <strong>of</strong> the egg<br />

shell.<br />

Fertilization <strong>of</strong> the oocyte occurs between the<br />

oviduct and the uterus, regardless <strong>of</strong> the presence<br />

or absence <strong>of</strong> a spermatheca (Bird and<br />

Bird, 1991). In a light microscope study, Hung<br />

and Jenkins (1969) observed oogonial divisions<br />

at the apical portions <strong>of</strong> the gonads <strong>of</strong> young<br />

females <strong>of</strong> P. penetrans and P. zeae. In P. penetrans,<br />

only 1 sperm appears to enter each oocyte<br />

as it passes through the spermatheca. After<br />

sperm penetration, the oocyte nucleus moves<br />

centrally and undergoes maturation divisions.<br />

After the initial reduction division and the second<br />

division <strong>of</strong> meiosis, the egg pronucleus is<br />

formed, which in turn fuses with a sperm nucleus<br />

to form the zygote shortly before or after egg<br />

deposition. In P. penetrans, the chromosome<br />

number is 2n = 10, whereas in P. zeae, which<br />

reproduces by mitotic parthenogenesis, 2n = 26.<br />

In the present ultrastructural study <strong>of</strong> P. penetrans,<br />

the stage at which fertilization occurs<br />

could not be determined, but sperm was observed<br />

in the developing eggs inside the uterus.<br />

In Ascaris, Poor (1970) showed that when<br />

male sperm and oocyte membranes establish<br />

contact, the membranes appear to fuse. In other<br />

cases, considerable interdigitation occurs between<br />

the opposing gamete surfaces. Subsequently,<br />

the sperm progresses to a position deep<br />

within the oocyte cytoplasm. In some cases, fusion<br />

appears to take place between the oolemma<br />

and the lateral margins <strong>of</strong> the sperm. After fusion<br />

<strong>of</strong> the gamete membranes, the underlying<br />

interdigitating membranes disappear and the<br />

contents <strong>of</strong> the spermatozoan are within the oocyte<br />

(Poor, 1970).<br />

In P. penetrans, the ultrastructure <strong>of</strong> initial<br />

stages <strong>of</strong> gamete fusion was not examined. Hung<br />

and Jenkins (1969) used light microscopy to<br />

show that the oocyte nucleus <strong>of</strong> P. penetrans<br />

undergoes 2 divisions after sperm penetration.<br />

Roman and Triantaphyllou (1969) studied the<br />

maturation <strong>of</strong> oocytes and fertilization in P. penetrans,<br />

P. vulnus, and P. c<strong>of</strong>feae. In these species,<br />

oocytes in the spermatheca contain a small<br />

number <strong>of</strong> bivalent chromosomes at prometaphase<br />

I. One spermatozoan enters each oocyte,<br />

which then rapidly completes the first division.<br />

At telophase I, the chromosomes that form the<br />

first polar body nucleus are discrete and can be<br />

used to determine the haploid chromosome number.<br />

A second maturation division follows rapidly,<br />

and the sperm pronucleus is formed and<br />

then fuses with the egg pronucleus to form the<br />

zygote nucleus. Fusion <strong>of</strong> the pronuclei was observed<br />

in nondeposited eggs <strong>of</strong> P. penetrans and<br />

in eggs laid by P. c<strong>of</strong>feae. <strong>The</strong> primary oocyte<br />

<strong>of</strong> the dog heartworm, Dir<strong>of</strong>ilaria immitis, completes<br />

meiosis only after fertilization by a male<br />

gamete in the seminal vesicle (Delves et al.,<br />

1986). After meioses I and II are completed in<br />

the oocyte and the 2 polar bodies are extruded,<br />

the haploid chromosome complement <strong>of</strong> the female<br />

unites with that <strong>of</strong> the male and re-establishes<br />

the diploid chromosome number in the zygote.<br />

Oogenesis and the mode <strong>of</strong> reproduction were<br />

also studied in populations <strong>of</strong> the soybean cyst<br />

nematode, H. glycines. Triantaphyllou and<br />

Hirschmann (1962) determined that oogonial divisions<br />

occur before and during the fourth molt.<br />

Maturation <strong>of</strong> oocytes in inseminated females<br />

consists <strong>of</strong> 2 meiotic divisions and the formation<br />

<strong>of</strong> 2 polar nuclei. Nine bivalents are present at<br />

metaphase I in all populations. Sperm enters the<br />

oocytes at late prophase or early metaphase I.<br />

After the second maturation division, sperm and<br />

egg pronuclei fuse to form the zygote nucleus.<br />

<strong>The</strong> vulval walls <strong>of</strong> P. penetrans are attached<br />

to 2 sets <strong>of</strong> dilatores vulvae. Four bands on each<br />

side <strong>of</strong> the vulval wall are directed anteriad and<br />

posteriad and insert ventrolaterally on the body<br />

wall. This orientation <strong>of</strong> muscles coincides with<br />

light microscopic observations <strong>of</strong> R. goodeyi<br />

(Coomans, 1962). <strong>The</strong> dorsally and ventrally located<br />

dilatores vaginae have been diagrammed<br />

for P. penetrans (Kisiel et al., 1972; Hilgert,<br />

1976; Mai et al., 1977). Although the vulval<br />

muscles were not clearly defined in the latter<br />

studies, they did appear as prominent muscle<br />

bands in our study.<br />

In the hermaphrodite C. elegans stained with<br />

phalloidin, a photomicrograph clearly showed 4<br />

<strong>of</strong> 8 vulval muscle cells that were inserted near<br />

the vulval opening and at the lateral epidermis<br />

(Waterston, 1988; Bird and Bird, 1991). Our observations<br />

<strong>of</strong> P. penetrans tend to support the<br />

concept that the dilatores vulvae play a major<br />

role in egg deposition.<br />

In conclusion, the ultrastructure <strong>of</strong> the reproductive<br />

system <strong>of</strong> P. penetrans increases our understanding<br />

<strong>of</strong> the anatomical, physiological,<br />

and phylogenetic relations among a vast array <strong>of</strong><br />

nematodes, including many plant parasitic nem-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 173<br />

atodes. In the future, comparative studies should<br />

be conducted on reproductive anatomy and<br />

physiology <strong>of</strong> sedentary endoparasitic species<br />

such as Meloidogyne, the cyst nematode species,<br />

and the migratory and free-living forms, such as<br />

C. elegans. <strong>The</strong>se observations may provide<br />

clues for modifying or disrupting nematode reproduction<br />

and could lead to new methods <strong>of</strong><br />

control for economically destructive species.<br />

Acknowledgments<br />

<strong>The</strong> authors thank Sharon Ochs for technical<br />

support in specimen preparation for TEM and<br />

photographic processing, Chris Pooley for preparing<br />

the final plates, Naeema Latif for maintenance<br />

and extraction <strong>of</strong> P. penetrans used in<br />

the study, Charles Murphy for TEM support<br />

data, Zafar Handoo for preparing specimens<br />

used in light microscopic observations <strong>of</strong> the reproductive<br />

organs <strong>of</strong> P. penetrans, and Robert<br />

Ewing for the illustration used in Figure 1. Mention<br />

<strong>of</strong> trade names or commercial products in<br />

this article is solely for the purpose <strong>of</strong> providing<br />

specific information and does not imply recommendation<br />

or endorsement by the U.S. Department<br />

<strong>of</strong> Agriculture.<br />

Literature Cited<br />

Bird, A. F., and J. Bird. 1991. <strong>The</strong> Structure <strong>of</strong> Nematodes,<br />

2nd ed. Academic Press, New York. 316<br />

pp.<br />

Bleve-Zacheo, T., M. A. Castellano, and F. Lamberti.<br />

1976. Preliminary studies on the ultrastructure<br />

<strong>of</strong> the female gonad <strong>of</strong> Xiphinema index and<br />

X. mediterraneum (Nematoda: Longidoridae). Nematologia<br />

Mediterranea 4:41-55.<br />

Cares, J. E., and J. G. Baldwin. 1994a. Fine structure<br />

<strong>of</strong> sperm <strong>of</strong> Ekphymatodera thomasoni (Heteroderinae,<br />

Nemata). Journal <strong>of</strong> Nematology 26:375-<br />

383.<br />

, and . 1994b. Comparative fine structure<br />

<strong>of</strong> sperm <strong>of</strong> Verutus volvingentis and Meloidodcra<br />

floridensis (Heteroderinae, Nematoda).<br />

Canadian Journal <strong>of</strong> Zoology 72:1481-1491.<br />

-, and . 1995. Comparative fine structure<br />

<strong>of</strong> sperm <strong>of</strong> Heterodera schachtii and Punctodera<br />

chalcoensis, with phylogenetic implications for<br />

Heteroderinae (Nemata: Heteroderidae). Canadian<br />

Journal <strong>of</strong> Zoology 73:309-320.<br />

Coomans, A. 1962. Morphological observations on<br />

Rotylenchus goodeyi Lo<strong>of</strong> & Oostenbrink, 1958.<br />

II. Detailed morphology. Nematologica 7:242-<br />

250.<br />

. 1965. Structure <strong>of</strong> the female gonads in members<br />

<strong>of</strong> the Dorylaimina. Nematologica 10:601 —<br />

622.<br />

Delves, C. J., R. E. Howells, and R. J. Post. 1986.<br />

Gametogenesis and fertilization in Dir<strong>of</strong>ilaria imrnitis<br />

(Nematoda: Filarioidea). Parasitology 92:<br />

181-197.<br />

Dickerson, O. J. 1962. Gonad development in Pratylenchus<br />

crenatus Lo<strong>of</strong> and observations on the<br />

female genital structures <strong>of</strong> P. penetrans. Proceedings<br />

<strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> 29:173-176.<br />

Dropkin, V. H. 1989. Introduction to Plant Nematology,<br />

2nd ed. John Wiley & Sons, New York. 304<br />

pp.<br />

Endo, B. Y., and W. P. Wergin. 1973. Ultrastructural<br />

investigation <strong>of</strong> clover roots during early stages <strong>of</strong><br />

infection by root-knot nematode, Meloidogyne incognita.<br />

Protoplasma 78:365-379.<br />

, U. Zunke, and W. P. Wergin. 1997. Ultrastructure<br />

<strong>of</strong> the lesion nematode, Pratylenchus penetrans<br />

(Nemata: Pratylenchidae). Journal <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 64:59-<br />

95.<br />

, , and . 1998. Ultrastructure <strong>of</strong><br />

the male gonad and spermatogenesis in the lesion<br />

nematode, Pratylenchus penetrans (Nemata: Pratylenchidae).<br />

Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong> 65:227-242.<br />

Foor, W. E. 1970. Spermatozoan morphology and zygote<br />

formation in nematodes. Biology <strong>of</strong> Reproduction,<br />

Supplement 2:177-202.<br />

Gamborg, O. L., T. Murashige, T. A. Thorpe, and<br />

I. K. Vasil. 1976. Plant tissue culture media. In<br />

Vitro 12:473-478.<br />

Goldstein, P., and A. C. Triantaphyllou. 1995.<br />

Pachytene karyotype analysis <strong>of</strong> the nematode<br />

Meloidogyne spartinae in relation to the genus<br />

Meloidogyne. Cytobios 83:91-103.<br />

Hilgert, A. 1976. Electron microscopic observations<br />

on the female gonad <strong>of</strong> Pratylenchus penetrans.<br />

M.Sc. <strong>The</strong>sis, Rijksuniversiteit Gent, Belgium, (in<br />

Flemish). 56 pp.<br />

Hirschmann, H. 1962. <strong>The</strong> life cycle <strong>of</strong> Ditylenchus<br />

triformis (Nematoda: Tylenchida) with emphasis<br />

on post-embryonic development. Proceedings <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 29:<br />

30-42.<br />

. 1971. Comparative morphology and anatomy.<br />

Pages 11-63 in B. M. Zuckerman, W. F. Mai, and<br />

R. A. Rohde, eds. Plant Parasitic Nematodes. Vol.<br />

1. Academic Press, New York.<br />

Hung, C.-L., and W. R. Jenkins. 1969. Oogenesis<br />

and embryology <strong>of</strong> two plant-parasitic nematodes,<br />

Pratylenchus penetrans and P. zeae. Journal <strong>of</strong><br />

Nematology 1:352-356.<br />

Kimble, J. E., and S. Ward. 1988. Germ-line development<br />

and fertilization. Pages 191-213 in W. B.<br />

Wood, ed. <strong>The</strong> Nematode Caenorhabditis elegans.<br />

Cold Spring Harbor Laboratory, Cold Spring Harbor,<br />

New York.<br />

, and J. G. White. 1981. On the control <strong>of</strong><br />

germ cell development in Caenorhabditis elegans.<br />

Developmental Biology 81:208-219.<br />

Kisiel, M., S. Himmelhoch, and B. M. Zuckerman.<br />

1972. Fine structure <strong>of</strong> the body wall and vulva<br />

area <strong>of</strong> Pratylenchus penetrans. Nematologica 18:<br />

234-238.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


174 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Mai, W. F., J. R. Bloom, and T. A. Chen. 1977.<br />

Biology and ecology <strong>of</strong> the plant-parasitic nematode<br />

Pratylenchus penetrans. Pennsylvania <strong>State</strong><br />

University, Agricultural Experiment Station Bulletin<br />

815. 64 pp.<br />

McClure, M. A., and A. F. Bird. 1976. <strong>The</strong> tylenchid<br />

(Nematoda) egg shell: formation <strong>of</strong> the egg shell<br />

in Meloidogyne javanica. Parasitology 72:29-39.<br />

Roman, J., and H. Hirschmann. 1969a. Embryogenesis<br />

and postembryogenesis in species <strong>of</strong> Pratylenchus<br />

(Nematoda: Tylenchidae). Proceedings <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 36:<br />

164-174.<br />

, and . 1969b. Morphology and morphometrics<br />

<strong>of</strong> six species <strong>of</strong> Pratylenchus. Journal<br />

<strong>of</strong> Nematology 1:363-386.<br />

, and A. C. Triantaphyllou. 1969. Gametogenesis<br />

and reproduction <strong>of</strong> seven species <strong>of</strong> Pratylenchus.<br />

Journal <strong>of</strong> Nematology 1:357-362.<br />

Shepherd, A. M., S. A. Clark, and A. Kempton.<br />

1973. Spermatogenesis and sperm ultrastructure in<br />

some cyst nematodes, Heterodera spp. Nematologica<br />

19:551-560.<br />

Spurr, A. R. 1969. A low-viscosity epoxy resin embedding<br />

medium for electron microscopy. Journal<br />

<strong>of</strong> Ultrastructure Research 26:31-43.<br />

Townshend, J. L., L. Stobbs, and R. Carter. 1989.<br />

Ultrastructural pathology <strong>of</strong> cells affected by Pratylenchus<br />

penetrans in alfalfa roots. Journal <strong>of</strong><br />

Nematology 21:530-539.<br />

Triantaphyllou, A. C., and H. Hirschmann. 1962.<br />

Oogenesis and mode <strong>of</strong> reproduction in the soybean<br />

cyst nematode, Heterodera glycincs. Nematologica<br />

7:235-241.<br />

Van De Velde, M. C., and A. Coomans. 1988. Electron<br />

microscopy <strong>of</strong> the germ cells and the ovarian<br />

wall in Xiphinema (Nematoda). Tissue and Cell<br />

20:881-890.<br />

, , J. Heyns, and M. Claeys. 1990a.<br />

Ultrastructure <strong>of</strong> the female reproductive system<br />

<strong>of</strong> Xiphinema rneridianum (Nematoda). Revue de<br />

Nematologie 13:211-223.<br />

, , , , and M. Hutsebaut.<br />

1990b. Ultrastructure <strong>of</strong> the female gonoduct <strong>of</strong><br />

Xiphinema theresiae (Nematoda). Revue de Nematologie<br />

13:449-461.<br />

Ward, S., and J. S. Carrel. 1979. Fertilization and<br />

sperm competition in the nematode Caenorhabditis<br />

elegans. Developmental Biology 73:304-<br />

321.<br />

Waterston, R. H. 1988. Muscle. Pages 281-335 in W.<br />

B. Wood, ed. <strong>The</strong> Nematode Caenorhabditis elegans.<br />

Cold Spring Harbor Laboratory, Cold<br />

Spring Harbor, New York.<br />

Wergin, W. P., and B. Y. Endo. 1976. Ultrastructure<br />

<strong>of</strong> a neurosensory organ in a root-knot nematode.<br />

Journal <strong>of</strong> Ultrastructure Research 56:258-276.<br />

Westergaard, M., and D. von Wettstein. 1972. <strong>The</strong><br />

synaptonemal complex. Annual Review <strong>of</strong> Genetics<br />

6:71-110.<br />

Yuen, P. H. 1964. <strong>The</strong> female gonad in the subfamily<br />

Hoplolaiminae with a note on the spermatheca <strong>of</strong><br />

Tylenchorhynchus. Nematologica 10:570-580.<br />

Zunke, U. 1990a. Ectoparasitic feeding behavior <strong>of</strong><br />

the root lesion nematode, Pratylenchus penetrans,<br />

on root hairs <strong>of</strong> different host plants. Revue de<br />

Nematologie 13:331-337.<br />

. 1990b. Observations on the invasion and endoparasitic<br />

behavior <strong>of</strong> the root lesion nematode<br />

Pratylenchus penetrans. Journal <strong>of</strong> Nematology<br />

22:309-320.<br />

, and Institut fur den Wissenschaftlichen<br />

Film. 1988. Behavior <strong>of</strong> the Root Lesion Nematode<br />

Pratylenchus penetrans. Film C 1676, Institut<br />

fur den Wissenschaftlichen Film, Gottingen,<br />

Germany.<br />

1999-2000 MEETING SCHEDULE OF THE<br />

HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

13 October 1999<br />

17 November 1999<br />

19 January 2000<br />

12 March 2000<br />

10 May 2000<br />

Animal Parasitology Laboratories, Beltsville Agricultural Research Center,<br />

USDA, Beltsville, MD, 7:30 pm (Contact person: Eric Hoberg, 301-<br />

504-8588)<br />

Anniversary Dinner—meeting location TEA<br />

Smithsonian Institution, National Museum <strong>of</strong> Natural History, <strong>Washington</strong>,<br />

DC, 7:30 pm (Contact person: Bill Moser, 202-357-2473)<br />

Johns Hopkins Montgomery County Center (Provisional), Rockville, MD,<br />

7:30 pm (Contact person: Tom Simpson (JHU), 410-366-8814, or Louis<br />

Miller (NIH), 301-496-2183)<br />

Joint Meeting with the New Jersey <strong>Society</strong> for Parasitology, at the New<br />

Bolton Center, University <strong>of</strong> Pennsylvania, Kennett Square, PA, 2:00<br />

pm (Contact person: Jay Farrell, 215-898-8561)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 175-179<br />

Skrjabinodon piankai sp. n. (Nematoda: Pharyngodonidae) and Other<br />

Helminths <strong>of</strong> Geckos (Sauria: Gekkonidae: Nephrurus spp.) from<br />

Australia<br />

CHARLES R. BURSEYU AND STEPHEN R. GOLDBERG2<br />

1 Department <strong>of</strong> Biology, Pennsylvania <strong>State</strong> University, Shenango Campus, Sharon, Pennsylvania 16146,<br />

U.S.A. (e-mail: cxbl3@psu.edu), and<br />

2 Department <strong>of</strong> Biology, Whittier <strong>College</strong>, Whittier, California 90608, U.S.A. (e-mail:<br />

sgoldberg@whittier.edu)<br />

ABSTRACT: Skrjabinodon piankai sp. n. from the large intestine <strong>of</strong> the Australian gecko Nephrurus laevissimus<br />

is described and illustrated. It is also reported from Nephrurus levis and Nephrurus vertebralis. Skrjabinodon<br />

piankai differs from 6 other Australian realm species in the number <strong>of</strong> tail filament spines and egg shape. Other<br />

helminths found include Oochoristica piankai, Maxvachonia brygooi, Pharyngodon tiliquae, Physalopteroides<br />

filicauda, Wanaristrongylus ctenoti, third-stage larvae <strong>of</strong> Abbreviata sp., third-stage larvae <strong>of</strong> Physaloptera sp.,<br />

and Raillietiella scincoides. New host records are established for O. piankai and R. scincoides in N. laevissimus;<br />

M. brygooi and P. filicauda in N. levis; and P. tiliquae in N. vertebralis.<br />

KEY WORDS: Skrjabinodon piankai sp. n., Pharyngodonidae, helminths, Nephrurus laevissimus, Nephrurus<br />

levis, Nephrurus vertebralis, Gekkonidae, Sauria, Australia.<br />

Four species <strong>of</strong> Skrjabinodon Inglis, 1968<br />

have been reported previously from reptiles <strong>of</strong><br />

Australia. Parathelandros oedurae Johnston and<br />

Mawson, 1947, was originally described from<br />

specimens taken from the robust velvet gecko,<br />

Oedura robusta Boulenger, 1885, collected in<br />

southeast Queensland. Inglis (1968) revised Parathelandros<br />

Diesing, 1861, retaining the genus<br />

for parasites <strong>of</strong> Australian amphibians and erecting<br />

Skrjabinodon as a new genus for parasites<br />

<strong>of</strong> reptiles; 7 species, including P. oedurae, were<br />

placed in the new genus. Skrjabinodon smythi<br />

Angel and Mawson, 1968 was described from<br />

the marbled gecko, Christinus (=Phyllodactylus)<br />

rnarmoratus (Gray, 1845) collected in South<br />

Australia. Skrjabinodon parasmythi Mawson,<br />

1971, from the thick-tailed gecko, Underwoodisaurus<br />

milii (Bory de Saint-Vincent, 1825), and<br />

Skrjabinodon leristae Mawson, 1971, from a<br />

skink, Lerista sp., were described from specimens<br />

collected on Flinders Island, South Australia.<br />

In addition, 2 species, Skrjabinodon trimorphi<br />

Ainsworth, 1990, from the common<br />

skink, Leiolopisma nigriplantara Patterson and<br />

Daugherty, 1990, and Skrjabinodon poicilandri<br />

Ainsworth, 1990 from the common gecko, Hoplodactylus<br />

maculatus Boulenger, 1885, have<br />

been described from specimens collected in New<br />

Zealand (Ainsworth, 1990).<br />

3 Corresponding author.<br />

Nephrurus Giinther, 1876, is an endemic Australian<br />

gecko genus containing arid-adapted species<br />

characterized by large heads and short, fat<br />

tails that terminate in a small knob (Cogger,<br />

1992). <strong>The</strong> spinifex knobtail gecko, Nephrurus<br />

laevissimus Mertens, 1958, occurs in southeastern<br />

Western Australia, northwestern South Australia,<br />

and southern parts <strong>of</strong> the Northern Territory;<br />

the smooth knobtail gecko, Nephrurus levis<br />

De Vis, 1886, occurs from the central coast <strong>of</strong><br />

Western Australia to the arid parts <strong>of</strong> all states<br />

except Victoria; Storr's knobtail gecko, Nephrurus<br />

vertebralis Storr, 1963, occurs from the lower<br />

central interior <strong>of</strong> Western Australia to South<br />

Australia (Cogger, 1992). <strong>The</strong> ranges <strong>of</strong> these 3<br />

nocturnal species overlap in Western Australia<br />

(Cogger, 1992). However, they are reported to<br />

favor different habitats (Pianka, 1972): TV. laevissimus<br />

is associated with sandridges; N. levis<br />

occurs on sandplains vegetated with dense<br />

clumps <strong>of</strong> perennial grasses <strong>of</strong> Triodia Brown,<br />

1810; and N. vertebralis is associated with<br />

shrubs <strong>of</strong> Acacia Miller, 1754.<br />

<strong>The</strong>re are 4 previous reports <strong>of</strong> nematodes<br />

from N. laevissimus (Jones, 1985, 1987, 1995a,<br />

b), 1 report from N. levis (Jones, 1995b), but, to<br />

our knowledge, no reports from N. vertebralis.<br />

We describe here a new species <strong>of</strong> Skrjabinodon<br />

that was found in the large intestines <strong>of</strong> TV. laevissimus,<br />

N. levis, and N. vertebralis from Western<br />

Australia and the Northern Territory and list<br />

other helminth parasites found in these hosts.<br />

175<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


176 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Prevalence (%) and mean abundance <strong>of</strong> helminths <strong>of</strong> Nephrurus laevissimus, N. levis, and N.<br />

vertebralis from Australia.<br />

Nephrurus laevissimus (N = 36) Nephrurus levis (N = 13) Nephrurus vertebralis (N = 3)<br />

Helminth P* (%) A ± SD1 P (%) A ± SD SD<br />

Cestoda<br />

Oochoristica piankai 3± 0.14 ±0.83<br />

Nematoda<br />

Maxvachonia brygooi — —<br />

Pharyngodon tiliquae — —<br />

Physalopteroides filicauda 17<br />

Skrjabinodon piankai 22:]:<br />

Wanaristrongylus ctenoti — —<br />

Abbrcviata sp. (larvae) 5 0.08 ± 0.37<br />

Physaloptera sp. (larvae) 3 0.03 ± 0.17<br />

Pentastomatida<br />

Raillietiella scincoides 5t 0.06 ± 0.23<br />

31*<br />

62$<br />

8<br />

31<br />

16.08 ± 56.47<br />

53.69 ± 78.69<br />

0.15 ± 0.56<br />

0.85 ± 1.95<br />

33:j<br />

66:i<br />

4.00 ± 6.93<br />

55.33 ± 94.98<br />

* P = Prevalence (number <strong>of</strong> hosts infected with a parasite species divided by the number <strong>of</strong> hosts examined X 100).<br />

t A ± SD = mean abundance (summation <strong>of</strong> number <strong>of</strong> individuals <strong>of</strong> a parasite species per host divided by the number <strong>of</strong><br />

hosts examined) ± standard deviation.<br />

$ New host record.<br />

Materials and Methods<br />

Thirty-six N. laevissimus, 13 N. levis, and 3 N. vertebralis<br />

from the collections <strong>of</strong> the Natural History<br />

Museum <strong>of</strong> Los Angeles County (LACM) were examined:<br />

N. laevissimus, mean snout-vent length (SVL)<br />

= 64.6 ± 8.5 mm SD, range 51-80 mm, LACM<br />

57145, 57146, 57156, 57159, 57160, 57162, 57163,<br />

57165, 57170, 57173-57175, 57177, 57180-57182,<br />

57189, 57192, 57193, 57196-57198, 57201, 57204,<br />

57209, 57210, 57213, 57215-57217, 57219, 57220,<br />

57225-57228, collected 34 km west <strong>of</strong> Lorna Glen<br />

homestead, Western Australia (26°14'S, 121°13'E); N.<br />

levis, SVL = 77.2 ± 10.2 mm SD, range 64-98 mm,<br />

LACM 57008, 57009, collected 29 km south <strong>of</strong> Neale<br />

Junction, Western Australia (28°30'S, 125°50'E),<br />

LACM 57011-57014, 38 km east <strong>of</strong> Laverton, Western<br />

Australia (28°28'S, 122°50'E), LACM 57018,<br />

57020, 16 km southeast <strong>of</strong> Renhan's Well, Northern<br />

Territory (21°24'S, 130°53'E), LACM 57026, 57029,<br />

11 km south <strong>of</strong> <strong>The</strong> Granite, Northern Territory<br />

(20°38'S, 130°25'E), LACM 57032, 57037, 57039, 13<br />

km west <strong>of</strong> Neale Junction, Western Australia<br />

(28°17'S, 125°40'E); N. vertebralis, SVL = 81.3 ± 7.6<br />

mm SD, range 73-88 mm, LACM 57047, 6 km east<br />

<strong>of</strong> Stony Point, Western Australia (28°05'S, 124°15'E),<br />

LACM 57049, 57051, 14 km northeast <strong>of</strong> Millrose<br />

homestead, Western Australia (26°17'S, 121°00'E).<br />

<strong>The</strong>se specimens had been collected between October<br />

1966 and January 1968 for use in an ecological study<br />

(Pianka and Pianka, 1976). Because the ecological<br />

study included stomach analysis, only small and large<br />

intestines remained with the carcasses. Each intestine<br />

was searched for helminths using a dissecting microscope.<br />

Cestodes were stained with hematoxylin and<br />

mounted in balsam for identification; other helminths<br />

were identified from the glycerol mounts. Measurements<br />

are in mm unless otherwise indicated.<br />

Results<br />

Helminths representing 9 species were found:<br />

the cestode Oochoristica piankai Bursey, Goldberg,<br />

and Woolery, 1996; the nematodes Maxvachonia<br />

brygooi Mawson, 1972, Pharyngodon<br />

tiliquae Baylis, 1930, Physalopteroides filicauda<br />

Jones, 1985, Skrjabinodon piankai sp. n. (this<br />

paper), Wanaristrongylus ctenoti Jones, 1987,<br />

Abbreviata sp. (third-stage larvae only), Physaloptera<br />

sp. (third-stage larvae only); and the<br />

pentastomid Raillietiella scincoides Ali, Riley,<br />

and Self, 1984. Prevalence and mean abundance<br />

are given in Table 1. Selected specimens were<br />

placed in vials <strong>of</strong> alcohol and deposited in the<br />

U.S. National Parasite Collection (USNPC).<br />

<strong>The</strong>se are parasites from N. laevissimus: O.<br />

piankai, USNPC 88189; P. filicauda, USNPC<br />

88190; 5. piankai, USNPC 88191; Abbreviata<br />

sp. (larva), USNPC 88192; Physaloptera sp.<br />

(larva), USNPC 88193; R. scincoides, USNPC<br />

88194. N. levis: M. brygooi, USNPC 88195; P.<br />

filicauda, USNPC 88196; 5. piankai, USNPC<br />

88197; W. ctenoti, USNPC 88198; Abbreviata<br />

sp. (larva), USNPC 88199. Nephrurus vertebralis:<br />

Pharyngodon tiliquae, USNPC 88200; S.<br />

piankai, USNPC 88201.<br />

Skrjabinodon piankai sp. n.<br />

(Figs. 1-8)<br />

Description<br />

GENERAL: Oxyurida: Pharyngodonidae Travassos,<br />

1919, Skrjabinodon Inglis, 1968. Small,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—SKRJABINODON PIANKA1 SP. N. FROM AUSTRALIA 177<br />

o<br />

CO<br />

8<br />

Figures 1—8. Skrjabinodon piankai sp. n. 1. Female, entire, lateral view. 2. Female, en face view. 3.<br />

Male, entire, lateral view. 4, Egg, pronuclear stage. 5. Egg, morula stage. 6. Male, posterior end, ventral<br />

view. 7. Spicule. 8. Male, posterior end, lateral view.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


178 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

cylindrical nematodes, extremities tapered in<br />

both sexes; moderate sexual dimorphism, males<br />

approximately one-third length <strong>of</strong> females. Cuticle<br />

with fine transverse striations along entire<br />

body. Mouth surrounded by 3 small lips; prominent<br />

lateral amphids just behind lips. Lateral<br />

alae present in both sexes. Tail narrowing<br />

abruptly behind anus to form filamentous appendage.<br />

MALE (based on 10 specimens): Small,<br />

white, fusiform nematodes tapering both anteriorly<br />

and posteriorly, body usually bent to give<br />

comma-shaped appearance. Length 1.27 (1.19-<br />

1.40), body length 1.00 (0.97-1.12), tail filament<br />

0.25 (0.22-0.29). Width at level <strong>of</strong> excretory<br />

pore 0.12 (0.10-0.14). Cuticle with striations approximately<br />

3 |xm apart. Esophagus excluding<br />

bulb 0.216 (0.204-0.242), bulb length 0.049<br />

(0.040-0.054), bulb width 0.052 (0.046-0.057).<br />

Nerve ring 0.118 (0.103-0.125) and excretory<br />

pore 0.342 (0.306-0.383) from anterior end, respectively.<br />

Lateral alae 0.012 (0.010-0.015)<br />

wide, beginning midway between lips and nerve<br />

ring and ending just anterior to third pair <strong>of</strong> caudal<br />

papillae. Spicules 0.055 (0.051-0.057). Tail<br />

filament with 1 (0-2) small spine. Cloaca and<br />

associated papillae slightly raised from body<br />

surface but not on distinct cone. Caudal alae absent,<br />

3 pairs <strong>of</strong> sessile papillae, 1 pair precloacal,<br />

1 pair postcloacal, third pair occurring on base<br />

<strong>of</strong> tail filament. Single tubular testis reflexed just<br />

posterior to excretory pore.<br />

FEMALE (based on 10 gravid specimens):<br />

Small, white nematodes tapering anteriorly and<br />

posteriorly. Length 3.21 (2.80-3.58), body<br />

length 2.55 (2.21-2.86), tail filament 0.66 (0.58-<br />

0.71). Width at level <strong>of</strong> vulva 0.22 (0.18-0.25).<br />

Lateral alae 2 |xm (2-3 |o,m) wide, doubled, approximately<br />

50 (Jim apart at midbody, beginning<br />

in a single point at level <strong>of</strong> nerve ring, ending<br />

in a single point just anterior to beginning <strong>of</strong> tail<br />

filament. Cuticle with transverse striations approximately<br />

2 u,m wide. Mouth with 3 lips, each<br />

lateral lip with 1 small papilla. Esophagus excluding<br />

bulb 0.295 (0.285-0.310), bulb length<br />

0.073 (0.068-0.080), bulb width 0.087 (0.080-<br />

0.094). Nerve ring 0.125 (0.115-0.145), excretory<br />

pore 0.477 (0.410-0.535), and vulva 0.535<br />

(0.485-0.610) from anterior end, respectively.<br />

Thick-walled muscular ovijector extending posteriorly<br />

0.40 mm, then continuing as thin-walled<br />

vagina 0.18 mm in length before joining 2 uteri,<br />

1 directed anteriorly and the other posteriorly.<br />

Ovarian and uterine coils not extending to vulva.<br />

In fully gravid females, uterus extending from<br />

slightly behind vulva to end <strong>of</strong> body. Egg barrel<br />

shaped, slightly flattened on 1 side, operculum<br />

at each end, length 105 fjim (100-108 |xm),<br />

width 34 (Jim (31-37 (xm). Egg surface finely<br />

pitted, having a ground-glass appearance. Development<br />

to morula stage at deposition. Tail<br />

spines 5 (4-7).<br />

Taxonomic summary<br />

TYPE HOST: Nephrurus laevissimus Mertens,<br />

1958.<br />

ADDITIONAL HOSTS: Nephrurus levis De Vis,<br />

1886; N. vertebralis Storr, 1963.<br />

TYPE LOCALITY: 34 km west <strong>of</strong> Lorna Glen<br />

homestead, Western Australia (26°14'S, 121°13'E).<br />

SITE OF INFECTION: Large intestine.<br />

TYPE SPECIMENS: Holotype, male, U.S. National<br />

Parasite Collection no. 88186; allotype,<br />

female, no. 88187; paratypes (9 males, 9 females),<br />

no. 88188.<br />

ETYMOLOGY: <strong>The</strong> specific epithet honors<br />

Eric R. Pianka, Denton A. Cooley Centennial<br />

Pr<strong>of</strong>essor <strong>of</strong> Zoology, University <strong>of</strong> Texas at<br />

Austin, for his pioneering studies on the ecology<br />

<strong>of</strong> Australian lizards.<br />

Remarks<br />

Skrjabinodon piankai is the seventh species <strong>of</strong><br />

Skrjabinodon to be reported from the Australian<br />

biogeographical realm; 5 from Australia and 2<br />

from New Zealand. <strong>The</strong>se species are separated<br />

on the basis <strong>of</strong> tail spines and egg shape. Skrjabinodon<br />

oedurae and S. poicilandri possess 3<br />

caudal body spines that the other 5 species lack.<br />

Females <strong>of</strong> S. oedurae have 19 tail filament<br />

spines; females <strong>of</strong> S. poicilandri have 36-44.<br />

Skrjabinodon leristae, S. parasmythi, S. smythi,<br />

and 5. trimorphi have spindle-shaped eggs; the<br />

eggs <strong>of</strong> S. piankai are barrel-shaped. Eggs <strong>of</strong> S.<br />

parasmythi and S. smythi have plugs at each end,<br />

those <strong>of</strong> 5. leristae and 5. trimorphi do not. Tail<br />

filament spines <strong>of</strong> female 5. parasmythi are slender<br />

and pointed, those <strong>of</strong> female S. smythi are<br />

digitiform. Males <strong>of</strong> 5. parasmythi have a welldeveloped<br />

spicule, males <strong>of</strong> 5. smythi lack a<br />

spicule. Females <strong>of</strong> S. leristae have doubled lateral<br />

alae; females <strong>of</strong> S. trimorphi have single<br />

lateral alae.<br />

Discussion<br />

Other species <strong>of</strong> helminths found in this study<br />

are listed in Table 1. Previously reported hel-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—SKRJAB1NODON PIANKAI SP. N. FROM AUSTRALIA 179<br />

minths <strong>of</strong> N. laevissimus include P. filicauda,<br />

Wanaristrongylus papangawurpae Jones, 1987,<br />

and cysts containing larvae <strong>of</strong> physalopterids;<br />

from N. levis, W. ctenoti and physalopterid larvae<br />

(Jones, 1985, 1987, 1995a, b).<br />

Oochoristica piankai was first described from<br />

specimens taken from the small intestine <strong>of</strong> the<br />

thorny devil, Moloch horridus Gray, 1841, collected<br />

by E. R. Pianka in Western Australia<br />

(Bursey et al., 1996). Nephrurus laevissimus is<br />

the second host for this parasite to be reported.<br />

Maxvachonia brygooi was first described from<br />

the agamid genus Amphibolurus Wagler, 1830,<br />

by Mawson (1972); N. levis is a new host record<br />

for M. brygooi and represents the 10th lizard<br />

species to harbor this helminth. Pharyngodon tiliquae<br />

was first described from the skink Tiliqua<br />

scincoides (White, ex Shaw, 1790) by Baylis<br />

(1930); N. vertebralis is a new host record for<br />

P. tiliquae and represents the 10th lizard species<br />

to harbor this helminth. Physalopteroides filicauda<br />

was described from specimens taken from<br />

the stomach <strong>of</strong> a N. laevissimus collected by E.<br />

R. Pianka in Western Australia (Jones, 1985). It<br />

has been found in at least 38 species <strong>of</strong> Australian<br />

lizards. Wanaristrongylus papangawurpae<br />

and W. ctenoti were also described from specimens<br />

taken from the stomachs <strong>of</strong> N. laevissimus<br />

and N. levis, respectively, collected by E. R.<br />

Pianka in Western Australia (Jones, 1987). Wanaristrongylus<br />

papangawurpae has been found<br />

in 8 species <strong>of</strong> Australian lizards and W. ctenoti<br />

in 12 species (Jones, 1988, 1995a). Raillietiella<br />

scincoides was originally described from T.<br />

scincoides by Ali et al. (1984); N. laevissimus is<br />

the second reported host. Larvae <strong>of</strong> Abbreviata<br />

sp. and Physaloptera sp. are commonly reported<br />

in Australian reptiles (Jones, 1995a). Larvae <strong>of</strong><br />

Abbreviata sp. have submedian teeth on each<br />

pseudolabium; such teeth are absent in larvae <strong>of</strong><br />

Physaloptera sp.<br />

It should be noted that the material examined<br />

by Jones (1995a, b) and our material were from<br />

the same collection <strong>of</strong> lizards by E. R. Pianka;<br />

the stomachs had been deposited in the Western<br />

Australia Museum and the carcasses in LACM.<br />

Further examination <strong>of</strong> Australian lizards will be<br />

necessary before the number <strong>of</strong> hosts for S.<br />

piankai can be known.<br />

Acknowledgments<br />

We thank Robert L. Bezy (Natural History<br />

Museum <strong>of</strong> Los Angeles County) for permission<br />

to examine the geckos; Peggy Firth for the illustrations<br />

constituting Figs. 1-8; and Cynthia<br />

Walser and Cheryl Wong for dissection assistance.<br />

Literature Cited<br />

Ainsworth, R. 1990. Male dimorphism in two new<br />

species <strong>of</strong> nematode (Pharyngodonidae: Oxyurida)<br />

from New Zealand lizards. Journal <strong>of</strong> Parasitology<br />

76:812-822.<br />

Ali, J. H., J. Riley, and J. T. Self. 1984. Further observations<br />

<strong>of</strong> blunt-hooked raillietiellids (Pentastomaida:<br />

Cephalobaenida) from lizards with descriptions<br />

<strong>of</strong> three new species. Systematic Parasitology<br />

6:147-160.<br />

Baylis, H. A. 1930. Some Heterakidae and Oxyuridae<br />

(Nematoda) from Queensland. Annals and Magazine<br />

<strong>of</strong> Natural History, Series 10, 5:354-366.<br />

Bursey, C. R., S. R. Goldberg, and D. N. Woolery.<br />

1996. Oochoristica piankai sp. n. (Cestoda: Linstowiidae)<br />

and other helminths <strong>of</strong> Moloch horridus<br />

(Sauria: Agamidae) from Australia. Journal <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 63:<br />

215-221.<br />

Cogger, H. G. 1992. Reptiles and Amphibians <strong>of</strong> Australia,<br />

5th ed. Reed Books, Chatswood, New<br />

South Wales, Australia. 775 pp.<br />

Inglis, W. G. 1968. Nematodes parasitic in western<br />

Australian frogs. British Museum (Natural History)<br />

Bulletin, Zoology 16:161-183.<br />

Jones, H. I. 1985. Two new species <strong>of</strong> nematode (Spirurida:<br />

Physalopteridae) from Australian lizards<br />

(Reptilia: Scincidae: Gekkonidae). Journal <strong>of</strong> Natural<br />

History 19:1231-1237.<br />

. 1987. Wanaristrongylus gen. n. (Nematoda:<br />

Trichostrongyloidea) from Australian lizards, with<br />

descriptions <strong>of</strong> three new species. Proceedings <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 54:<br />

40-47.<br />

. 1988. Nematodes from nine species <strong>of</strong> Varanus<br />

(Reptilia) from tropical Northern Australia,<br />

with particular reference to the genus Abbreviata<br />

(Physalopteridae). Australian Journal <strong>of</strong> Zoology<br />

36:691-708.<br />

. 1995a. Gastric nematode communities in lizards<br />

from the Great Victoria Desert, and an hypothesis<br />

for their evolution. Australian Journal <strong>of</strong><br />

Zoology 43:141-164.<br />

-. 1995b. Pathology asssociated with physalopterid<br />

larvae (Nematoda: Spirurida) in the gastric<br />

tissues <strong>of</strong> Australian reptiles. Journal <strong>of</strong> Wildlife<br />

Diseases 31:299-306.<br />

Mawson, P. M. 1972. <strong>The</strong> nematode genus Maxvachonia<br />

(Oxyurata: Cosmocercidae) in Australian<br />

reptiles and frogs. Transactions <strong>of</strong> the Royal <strong>Society</strong><br />

<strong>of</strong> South Australia 96:101-108.<br />

Pianka, E. R. 1972. Zoogeography and speciation <strong>of</strong><br />

Australian desert lizards: an ecological perspective.<br />

Copeia 1972:127-145.<br />

, and H. D. Pianka. 1976. Comparative ecology<br />

<strong>of</strong> twelve species <strong>of</strong> nocturnal lizards (Gekkonidae)<br />

in the Western Australian desert. Copeia<br />

1976:125-142.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 180-186<br />

Parapharyngodon japonicus sp. n. (Nematoda: Pharyngodonidae)<br />

from the Japanese Clawed Salamander, Onychodactylus japonicus<br />

(Caudata: Hynobiidae), from Japan<br />

CHARLES R. BURSEYU AND STEPHEN R. GOLDBERG2<br />

1 Department <strong>of</strong> Biology, Pennsylvania <strong>State</strong> University, Shenango Campus, 147 Shenango Avenue, Sharon,<br />

Pennsylvania 16146 U.S.A. (e-mail: cxbl3@psu.edu) and<br />

2 Department <strong>of</strong> Biology, Whittier <strong>College</strong>, Whittier, California 90608 U.S.A. (e-mail: sgoldberg@whittier.edu)<br />

ABSTRACT: Parapharyngodon japonicus sp. n. from the large intestine <strong>of</strong> the Japanese clawed salamander,<br />

Onychodactylus japonicus (Houttuyn), is described and illustrated. Parapharyngodon japonicus is most similar<br />

to P. tyche in that the anterior cloacal lip is smooth, the ovary is postbulbar, and the eggs are thin-walled and<br />

oval in outline. <strong>The</strong>se 2 species differ in that the spicule <strong>of</strong> P. japonicus is half the length <strong>of</strong> that in P. tyche<br />

and the lateral alae <strong>of</strong> P. japonicus end abruptly about 80 u,m anterior to the cloaca, whereas in P. tyche the<br />

lateral alae continue to the end <strong>of</strong> the body. Two species are transferred from Parapharyngodon to <strong>The</strong> land ros<br />

and represent new combinations: <strong>The</strong>landros awakoyai (Babero and Okpala) comb. n. and T. senisfaciecaiidus<br />

(Freitas) comb. n.<br />

KEY WORDS: Parapharyngodon japonicus sp. n., Pharyngodonidae, Onychodactylus japonicus, Hynobiidae,<br />

Amphibia, salamander, Japan.<br />

<strong>The</strong> validity <strong>of</strong> Parapharyngodon Chatterji,<br />

1933, has been in question almost since its proposal<br />

by Chatterji (1933). Baylis (1936) considered<br />

it to be a synonym <strong>of</strong> <strong>The</strong>landros Wedl,<br />

1862; Karve (1938), Garcia-Calvente (1948),<br />

and Skrjabin et al. (1951) maintained this synonymy.<br />

Freitas (1957) reinstated the genus; Chabaud<br />

(1965) returned it to synonymy with <strong>The</strong>landros.<br />

Sharpilo (1976), on the basis <strong>of</strong> the<br />

presence <strong>of</strong> lateral alae, reinstated Parapharyngodon,<br />

but Fetter and Quentin (1976) did not<br />

accept lateral alae as a differential character and<br />

again synonymized Parapharyngodon with <strong>The</strong>landros.<br />

Adamson (1981) reestablished Parapharyngodon<br />

based on the dietary habits <strong>of</strong> the<br />

host, genital cone morphology (well developed<br />

in males <strong>of</strong> <strong>The</strong>landros, reduced or absent in<br />

Parapharyngodon), egg morphology (operculum,<br />

if present, polar in position, larvated at deposition<br />

in <strong>The</strong>landros; subpolar operculum, deposited<br />

in early stage <strong>of</strong> cleavage in Parapharyngodon),<br />

and morphology <strong>of</strong> the tail <strong>of</strong> females.<br />

Castano-Fernandez et al. (1987)<br />

supported retention <strong>of</strong> Parapharyngodon but restricted<br />

separation <strong>of</strong> the 2 genera to morphological<br />

characters, not dietary habits. Males <strong>of</strong><br />

Parapharyngodon lack a genital cone, papillae<br />

surround the cloaca, the accessory piece is absent,<br />

and the tail is subterminal and curved dor-<br />

3 Corresponding author.<br />

sally, whereas males <strong>of</strong> <strong>The</strong>landros have a narrow,<br />

elongated genital cone (sometimes with an<br />

accessory piece), papillae are outside the genital<br />

cone, and the tail is terminal. Females <strong>of</strong> Parapharyngodon<br />

have a conical tail ending in a<br />

short spike and the eggs have a subterminal<br />

operculum and are in the early stages <strong>of</strong> cleavage<br />

when released. Females <strong>of</strong> <strong>The</strong>landros have<br />

various caudal morphologies; in some species<br />

the tail is conical, tapering evenly from the anus,<br />

whereas in others it is rounded and supports a<br />

short filiform appendage. <strong>The</strong> eggs <strong>of</strong> <strong>The</strong>landros<br />

have a terminal operculum and are larvated<br />

at deposition.<br />

<strong>The</strong> Japanese clawed salamander, Onychodactylus<br />

japonicus (Houttuyn, 1782), is restricted to<br />

mountainous areas <strong>of</strong> Honshu and Shikoku Islands,<br />

Japan, where it inhabits coniferous and<br />

broad-leafed deciduous forests 20-2,000 m<br />

above sea level (Kuzmin, 1995). <strong>The</strong> ancestors<br />

<strong>of</strong> O. japonicus supposedly reached Japan from<br />

continental Asia by way <strong>of</strong> the Korean peninsula<br />

(Kuzmin, 1995). Previously reported helminths<br />

<strong>of</strong> Onychodactylus japonicus include: the monogenetic<br />

trematode, Pseudopolystoma dendriticum<br />

(Ozaki, 1948); the digenetic trematodes,<br />

Cephalouterina leoi Uchida, Uchida, and Kamei,<br />

1986, and Mesocoelium brevicaecum Ochi,<br />

1930; the cestode, Cylindrotaenia sp. (=Baerietta<br />

sp., larvae only); and the nematodes, Amphibiocapillaria<br />

tritonispunctati (Diesing, 1851)<br />

180<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—PARAPHARYNGODON JAPONICUS SP. N. 181<br />

( = Capillaria filiformis (Linstow, 1885)), Pseudoxyascaris<br />

japonicus Uchida and Itagaki, 1979,<br />

Pharyngodon sp., and Rhabditis sp. (Wilkie,<br />

1930; Pearse, 1932; Ozaki, 1948; Uchida and<br />

Itagaki, 1979; Uchida et al., 1986). To our<br />

knowledge there are no reports <strong>of</strong> Paraphaiyngodon<br />

from Japanese salamanders, although<br />

Hasegawa (1988) reported an unidentified species<br />

<strong>of</strong> Parapharyngodon from the scincid lizard,<br />

Ateuchosaurus pellopleurus Hallowell,<br />

1860, from Okinawa, Japan. <strong>The</strong> purpose <strong>of</strong> this<br />

paper is to describe a new species <strong>of</strong> nematode,<br />

Parapharyngodon japonicus from a salamander<br />

Onychodactylus japonicus from Japan, and to<br />

provide a current list <strong>of</strong> species assigned to the<br />

genus Parapharyngodon.<br />

Materials and Methods<br />

Sixty-eight Onychodactylus japonicus, mean snoutvent<br />

length = 62.4 ± 4.3 mm (range 43-72 mm), were<br />

collected by hand and fixed in neutral buffered 10%<br />

formalin, preserved in 70% alcohol, examined for intestinal<br />

helminths, then deposited in the Natural History<br />

Museum <strong>of</strong> Los Angeles County (LACM). Sixtyfive<br />

were from Hineomata Village (37°01'N,<br />

139°23'E), 1,100-1,200 m elevation, Fukushima Prefecture,<br />

Honshu Island, Japan (LACM 143245-<br />

143260, collected 13 June 1995; LACM 143715-<br />

143736, 19 June 1996; LACM 144266-144292, 7 June<br />

1997), and 3 were from Hakone Mountain (35°12'N,<br />

139°00'E), ca. 800 m elevation, Hakone, Kanagawa<br />

Prefecture, Honshu Island, Japan (LACM 143714, 28<br />

May 1980; LACM 143712, 13 May 1986; LACM<br />

143713, 8 June 1993). <strong>The</strong> body cavity was opened<br />

by a longitudinal incision from vent to throat and the<br />

gastrointestinal tract was removed and opened longitudinally.<br />

Nematodes were removed, placed in undiluted<br />

glycerol, allowed to clear, and examined under a<br />

light microscope. Measurements are given in micrometers.<br />

Results<br />

Parapharyngodon japonicus sp. n.<br />

(Figs. 1-6)<br />

Description<br />

GENERAL: Robust nematodes with prominent<br />

annulations beginning just behind cephalic extremity<br />

and continuing to anus. Moderate sexual<br />

dimorphism. Triangular oral opening surrounded<br />

by 3 bilobed lips. One small, pedunculate amphid<br />

on each ventrolateral lip. Lateral alae present<br />

in males, absent in females. Males without<br />

caudal alae; caudal filament directed dorsally.<br />

Females with conical tail terminating in short,<br />

stiff spike.<br />

MALE (holotype and 9 paratypes; mean and<br />

range): Length 789 (620-1,170). Width 131<br />

(115—153). Lateral alae beginning near level <strong>of</strong><br />

esophagus isthmus, increasing gradually in<br />

width and ending abruptly about 80 u,m anterior<br />

to cloaca. Annulations about 2 |xm apart. Esophagus<br />

160 (131-177), bulb length 45 (40-51),<br />

bulb width 43 (37-48). Nerve ring 116 (86-<br />

143), excretory pore 57 (40-74) from anterior,<br />

respectively. Tail 27 (23—34), reduced to a slim<br />

appendage inserted dorsally and directed<br />

obliquely to longitudinal axis <strong>of</strong> body. Spicule<br />

53 (45-57). Testis reflexed behind esophagus.<br />

Three pairs <strong>of</strong> caudal papillae: 1 pair ventral,<br />

precloacal; 1 pair sublateral, postcloacal; 1 pair<br />

on caudal appendage. Posterior cloacal lip thickened<br />

centrally.<br />

FEMALE (allotype and 9 paratypes; mean and<br />

range): Length 2,493 (1,820-3,250). Without<br />

lateral alae. Width at vulva 469 (306-714).<br />

Esophagus 298 (257-336), bulb length 85 (68-<br />

100), bulb width 92 (72-114). Nerve ring 206<br />

(125-239), excretory pore 718 (459-969), vulva<br />

1,207 (765-1,785) from anterior, respectively.<br />

Tail 91 (57—114). Amphidelphic; uteri divergent;<br />

anterior uterus directed anteriorly, posterior uterus<br />

directed posteriorly; ovaries reflexed, remaining<br />

below level <strong>of</strong> esophageal bulb; muscular<br />

ovijector, nonsalient vulva. Egg oval, in pr<strong>of</strong>ile<br />

slightly flattened on 1 side, 92 (77-100) by 42<br />

(34-48), thin-shelled, with subterminal operculum.<br />

Eggs in ovijector at pronucleus stage <strong>of</strong><br />

development.<br />

Taxonomic summary<br />

TYPE HOST: Onychodactylus japonicus<br />

(Houttuyn, 1782).<br />

TYPE LOCALITY: Hineomata, Fukushima Prefecture,<br />

Honshu Island, Japan, 37°01'N,<br />

139°23'E.<br />

SITE OF INFECTION: Small intestine.<br />

TYPE SPECIMENS: Holotype: male, U.S. National<br />

Parasite Collection, Beltsville, Maryland,<br />

USNPC 88238; allotype, female, USNPC<br />

88239; paratypes (9 males, 9 females), USNPC<br />

88240.<br />

ETYMOLOGY: <strong>The</strong> new species is named in<br />

reference to the country <strong>of</strong> origin.<br />

Discussion<br />

We consider the most significant character for<br />

separation <strong>of</strong> Parapharyngodon and <strong>The</strong>landros<br />

to be egg morphology. Based on egg morphology,<br />

as defined by Castano-Fernandez et al.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


182 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

E n<br />

o<br />

CM<br />

50pm<br />

40|jm<br />

O<br />

m<br />

Figures 1-6. Parapharyngodon japonicus sp. n. 1. Female, entire, lateral view. 2. Male, entire, lateral<br />

view. 3. Female, en face view. 4. Egg, pronuclear stage. 5. Male, posterior end, lateral view. 6. Male,<br />

posterior end, ventral view.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


Egg s<br />

83-95<br />

88-96<br />

75-90<br />

109-119<br />

90-99<br />

115<br />

84-108<br />

not<br />

90-110<br />

85-98<br />

78-87<br />

82-90<br />

80-85<br />

72-82<br />

110-129<br />

77-126<br />

78-82<br />

80-100<br />

91-92<br />

86-102<br />

80-91<br />

127-135<br />

88<br />

99<br />

Table 1.<br />

Current list and selected characters <strong>of</strong> species assigned to Parapharyngodon.<br />

Biogeographical realm<br />

Species <strong>of</strong> Parapharyngodon<br />

Spicule (u,m)<br />

Cloacal lip<br />

Ovary<br />

Australian Realm<br />

P. anomalus Hobbs, 1996<br />

P. fitzroyi Jones, 1 992<br />

P. kartana (Johnston and Mawson, 1941)<br />

Ethiopian Realm<br />

P. adramitana Adamson and Nasher, 1984<br />

P. bulbosus (Linstow, 1 899)<br />

P. rneridionalis (Chabaud and Brygoo, 1962)<br />

P. rotundatus (Malan, 1939)<br />

P. rousseti (Tcheprak<strong>of</strong>f, 1966)<br />

Nearctic Realm<br />

P californiensis (Read and Amrein, 1952)<br />

P. iguanae (Telford, 1965)<br />

Neotropical Realm<br />

P. alvarengai Freitas, 1957<br />

P. cubensis (Barus and Coy-Otero, 1969)<br />

P. garciae Schmidt and Whittaker, 1975<br />

P. largitor Alho and Oliveira-Rodrigues, 1963<br />

P. osteopili Adamson, 1981<br />

P. scleratus (Travassos, 1923)<br />

P. verrucosus Freitas and Dobbin, 1959<br />

Oriental Realm<br />

P. alrnoriensis (Karve, 1949)<br />

P. calotis (Johnson, 1966)<br />

P. kasauli (Chatterji, 1935)<br />

P. rnaplestonei Chatterji, 1933<br />

Palaearctic Realm<br />

P. dogieli Markov and Bogdanov, 1965<br />

P. echinatus (Rudolphi, 1819)<br />

P. lilfordi Castano-Fernandez, Zapatero-Ramos, Solera-Puertas,<br />

and Gonzalez-Santiago, 1987<br />

P. japonicus sp. n.<br />

P. micipsae (Seurat, 1917)<br />

P. pavlovskyi Markov, Ataev, and Bogdanov,<br />

1968<br />

P. psamrnodromi Roca and Lluch, 1986<br />

P. skrjabini Vakker, 1 969<br />

P. tyche Sulahian and Schacher, 1968<br />

63<br />

80-92<br />

55<br />

80-86<br />

51-63<br />

80<br />

96-140<br />

110<br />

53-76<br />

43<br />

80-100<br />

77<br />

30-45<br />

54-68<br />

53-61<br />

80-109<br />

55-63<br />

85-105<br />

31<br />

94-114<br />

76-90<br />

93-110<br />

74-112<br />

67-85<br />

45-57<br />

88<br />

74-87<br />

absent<br />

139-176<br />

100-110<br />

echinate<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

smooth<br />

smooth<br />

smooth<br />

echinate<br />

smooth<br />

smooth<br />

echinate<br />

smooth<br />

smooth<br />

smooth<br />

echinate<br />

echinate<br />

smooth<br />

smooth<br />

echinate<br />

echinate<br />

smooth<br />

smooth<br />

smooth<br />

prebulbar<br />

prebulbar<br />

not given<br />

prebulbar<br />

postbulbar<br />

postbulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

postbulbar<br />

prebulbar<br />

not stated<br />

prebulbar<br />

prebulbar<br />

postbulbar<br />

prebulbar<br />

postbulbar<br />

prebulbar<br />

prebulbar<br />

77-100<br />

91<br />

91_100<br />

prebulbar<br />

prebulbar<br />

postbulbar<br />

88-104<br />

82-93<br />

90-100<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


184 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

(1987), the species harbored by Onychodactylus<br />

japonicus is assigned to the genus Parapharyngodon.<br />

<strong>The</strong> most recent list <strong>of</strong> species <strong>of</strong> Parapharyngodon<br />

is that <strong>of</strong> Baker (1987), in which 33<br />

species are listed. Parapharyngodon aegyptiacus<br />

Moravec, Barus, and Rysavy, 1987, has<br />

since been transferred to Skrjabinodon Inglis,<br />

1968, by Moravec and Barus (1990). Six species<br />

on Baker's list have eggs with terminal opercula;<br />

thus, based on the criteria <strong>of</strong> Castano-Fernandez<br />

et al. (1987), these species should be assigned<br />

to <strong>The</strong>landros, namely, T. awokoyai (Babero and<br />

Okpala, 1962) comb, n.; T. bicaudatus Read and<br />

Amrein, 1952; T. maculatus Caballero, 1968; T.<br />

pseudothaparius Lucker, 1951; T. senisfaciecaudus<br />

(Freitas, 1957) comb, n.; and T. xantusi<br />

Lucker, 1951. <strong>The</strong> egg morphology has not been<br />

described for 4 species from Baker's list, P. bulbosus<br />

(Linstow, 1899) Freitas, 1957; P. garciae<br />

Schmidt and Whittaker, 1975; P. kartana (Johnston<br />

and Mawson, 1941) Adamson, 1981; and<br />

P. mabouia (Rao and Hiregauder, 1962) Adamson,<br />

1981. We were able to examine a specimen<br />

<strong>of</strong> P. kartana (USNPC 88241), the eggs <strong>of</strong><br />

which had subterminal opercula. Specimens <strong>of</strong><br />

P. bulbosus, P. garciae, and P. mabouia were<br />

not available for examination. Until egg morphology<br />

is described, we will provisionally retain<br />

P. bulbosus and P. garciae; P. mabouia is<br />

inadequately described and is to be considered<br />

a species inquirendae. Five additional, recently<br />

described species should be added to Baker's<br />

list, namely P. psamrnodromi Roca and Lluch,<br />

1986; P. lilfordi, Castano-Fernandez, Zapatero-<br />

Ramos, Solera-Puertas, and Gonzalez-Santiago,<br />

1987; P. fitzroyi Jones, 1992; P. anomalus<br />

Hobbs, 1996; and P. japonicus sp. n. A revised<br />

list <strong>of</strong> Parapharyngodon is given in Table 1.<br />

In addition to the species in Table 1, 10 species<br />

assigned to Parapharyngodon are considered<br />

species inquirendae: females are unknown<br />

for P. szczerbaki Radchenko and Sharpilo, 1975;<br />

males are unknown for P. cincta (Linstow,<br />

1897) Freitas, 1957, P. megaloon (Linstow,<br />

1906) Adamson, 1981, and P. waltoni (Read and<br />

Amrein, 1952) Adamson, 1981; inadequately<br />

described are P. aspiculus, Khera, 1961, P. cameroni<br />

(Belle, 1957) Adamson, 1981, P. evaginatus<br />

Fotedar, 1974, P. fotedari Kalyankar and<br />

Palladwar, 1977, P. macrocerca Fotedar, 1974,<br />

and P. seurati (Sandground, 1936) Freitas, 1957.<br />

Species <strong>of</strong> Parapharyngodon are distinguished<br />

on the basis <strong>of</strong> the morphology <strong>of</strong> the<br />

anterior cloacal lip, the location <strong>of</strong> the ovary,<br />

and geographical distribution (Table 1). Of the<br />

30 species in Table 1, with the exception <strong>of</strong> P.<br />

anomalus, P. garciae, and P. japonicus, all are<br />

parasites <strong>of</strong> lizards. Of the 9 species reported<br />

from the Palaearctic Realm, Parapharyngodon<br />

japonicus is most similar to P. tyche in that the<br />

anterior cloacal lip is smooth, the ovary is postbulbar,<br />

and the eggs are thin-walled and oval in<br />

outline. <strong>The</strong>se 2 species differ in that the spicule<br />

<strong>of</strong> P. japonicus is half the length <strong>of</strong> that in P.<br />

tyche, and the lateral alae <strong>of</strong> P. japonicus end<br />

abruptly about 80 (Jim anterior to the cloaca,<br />

whereas in P. tyche, the lateral alae continue to<br />

the end <strong>of</strong> the body.<br />

Hasegawa (1988) reported an unidentified<br />

species <strong>of</strong> Parapharyngodon from the lizard<br />

Ateuchosaurus pellopleurus Hallowell, 1860<br />

from Okinawa, Japan. This species differs from<br />

P. japonicus in that its ovarian coils are prebulbar,<br />

the tail <strong>of</strong> the female is conical, and the egg<br />

has a pitted, thick wall and is somewhat triangular<br />

in outline.<br />

Acknowledgments<br />

We thank Tatsuo Ishihara (Hakone Woodland<br />

Museum, Hakone, Japan) for the samples <strong>of</strong> Onychodactylus<br />

japonicus, Peggy Firth for the illustrations<br />

constituting Figures 1—6, Hay Cheam<br />

and Cynthia Walser for assistance with dissections,<br />

and Serge Ferleger for Russian translation.<br />

Literature Cited<br />

Adamson, M. L. 1981. Parapharyngodon osteopili n.<br />

sp. (Pharyngodonidae: Oxyuroidea) and a revision<br />

<strong>of</strong> Parapharyngodon and <strong>The</strong>landros. Systematic<br />

Parasitology 3:105-117.<br />

, and A. K. Nasher. 1984. Pharyngodonids<br />

(Oxyuroidea; Nematoda) <strong>of</strong> Agama adramitana in<br />

Saudi Arabia with notes on Parapharyngodon.<br />

Canadian Journal <strong>of</strong> Zoology 62:2600-2609.<br />

Alho, J. R., and H. Oliveira-Rodrigues. 1963. Nova<br />

especie do genero Parapharyngodon Chatterji,<br />

1933 (Nematoda, Oxyuroidea). Atas da Sociedade<br />

de Biologia do Rio de Janeiro 7:10-12.<br />

Baker, M. R. 1987. Synopsis <strong>of</strong> the Nematoda parasitic<br />

in amphibians and reptiles. Memorial University<br />

<strong>of</strong> Newfoundland, Occasional Papers in<br />

Biology 11:1-325.<br />

Barus, V. 1973. Some remarks on the neotropical species<br />

<strong>of</strong> the genera Parapharyngodon and Batracholandros<br />

(Oxyuridae). Folia Parasitologica<br />

(Prague) 20:131-139.<br />

, and A. Coy-Otero. 1969. Nematodes del genero<br />

Parapharyngodon Chatterji, 1933 (Oxyuridae),<br />

en Cuba. Torreia 7:1-10.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—PARAPHARYNGODON JAPONICUS SP. N. 185<br />

Baylis, H. A. 1936. Nematoda. I. Ascaridoidea and<br />

Strongyloidea. <strong>The</strong> Fauna <strong>of</strong> British India. Taylor<br />

and Francis, London. 408 pp.<br />

Castano-Fernandez, C., L. M. Zapatero-Ramos,<br />

and M. A. Solera-Puertas. 1987. Revision de los<br />

generos Parapharyngodon Chatterji, 1933 y <strong>The</strong>landros<br />

Wedl, 1862 (Oxyuroidea, Pharyngodonidae).<br />

Revista Iberica de Parasitologia 47:271-274.<br />

, , , and P. M. Gonzalez-Santiago.<br />

1987. Descripcion de Parapharyngodon lilfordi<br />

n. sp. (Oxyuroidea, Pharyngodonidae) en<br />

Podarcis lilfordi (Reptilia, Lacertidae) de las islas<br />

Baleares. Revista Iberica de Parasitologfa 47:275-<br />

281<br />

Chabaud, A. G. 1965. Ordre des Ascaridida. Pages<br />

932-1180 in P. P. Grasse, ed. Traite de Zoologie.<br />

Systematique des Nematodes. Masson et Cie.,<br />

Paris.<br />

, and E.-R. Brygoo. 1962. Nematodes parasites<br />

de Cameleons malgaches. Deuxieme note.<br />

Annales de Parasitologie Humaine et Comparee<br />

37:569-602.<br />

Chatterji, R. C. 1933. On a new nematode, Parapharyngodon<br />

maplestoni gen. nov., sp. nov., from<br />

a Burmese lizard. Annals <strong>of</strong> Tropical Medicine<br />

and Parasitology 27:131-134.<br />

. 1935. Nematodes from a common Indian lizard<br />

(Uromastix hardwicki) with remarks on Kalicephalus<br />

parvus Maplestone, 1932. Records <strong>of</strong> the<br />

Indian Museum 37:29-36.<br />

Freitas, J. F. T. 1957. Sobre os generos <strong>The</strong>landros<br />

Wedl, 1862 e Parapharyngodon Chatterji, 1933,<br />

com descrigao de Parapharyngodon alvarengai<br />

sp. n. (Nematoda, Oxyuroidea). Memorias do Instituto<br />

Oswaldo Cruz 55:21-45.<br />

, and J. E. Dobbin, Jr. 1959. Nova especie do<br />

genero Parapharyngodon Chatterji, 1933 (Nematoda,<br />

Oxyuroidea). Anais da Sociedade de Biologia<br />

de Pernambuco 16:23-33.<br />

Garcfa-Calvente, I. 1948. Revision del genero Pharyngodon<br />

y descripcion de nuevas especies. Revista<br />

Iberica de Parasitologfa 8:367-410.<br />

Hasegawa, H. 1988. Parapharyngodon sp. (Nematoda:<br />

Pharyngodonidae) collected from the lizard,<br />

Ateuchosaurus pellopleurus (Sauria: Scincidae),<br />

on Okinawajima Island, Japan. Akamata 5:11-14.<br />

(In Japanese.)<br />

Hobbs, R. P. 1996. Parapharyngodon anomalus sp.<br />

n. (Oxyuridae, Pharyngodonidae) from the Australian<br />

echidna Tackyglossus aculeatus, with notes<br />

on the <strong>The</strong>landroinae. Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 63:56-61.<br />

Johnson, S. 1966. A new oxyurid nematode <strong>of</strong> the<br />

genus <strong>The</strong>landros from Calotes versicolor (Daud.)<br />

from India, with a key to the Indian species <strong>of</strong> the<br />

genus from Calotes. Indian Journal <strong>of</strong> Helminthology<br />

18:123-127.<br />

Johnston, T. H., and P. M. Mawson. 1941. Some<br />

nematodes from Kangaroo Island, South Australia.<br />

Records <strong>of</strong> the South Australian Museum 7:<br />

145-148.<br />

Jones, H. I. 1992. Gastrointestinal nematodes in the<br />

lizard genera Tiliqua and Cyclodomorphus (Scincidae)<br />

in Western Austalia. Australian Journal <strong>of</strong><br />

Zoology 40:115-126.<br />

Karve, J. N. 1938. Some nematode parasites <strong>of</strong> lizards.<br />

Pages 251—258 in Livro Jubilar do Pr<strong>of</strong>.<br />

Lauro Travassos. Rio de Janeiro, Brazil.<br />

. 1949. Parasitic nematodes from an agamid lizard,<br />

Agama tuberculata Gray. Journal <strong>of</strong> the University<br />

<strong>of</strong> Bombay 18:1-16.<br />

Kuzmin, S. L. 1995. <strong>The</strong> clawed salamanders <strong>of</strong> Asia.<br />

Genus Onychodactylus. Biology, distribution and<br />

conservation. Westarp Wissenschaften, Magdeburg,<br />

Germany. 108 pp.<br />

Malan, J. R. 1939. Some helminths <strong>of</strong> South African<br />

lizards. Onderstepoort Journal <strong>of</strong> Veterinary Science<br />

and Animal Industry 12:21—74.<br />

Moravec, F., and V. Barus. 1990. Some nematode<br />

parasites from amphibians and reptiles from Zambia<br />

and Uganda. Acta Societatis Zoologicae Bohemoslovenicae<br />

54:177—192.<br />

, , and B. Rysavy. 1987. On parasitic<br />

nematodes <strong>of</strong> the families Heterakidae and Pharyngodonidae<br />

from reptiles in Egypt. Folia Parasitologica<br />

34:269-280.<br />

Ozaki, Y. 1948. A new trematode, Polystoma dendriticum<br />

from the urinary bladder <strong>of</strong> Onychodactylus<br />

japonicus in Shikoku. Biosphaera 2:33-37.<br />

Pearse, A. S. 1932. Parasites <strong>of</strong> Japanese salamanders.<br />

Ecology 13:135-152.<br />

Petter, A. J., and J. C. Quentin. 1976. CIH Keys to<br />

the Nematode Parasites <strong>of</strong> Vertebrates. No. 4.<br />

Keys to the Genera <strong>of</strong> the Oxyuroidea. Commonwealth<br />

Agricultural Bureaux, Farnham Royal,<br />

U.K. 30 pp.<br />

Read, C. P., and Y. U. Amrein. 1952. Some new<br />

oxyurid nematodes from southern California.<br />

Journal <strong>of</strong> Parasitology 38:379-384.<br />

Roca, V., and J. Lluch. 1986. Parapharyngodon<br />

psammodromi n. sp. (Nematoda: Pharyngodonidae),<br />

parasite de Psatnmodromus hispanicus Fitzinger,<br />

1826 (Reptilia: Lacertidae) en Valencia<br />

(Espafia). Rivista di Parassitologia 3:17-22.<br />

Schmidt, G. D., and F. H. Whittaker. 1975. Nematode<br />

parasites <strong>of</strong> Puerto Rican tree frogs, Eleutherodactylus<br />

spp: two new species and a proposal<br />

<strong>of</strong> Poekilostrongylus gen. nov. (Trichostrongylidae).<br />

Parasitology 70:287-294.<br />

Seurat, L. G. 1917. Sur les oxyures des sauriens du<br />

Nord-Africain. Archives de Zoologie Experimentale<br />

et Generale 56:401-444.<br />

Sharpilo, C. P. 1976. Parasitic Worms <strong>of</strong> the Reptilian<br />

Fauna <strong>of</strong> the USSR: Systematics, Chorology, Biology.<br />

Naukova Dumka, Moscow. 287 pp. (In<br />

Russian.)<br />

Skrjabin, K. I., N. P. Shikhobalova, and A. A. Mozgovoi.<br />

1951. Key to Parasitic Nematodes. Vol. 2.<br />

Oxyurata and Ascaridata. Izdatel'stvo Akademii<br />

Nauk S.S.S.R., Moscow. (English translation by<br />

Amerind Publishing Co. Pvt. Ltd., New Delhi, India,<br />

1982, 703 pp.)<br />

Sulahian, A., and J. F. Schacher. 1968. <strong>The</strong>landros<br />

(Parapharyngodon) tyche sp. n. (Nematoda: Oxyuroidea)<br />

and Abbreviata adonisi sp. n. (Nematoda:<br />

Physalopteroidea) from the lizard Agama<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


186 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

stellio in Lebanon. Journal <strong>of</strong> Helminthology 42: atoda) and Pseudopolystoma dendriticum (Mono-<br />

373-382. genea; Trematoda) from a salamander. Japanese<br />

Tcheprak<strong>of</strong>f, R. 1966. Description de <strong>The</strong>landros Journal <strong>of</strong> Parasitology 28:43-50.<br />

rousseti n. sp., parasite d'agame au Sahara. Bui- , K. Uchida, and A. Kamei. 1986. Studies on<br />

letin du Museum National d'Histoire Naturelle, the amphibian helminths in Japan. IX. A new di-<br />

Paris 37:861-864.<br />

genetic trematode, Cephalouterina Icoi n. sp.,<br />

Telford, S. R., Jr. 1965. Some <strong>The</strong>landros (Nemato- from salamanders, Onychodactylus japonicus and<br />

da: Oxyuridae) from southern California lizards. the new host record <strong>of</strong> the digenetic trematode,<br />

Japanese Journal <strong>of</strong> Experimental Medicine 35: Mesocoelium brevicaeciim. Bulletin <strong>of</strong> the Azabu<br />

463-472. University <strong>of</strong> Veterinary Medicine 7:97=101.<br />

Uchida, A., and H. Itagaki. 1979. Studies on the am- Wilkie, J. S. 1930. Some parasitic nematodes from<br />

phibian helminths in Japan. VI. Pseudoxyascaris Japanese Amphibia. Annals and Magazine <strong>of</strong> Natjaponicus<br />

n. g. and n. sp. (Oxyascarididae; Nem- ural History, Series 10, 6:606-614.<br />

Report on the Brayton H. Ransom Memorial Trust Fund<br />

<strong>The</strong> Brayton H. Ransom Memorial Trust Fund was established in 1936 to "encourage and promote<br />

the study and advancement <strong>of</strong> the Science <strong>of</strong> Parasitology and related sciences." Income from<br />

the Trust currently provides token support <strong>of</strong> the Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

and limited support for publication <strong>of</strong> exceptionally meritorious manuscripts by authors<br />

lacking institutional or other backing. Donations or memorial contributions may be directed to the<br />

Secretary-Treasurer. Information about the Trust may be found in the following articles in the<br />

Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> (1936) 3:84-87; (1983) 50:200-204<br />

and (1993) 60:144-150.<br />

Financial Report for 1998<br />

Balance on hand, January 1, 1998 $22,203.00<br />

Receipts: $1,586.69<br />

Contributions from Members <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

1996 $247.00<br />

1997 $195.00<br />

Interest received in 1998 $1,144.69<br />

Disbursements ($500.00)<br />

Support <strong>of</strong> author's page charges ($200.00)<br />

Grant to the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> for 1998 ($50.00)<br />

Membership in the American Association for Zoological Nomenclature .. ($50.00)<br />

Expenses <strong>of</strong> WAAVP Workshop (1997) ($200.00)<br />

On hand, December 31, 1998 $23,289.69<br />

J. Ralph Lichtenfels<br />

Secretary-Treasurer<br />

USDA:ARS:BARC-East, No. 1180<br />

Beltsville, MD 20705-2350<br />

Trustees <strong>of</strong> the Brayton H. Ransom Memorial Trust Fund<br />

Harley G. Sheffield, President<br />

Robin N. Huettel<br />

J. Ralph Lichtenfels, Secretary-Treasurer Nancy D. Pacheco<br />

A. Morgan Golden<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 187-193<br />

Paraochoterenetta javanensis gen. et sp. n. (Filarioidea:<br />

Onchocercidae) from Rana cancrivora (Amphibia: Anura) in<br />

West Java, Indonesia<br />

PURNOMO AND MICHAEL J. BANGS1<br />

U.S. Naval Medical Research Unit No. 2, Box 3, APO AP 96520-8132, U.S.A.<br />

ABSTRACT: Paraochoterenella javanensis gen. et sp. n. (Filarioidea: Onchocercidae) is described from the mesentery<br />

<strong>of</strong> the frog Rana cancrivora Gravenhorst in West Java, Indonesia. Paraochoterenella javanensis presently<br />

represents the only species in this newly created genus. Three <strong>of</strong> 13 frogs contained mature male and female<br />

worms and micr<strong>of</strong>ilariae. Paraochoterenella is distinguished from the other 4 genera, Foleyellides Caballero,<br />

Ochoterenella Caballero, Madochotera Bain and Brunhes, and Paramadochotera Esslinger in the subfamily<br />

Waltonellinae Bain and Prod'hon by the presence <strong>of</strong> cuticularized parastomal structures in both sexes, a distinct<br />

cuticularized buccal capsule, the lack <strong>of</strong> both lateral and caudal alae, and the presence <strong>of</strong> scattered (nonoriented)<br />

minute bosses on the cuticle <strong>of</strong> the midbody region. <strong>The</strong> micr<strong>of</strong>ilariae are unsheathed and slightly narrowed at<br />

the caudal extremity, with a 10:1 length to width ratio. Paraochoterenella represents the second genus in the<br />

subfamily Waltonellinae present in southern Asia and the first report <strong>of</strong> a filarial species in the subfamily from<br />

an Indonesian amphibian. A revised key to the genera is presented in light <strong>of</strong> this new addition to the subfamily.<br />

KEY WORDS: Filarioidea, Onchocercidae, Waltonellinae, Paraochoterenella javanensis gen. et sp. n., taxonomic<br />

key, Rana cancrivora, Amphibia, Anura, Ranidae, morphology, Java, Indonesia.<br />

<strong>The</strong> majority <strong>of</strong> the species contained in the<br />

subfamily Waltonellinae Bain and Prod'hon,<br />

1974 (Filarioidea: Onchocercidae) have been described<br />

from the Western Hemisphere, particularly<br />

neotropical areas. Esslinger (1986a, b) provided<br />

redescriptions <strong>of</strong> type material <strong>of</strong> Ochoterenella<br />

Caballero, 1944, and Foleyellides Caballero,<br />

1935, and revisions <strong>of</strong> the 4 related genera in<br />

the subfamily. Species previously assigned to the<br />

genus Waltonella Schacher, 1975, were transferred<br />

into the genera Foleyellides and Ochoterenella,<br />

the name Waltonella was placed as a junior<br />

synonym <strong>of</strong> Foleyellides, and the subfamily<br />

designation Waltonellinae was retained (Esslinger,<br />

1986a, b). Members <strong>of</strong> this filarial assemblage<br />

have only been found in the body cavities<br />

<strong>of</strong> anuran amphibians, with the exception <strong>of</strong> 1<br />

subcutaneous parasite, Foleyellides confusa<br />

(Schmidt and Kuntz, 1969; see Anderson and<br />

Bain, 1976). <strong>The</strong> subfamily members are parasites<br />

<strong>of</strong> toads and frogs in the families Bufonidae,<br />

Leptodactylidae, Racophoridae, and Ranidae.<br />

Three <strong>of</strong> 13 frogs identified as Rana cancrivora<br />

Gravenhorst, 1829 (Anura: Ranidae), and<br />

collected from Bekasi, West Java, Indonesia,<br />

were examined and discovered to harbor adults<br />

and micr<strong>of</strong>ilariae <strong>of</strong> an Ochoterenella-like nem-<br />

1 Corresponding author. Address reprint requests to<br />

Publications Office, U.S. Naval Medical Research Unit<br />

No. 2, Box 3, Unit 8132, APO AP 96520-8132, U.S.A.<br />

atode. Micr<strong>of</strong>ilariae found in the blood and adult<br />

male and female worms removed from the mesentery<br />

belong to a previously unknown genus<br />

and species as described herein.<br />

Materials and Methods<br />

Live frogs were obtained from a local food dealer<br />

residing in Jakarta. All had been captured from the<br />

same locality along drainage ditches, approximately 5<br />

km east <strong>of</strong> the city <strong>of</strong> Jakarta proper. Live adult worms<br />

were removed from the mesentery, relaxed in 0.6%<br />

saline solution, fixed in hot 70% ethanol, and preserved<br />

in 70% ethanol/5% glycerine. All specimens<br />

were cleared and temporarily mounted and examined<br />

in lactophenol. Micr<strong>of</strong>ilariae were obtained from<br />

blood. Thick blood films were processed with Giemsa's<br />

stain diluted 1:15 with pH 7.2 sodium phosphate<br />

buffer for 15 min. Drawings and measurements were<br />

made with the aid <strong>of</strong> a camera lucida. All measurements<br />

are expressed as means followed by the range<br />

in parentheses and are given as length by width in<br />

micrometers (|xm) unless otherwise indicated.<br />

Results<br />

Paraochoterenella gen. n.<br />

DIAGNOSIS: Onchocercidae (Leiper, 1911)<br />

Chabaud and Anderson, 1959; Waltonellinae<br />

Bain and Prod'hon, 1974. Cephalic end with<br />

pair <strong>of</strong> lateral flap-like cuticularized parastomal<br />

structures. Cephalic plate with lateral axis slightly<br />

longer than dorsoventral axis; 4 pairs cephalic<br />

papillae, broad basally and tapered with nonarticulated<br />

distal portion. Distinct cuticularized<br />

187<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


188 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

buccal cavity. Lateral and caudal alae lacking.<br />

Esophagus divided into a short anterior muscular<br />

region and a long, wider posterior glandular portion<br />

(muscular to glandular ratio: 6.1). Vulva in<br />

posterior region <strong>of</strong> glandular portion <strong>of</strong> esophagus<br />

near esophageal-intestinal junction. Two<br />

pairs <strong>of</strong> preanal, 4 pairs <strong>of</strong> postanal papillae. Cuticular<br />

bosses minute (


PURNOMO AND EA.NGS—PARAOCHOTERENELLA JAVANENSIS GEN. ET SP. N. FROM RANA CANCRIVORA 189<br />

/ ^ ^ ^ 5<br />

Figures 1-7. Adults and micr<strong>of</strong>ilaria <strong>of</strong> Paraochoterenella javanensis gen. et sp. n. 1. Generalized en<br />

face view <strong>of</strong> female showing arrangement <strong>of</strong> 4 pairs <strong>of</strong> suhmedian papillae and 2 lateral amphids. 2.<br />

Transversely striated cuticle <strong>of</strong> female. 3. Anterior region <strong>of</strong> female, lateral view. 4. Caudal end <strong>of</strong> female,<br />

lateral view. 5. Micr<strong>of</strong>ilaria from blood. 6. Caudal end <strong>of</strong> male, lateral view showing left and right spicules,<br />

cloaca, and caudal papillae. 7. Caudal end <strong>of</strong> male, ventral view showing arrangement <strong>of</strong> caudal papillae.<br />

All scale bars in urn.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


190 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

8<br />

5O/u<br />

11<br />

14<br />

12 15<br />

13 16 17<br />

Figures 8-17. Paraochoterenella javanensis gen. et sp. n. 8. Cephalic extremity <strong>of</strong> female, dorsal view<br />

showing cuticularized buccal capsule. 9. Cephalic extremity <strong>of</strong> female, en face view showing arrangement<br />

<strong>of</strong> papillae, amphids, and parastomal structures. 10. Cephalic extremity <strong>of</strong> female, lateral view. 11, 12, 13.<br />

Minute bosses on female, lateral views <strong>of</strong> cervical region (11), midbody (12), and anal region (13). 14, 15,<br />

16. Minute bosses on male, lateral view, cervical region (14), midbody (15), and anal region (16). 17. Detail<br />

<strong>of</strong> area rugosa <strong>of</strong> male, ventral view. Scale bars = 50 urn (Figs. 8-10) and 200 u,m (Figs. 11-17).<br />

TYPE LOCALITY: Indonesia, West Java, Bekasi.<br />

SITE OF INFECTION: Mesentery.<br />

DATE OF COLLECTION: AUGUST 1990.<br />

DEPOSITED SPECIMENS: Holotype male,<br />

USNPC 82165; allotype female, USNPC 82166;<br />

paratypes, 2 females, USNPC 82167 in 70% ethanol/5%<br />

glycerine; 1 blood slide, Giemsastained<br />

micr<strong>of</strong>ilariae (syntypes), USNPC 82168,<br />

deposited in the U.S. National Parasite Collec-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


PURNOMO AND BANGS—PARAOCHOTERENELLA JAVANENSIS GEN. ET SP. N. FROM RANA CANCRIVORA 191<br />

tion (USNPC), Beltsville, Maryland. Preserved<br />

frog specimens have been retained at U.S. Naval<br />

Medical Research Unit-2 in 10% formalin.<br />

ETYMOLOGY: <strong>The</strong> specific epithet is derived<br />

from the type locality <strong>of</strong> the new species.<br />

Remarks and Discussion<br />

<strong>The</strong> finding <strong>of</strong> Paraochoterenella javanensis<br />

sp. n. from the mangrove frog, Rana cancrivora,<br />

in Bekasi, West Java, represents the first report<br />

<strong>of</strong> a filarial species in the subfamily Waltonellinae<br />

from an Indonesian amphibian. <strong>The</strong> subfamily<br />

members are parasites <strong>of</strong> toads and frogs<br />

in Bufonidae, Leptodactylidae, Racophoridae,<br />

and Ranidae. Of the Waltonellinae, only Foleyellides<br />

and Paraochoterenella have been definitively<br />

described from ranid frogs (Anderson and<br />

Bain, 1976). Geographically, Ochoterenella appears<br />

restricted to the Neotropical Region. Species<br />

<strong>of</strong> Foleyellides have been recorded predominantly<br />

in the Western Hemisphere, whereas species<br />

<strong>of</strong> both Madochotera Bain and Brunhes,<br />

1968, and Paramadochotera Esslinger, 1986,<br />

have been described only from Madagascar<br />

(Bain and Brunhes, 1968, Esslinger, 1986a).<br />

Based on described morphological measures<br />

and structures <strong>of</strong> adults and micr<strong>of</strong>ilariae, together<br />

with information on definitive hosts and<br />

geographic localities, the generic name Paraochoterenella<br />

is proposed to accommodate the<br />

new species, P. javanensis. <strong>The</strong> specific characters<br />

deemed important in distinguishing genera<br />

in the subfamily Waltonellinae, as revised by<br />

Esslinger (1986a, b), are the presence or absence<br />

<strong>of</strong> caudal alae and parastomal structures, the appearance<br />

and arrangement <strong>of</strong> the cuticular bosses,<br />

and the morphology <strong>of</strong> the micr<strong>of</strong>ilariae.<br />

Paraochoterenella gen. n. shares various characters<br />

with the other 4 genera, including paired<br />

cephalic papillae without articulated tips, cuticularized<br />

parastomal structures, the absence <strong>of</strong><br />

lateral and caudal alae, a distinct buccal formation,<br />

the vulva near the base <strong>of</strong> the glandular<br />

esophagus, a thin, elongated (left) spicule shaft,<br />

and being a parasite <strong>of</strong> an anuran (Anderson and<br />

Bain, 1976). <strong>The</strong> principal characters that separate<br />

Paraochoterenella from other genera are the<br />

unsheathed micr<strong>of</strong>ilaria and the appearance and<br />

arrangement <strong>of</strong> the cuticular bosses.<br />

Of the 4 previously recognized genera in the<br />

subfamily, Paraochoterenella appears most<br />

closely aligned with Ochoterenella. However,<br />

Esslinger (1986a, 1988) concluded that all Ochoterenella<br />

species are a morphologically uniform<br />

group, restricted to the Neotropical Region.<br />

With the exception <strong>of</strong> only 2 species, both recovered<br />

from leptodactylid frogs, all have been<br />

found only in the toad Bufo marinus Linnaeus,<br />

1758 (Esslinger, 1988). Before Esslinger's<br />

(1986a) detailed reassessment, only 3 species <strong>of</strong><br />

Ochoterenella Caballero, 1944 (Caballero, 1944;<br />

Johnston, 1967), in the subfamily (Bain and<br />

Prod'hon, 1974) had been assigned to the genus.<br />

Ochoterenella digiticauda Caballero, 1944, has<br />

been found in Mexico, Guatemala, and Paraguay<br />

(Lent et al., 1946; Yamaguti, 1961). Ochoterenella<br />

papuensis Johnston, 1967, found in the<br />

frog Platymantis ( — Cornufer} papuensis Meyer,<br />

1875 has been reported only from New Guinea<br />

(Johnston, 1967), whereas Ochoterenella guibei<br />

Bain and Prod'hon, 1974 from a racophorid<br />

frog, appears in Madagascar.<br />

Esslinger (1988) included 14 members in<br />

Ochoterenella, partially the result <strong>of</strong> a previous<br />

transfer <strong>of</strong> 8 species in the genus Waltonella to<br />

Ochoterenella (Esslinger, 1986a). Ochoterenella<br />

guibei from Madagascar was placed in a new<br />

genus Paramadochotera. Ochoterenella papuensis<br />

from New Guinea, as described by Johnston<br />

(1967), was considered incertae sedis and was<br />

removed from the genus until more material<br />

could be fully described (Esslinger, 1986a). An<br />

incompletely described Ochoterenella species<br />

from northern Viet Nam (Moravec and Sey,<br />

1985) is also considered incertae sedis for the<br />

present. Specific identification <strong>of</strong> the Viet Nam<br />

filariid was not possible because <strong>of</strong> the absence<br />

<strong>of</strong> males and the poor condition <strong>of</strong> the 5 female<br />

specimens. It is also noted that both Asian populations<br />

assigned to Ochoterenella lacked a distinct<br />

buccal cavity and the micr<strong>of</strong>ilariae were<br />

unsheathed, characters present in all known<br />

members <strong>of</strong> Ochoterenella (Esslinger, 1986a, b).<br />

However, because O. papuensis and the Viet<br />

Nam specimens represent the only purported<br />

members <strong>of</strong> the genus described from the Asian<br />

region, both are briefly mentioned in this discussion.<br />

Paraochoterenella javanensis can be distinguished<br />

from O. digiticauda (the type species),<br />

O. papuensis, and Ochoterenella from Viet Nam<br />

(VN) by the following characters: adult male<br />

and female worms are shorter in body length<br />

(except VN sp.), the longer (left) spicule is nearly<br />

4 times as long as the right (male not described<br />

for VN sp.), and the spicule ratio (3.7:<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


192 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

1) is greater (1.7:1 and 2:1, respectively). Unlike<br />

all recognized members <strong>of</strong> Ochoterenella, the<br />

micr<strong>of</strong>ilariae <strong>of</strong> P. javanensis are unsheathed in<br />

blood. On average, the micr<strong>of</strong>ilariae are shorter<br />

in length, but have a distinctly smaller length to<br />

width body ratio (10:1) compared to O. digiticauda<br />

and O. papuensis (—30:1) and Ochoterenella<br />

VN (—20:1). <strong>The</strong> tip <strong>of</strong> the micr<strong>of</strong>ilaria<br />

tail is slightly narrowed versus the rounded, usually<br />

bulbous appearance in O. digiticauda. <strong>The</strong><br />

VN micr<strong>of</strong>ilariae were described as unsheathed.<br />

In Ochoterenella, the appearance and length<br />

<strong>of</strong> individual bosses in both sexes are considered<br />

consistent within a species (Esslinger, 1986a).<br />

Depending on the site <strong>of</strong> measurement, the individual<br />

bosses <strong>of</strong> O. digiticauda ranged in<br />

mean size from 8.7 |xm at the midbody to 4 (xm<br />

at the midportion <strong>of</strong> the area rugosa (Esslinger,<br />

1986a). <strong>The</strong> scattered appearance <strong>of</strong> minute<br />

bosses on the cuticle, in the size range <strong>of</strong> 2—3<br />

(xm, clearly set P. javanensis apart from Ochoterenella<br />

species. Ochoterenella papuensis female<br />

worms apparently lack surface tubercles,<br />

and tubercles were not described for the VN<br />

specimen.<br />

<strong>The</strong> arrangement <strong>of</strong> male preanal and caudal<br />

papillae differs among the 4 descriptions. Paraochoterenella<br />

javanensis has 2 pairs <strong>of</strong> preanal<br />

and 4 pairs <strong>of</strong> postanal papillae, and O. digiticauda<br />

has 2 pairs <strong>of</strong> preanal and 3 pairs <strong>of</strong> postanal<br />

(Caballero, 1944) or 1 pair <strong>of</strong> preanal and<br />

3 pairs <strong>of</strong> postanal papillae as reported by Lent<br />

et al. (1946) and Esslinger (1986a). Paraochoterenella<br />

javanensis also lacks a median ventral<br />

preanal plaque. Ochoterenella papuensis has 2<br />

single preanal papillae in tandem, 2 adanal papillae,<br />

and 3 pairs <strong>of</strong> postanal papilla. Paraochoterenella<br />

javanensis has 4 pairs <strong>of</strong> anterior<br />

submedian papillae, 2 lateral cephalic amphids,<br />

and parastomal structures similar to those <strong>of</strong> O.<br />

digiticauda and the VN Ochoterenella sp. <strong>The</strong><br />

position <strong>of</strong> the vulva is very near the glandular<br />

esophagointestinal junction, similar to that in O.<br />

digiticauda. In O. papuensis, the vulva was indistinct,<br />

lying slightly behind the musculoglandular<br />

esophageal junction, whereas Ochoterenella<br />

(VN) had it positioned at about the midpoint<br />

<strong>of</strong> the glandular esophagus. Unlike all<br />

members <strong>of</strong> Ochoterenella, P. javanensis has a<br />

distinct cuticularized buccal capsule, presently<br />

found elsewhere only in the genus Paramadochotera.<br />

Paraochoterenella represents a second genus<br />

in the subfamily present in southern Asia. <strong>The</strong><br />

distribution and host range <strong>of</strong> this monotypic genus<br />

is not known. To date, only Foleyellides<br />

( = Waltonella) confusa from the Philippines and<br />

Foleyellides ( = Waltonelld) malayensis (Petit<br />

and Yen, 1979) from peninsular Malaysia have<br />

been described. It is possible that specimens described<br />

from Viet Nam and New Guinea may be<br />

members <strong>of</strong> Paraochoterenella, because their<br />

micr<strong>of</strong>ilariae also lacked a cuticular sheath;<br />

however, a decision regarding this possibility<br />

awaits full descriptions. <strong>The</strong> limited number <strong>of</strong><br />

species described outside the Western Hemisphere<br />

may be more reflective <strong>of</strong> the lower relative<br />

number <strong>of</strong> investigations on amphibians<br />

and their nematodes from other areas <strong>of</strong> the<br />

world (Esslinger, 1986b). Given the wide range<br />

and species diversity <strong>of</strong> anuran amphibian species<br />

present in the Asian Region, this would not<br />

seem unreasonable.<br />

Nothing is known <strong>of</strong> the biology or transmission<br />

<strong>of</strong> Paraochoterenella javanensis. Larval<br />

stages have only been described from a few species<br />

<strong>of</strong> Foleyellides ( = Waltonelld), based primarily<br />

on experimental infections (Bain and<br />

Chabaud, 1986). Larval stage development has<br />

been observed in adipose and muscle tissue <strong>of</strong><br />

mosquitoes. Likewise, the natural intermediate<br />

hosts <strong>of</strong> Waltonellinae are poorly known except<br />

for a few Foleyellides. Vectors are presumed to<br />

be blood-feeding dipterans, most likely various<br />

culicine mosquitoes (Diptera: Culicidae). In general,<br />

as more information becomes available on<br />

species morphology, biological variability, distribution,<br />

and natural host range <strong>of</strong> this group <strong>of</strong><br />

filariids, the diagnostic significance <strong>of</strong> certain<br />

characters used to separate genera and species<br />

will become better understood. A revised simplified<br />

key to the genera is presented in light <strong>of</strong><br />

this new addition to the subfamily.<br />

Key to the Genera <strong>of</strong> the Subfamily<br />

Waltonellinae<br />

la. Cuticularized parastomal structures present<br />

2<br />

Ib. Cuticularized parastomal structures absent<br />

Paramadochotera (Madagascar)<br />

2a. Lateral and caudal alae present 3<br />

2b. Lateral and caudal alae absent 4<br />

3a. Cuticle with transversely oriented ridges<br />

and bosses .. Madochotera (Madagascar)<br />

3b. Cuticle smooth, generally lacking bosses<br />

Foleyellides (worldwide)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


PURNOMO AND BANGS—PARAOCHOTERENELLA JAVANENSIS GEN. ET SP. N. FROM RANA CANCRIVORA 193<br />

4a. Cuticle <strong>of</strong> midbody with annular bands<br />

<strong>of</strong> longitudinally oriented bosses; micr<strong>of</strong>ilaria<br />

sheathed with tip <strong>of</strong> tail<br />

rounded, <strong>of</strong>ten bulbous<br />

Ochoterenella (Neotropics)<br />

4b. Cuticle <strong>of</strong> midbody with scattered minute<br />

bosses; micr<strong>of</strong>ilaria unsheathed<br />

with tip <strong>of</strong> tail slightly narrowed<br />

Paraochoterenella (Indonesia)<br />

Acknowledgments<br />

<strong>The</strong> Naval Medical Research and Development<br />

Command, Navy Department, supported<br />

this study under Work Unit 3M161102BS13.<br />

AD410. <strong>The</strong> opinions and assertions contained<br />

herein are those <strong>of</strong> the authors and do not purport<br />

to reflect those <strong>of</strong> the U.S. Naval Service<br />

or the Indonesian Ministry <strong>of</strong> Health.<br />

Literature Cited<br />

Anderson, R. C., and O. Bain. 1976. Keys to the<br />

genera <strong>of</strong> the order Spirurida (No. 3), Part 3. Diplotriaenoidea,<br />

Aproctoidea and Filarioidea. Pages<br />

59-116 in R. C. Anderson, A. G. Chabaud, and<br />

S. Willmont, eds. CIH Keys to the Nematode Parasites<br />

<strong>of</strong> Vertebrates. Commonwealth Agricultural<br />

Bureaux, Farnham Royal, Buckinghamshire, U.K.<br />

Bain, O., and J. Brunhes. 1968. Un nouveau genre<br />

de filaire, parasite de grenouilles malgaches. Bulletin<br />

du Museum National d'Histoire Naturelle,<br />

Paris, 2nd ser. 40:797-801.<br />

, and A. G. Chabaud. 1986. Atlas des larves<br />

infestantes de filaires. Tropical Medicine and Parasitology<br />

37:301-340.<br />

, and J. Prod'hon. 1974. Homogeneite des filaires<br />

de batraciens des genres Waltonella, Ochoterenella<br />

et Madochotera; creation de Waltonellinae<br />

n. subfam. Annales de Parasitologie Humaine<br />

et Comparee 49:721—739.<br />

Caballero, E. C. 1944. Estudios helmintologicos de la<br />

region oncocercosa de Mexico y de la Repiiblica<br />

de Guatemala. Nematoda: Primeira parte. Filarioidea.<br />

I. Anales del Institute de Biologia, Universidad<br />

de Mexico 15:87-108.<br />

Esslinger, J. H. 1986a. Redescription <strong>of</strong> Ochoterenella<br />

digiticauda Caballero, 1944 (Nematoda: Filarioidea)<br />

from the toad, Bufo marinus, with a redefinition<br />

<strong>of</strong> the genus Ochoterenella Caballero,<br />

1944. Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong> 53:210-217.<br />

. 1986b. Redescription <strong>of</strong> Foleyellides striatus<br />

(Ochoterena and Caballero, 1932) (Nematoda: Filarioidea)<br />

from a Mexican frog, Rana montezumae,<br />

with reinstatement <strong>of</strong> the genus Foleyellides<br />

Caballero, 1935. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 53:218-223.<br />

. 1988. Ochoterenella figueroai sp. n. and O.<br />

lamothei sp. n. (Nematoda: Filarioidea) from the<br />

toad Bufo marinus. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 55:146-154.<br />

Johnston, M. R. L. 1967. Icosiella papuensis n. sp.<br />

and Ochoterenella papuensis n. sp. (Nematoda:<br />

Filarioidea), from a New Guinea frog, Cornufer<br />

papuensis. Journal <strong>of</strong> Helminthology 41:45-54.<br />

Lent, H., J. F. Teixeira de Freitas, and M. C. Proenca.<br />

1946. Alguns helmintos de batraquios colecionados<br />

no Paraguai. Memorias do Institute Oswaldo<br />

Cruz 44:195-214.<br />

Moravec, F., and O. Sey. 1985. Some nematode parasites<br />

<strong>of</strong> frogs (Rana spp.) from North Viet Nam.<br />

Parasitologia Hungarica 18:63-77.<br />

Petit, G., and P. Yen. 1979. Waltonella malayensis n.<br />

sp., une nouvelle filaire de batracien, en Malaisie.<br />

Bulletin du Museum National d'Histoire Naturelle,<br />

Paris 1, Sect. A 1:213-218.<br />

Schmidt, G. D., and R. E. Kuntz. 1969. Nematode<br />

parasites <strong>of</strong> Oceania. VI. Foleyella confusa sp. n.,<br />

Icosiella hoogstraali sp. n. (Filarioidae), and other<br />

species from Philippine amphibians. Parasitology<br />

59:885-889.<br />

Yamaguti, S. 1961. Systema Helminthum. Vol. 3. <strong>The</strong><br />

Nematodes <strong>of</strong> Vertebrates. Parts I and II. Interscience<br />

Publishers, Inc., New York. 1261 pp.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 194-197<br />

Research Note<br />

New Records, Hosts, and SEM Observations <strong>of</strong> Cercaria owreae<br />

(Hutton, 1954) from the Mexican Caribbean Sea<br />

DEL CARMEN GOMEZ DEL PRAoo-RosAS,1'4 JOSE N. ALVAREZ-CADENA,2 LOURDES<br />

SEGURA-PUERTAS,2 AND RAFAEL LAMOTHE-ARGUMEDO3<br />

1 Universidad Autonoma de Baja California Sur, Departamento de Biologia Marina, Apartado Postal 19-B,<br />

C.P. 23080, La Paz, Baja California Sur, Mexico (e-mail: mcgomez@calafia.uabcs.mx)<br />

2 Universidad Nacional Autonoma de Mexico, Institute de Ciencias del Mar y Limnologia, Estacion Puerto<br />

Morelos, Apartado Postal 1152, C.P. 77501, Canctin, Quintana Roo, Mexico, and<br />

3 Universidad Nacional Autonoma de Mexico, Institute de Biologia, Apartado Postal 70-153, C.P. 04510,<br />

Mexico, D.F., Mexico.<br />

ABSTRACT: Digenetic trematode larvae identified as<br />

Cercaria owreae (Hutton) were recorded in the coela<br />

<strong>of</strong> the following chaetognath species: Flaccisagitta enflata<br />

(Grassi), Serratosagitta serratodentata (Krohn),<br />

Ferosagitta hispida (Conant), and Sagitta helenae Ritter-Zahony.<br />

<strong>The</strong> hosts and parasites were collected during<br />

4 oceanographic cruises in February, March, May,<br />

and August 1991. <strong>The</strong> low prevalence <strong>of</strong> infection (average<br />

0.11%) was comparable with previous records.<br />

<strong>The</strong> intensity was restricted to 1 parasite. Ferosagitta<br />

hispida and Sagitta helenae are recorded for the first<br />

time as hosts <strong>of</strong> Cercaria owreae, and the Mexican<br />

Caribbean Sea is reported as a new locality for the<br />

geographical distribution <strong>of</strong> this parasite.<br />

KEY WORDS: Cercaria owreae, SEM, scanning<br />

electron microscopy, chaetognaths, new records, Caribbean<br />

Sea, Mexico.<br />

Cercaria owreae (Hutton, 1954) has been reported<br />

parasitizing species <strong>of</strong> Sagitta in the Atlantic<br />

Ocean and the Caribbean Sea (Hutton,<br />

1952, 1954; Suarez-Caabro, 1955; Dawes, 1958,<br />

1959). However, parasites <strong>of</strong> holoplanktonic organisms<br />

such as chaetognaths have not been<br />

studied in the vicinity <strong>of</strong> the Mexican Caribbean<br />

Sea. <strong>The</strong> main possible reasons for this lack <strong>of</strong><br />

information are that the larval parasites have<br />

been mistaken for food remains or the holoplanktonic<br />

organisms are seldom investigated as<br />

hosts; thus, their importance as intermediate<br />

hosts has been underestimated and frequently<br />

overlooked.<br />

<strong>The</strong> purpose <strong>of</strong> this study is to describe larvae<br />

<strong>of</strong> the digenetic trematode Cercaria owreae with<br />

the aid <strong>of</strong> scanning electron microscopy (SEM),<br />

to determine the prevalence and mean intensity<br />

<strong>of</strong> parasitism in chaetognaths, and to report the<br />

Corresponding author.<br />

chaetognaths Ferosagitta hispida and Sagitta<br />

helenae as new hosts and the Mexican Caribbean<br />

Sea as a new locality record.<br />

Zooplankton samples were collected during<br />

scientific cruises <strong>of</strong> the Mexican Navy (Secretaria<br />

de Marina) during February, March, May,<br />

and August 1991 (cruises I to IV) in the Mexican<br />

Caribbean Sea (Fig. 1). <strong>The</strong> material was<br />

intended for studies <strong>of</strong> the composition, abundance,<br />

and species distribution <strong>of</strong> the major zooplankton<br />

groups, and it was during its analysis<br />

that trematode larval parasites were observed in<br />

the coela <strong>of</strong> some chaetognaths.<br />

Sampling was carried out from 50 m to the<br />

surface in oblique tows with a square-mouth<br />

standard net 0.45 m per side (330 fjim mesh).<br />

Zooplankton material was fixed in 4% buffered<br />

(lithium carbonate) formalin. All chaetognaths<br />

were sorted from approximately 22 samples<br />

from each cruise. Prevalence and mean intensity<br />

were calculated according to Margolis et al.<br />

(1982). Parasitized chaetognaths were stained<br />

with Hams' hematoxylin and acetic carmine,<br />

cleared with methyl salicylate, and mounted on<br />

permanent slides in synthetic resin. Some chaetognaths<br />

were dissected and parasites were extracted<br />

for SEM. Twenty-two specimens were<br />

mounted on permanent slides and examined using<br />

a compound microscope, and 2 specimens<br />

were observed and photographed using SEM<br />

techniques. Measurements (mm) <strong>of</strong> 5 parasites<br />

are given as the range and mean (in parentheses).<br />

Specimens <strong>of</strong> the parasites are deposited in<br />

the Coleccion Nacional de Helmintos (CNHE),<br />

Institute de Biologia, Universidad Nacional Autonoma<br />

de Mexico, Mexico City, under the catalogue<br />

number 3185 for parasites <strong>of</strong> Flaccisa-<br />

194<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 195<br />

Table 1. Prevalence and intensity <strong>of</strong> Cercaria<br />

owreae infecting chaetognaths from the Mexican<br />

Caribbean Sea.<br />

Chaetognath species<br />

analyzed<br />

Cercaria owreae*<br />

N P %P<br />

I<br />

Flaccisagitta enflata<br />

Serratosagitta serratodentata<br />

Ferosagitta hispida<br />

Sagitta helenae<br />

14,583<br />

3,638<br />

1,015<br />

288<br />

18<br />

1<br />

1<br />

2<br />

0.12<br />

0.05<br />

0.09<br />

0.69<br />

I<br />

1<br />

1<br />

1<br />

* N, total number <strong>of</strong> chaetognaths analyzed; P, total number<br />

<strong>of</strong> chaetognaths parasitized; %P, percentage <strong>of</strong> chaetognaths<br />

infected; I, intensity <strong>of</strong> parasitism.<br />

Figure 1. Study area with the locations <strong>of</strong> the<br />

stations sampled in February, March, May, and<br />

August 1991. Geographical positions <strong>of</strong> the stations<br />

were similar for the 4 cruises.<br />

gitta enflata and number 3186 for parasites <strong>of</strong><br />

Serratosagitta serratodentata. Specimens from<br />

the other 2 species were used for the SEM and<br />

are deposited in the SEM laboratory <strong>of</strong> the In-<br />

stituto de Ciencias del Mar y Limnologia, Universidad<br />

Nacional Autonoma de Mexico, Mexico<br />

City.<br />

A total <strong>of</strong> 19,524 chaetognaths (prevalence<br />

0.11%) belonging to 4 species were analyzed:<br />

Flaccisagitta enflata (Grassi, 1881), Serratosagitta<br />

serratodentata (Krohn, 1853), Ferosagitta<br />

hispida (Conant, 1891), and Sagitta helenae Ritter-Zahony,<br />

1911, had 1 trematode larva per host<br />

(Table 1). Ferosagitta hispida and S. helenae are<br />

reported as hosts for the first time, and the Mexican<br />

Caribbean Sea is reported as a new locality.<br />

Cercaria owreae has an oval to pyriform<br />

body 0.166-0.575 (0.333) long and 0.087-0.235<br />

(0.154) wide and 2 posterior cylindrical appendages<br />

0.066-0.131 (0.107) long (Fig. 2). <strong>The</strong> tegument<br />

has deep circular furrows and dermal pa-<br />

Figure 2. Cercaria owreae: ventral view (SEM) <strong>of</strong> entire specimen; 1 appendage is missing. Scale 50 p,<br />

Figure 3. Cercaria owreae: oral and ventral suckers (SEM) showing dermal papillae. Scale 50 u.m.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


196 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

pillae in the anteroventral and anterodorsal body<br />

regions extending to the acetabulum. <strong>The</strong> oral<br />

sucker, 0.041-0.079 (0.060) long and 0.041-0.1<br />

(0.065) wide, has a subterminal mouth and is<br />

strongly muscular, with 11 papillae encircling it<br />

and another 5 distributed irregularly (Fig. 2).<br />

<strong>The</strong> acetabulum, 0.045-0.108 (0.104) length and<br />

0.045-0.133 (0.090) width, in a preequatorial<br />

position, also has 13 papillae encircling it and 5<br />

to 6 papillae nearby (Fig. 3). <strong>The</strong> average ratio<br />

<strong>of</strong> the diameters <strong>of</strong> the oral and ventral suckers<br />

is 1:1.7, and there is a slit-like opening anterior<br />

to the acetabulum. <strong>The</strong> muscular pharynx, which<br />

is round to oval, leads to a short esophagus and<br />

thence to a cecal bifurcation. <strong>The</strong> esophageal or<br />

cecal diverticula were not observed. <strong>The</strong> intestinal<br />

cecum is unbranched and passes into the 2<br />

appendages. No vitelline glands or gonads were<br />

observed. <strong>The</strong> excretory vesicle is Y-shaped and<br />

does not enter the posterior appendages. Its lateral<br />

excreting tubules join together dorsally to<br />

the pharynx. <strong>The</strong> excretory pore is terminal.<br />

Dermal papillae in the oral and ventral suckers<br />

are reported here for the first time; papillae<br />

in the anterodorsal and anteroventral body regions<br />

were reported in the family Accacoeliidae<br />

by Odhner (1911). Subcuticular tissues from the<br />

deep fold facing the acetabulum, which are<br />

"thickenings producing small papillae," were<br />

reported by Dawes (1959), but the papillae encircling<br />

the suckers have not been reported.<br />

Cercaria owreae has been previously reported<br />

in the Florida Current, parasitizing the chaetognaths<br />

Flaccisagitta enflata, Flaccisagitta hexaptera<br />

(d'Orbigny, 1836) and Flaccisagitta lyra<br />

(Krohn, 1853) (see Hutton, 1952, 1954) in the<br />

Caribbean Sea between Jamaica and Cuba<br />

(Dawes, 1958, 1959) and in Cuban waters in the<br />

north (Suarez-Caabro, 1955). It parasitizes Zonosagitta<br />

pulchra (Doncaster, 1902) northwest<br />

<strong>of</strong> Madagascar; Serratosagitta serratodentata<br />

var. atlantica and Sagitta bipunctata Quoy and<br />

Gaimard, 1828, in Mauritania; F. hexaptera in<br />

Cabo Frio and west <strong>of</strong> Mossamedes in Angola;<br />

and F. enflata <strong>of</strong>f Gabon, Mauritania, and Liberia<br />

(Furnestin and Rebecq, 1966).<br />

Prevalence and mean intensity values <strong>of</strong> infection<br />

in the present study were low, comparable<br />

to those obtained by Hutton (1954) and<br />

Furnestin and Rebecq (1966), even though the<br />

host species are different. To date, 7% is the<br />

highest prevalence reported (Dawes, 1959).<br />

<strong>The</strong> parasites reported here are the smallest<br />

reported until now (0.166-0.575). <strong>The</strong> largest<br />

(0.245-2.200) were those reported by Furnestin<br />

and Rebecq (1966). <strong>The</strong>se authors reported<br />

length variability between posterior appendages<br />

and body length. <strong>The</strong>y noted that the perforating<br />

trematode larvae emerging from the first intermediate<br />

host (a benthic coastal mollusk) were<br />

small parasites with similarly small appendages<br />

and that both the body <strong>of</strong> the larva and the appendages<br />

would not grow proportionately.<br />

Cercaria owreae has been found in the tropical-subtropical<br />

zones (Furnestin and Rebecq,<br />

1966) <strong>of</strong>f the coast <strong>of</strong> Miami, Florida, in the<br />

Caribbean Sea, and in the east and northwest <strong>of</strong><br />

Africa. However, this distribution does not<br />

match that <strong>of</strong> the chaetognath species; for example,<br />

Flaccisagita enflata is distributed worldwide<br />

(Alvarino, 1964, 1965). No one has recorded<br />

a holoplanktonic intermediate host; thus,<br />

it seems more plausible that the Cercaria<br />

owreae distribution recorded until now has been<br />

determined by the initial intermediate host, the<br />

benthic mollusk (Furnestin and Rebecq, 1966).<br />

According to Dawes (1959), Cercaria owreae<br />

should be placed within the genus Accacladocoelium<br />

Odhner, 1928. <strong>The</strong> length <strong>of</strong> the ceca<br />

going into the posterior appendages suggests<br />

that they could correspond to the anal openings<br />

ending in the excretory vesicle walls in the case<br />

<strong>of</strong> the adult; this feature is present in several<br />

families, but it has also been observed in 7 genera<br />

<strong>of</strong> the family Accacoeliidae. Additionally,<br />

the presence <strong>of</strong> 6 diverticula in the anterior region<br />

<strong>of</strong> the intestinal ceca on each side resembles<br />

the situation in 1 <strong>of</strong> the genera <strong>of</strong> the family.<br />

Dawes (1959) mentioned that Accacladocoeliurn<br />

petasiporum Odhner, 1928 does not belong<br />

to this trematode larval stage because this species<br />

has a conspicuous acetabulum, which does<br />

not correspond with Cercaria owreae. <strong>The</strong> other<br />

3 species, Accacladocoelium nigr<strong>of</strong>lavum (Rudolphi,<br />

1819), Accacladocoelium macrocotyle<br />

(Diesing, 1858) sensu Monticelli, 1893, and Accacladocoelium<br />

alveolatum Robinson, 1943, remain<br />

to be studied. It is worth mentioning that<br />

these 3 species have been reported as parasites<br />

<strong>of</strong> the sunfish Mola mola (Linnaeus, 1758),<br />

which could indicate that Cercaria owreae may<br />

parasitize this fish species.<br />

Whatever the course <strong>of</strong> discussions in relation<br />

to the taxonomic position <strong>of</strong> this trematode, the<br />

presence <strong>of</strong> papillae circling both the oral and<br />

ventral suckers in Cercaria owreae is a distinc-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 197<br />

live feature not reported previously in any species<br />

<strong>of</strong> Accacladocoelium. This feature raises the<br />

possibility <strong>of</strong> an undescribed species within the<br />

genus.<br />

We thank Yolanda Hornelas <strong>of</strong> the Institute<br />

de Ciencias del Mar y Limnologfa, UNAM, for<br />

helping with the SEM photomicrographs. Rebeca<br />

Gasca and Eduardo Suarez-Morales, <strong>of</strong> El<br />

Colegio de la Frontera Sur-Unidad Chetumal<br />

kindly supplied the biological material.<br />

Literature Cited<br />

Alvarino, A. 1964. Bathymetric distribution <strong>of</strong> chaetognaths.<br />

Pacific Science 18:64-82.<br />

. 1965. Chaetognaths. in Harold Barnes, ed.<br />

Annual Review <strong>of</strong> Oceanography and Marine Biology.<br />

3:115-195.<br />

Dawes, B. 1958. Sagitta as a host <strong>of</strong> larval trematodcs,<br />

including a new and unique type <strong>of</strong> cercaria. Nature<br />

182:960-961.<br />

. 1959. On Cercaria owreae (Hutton, 1954)<br />

from Sagitta hexaptera (d'Orbigny) in the Caribbean<br />

plankton. Journal <strong>of</strong> Helminthology 33:209-<br />

222.<br />

Furnestin, M. L., and J. Rebecq. 1966. Sur 1'ubiquite<br />

de Cercaria owreae (R. F. Hutton, 1954). Annales<br />

de Parasitologie 41:61-70.<br />

Hutton, R. F. 1952. Schistosome cercariae as the<br />

probable cause <strong>of</strong> seabather's eruption. Bulletin <strong>of</strong><br />

Marine Science <strong>of</strong> the Gulf and Caribbean 2:346-<br />

359.<br />

. 1954. Metacercaria owreae n. sp. an unusual<br />

trematode larvae from the Florida Current. Chaetognaths.<br />

Bulletin <strong>of</strong> Marine Science <strong>of</strong> the Gulf<br />

and Caribbean 4:104-109.<br />

Odhner, T. 1911. Zum natiirlichen System dcr digenen<br />

Trematoden. Zoologischer Anzeiger 4:513—<br />

531.<br />

Margolis, L., G. W. Esch, J. C. Holmes, A. M. Kuris,<br />

and G. A. Schad. 1982. <strong>The</strong> use <strong>of</strong> ecological<br />

terms in parasitology. Journal <strong>of</strong> Parasitology 68:<br />

131-133.<br />

Suarez-Caabro, J. A. 1955. Quetognatos de los mares<br />

Cubanos. Memorias de la Sociedad Cubana de<br />

Historia Natural 22:125-180.<br />

J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 197-201<br />

Research Note<br />

New Host and Locality Records for Three Species <strong>of</strong> Glypthelmins<br />

(Digenea: Macroderoididae) in Anurans <strong>of</strong> Mexico<br />

U. RAZO-MENDIVIL,' J. P. LACLETTE,2 AND G. PEREZ-PONCE DE LEON1-3<br />

1 Laboratorio de Helmintologla, Institute de Biologfa, Universidad Nacional Autonoma de Mexico, Ap. Postal<br />

70-153, C.P. 04510, Mexico D.F., Mexico (e-mail: ppdleon@servidor.unam.mx), and<br />

2 Departamento de Inmunologia, Institute de Investigaciones Biomedicas, Universidad Nacional Autonoma de<br />

Mexico, Ap. Postal 70228, C.P. 04510, Mexico D.F., Mexico<br />

ABSTRACT: During an inventory <strong>of</strong> the helminth parasites<br />

<strong>of</strong> amphibians from several localities in Mexico,<br />

trematode parasites <strong>of</strong> the genus Glypthelmins from 5<br />

species <strong>of</strong> frogs were studied. Three species <strong>of</strong> Glypthelmins<br />

were collected from Rana montezumae, Rana<br />

dunni, Rana neovolcanica, Rana megapoda, and Rana<br />

vaillanti. New host and locality records for Glypthelmins<br />

quieta and Glypthelmins californiensis in anurans<br />

from Mexico are established, and we report Glvpthelmins<br />

facioi for the first time from R. vaillanti from Los<br />

Tuxtlas, Veracruz <strong>State</strong>. Diagnostic characters for each<br />

parasite species and sister-group relationships are presented.<br />

KEY WORDS: Digenea, Macroderoididae, Glypthelmins<br />

spp., anurans, systematics, frogs, Rana spp.,<br />

Mexico.<br />

' Corresponding author.<br />

<strong>The</strong> genus Glypthelmins was established by<br />

Stafford (1905) to include Distomum quietum<br />

Stafford, 1900, parasitic in Rana catesbeiana<br />

Shaw, 1802, Rana virescens Kalm, 1878, and<br />

Hyla pickeringll Holb, 1890, all from Canada.<br />

At the present time there is controversy about<br />

the species comprising the genus Glypthelmins,<br />

primarily because the original description <strong>of</strong> the<br />

type species <strong>of</strong> Glypthelmins was incomplete.<br />

This, and some degree <strong>of</strong> intraspecific morphological<br />

variability among some members <strong>of</strong> the<br />

genus, have led to taxonomic uncertainty concerning<br />

the species. This confusion has resulted<br />

in investigators creating nonphylogenetic<br />

groups, and some species that should be included<br />

in Glypthelmins were assigned to other gen-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


198 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Prevalence and mean abundance <strong>of</strong> 3 species <strong>of</strong> Glypthelmins in 5 species <strong>of</strong> frogs from Mexico.<br />

Glypthelmins<br />

califomiensis<br />

Host<br />

Local ity*<br />

Aft<br />

quieta<br />

facioi<br />

Rana montezumae<br />

Rana dunni<br />

Rana megapoda<br />

Rana neovolcanica<br />

Rana vaillanti<br />

CLE<br />

LZA<br />

LPA<br />

LCU<br />

MCO<br />

LAE<br />

89<br />

73<br />

18<br />

46<br />

34<br />

34<br />

330±/23.6§ (3.7)||<br />

273/46.6 (3.7)<br />

4/22.2 (1)<br />

—<br />

—<br />

—<br />

1034/39.3 (11.6)<br />

39/15 (3.5)<br />

180/50 (20)<br />

6/8.7 (0.13)<br />

231/31.7 (5.6)<br />

—<br />

—<br />

—<br />

—<br />

31/41.2 (0.91)<br />

:i: CLE = Cienaga de Lerma; LZA = Lago de Zacapu; LPA = Lago de Patzcuaro; LCU = Lago de Cuitzeo; MCO<br />

Manantiales de Cointzio; LAE = Laguna Escondida.<br />

t N = sample size.<br />

:|: Number <strong>of</strong> worms collected.<br />

§ Prevalence <strong>of</strong> infection (expressed as %).<br />

|| Mean abundance <strong>of</strong> infection (mean no. <strong>of</strong> worms per host examined).<br />

era such as Margeana Cort, 1919, Microderma<br />

Mehra, 1931, Choledocystus Pereira and Cuocolo,<br />

1941, Rauschiella Babero, 1951, Reynoldstrema<br />

Cheng, 1959, and Repandum Byrd and<br />

Maples, 1963 (Miller, 1930; Caballero, 1938;<br />

Cheng, 1959; Byrd and Maples, 1963). In Mexico,<br />

at least 4 species <strong>of</strong> the genus have been<br />

reported from frogs and toads: Glypthelmins califomiensis<br />

(Cort, 1919) Miller, 1930, Glypthelmins<br />

quieta (Stafford, 1900) Stafford, 1905,<br />

Glypthelmins intermedia (Caballero, Bravo, and<br />

Zerecero, 1944) Yamaguti, 1958 (=Choledocystus<br />

intermedia), and Glypthelmins tineri (Babero,<br />

1951) Brooks, 1977 (=Rauschiella tineri)<br />

(see Lamothe-Argumedo et al., 1997; Brooks,<br />

1977). As part <strong>of</strong> an ongoing inventory <strong>of</strong> the<br />

helminth parasites <strong>of</strong> amphibians from different<br />

localities in Mexico, we establish herein new<br />

host and locality records for 3 species <strong>of</strong> Glypthelmins.<br />

During this study, we examined the<br />

species <strong>of</strong> Glypthelmins deposited at the Coleccion<br />

Nacional de Helmintos (CNHE) and produced<br />

a revised list <strong>of</strong> hosts and species in Mexico.<br />

Between 1996 and 1997, individuals <strong>of</strong> 18<br />

species <strong>of</strong> frogs and toads were collected from<br />

9 localities in Mexico. Only at 5 <strong>of</strong> these localities<br />

(Cienaga de Lerma, Estado de Mexico<br />

[CLE], 19°17'N, 99°30'W; Lago de Patzcuaro,<br />

Michoacan [LPA], 19°30'N, 101°36'W; Lago de<br />

Zacapu, Michoacan [LZA], 19°49'N, 101°47'W;<br />

Manantiales de Cointzio, Michoacan [MCO],<br />

19°35'N, 101°14'W; and Laguna Escondida, Los<br />

Tuxtlas, Veracruz [LAE], 20°37'N, 98°12'W),<br />

and only in 5 <strong>of</strong> the 18 species <strong>of</strong> frogs and<br />

toads studied were several specimens <strong>of</strong> Glypthelmins<br />

recovered from the intestines <strong>of</strong> their<br />

hosts. Anurans were captured by hand, and in<br />


RESEARCH NOTES 199<br />

and an I- or Y-shaped excretory vesicle. Glypthelmins<br />

quieta is characterized by having 2<br />

groups <strong>of</strong> prominent peripharyngeal glands on<br />

each side <strong>of</strong> the pharynx extending to the cecal<br />

bifurcation, with gland ducts opening at the posterior<br />

border <strong>of</strong> the oral sucker. Vitelline follicles<br />

extend from the posterior border <strong>of</strong> the pharynx<br />

and occasionally from the midlevel <strong>of</strong> the esophagus,<br />

reaching far beyond the posterior border<br />

<strong>of</strong> the testes. In addition, G. quieta possesses<br />

cecal, intracecal, and extracecal uterine loops.<br />

<strong>The</strong> original description <strong>of</strong> G. californiensis<br />

by Cort (1919), based on live specimens, indicated<br />

the absence <strong>of</strong> peripharyngeal glands. We<br />

have studied specimens identified as G. californiensis<br />

from CNHE (nos. 3280-3284) and from<br />

the personal collection <strong>of</strong> Dr. Daniel Brooks<br />

from Rana aurora Baird and Girard, 1852, from<br />

British Columbia, Canada. <strong>The</strong>se specimens<br />

possess reduced peripharyngeal glands that surround<br />

the pharynx both ventrally and dorsally.<br />

Because the location <strong>of</strong> the holotype <strong>of</strong> this species<br />

is not known, we are unable to confirm this<br />

characteristic until a neotype is assigned and<br />

studied. However, our observations agree with<br />

those made by O'Grady (1987) who described<br />

G. californiensis from British Columbia, naming<br />

these glands as medial glands. Glypthelmins californiensis<br />

has vitelline follicles that extend anteriorly<br />

to the level <strong>of</strong> the posterior border <strong>of</strong> the<br />

pharynx and occasionally to the posterior border<br />

<strong>of</strong> the oral sucker with follicles confluent dorsally<br />

at the cecal bifurcation. <strong>The</strong> vitellaria extend<br />

to the posterior border <strong>of</strong> the testes. Uterine<br />

loops are completely intracecal. In contrast, G.<br />

facioi is characterized by lacking peripharyngeal<br />

glands, vitelline follicles extending anteriad<br />

from the cecal bifurcation just beyond the posterior<br />

border <strong>of</strong> the left testis, by having oblique<br />

rather than symmetric testes, cecal and intracecal<br />

uterine loops, and by having tegumentary spines<br />

that extend only along the anterior % <strong>of</strong> the<br />

body.<br />

<strong>The</strong>se 3 species <strong>of</strong> Glypthelmins constitute a<br />

monophyletic clade, according to the phylogenetic<br />

hypothesis proposed by Brooks (1977) and<br />

Brooks and McLennan (1993). Glypthelmins facioi<br />

is the sister species <strong>of</strong> the species pair G.<br />

quieta + G. californiensis. Glypthelmins facioi<br />

was originally described from R. pipiens Schreber,<br />

1782, from Costa Rica by Brenes et al.<br />

(1959), and later redescribed by Sullivan (1976).<br />

Herein, we report G. facioi for the first time<br />

from Mexico, thus establishing a new host and<br />

locality record. Based on previous geographical<br />

records, this species is apparently restricted to<br />

the neotropics. Glypthelmins quieta, the type<br />

species <strong>of</strong> the genus, is widely distributed in<br />

North America, including the eastern U.S.A.,<br />

Canada, and Central Mexico, parasitizing at<br />

least 21 species <strong>of</strong> anurans in 5 genera (Acris<br />

Dumeril and Bibron, 1841, Bufo Laurenti, 1768,<br />

Hyla Laurenti, 1768, Pseudacris Fitzinger, 1843,<br />

and Rana Linnaeus, 1758). In Mexico, this species<br />

was previously recorded from R. montezumae<br />

from Xochimilco and Texcoco lakes, both<br />

in the vicinity <strong>of</strong> Mexico City (Lamothe-Argumedo<br />

et al., 1997). In this report we add 4 new<br />

locality records (CLE, LPA, LZA, MCO), and 3<br />

host records, all belonging to the R. pipiens<br />

complex (leopard frogs) including R. dunni, R.<br />

neovolcanica, and R. megapoda.<br />

Glypthelmins californiensis also occurs in the<br />

Nearctic Region but has a different geographic<br />

distribution than the type species; it occurs in<br />

North America, but is known only from 6 species<br />

<strong>of</strong> Rana and 1 species <strong>of</strong> Hyla. Its range<br />

extends through the western U.S.A. and Canada,<br />

converging with G. quieta in frogs from the central<br />

region <strong>of</strong> Mexico in localities <strong>of</strong> the Transverse<br />

Neovolcanic Axis, at the boundary between<br />

the Nearctic and Neotropical biogeographic<br />

zones. Previously, this species was reported<br />

in Mexico from R. montezumae and R.<br />

pipiens from Mexico City and Lerma (Caballero,<br />

1942; Caballero and Sokol<strong>of</strong>f, 1934; Leon-<br />

Regagnon, 1992) and from R. dunni from Lake<br />

Patzcuaro (Pulido, 1994). Herein, we establish<br />

Lake Zacapu as a new locality record for G. californiensis.<br />

Guillen (1992) recorded G. californiensis<br />

as a parasite <strong>of</strong> Rana berlandieri Baird,<br />

1854, and R. vaillanti from Los Tuxtlas, Veracruz<br />

<strong>State</strong>. We examined specimens deposited at<br />

the CNHE (no. 1514, 5 specimens). Based on<br />

our diagnoses <strong>of</strong> the 3 species, we believe these<br />

were misidentified because in them the vitellaria<br />

extend anteriorly to the level <strong>of</strong> cecal bifurcation,<br />

and posteriorly they extend to the posterior<br />

border <strong>of</strong> the testes. <strong>The</strong> specimens do have<br />

oblique testes, and the uterine loops are intraand<br />

extracecal. In our opinion, they are G. facioi.<br />

As can be generally expected, the close phylogenetic<br />

relationship between G. quieta and G.<br />

californiensis (see Brooks, 1977; Brooks and<br />

McLennan, 1993) determines some degree <strong>of</strong><br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


200 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 2. Species <strong>of</strong> Glypthelmins recorded from anurans from Mexico.<br />

Species<br />

Host<br />

Locality<br />

Reference<br />

Glypthelmins califomiensis*<br />

Glypthelmins facial*<br />

Glypthelmins intermedia']"^<br />

Glypthelmins quieta*<br />

Glypthelmins tineri*<br />

* Intestine.<br />

t Liver.<br />

$ Gall bladder.<br />

§ Bile ducts.<br />

|| Locality not determined.<br />

Rana montezumae,<br />

Rana pipiens<br />

R. montezumae, R.<br />

pipiens<br />

Rana dunni<br />

Rana vaillanti, Rana<br />

berlandieri<br />

Bufo marinus<br />

R. dunni<br />

Rana megupoda<br />

Rana neovolcanica<br />

R. montezumae<br />

"Green frog"<br />

Mexico, Distrito Federal<br />

Xochimilco, Distrito Federal<br />

Cienaga de Lerma, Estado de Mexico<br />

Lago de Patzcuaro, Michoacan<br />

Lago de Zacapu, Michoacan<br />

Laguna Escondida, "Los Tuxtlas",<br />

Veracruz<br />

Rio Huixtla, Chiapas<br />

Tuxtepec, Oaxaca<br />

Lago de Patzcuaro and Lago de Zacapu,<br />

Michoacan<br />

Lago de Cuitzeo, Michoacan<br />

Manantiales de Cointzio, Michoacan<br />

Cienaga de Lerma, Estado de Mexico<br />

San Pedro Tlaltizapan, Estado de<br />

Mexico<br />

Xochimilco, Distrito Federal and Texcoco,<br />

Estado de Mexico<br />

Mexico||<br />

Caballero and Sokol<strong>of</strong>f ( 1 934)<br />

Caballero (1942)<br />

Pulido (1994)<br />

This work<br />

This work; Guillen (1992)<br />

Caballero et al. (1944)<br />

Bravo (1948)<br />

This work<br />

This work<br />

This work<br />

This work<br />

Leon-Regagnon ( 1 992)<br />

Lamothe-Argumedo et al.<br />

(1997)<br />

Babero ( 1 95 1 )<br />

morphological similarity. Detailed examination<br />

<strong>of</strong> diagnostic characters allowed us to review the<br />

taxonomic status <strong>of</strong> species <strong>of</strong> Glypthelmins deposited<br />

at the CNHE. We examined specimens<br />

from the following lots: lot no. 1561 representing<br />

10 specimens from R. dunni from Lake Patzcuaro,<br />

identified by Pulido (1994) and labeled as<br />

G. calif orniensis (1 individual is actually G.<br />

quieta); lot no. 1461, represented by 8 specimens<br />

from R. montezumae identified by Leon-<br />

Regagnon (1992) from Lerma, and labeled as G.<br />

californiensis, are G. quieta; lot no. 1181, 17<br />

specimens from R. montezumae from Lerma,<br />

collected and identified by Caballero (1942); and<br />

lot no. 2495, represented by 8 specimens from<br />

R. montezumae from Lake Xochimilco, identified<br />

by Dr. Eduardo Caballero, were correctly<br />

identified as G. californiensis; lots no. 1562 (3<br />

specimens) and 1563 (4 specimens), from R.<br />

montezumae from Lake Xochimilco and Lake<br />

Texcoco, respectively, were correctly identified<br />

as G. quieta.<br />

In Table 2, we present an updated and revised<br />

list <strong>of</strong> species <strong>of</strong> Glypthelmins in anurans from<br />

Mexico. Adding previous records to the results,<br />

we conclude the genus Glypthelmins is currently<br />

represented in Mexico by 5 species (G. quieta,<br />

G. calif orniensis, G. facioi, G. intermedia, and<br />

G. tineri) from at least 7 species <strong>of</strong> Rana and 1<br />

species <strong>of</strong> Bufo. <strong>The</strong> most common <strong>of</strong> these are<br />

G. californiensis and G. quieta, both found in<br />

different species <strong>of</strong> frogs in localities <strong>of</strong> the<br />

Mesa Central <strong>of</strong> Mexico. Whether or not these<br />

are all the species <strong>of</strong> Glypthelmins that occur in<br />

anurans from Mexico will be determined once<br />

further research on the helminth fauna <strong>of</strong> different<br />

species <strong>of</strong> amphibians in the country is finished.<br />

<strong>The</strong> species composition <strong>of</strong> the genus Glypthelmins,<br />

as well as its taxonomic position and<br />

relationships to other closely related genera, are<br />

still uncertain. Yamaguti (1971) recognized 23<br />

valid species; Brooks (1977) in his phylogenetic<br />

analysis <strong>of</strong> species <strong>of</strong> Glypthelmins, considered<br />

19 species to be valid. Prudhoe and Bray (1982)<br />

proposed that some species, allocated originally<br />

to other genera, should be transferred to Glypthelmins,<br />

and then included 27 species in the genus.<br />

A complete revision <strong>of</strong> the genus is necessary<br />

to clarify the taxonomic composition <strong>of</strong><br />

this group <strong>of</strong> parasites as well as to update the<br />

phylogenetic hypotheses <strong>of</strong> Brooks (1977) and<br />

Brooks and McLennan (1993). We are currently<br />

obtaining DNA sequences <strong>of</strong> 18S ribosomal<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


201<br />

genes as an additional source <strong>of</strong> characters. Preliminary<br />

results show an agreement <strong>of</strong> sistergroup<br />

relationships among the 3 species discussed<br />

here.<br />

We thank Luis Garcia, Agustm Jimenez, Berenit<br />

Mendoza, and Angelica Sanchez for their<br />

help collecting specimens, and Dr. Virginia Leon<br />

(CNHE) and Dr. Scott L. Gardner (HWML) for<br />

critical reviews <strong>of</strong> the manuscript. <strong>The</strong> critical<br />

reviews and comments made by 2 anonymous<br />

reviewers are appreciated. We gratefully acknowledge<br />

Dr. Daniel Brooks (University <strong>of</strong> Toronto)<br />

for the loan <strong>of</strong> specimens <strong>of</strong> Glypthelmins<br />

from his personal collection. This study was<br />

funded by the Program PAPIIT-UNAM nos.<br />

IN201396 and IN219198, and CONACYT 2676<br />

PN to G.P.P.L., and CONACYT LOO42-M9607<br />

and PAPIIT-UNAM IN-207195 to J.P.L.<br />

Literature Cited<br />

Babero, B. B. 1951. Rauschiella tineri n. g., n. sp. a<br />

trematode (Plagiorchiinae) from a frog. Journal <strong>of</strong><br />

Parasitology 37:560-562.<br />

Bravo, H. M. 1948. Descripcion de dos especies de<br />

trematodos parasites de Bufo marinus L. procedentes<br />

de Tuxtepec, Oaxaca. Anales del Institute<br />

de Biologfa, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 19:153-161.<br />

Brenes, M. R., G. S. Arroyo, O. Jimenez-Quiroz,<br />

and E. Delgado-Flores. 1959. Algunos trematodos<br />

de Rana pipiens. Descripcion de Glypthelmins<br />

facioi n. sp. Revista de Biologfa Tropical 72:191-<br />

197.<br />

Brooks, R. D. 1977. Evolutionary history <strong>of</strong> some plagiorchioid<br />

trematodes <strong>of</strong> anurans. Systematic Zoology<br />

26:277-289.<br />

, and D. McLennan. 1993. Parascript: Parasites<br />

and the Language <strong>of</strong> Evolution. Smithsonian<br />

Institution Press, <strong>Washington</strong>, D.C. 429 pp.<br />

Byrd, E. E., and W. P. Maples. 1963. <strong>The</strong> glypthelminths<br />

(Trematoda: Digenea), with a redescription<br />

<strong>of</strong> one species and the erection <strong>of</strong> a new genus.<br />

Zeitschrift fur Parasitenkunde 22:521-536.<br />

Caballero, C. E. 1938. Contribucion al conocimiento<br />

de la helmint<strong>of</strong>auna de Mexico. Tesis Doctoral,<br />

Facultad de Filos<strong>of</strong>fa y Estudios Superiores, Universidad<br />

Nacional Autonoma de Mexico. 149 pp.<br />

. 1942. Trematodos de las ranas de la Cienaga<br />

de Lerma, Estado de Mexico. III. Redescripcion<br />

de una forma norteamericana de Haematotoechus<br />

y algunas consideraciones sobre Glypthelmins californiensis<br />

(Cort, 1919). Anales del Institute de<br />

Biologfa, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 13:71—79.<br />

, M. H. Bravo, and C. Zerecero. 1944. Estudios<br />

helmintologicos de la region oncocercosa de<br />

Mexico y de la Republica de Guatemala. Trematoda<br />

I. Anales del Instituto de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie Zoologia<br />

15:59-72.<br />

, and D. Sokol<strong>of</strong>f. 1934. Tercera contribucion<br />

al conocimiento de la parasitologfa de Rana montezumae.<br />

Anales del Instituto de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie Zoologia<br />

5:337-340.<br />

Cheng, T. C. 1959. Studies on the trematode family<br />

Brachycoeliidae, II. Revision <strong>of</strong> the genera Glypthelmins<br />

(Stafford, 1900) Stafford, 1905, and Margeana<br />

Cort, 1919; and the description <strong>of</strong> Reynoldstrema<br />

n. g. (Glypthelminae, n. subfam.). American<br />

Midland Naturalist 61:68-88.<br />

Cort, W. W. 1919. A new distome from Rana aurora.<br />

University <strong>of</strong> California Publications in Zoology<br />

8:283-298.<br />

Guillen, H. S. 1992. Comunidades de helmintos de<br />

algunos anuros de "Los Tuxtlas", Veracruz. Master's<br />

<strong>The</strong>sis, Facultad de Ciencias, Universidad<br />

Nacional Autonoma de Mexico. 90 pp.<br />

Lamothe-Argumedo, R., L. Garcia-Prieto, D. Osorio-Sarabia,<br />

and G. Perez-Ponce de Leon. 1997.<br />

Catalogo de la Coleccion Nacional de Helmintos.<br />

Instituto de Biologfa, Universidad Nacional Autonoma<br />

de Mexico, CONABIO, Mexico. 211 pp.<br />

Leon-Regagnon, V. 1992. Fauna helmintologica de<br />

algunos vertebrados acuaticos de la Cienaga de<br />

Lerma, Estado de Mexico. Anales del Instituto de<br />

Biologfa, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 63:151-153.<br />

Miller, E. L. 1930. Studies on Glypthelmins quieta<br />

Stafford. Journal <strong>of</strong> Parasitology 16:237-243.<br />

O'Grady, R. T. 1987. Phylogenetic systematics and<br />

the evolutionary history <strong>of</strong> some intestinal flatworm<br />

parasites (Trematoda: Digenea: Plagiorchioidea)<br />

<strong>of</strong> anurans. Ph.D. <strong>The</strong>sis, University <strong>of</strong><br />

British Columbia, Vancouver, B.C., Canada. 210<br />

pp.<br />

Prudhoe, S., and R. A. Bray. 1982. Platyhehninth<br />

parasites <strong>of</strong> the Amphibia. Oxford University<br />

Press, Great Britain. 217 pp.<br />

Pulido, F. G. 1994. Helmintos de Rana dunni, especie<br />

endemica del Lago de Patzcuaro, Michoacan,<br />

Mexico. Anales del Instituto de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie Zoologfa<br />

65:205-207.<br />

Stafford, J. 1905. Trematodes from Canadian vertebrates.<br />

Zoologischer Anzeiger 28:681-694.<br />

Sullivan, J. J. 1976. <strong>The</strong> trematode genus Glypthelmins<br />

Stafford, 1905 (Plagiorchioidea: Macrodcroididae)<br />

with a redescription <strong>of</strong> G. facioi from<br />

Costa Rican frogs. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 43:116-125.<br />

Yamaguti, S. 1971. Synopsis <strong>of</strong> Digenetic Trematodes<br />

<strong>of</strong> Vertebrates I. Keigaku Publishing Co., Tokyo,<br />

Japan. 1,074 pp.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 202-205<br />

Research Note<br />

Radiographic Imaging <strong>of</strong> the Rat Tapeworm, Hymenolepis diminuta<br />

KIMBERLY M. DEINES, DENNIS J. RICHARDSON,' GERALD CONLOGUE, RONALD G. BECKETT,<br />

AND DAN M. HOLIDAY<br />

<strong>The</strong> Bioanthropology Research Institute at Quinnipiac <strong>College</strong>, Quinnipiac <strong>College</strong>, 275 Mount Carmel<br />

Avenue, Hamden, Connecticut 06518, U.S.A.<br />

ABSTRACT: <strong>The</strong> model <strong>of</strong> Hymenolepis diminuta Rudolphi<br />

in laboratory rats was used to investigate potential<br />

applications <strong>of</strong> radiographic imaging in the diagnosis<br />

and/or study <strong>of</strong> tapeworm infections. Radiographic<br />

imaging successfully demonstrated the presence<br />

<strong>of</strong> H. diminuta in the rat intestine in the presence<br />

<strong>of</strong> a water-soluble iodinated radiographic contrast medium,<br />

Gastrografin®. Even single worms and small<br />

segments <strong>of</strong> proglottids could be detected. Optimal imaging<br />

was achieved with an exposure factor <strong>of</strong> 3.75<br />

mAs at 54 kVp with mammography film. Visualization<br />

was improved by fasting the rat host to effect the elimination<br />

<strong>of</strong> food and fecal shadows. Elaboration <strong>of</strong> this<br />

methodology may prove useful in basic research and<br />

the incidental diagnosis <strong>of</strong> human tapeworm infection<br />

by permitting rapid diagnosis <strong>of</strong> prepatent infection,<br />

thereby providing a useful tool in efficacy testing <strong>of</strong><br />

anthelmintics when assessing prepatent success and<br />

temporal aspects <strong>of</strong> drug activity.<br />

KEY WORDS: radiographic imaging, tapeworm, Cestoda,<br />

Hymenolepis diminuta, laboratory rat, diagnosis,<br />

Gastrografin, x-ray.<br />

Hymenolepis diminuta Rudolphi, 1819, is a<br />

cosmopolitan tapeworm <strong>of</strong> rats that occasionally<br />

infects humans. A closely related species, Hymenolepis<br />

nana Siebold, 1852 (syn. Vampirolepis<br />

nana (Siebold, 1852) Spassky, 1954), is one<br />

<strong>of</strong> the world's most common tapeworms and is<br />

especially prevalent among children, with prevalences<br />

<strong>of</strong> up to 97.3% having been reported<br />

among humans (Roberts and Janovy, 1996). Although<br />

light infections <strong>of</strong> H. nana are asymptomatic,<br />

heavy infections may be characterized<br />

by abdominal pain, diarrhea, headache, dizziness,<br />

anorexia, and various other nonspecific<br />

symptoms characteristic <strong>of</strong> intestinal cestodiasis<br />

(Markell et al., 1999). Sehr (1974) indicated that<br />

roentgenological recognition <strong>of</strong> Hymenolepis<br />

spp. in humans is relatively difficult and that radiographic<br />

findings are mostly negative or that<br />

1 Corresponding author<br />

(e-mail: richardson@quinnipiac.edu).<br />

202<br />

only nonpathognomonic changes can be seen in<br />

the mucosal pattern <strong>of</strong> the intestine. Gold and<br />

Meyers (1977) reported the radiographic diagnosis<br />

<strong>of</strong> a human infection with the beef tapeworm,<br />

Taenia saginata Goeze, 1782, in the<br />

small intestine <strong>of</strong> a 34 year old male patient.<br />

Following a barium enema, "small bowel examination<br />

clearly outlined an intraluminal, essentially<br />

continuous linear filling defect in the<br />

distal jejunum and ileum extending into the<br />

proximal descending colon" (Gold and Meyers<br />

1977, p. 493). In this instance, the worm extended<br />

into the proximal descending colon. It<br />

was concluded that tapeworm infection may be<br />

initially recognized on barium enema study. Unfortunately,<br />

barium enema studies would seldom<br />

be expected to be <strong>of</strong> great value in diagnosis<br />

because tapeworms are normally restricted to the<br />

small intestine. Aside from this information, little<br />

is known about radiographic imaging <strong>of</strong> tapeworm<br />

infections and, specifically, infection with<br />

Hymenolepis spp., although infections with other<br />

helminth species such as Schistosoma haematobium<br />

(Bilharz, 1852) Weinland, 1858, Ancylostoma<br />

duodenale (Dubini, 1843) Creplin,<br />

1845, and Ascaris lumbricoides Linnaeus, 1758,<br />

are sometimes diagnosed in the course <strong>of</strong> routine<br />

radiographic examination (Reeder and Palmer,<br />

1989). We utilized the laboratory model <strong>of</strong> Hymenolepis<br />

diminuta in rats to investigate potential<br />

applications <strong>of</strong> radiographic imaging in the<br />

diagnosis and/or study <strong>of</strong> Hymenolepis spp. <strong>The</strong><br />

goals <strong>of</strong> this study were to determine whether<br />

infection <strong>of</strong> H. diminuta in rats can be diagnosed<br />

using radiography, to determine the optimal<br />

methodology for visualization <strong>of</strong> worms, and to<br />

determine what information can be obtained<br />

from radiographs <strong>of</strong> infected animals.<br />

Laboratory infection <strong>of</strong> rats was accomplished<br />

by feeding 3 female Wistar rats 10, 10, and 30<br />

cysticercoids, respectively, <strong>of</strong> H. diminuta taken<br />

from our laboratory colony <strong>of</strong> the grain beetle,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 203<br />

Tenebrio molitar Linnaeus, 1758. Radiographic<br />

studies were conducted at 21 days postinfection.<br />

Baseline methodologies were established using<br />

an uninfected control rat. Each rat was lightly<br />

anesthetized with the inhalation anesthesia Halothane®<br />

(Halocarbon Laboratories, River Edge,<br />

New Jersey), and a 1.5 cc bolus <strong>of</strong> a water-soluble<br />

iodinated radiographic contrast medium,<br />

diatrizoate meglumine sodium solution (Gastrografin®;<br />

Squibb Diagnostics, Princeton, New<br />

Jersey), was administered through a 6 French<br />

teflon catheter inserted into the rat's stomach. X-<br />

rays were taken at various exposure factors and<br />

with various films to determine the optimal radiographic<br />

technique. Optimal imaging was<br />

achieved with an exposure factor <strong>of</strong> 3.75 mAs<br />

at 54 kVp with Kodak Min-R® single-emulsion<br />

mammography film. <strong>The</strong> rat was placed in a<br />

posterior-anterior or dorsal-ventral position and<br />

x-rays were taken at 5-min intervals to establish<br />

the length <strong>of</strong> time required for the contrast medium<br />

to reach the ileocecal junction. By 30 min,<br />

Gastrografin had filled the entire small intestine.<br />

Food material and fecal shadows were evident<br />

in the control rat. Next, Gastrografin was administered<br />

to Rat I, which had been fed 10 cysticercoids.<br />

At 30 min, posterior-anterior and lateral<br />

x-rays were taken. Based on the lateral projections,<br />

worms were evident in the anterior portion<br />

<strong>of</strong> the small intestine (Fig. 1). Rat I was<br />

killed in a carbon dioxide chamber, and the entire<br />

gastrointestinal tract, excluding the esophagus,<br />

was removed, coiled onto a mammography<br />

cassette, and x-rayed. From the x-ray, predictions<br />

were made concerning the position and relative<br />

abundance <strong>of</strong> worms. <strong>The</strong> intestine was<br />

then longitudinally dissected and the locations <strong>of</strong><br />

the 10 adult tapeworms were noted and compared<br />

to the predictions. It was concluded that<br />

even in the presence <strong>of</strong> food in the intestine,<br />

infection can be diagnosed and inference made<br />

regarding the location and relative abundance <strong>of</strong><br />

worms.<br />

Twenty-four hours after administration <strong>of</strong><br />

Gastrografin to another infected rat, x-rays were<br />

taken to determine whether the contrast medium<br />

was taken up by or had adhered to the worms,<br />

thereby creating an outline <strong>of</strong> the worms in the<br />

alimentary canal, as may be the case with A.<br />

lumbricoides (Reeder and Palmer, 1989). Worms<br />

could not be visualized in x-rays <strong>of</strong> the small<br />

intestine when Gastrografin was lacking, suggesting<br />

that worms do not absorb the contrast<br />

medium. This is consistent with the observations<br />

<strong>of</strong> Gold and Meyers (1977) regarding human infection<br />

with T. saginata in association with a<br />

barium enema.<br />

To determine whether fasting would improve<br />

the conditions for visualization <strong>of</strong> worms, rats<br />

were not fed for 24 hr prior to the administration<br />

<strong>of</strong> Gastrografin and radiographic examination<br />

using the methodologies outlined above. After<br />

fasting, the control rat exhibited gas bubbles, but<br />

food and fecal shadows were lacking. Radiologic<br />

examination <strong>of</strong> Rat II, which had been fed 10<br />

cysticercoids, revealed that visualization <strong>of</strong><br />

worms was improved by fasting because <strong>of</strong> the<br />

elimination <strong>of</strong> food and fecal shadows. <strong>The</strong> posterior-anterior<br />

projection <strong>of</strong> Rat II is shown in<br />

Figure 2. Interestingly, x-rays suggested that<br />

worms were present in the cecum. Postmortem<br />

examination confirmed this x-ray finding. <strong>The</strong><br />

rat was killed and the intestine was removed and<br />

coiled onto a mammography cassette. Based on<br />

the x-ray (Fig. 3), predictions were made concerning<br />

the position and relative abundance <strong>of</strong><br />

worms. <strong>The</strong> intestine was longitudinally dissected<br />

and the numbers and locations <strong>of</strong> worms were<br />

confirmed. <strong>The</strong> procedure was repeated with Rat<br />

III, which had been fed 30 cysticercoids. Even<br />

small sections <strong>of</strong> proglottids could be detected<br />

in the large intestine.<br />

We have shown that radiographic imaging can<br />

successfully demonstrate the presence <strong>of</strong> H.<br />

diminuta in the rat intestine. It is possible that<br />

these findings can be extended to human infections<br />

<strong>of</strong> H. nana. If so, this could be useful in<br />

the incidental diagnosis <strong>of</strong> human infection in<br />

the course <strong>of</strong> routine radiographic imaging. This<br />

could be especially valuable in areas <strong>of</strong> high parasite<br />

prevalence, such as Moscow, where prevalences<br />

as high as 97.3% have been reported<br />

(Karnaukov and Laskovenko, 1984; see Roberts<br />

and Janovy, 1996). Because <strong>of</strong> the size differences<br />

<strong>of</strong> the hosts and the worms, more information<br />

concerning the radiographic imaging <strong>of</strong><br />

Hymenolepis spp. in humans is warranted to better<br />

define the radiographic presentation <strong>of</strong> human<br />

infection and the utility <strong>of</strong> this methodology<br />

in diagnosis.<br />

In addition to potential human clinical applications,<br />

this technique provides rapid diagnosis<br />

<strong>of</strong> prepatent infection without having to kill the<br />

animal. This may prove useful in studying the<br />

basic biology <strong>of</strong> H. diminuta, which exhibits<br />

complex emigrations and migrations within the<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


204 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 1-3. Radiographic imaging <strong>of</strong> Hymenolepis diminuta. Scale is actual size. 1. Lateral projection<br />

<strong>of</strong> Rat I showing infection <strong>of</strong> Hymenolepis diminuta. Arrows indicate aggregation <strong>of</strong> worms in the small<br />

intestine. 2. Posterior-anterior projection <strong>of</strong> Rat II showing infection <strong>of</strong> Hymenolepis diminuta. Arrows<br />

indicate worms in cecum. 3. Radiograph <strong>of</strong> intestine removed from Rat II, showing infection <strong>of</strong> Hymenolepis<br />

diminuta. Arrows indicate worms in a substantial portion <strong>of</strong> the small intestine.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 205<br />

rat intestine (Mettrick and Podesta, 1974). This<br />

may also be a useful tool in efficacy testing <strong>of</strong><br />

anthelmintics when assessing prepatent success<br />

and temporal aspects <strong>of</strong> drug activity.<br />

Literature Cited<br />

Gold, B. M., and M. A. Meyers. 1977. Radiologic<br />

manifestations <strong>of</strong> Taenia saginata infestation.<br />

American Journal <strong>of</strong> Roentgenology 128:493-<br />

494.<br />

Karnaukov, V. K., and A. I. Laskovenko. 1984.<br />

Clinical picture and treatment <strong>of</strong> rare human helminthiasis<br />

(Hymenolepis diminuta and Dipylidium<br />

caninum). Meditsinskaya Parazitologiya i Parasitarnye<br />

Bolezni 4:77-79.<br />

Markell, E. K., D. T. John, and W. A. Krotoski.<br />

1999. Markell and Voge's Medical Parasitology,<br />

8th ed. W. B. Saunders Co., Philadelphia, Pennsylvania.<br />

501 pp.<br />

Mettrick, D. F., and R. B. Podesta. 1974. Ecological<br />

and physiological aspects <strong>of</strong> helminth—host interactions<br />

in the mammalian gastrointestinal canal.<br />

Advances in Parasitology 12:183-278.<br />

Reeder, M. M., and P. E. S. Palmer. 1989. Infections<br />

and infestations. Pages 1475-1542 in A. R. Margulis<br />

and H. J. Burhenne, eds. Alimentary Tract<br />

Radiology, 4th ed. C. V. Mosby, St. Louis, Missouri.<br />

Roberts, L. S., and J. Janovy, Jr. 1996. Gerald D.<br />

Schmidt and Larry S. Roberts' Foundations <strong>of</strong><br />

Parasitology, 5th ed. Wm. C. Brown Publishers,<br />

Dubuque, Iowa. 659 pp.<br />

Sehr, M. A. 1974. <strong>The</strong> radiology <strong>of</strong> parasitic diseases.<br />

Acta Universitatis Carolinae Medica, Monographia<br />

LXIII, Universita Karlova, Praha (Charles<br />

University, Prague). 119 pp.<br />

J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 205-208<br />

Research Note<br />

Helminths <strong>of</strong> Two Lizards, Barisia imbricata and Gerrhonotus<br />

ophiurus (Sauria: Anguidae), from Mexico<br />

STEPHEN R. GOLDBERG,1-4 CHARLES R. BuRSEY,2 AND JOSE L. CAMARiLLO-RANGEL3<br />

1 Department <strong>of</strong> Biology, Whittier <strong>College</strong>, Whittier, California 90608, U.S.A. (e-mail:<br />

sgoldberg@whittier.edu),<br />

2 Department <strong>of</strong> Biology, Pennsylvania <strong>State</strong> University, Shenango Campus, Sharon, Pennsylvania 16146,<br />

U.S.A. (e-mail: cxbl3@psuvm.psu.edu), and<br />

' Laboratorio y Coleccion de Herpetologfa, Conservacion y Mejoramiento del Ambiente, Escuela Nacional de<br />

Estudios Pr<strong>of</strong>esionales Iztacala, Universidad Nacional Autonoma de Mexico, A.P. 314, Tlalnepantla, Estado de<br />

Mexico, Mexico (e-mail: herpetol@servidor.unam.mx)<br />

ABSTRACT: <strong>The</strong> gastrointestinal tracts <strong>of</strong> 37 Barisia<br />

imbricata (Wiegmann) and 54 Gerrhonotus ophiurus<br />

Cope from Mexico were examined for helminths. <strong>The</strong><br />

helminth fauna <strong>of</strong> B. imbricata consisted <strong>of</strong> 4 species<br />

<strong>of</strong> nematodes: Cosrnocercoides variabilis (Harwood),<br />

Oswaldocruzia pipicns Walton, Physaloptera retusa<br />

Rudolphi, and Raillietnema brachyspiculatum Bursey,<br />

Goldberg, Salgado-Maldonado, and Mendez-de la<br />

Cruz. Gerrhonotus ophiurus harbored 1 trematode species,<br />

Brachycoelium salamandrae (Frolich), and 2<br />

nematode species, Cosrnocercoides variabilis and Physaloptera<br />

retusa. All represent new host records. With<br />

the exception <strong>of</strong> R. brachyspiculatum, all these helminths<br />

are generalists, which are widely distributed in<br />

other amphibian and reptile hosts.<br />

KEY WORDS: lizards, Sauria, Barisia imbricata,<br />

Gerrhonotus ophiurus, Anguidae, Trematoda, Brachy-<br />

4 Corresponding author.<br />

coelium salamandrae, Nematoda, Cosmocercoides<br />

variabilis, Oswaldocruzia pipiens, Physaloptera retusa,<br />

Raillietnema brachyspiculatum, Mexico.<br />

Barisia imbricata (Wiegmann, 1828) occurs<br />

in highland pine forests throughout Mexico west<br />

<strong>of</strong> the Isthmus <strong>of</strong> Tehuantepec (Good, 1988).<br />

Gerrhonotus ophiurus Cope, 1866, occurs in the<br />

Mexican states <strong>of</strong> Hidalgo, Puebla, San Luis Potosi,<br />

and Veracruz (Good, 1994). <strong>The</strong>re are, to<br />

our knowledge, no reports <strong>of</strong> helminths from<br />

these species. We report here the helminths from<br />

populations <strong>of</strong> B. imbricata and G. ophiurus.<br />

Thirty-seven B. imbricata deposited in the<br />

herpetology collection (ENEPI) <strong>of</strong> the Escuela<br />

Nacional de Estudios Pr<strong>of</strong>esionales Iztacala,<br />

Universidad Nacional Autonoma de Mexico<br />

(UNAM) were examined: 23 from Estado de<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


206 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Mexico, snout-vent length (SVL) =104 mm ±<br />

14.8 SD, range = 68-124 mm, ENEPI numbers<br />

11, 12, 393, 616, 699, 730, 3873, 3874 (collected<br />

1984-1985) and 4939, 5436, 5587-5591,<br />

6333-6340 (collected 1990-1991); 14 from Hidalgo,<br />

SVL = 89 mm ± 20.5 SD, range = 61-<br />

123 mm, ENEPI numbers 4321, 4834-4836,<br />

5841-5850 (collected 1990-1991). Fifty-four G.<br />

ophiurus, SVL = 112 mm ± 12 SD, range =<br />

80-136 mm, were collected near San Antonio<br />

Ixtatetla, Municipio de Huayacocotla, Veracruz,<br />

(20°43'N, 98°22'W) during 1991, ENEPI numbers<br />

6252-6262, 6264-6295, 6297-6303, 6305,<br />

6306, 6308, 6309.<br />

<strong>The</strong> abdominal cavities were opened and the<br />

gastrointestinal tracts were excised by cutting<br />

across the esophagus and rectum. <strong>The</strong> digestive<br />

tracts were each slit longitudinally and examined<br />

under a dissecting microscope. Each helminth<br />

was removed to a drop <strong>of</strong> undiluted glycerol on<br />

a glass slide for study; trematodes were regressively<br />

stained with hematoxylin and mounted in<br />

Canada balsam.<br />

Because a statistically significant difference<br />

was found for the SVL between the Estado de<br />

Mexico and Hidalgo populations <strong>of</strong> B. imbricata<br />

(Kruskal-Wallis test = 4.87, 1 df, P < 0.05) and<br />

because <strong>of</strong> community similarity differences<br />

(Jaccard's coefficient, 0.75; Morisita's index,<br />

0.73), data for the 2 populations were not combined.<br />

<strong>The</strong> helminth fauna <strong>of</strong> the Estado de<br />

Mexico population <strong>of</strong> B. imbricata consisted <strong>of</strong><br />

3 species <strong>of</strong> nematodes: Cosmocercoides variabilis<br />

(Harwood, 1930), Oswaldocruzia pipiens<br />

Walton, 1929, and Raillietnema brachyspiculatum<br />

Bursey, Goldberg, Salgado-Maldonado, and<br />

Mendez-de la Cruz, 1998. <strong>The</strong> helminth fauna<br />

<strong>of</strong> the Hidalgo population <strong>of</strong> B. imbricata consisted<br />

<strong>of</strong> 4 species <strong>of</strong> nematodes: C. variabilis,<br />

O. pipiens, Physaloptera retusa Rudolphi, 1819,<br />

and R. brachyspiculatum. Helminths <strong>of</strong> G.<br />

ophiurus consisted <strong>of</strong> 1 species <strong>of</strong> trematode,<br />

Brachycoelium salamandrae (Frolich, 1789),<br />

and 2 species <strong>of</strong> nematodes, C. variabilis and P.<br />

retusa, all representing new host and locality records.<br />

Terminology is in accordance with Bush<br />

et al. (1997). Representative specimens were<br />

placed in vials <strong>of</strong> 70% ethanol and deposited in<br />

the U.S. National Parasite Collection, Beltsville,<br />

Maryland (USNPC): Barisia imbricata: Cosmocercoides<br />

variabilis, USNPC 88291; Oswaldocruzia<br />

pipiens, USNPC 99292; Physaloptera<br />

retusa, USNPC 88293; Raillietnema brachyspiculatum,<br />

USNPC 88294. Gerrhonotus ophiurus:<br />

Brachycoelium salamandrae, USNPC 87245;<br />

Cosmocercoides variabilis, USNPC 87246; Physaloptera<br />

retusa, USNPC 87247. Helminths<br />

from Barisia imbricata were also deposited in<br />

the Coleccion Nacional de Helmintos (CNHE),<br />

Instituto de Biologia de la Universidad Nacional<br />

Autonoma de Mexico, Mexico, Distrito Federal,<br />

Mexico: Cosmocercoides variabilis, CNHE<br />

3384; Oswaldocruzia pipiens, CNHE 3387; Physaloptera<br />

retusa, CNHE 3385; Raillietnema brachyspiculatum,<br />

CNHE 3386.<br />

<strong>The</strong> number <strong>of</strong> infected lizards, number <strong>of</strong><br />

helminths, prevalence, mean intensity ± SD, and<br />

range and mean abundance ± SD are presented<br />

in Table 1. Both lizard species harbored C. variabilis<br />

and P. retusa. Brachycoelium salamandrae<br />

was found only in G. ophiurus; O. pipiens<br />

and R. brachyspiculatum were found only in B.<br />

imbricata.<br />

Brachycoelium salamandrae, the only trematode<br />

species found in this study, was found in<br />

the small intestines <strong>of</strong> 2 G. ophiurus. <strong>The</strong>re has<br />

been controversy surrounding the assignment <strong>of</strong><br />

species to the genus Brachycoelium. Rankin<br />

(1938) reduced all the American species to synonymy<br />

with B. salamandrae, a European species<br />

and the type species <strong>of</strong> the genus. However,<br />

Parker (1941) and Cheng (1958) did not accept<br />

the synonymy and recognized 7 and 10 species<br />

<strong>of</strong> the genus, respectively. Later Cheng and<br />

Chase (1960) and Couch (1966) described additional<br />

species, bringing to 13 the number <strong>of</strong><br />

species assigned to the genus. Prudhoe and Bray<br />

(1982) favored a monospecific genus. Regardless<br />

<strong>of</strong> confusion in the taxonomy, the specimens<br />

collected in this study most closely resemble<br />

B. salamandrae as described by Cheng<br />

(1958), in that they were elongate distomes, approximately<br />

3 mm in length, more than twice<br />

the length <strong>of</strong> any other species assigned to the<br />

genus, and the vitellaria extended beyond the<br />

ceca and did not join on the midline. <strong>The</strong> North<br />

American host list for B. salamandrae includes<br />

salamanders, anurans, lizards, and snakes (see<br />

Prudhoe and Bray, 1982). Gerrhonotus ophiurus<br />

is added to this host list.<br />

As in the case <strong>of</strong> the identity <strong>of</strong> species <strong>of</strong><br />

Brachyocoelium, some uncertainty also exists<br />

for North American species <strong>of</strong> Cosmocercoides.<br />

Cosmocercoides variabilis, originally described<br />

as Oxysomatium variabilis by Harwood (1930)<br />

from Bufo valliceps Wiegmann, 1833, collected<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 207<br />

Table 1. Helminths from the anguid lizards, Barisia imbricata and Gerrhonotus ophiurus, from Mexico.<br />

Lizard species<br />

Helminth species<br />

Number<br />

<strong>of</strong> Number Prevainfected<br />

<strong>of</strong> lence<br />

lizards helminths (%)<br />

Mean intensity ± SD<br />

(range)<br />

Mean abundance<br />

± SD<br />

Barisia imbricata (Estado de Mexico, TV = 23)<br />

Nematoda<br />

Cosmocercoides variabilis 3 4 13 1.3 ± 0.6 (1—2)<br />

Oswaldocruzia pipiens 3 6 13 2.0 ± 1.7 (1-4)<br />

Raillietnema brachyspiculaturn 1 83 4 83<br />

Barisia imbricata (Hidalgo, N = 14)<br />

Nematoda<br />

Cosmocercoides variabilis 2 6 1 5 3.0 ± 2.8 (1-5)<br />

Oswaldocruzia pipiens 11 86 79 7.8 ±6.1 (1-15)<br />

Physaloptera retusa 6 18 43 3.0 ± 3.2 (1-8)<br />

Raillietnema brachyspiculatum 1 93 7 93<br />

Gerrhonotus ophiurus (Veracruz, /V = 54)<br />

Trematoda<br />

Brachycoelium salamandrae 2 5 4 2.5 ± 2.1 (1-4)<br />

Nematoda<br />

Cosmocercoides variabilis 17 21 31 1.2 ± 0.6 (1—3)<br />

Physaloptera retusa 10 65 19 6.7 ± 12.0 (1-40)<br />

0.4 ± 1.3<br />

6.1 ± 6.3<br />

1.2 ± 2.5<br />

6.6 ± 24.9<br />

0.4 ± 0.7<br />

1.2 ± 5.6<br />

at Houston, Texas, was considered a synonym<br />

<strong>of</strong> the molluscan parasite Cosmocercoides dukae<br />

(Roll, 1928) by Ogren (1953), who presumed<br />

that amphibians acquired C. dukae infections by<br />

ingesting infected mollusks. Cosmocercoides<br />

dukae was first described by Holl (1928) from<br />

the salamander Notophthalmus viridescens (Rafinesque,<br />

1820) from North Carolina. Wilkie<br />

(1930) established the genus Cosmocercoides,<br />

and Travassos (1931) included both C. dukae<br />

and C. variabilis in his monograph on the Cosmocercidae.<br />

Vanderburgh and Anderson (1987)<br />

demonstrated that these 2 species <strong>of</strong> Cosmocercoides<br />

are distinct. <strong>The</strong> major difference in the<br />

2 species is the number <strong>of</strong> rosette papillae <strong>of</strong> the<br />

male: C. dukae with 12 pairs and C. variabilis<br />

with 14-20. Specimens collected in our study<br />

had 16-18 papillae. <strong>The</strong> host list includes salamanders,<br />

anurans, lizards, snakes, and turtles<br />

(see Baker, 1987). Barisia imbricata and G.<br />

ophiurus are added to this list.<br />

All North American specimens <strong>of</strong> the genus<br />

Oswaldocruzia have been referred to O. pipiens<br />

by Baker (1987). This species is widely distributed<br />

in North America and has been reported<br />

from anurans, salamanders, lizards, and tortoises<br />

(see Baker, 1987). Barisia imbricata is added to<br />

this host list.<br />

Physaloptera retusa is a common parasite <strong>of</strong><br />

North American lizards (see Baker, 1987). Both<br />

Barisia imbricata and G. ophiurus are added to<br />

this host list.<br />

Raillietnema brachyspiculatum was recently<br />

described from the xantusiid lizard, Lepidophyma<br />

tuxtlae Werler and Shannon, 1957, from Veracruz,<br />

Mexico, by Bursey et al. (1998). Barisia<br />

imbricata is a new host record, and the states <strong>of</strong><br />

Hidalgo and Mexico are new locality records for<br />

this nematode.<br />

<strong>The</strong> results reported here support previous<br />

studies on North American anguids (see Goldberg<br />

et al., 1999), which have shown that lizards<br />

<strong>of</strong> this family appear to harbor depauperate communities<br />

comprised <strong>of</strong> generalist helminths. As<br />

can be seen by the host lists above, with the<br />

exception <strong>of</strong> the recently described R. brachyspiculatum<br />

(for which there is insufficient information<br />

to categorize), the helminth species harbored<br />

by B. imbricata and G. ophiurus are generalists.<br />

Although host lists can easily be constructed<br />

and host distributions mapped, parasite<br />

distribution patterns are more difficult to evaluate.<br />

Reasons for varying infection rates among<br />

host populations are not understood; for example,<br />

there is a significant difference between the<br />

Estado de Mexico and Hidalgo populations <strong>of</strong><br />

B. imbricata for O. pipiens (chi-square = 15.8,<br />

1 df, P < 0.001). Additional work will be required<br />

to understand the factors influencing<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


208 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

prevalence patterns <strong>of</strong> helminths in anguid lizards.<br />

Literature Cited<br />

Baker, M. R. 1987. Synopsis <strong>of</strong> the Nematoda parasitic<br />

in amphibians and reptiles. Memorial University<br />

<strong>of</strong> Newfoundland, Occasional Papers in<br />

Biology 11:1-325.<br />

Bursey, C. R., S. R. Goldberg, G. Salgado-Maldonado,<br />

and F. R. Mendez-De La Cruz. 1998. Raillietnema<br />

brachyspiculatum sp. n.(Nematoda: Cosmocercidae)<br />

from Lepidophyma tuxtlae (Sauria:<br />

Xantusiidae) from Mexico. Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 65:164-168.<br />

Bush, A. O., K. D. Lafferty, J. M. Lotz, and A. W.<br />

Shostak. 1997. Parasitology meets ecology on its<br />

own terms: Margolis et al. revisited. Journal <strong>of</strong><br />

Parasitology 83:575-583.<br />

Cheng, T. C. 1958. Studies on the trematode family<br />

Dicrocoeliidae. I. <strong>The</strong> genera Brachycoelium (Dujardin,<br />

1845) and Leptophallus Luhe, 1909, (Brachycoeliinae).<br />

American Midland Naturalist 59:<br />

67-81.<br />

, and R. S. Chase, Jr. 1960. Brachycoelium<br />

stablefordi, a new parasite <strong>of</strong> salamanders; and a<br />

case <strong>of</strong> abnormal polylobation <strong>of</strong> the testes <strong>of</strong><br />

Brachycoelium storeriae Harwood, 1932 (Trematoda:<br />

Brachycoeliidae). Transactions <strong>of</strong> the American<br />

Microscopical <strong>Society</strong> 80:33-38.<br />

Couch, J. A. 1966. Brachycoelium ambystomae sp. n.<br />

(Trematoda: Brachycoeliidae) from Ambystoma<br />

opacum. Journal <strong>of</strong> Parasitology 52:46-49.<br />

Goldberg, S. R., C. R. Bursey, and H. Cheam. 1999.<br />

Helminths <strong>of</strong> the Madrean alligator lizard, Elgaria<br />

kingii (Sauria: Anguidae) from Arizona. Great Basin<br />

Naturalist 59:198-200.<br />

Good, D. A. 1988. Phylogenetic relationships among<br />

gerrhonotine lizards. An analysis <strong>of</strong> external morphology.<br />

University <strong>of</strong> California Publications in<br />

Zoology 121:1-139.<br />

. 1994. Species limits in the genus Gerrhonotus<br />

(Squamata: Anguidae). Herpetological Monographs<br />

8:180-202.<br />

Harwood, P. D. 1930. A new species <strong>of</strong> Oxysomatium<br />

(Nematoda) with some remarks on the genera Oxysomatium<br />

and Aplectana, and observations on<br />

the life history. Journal <strong>of</strong> Parasitology 17:61-73.<br />

Holl, F. J. 1928. Two new nematode parasites. Journal<br />

<strong>of</strong> the Elisha Mitchell Scientific <strong>Society</strong> 43:184-<br />

186.<br />

Ogren, R. E. 1953. A contribution to the life cycle <strong>of</strong><br />

Cosmocercoides in snails (Nematoda: Cosmocercidae).<br />

Transactions <strong>of</strong> the American Microscopical<br />

<strong>Society</strong> 72:87-91.<br />

Parker, M. V. 1941. <strong>The</strong> trematode parasites from a<br />

collection <strong>of</strong> amphibians and reptiles. Journal <strong>of</strong><br />

the Tennessee Academy <strong>of</strong> Science 16:27-45.<br />

Prudhoe, S. P., and R. A. Bray. 1982. Platyhelminth<br />

Parasites <strong>of</strong> the Amphibia. British Museum (Natural<br />

History), Oxford University Press, Oxford,<br />

U.K. 217 pp. + 4 micr<strong>of</strong>iches.<br />

Rankin, J. S., Jr. 1938. Studies on the trematode genus<br />

Brachycoelium Duj. I. Variation in specific<br />

characters with reference to the validity <strong>of</strong> the described<br />

species. Transactions <strong>of</strong> the American Microscopical<br />

<strong>Society</strong> 57:358—375.<br />

Travassos, L. 1931. Pesquizas helminthologicas realizadas<br />

em Hamburgo. IX. Ensaio monographico<br />

da familia Cosmocercidae Trav., 1925 (Nematoda).<br />

Memorias do Institute Oswaldo Cruz 25:237-<br />

298.<br />

Vanderburgh, D. J., and R. C. Anderson. 1987. <strong>The</strong><br />

relationship between nematodes <strong>of</strong> the genus Cosmocercoides<br />

Wilkie, 1930 (Nematoda: Cosmocercoidea)<br />

in toads (Bufo amcricanux) and slugs<br />

(Deroceras laevae). Canadian Journal <strong>of</strong> Zoology<br />

65:1650-1661.<br />

Wilkie, J. S. 1930. Some parasitic nematodes from<br />

. Japanese Amphibia. Annals and Magazine <strong>of</strong> Natural<br />

History, Series 10, 6:606-614.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 209-210<br />

Anniversary Award<br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

SHERMAN S. HENDRIX<br />

J. Ralph Lichtenfels, right, presents<br />

the 1998 Anniversary Award to Sherman S. Hendrix<br />

Ladies and Gentlemen, in 1989 my longtime friend, Sherm Hendrix, presented the Anniversary<br />

Award to me after I completed a term as Editor <strong>of</strong> our journal. Nine years later, it is my pleasure<br />

to switch roles and (in your behalf) honor Sherm as he completes his term as Editor.<br />

Sherm was born June 1, 1939 in Bridgeport, Connecticut and grew up in Connecticut near Long<br />

Island Sound, where he developed an interest in biology and the marine environment. He received<br />

a B.A., with Departmental Honors, in Biology from Gettysburg <strong>College</strong> in 1961.<br />

Shortly after graduating from Gettysburg, Sherm married his college sweetheart, Carol Seibel.<br />

Carol and Sherm have raised 2 children, Mark, an Assistant Pr<strong>of</strong>essor <strong>of</strong> Geology at the University<br />

<strong>of</strong> Montana, and Robin, a teacher who has taken time <strong>of</strong>f to raise 2 children, Anna (5) and Rachel<br />

(2). Carol is an ordained Lutheran pastor, currently serving as Assistant to the Bishop for Congregational<br />

Care.<br />

Sherm was introduced to Parasitology at Florida <strong>State</strong> University, in courses taught by Rhodes<br />

"Buck" Holliman and Robert B. Short. Sherm received an M.S. degree from Florida <strong>State</strong> University<br />

in 1964 working under Bob Short. His thesis was titled, "Aspidogastrids from Northeastern<br />

Gulf <strong>of</strong> Mexico river drainages". While at Florida <strong>State</strong> University, he was a member <strong>of</strong> a 61-day<br />

Antarctic Scientific Cruise in 1964, on the Pacific side, out <strong>of</strong> Valparaiso.<br />

Later that year, he returned to his alma mater, Gettysburg <strong>College</strong>, as Instructor in Biology.<br />

While continuing his teaching career at Gettysburg, Sherm decided to pursue a Ph.D. at the<br />

University <strong>of</strong> Maryland and became a Graduate Teaching Assistant there in 1969, working under<br />

the guidance <strong>of</strong> Leo Jachowski. His doctoral dissertation, entitled, "<strong>The</strong> biology, ecology and taxonomy<br />

<strong>of</strong> Plagioporus hypentelii, a parasite <strong>of</strong> the hog sucker in the Monocacy River basin <strong>of</strong><br />

Maryland and Pennsylvania", and his Ph.D. degree, were completed in 1972. He was an NIH<br />

Interamerican Fellow in Tropical Medicine at Louisiana <strong>State</strong> University in 1973 while on sabbatical<br />

from Gettysburg. By this time, Sherm had already been promoted to Assistant Pr<strong>of</strong>essor at Gettysburg<br />

(in 1970). He became Associate Pr<strong>of</strong>essor in 1977, and Pr<strong>of</strong>essor in 1990, serving several<br />

terms as Chairman, Department <strong>of</strong> Biology, including a current term as Chair, begun in 1997.<br />

Sherm has developed and managed an almost idyllic career that is a balanced blend <strong>of</strong> teaching,<br />

209<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


210 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

research, administration and service. Now you know why he is always pleasant and looks so young!<br />

He has taught a range <strong>of</strong> courses from Introductory Biology to Electron Microscopy, including such<br />

interesting titles as Parasitology, Biostatistics, Virology, Biological Control, and Microtechniques<br />

and Histochemistry. I encourage you to visit Sherm's excellent homepage (www.gettysburg.edu/<br />

—shendrix) to learn more about his courses. He has also developed a homepage for HelmSoc<br />

(www.gettysburg.edu/~shendrix/helmsoc).<br />

His research has centered on the morphology, systematics and zoogeography <strong>of</strong> Monogenea and<br />

Trematoda <strong>of</strong> fish and molluscans. In 1987, an NSF Grant provided an opportunity for more research<br />

support (specifically, an illustrator) which resulted in several important papers on Monogenea <strong>of</strong><br />

fishes, including a landmark, 107-page key and monograph, "Marine Flora and Fauna <strong>of</strong> the Eastern<br />

United <strong>State</strong>s. Platyhelrninths: Monogenea." (NOAA Technical Report NMFS 121 <strong>of</strong> the Fisheries<br />

Bulletin). More recently he has traveled to Africa to study parasites <strong>of</strong> fish in Lake Malawi. A fullyear<br />

Sabbatical in 1994-1995 provided the time to initiate the Lake Malawi research with collaborator<br />

Jay Stauffer <strong>of</strong> Penn <strong>State</strong>.<br />

<strong>The</strong> service activities <strong>of</strong> a college Pr<strong>of</strong>essor are many and varied, and Sherm has been recognized<br />

for outstanding service at Gettysburg <strong>College</strong> with the Alpha Phi Omega Service Award in 1979,<br />

and the <strong>The</strong>ta Chi Fraternity Chapter Service Award in 1987. Among his scientific societies, Sherm<br />

has been most active in the Pennsylvania Academy <strong>of</strong> Science and the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong>. He served as President <strong>of</strong> the Academy (1990—1992) and received its 1998 Lifetime<br />

Achievement Award.<br />

Pr<strong>of</strong>essor Sherman S. Hendrix has brought honor and credit to the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> in every leadership role possible. He was Corresponding Secretary Treasurer (1979-<br />

1982), President (1984), and Editor (1993-1998). In recognition <strong>of</strong> this outstanding, dedicated<br />

service the <strong>Society</strong> bestows its highest honor, <strong>The</strong> Anniversary Award, on Pr<strong>of</strong>essor Sherman S.<br />

Hendrix.<br />

J. Ralph Lichtenfels<br />

November 18, 1998<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 211-212<br />

MINUTES<br />

Six Hundred Sixty-First Through<br />

Six Hundred and Sixty-Fifth Meeting<br />

661st Meeting: Walter Reed Army Institute <strong>of</strong><br />

Research, <strong>Washington</strong>, DC, 14 October, 1998.<br />

<strong>The</strong> President opened the meeting and announced<br />

a slate <strong>of</strong> nominations for society <strong>of</strong>ficer<br />

positions: Eric P. Hoberg for President, Ronald<br />

Neafie for Vice President, Pat Carney for<br />

Recording Secretary, Nancy Pacheco for Corresponding<br />

Secretary-Treasurer, and Willis A.<br />

Reid, Jr. and Janet W. Reid for Editors. He also<br />

discussed the rationale for changing the name <strong>of</strong><br />

the journal and suggestions that had been made<br />

for changing the format <strong>of</strong> meetings. <strong>The</strong> meeting<br />

was then turned over to Dr. Joan Jackson<br />

who introduced the speakers: Dr. Naomi Aronson<br />

spoke on "Clinical aspects <strong>of</strong> leishmaniasis";<br />

Dr. Ed Rowton presented his paper on<br />

"<strong>The</strong> vector in leishmaniasis", and Dr. Jackson<br />

provided an overview <strong>of</strong> her studies on "Drug<br />

research in leishmaniasis."<br />

662'"' Meeting: Sabang Indonesian Restaurant,<br />

Wheaton, MD, 18 November 1998. <strong>The</strong> Anniversary<br />

Dinner Meeting and Program were presided<br />

over by the President, Dr. Eric Hoberg.<br />

<strong>The</strong> membership in attendance approved the<br />

slate <strong>of</strong> <strong>of</strong>ficers for 1999. Dr. J. Ralph Lichtenfels<br />

introduced the recipient <strong>of</strong> the Anniversary<br />

Award, Dr. Sherman S. Hendrix, Gettysburg<br />

<strong>College</strong>. In his acceptance comments, Dr. Hendrix<br />

reviewed his teaching and research career<br />

at Gettysburg <strong>College</strong> and shared highlights <strong>of</strong><br />

field expeditions in search <strong>of</strong> marine parasites.<br />

663rd Meeting: Armed Forces Institute <strong>of</strong> Pathology,<br />

<strong>Washington</strong>, DC, January 18, 1999.<br />

<strong>The</strong> President welcomed members and visitors.<br />

He advised the membership that the Executive<br />

Committee had voted unanimously for changing<br />

the name <strong>of</strong> the Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> to Comparative Parasitology<br />

at their September, 1998 meeting, and<br />

that an amendment to the Constitution <strong>of</strong> the <strong>Society</strong><br />

was prepared and presented in writing to<br />

the general membership at the Anniversary<br />

Meeting in November, 1998. A motion to<br />

change the name <strong>of</strong> the journal to "Comparative<br />

Parasitology" was passed unanimously by the<br />

general membership. <strong>The</strong> membership was provided<br />

with a draft <strong>of</strong> the <strong>Society</strong>'s "Mission and<br />

Vision" statements for review and comment.<br />

<strong>The</strong> meeting was then turned over to Vice President<br />

Ronald Neafie who introduced the speakers.<br />

Drs. Dennis Richardson and Richard Clopton<br />

jointly discussed "<strong>The</strong> counterpoint hypothesis:<br />

opposing forces in natural selection in parasite<br />

evolution." Dr. Mary Klassen's paper was<br />

entitled "Imitators <strong>of</strong> infectious diseases" in<br />

which she illustrated a series <strong>of</strong> artifacts that can<br />

be confused with agents <strong>of</strong> infectious diseases.<br />

Dr. Peter McEvoy gave a "case presentation"<br />

on nodular cutaneous microsporidiosis in a patient<br />

with AIDS.<br />

664"' Meeting: Uniformed Services University<br />

<strong>of</strong> the Health Sciences, Bethesda, MD, March<br />

10, 1999. <strong>The</strong> President opened the general<br />

meeting and welcomed members and their<br />

guests. <strong>The</strong> President then discussed the rationale<br />

for developing clear Mission and Vision<br />

statements and his intent to have them in place<br />

when the name <strong>of</strong> the Journal changes in January<br />

2000. <strong>The</strong> meeting was turned over to Dr.<br />

John Cross who introduced the speakers. Dr.<br />

Richard Andre provided an overview <strong>of</strong> "Applications<br />

<strong>of</strong> geographic information systems<br />

(GIS) for malaria control in Belize." Dr. Allen<br />

Richards reviewed research he had conducted on<br />

"Tumor necrosis factor (TNF) and associated<br />

cytokines in the host's response to malaria." Dr.<br />

Cross presented the final paper on his ongoing<br />

studies <strong>of</strong> "Cyclosporosis in Nepal."<br />

665th Meeting: University <strong>of</strong> Pennsylvania, New<br />

Bolton Center, Kennett Square, PA, May 8,<br />

1999. <strong>The</strong> President opened the general meeting<br />

and welcomed members and guests. <strong>The</strong> President<br />

then turned the meeting over to Dr. Jay Farrell.<br />

Dr. Farrell welcomed members and guests<br />

on behalf <strong>of</strong> the University <strong>of</strong> Pennsylvania and<br />

the New Jersey <strong>Society</strong> for Parasitology and introduced<br />

each <strong>of</strong> the speakers. Dr. Phillip Lo-<br />

Verde presented a paper on "Sex in schisto-<br />

211<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


212 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

somes: a novel interplay." His presentation was<br />

followed by Dr. Phillip Cooper who discussed<br />

"<strong>The</strong> modulation <strong>of</strong> allergic inflammation by<br />

helminth infections." <strong>The</strong> final speaker was Dr.<br />

Joseph Urban who described the role <strong>of</strong> "Counter-regulatory<br />

properties <strong>of</strong> IL4/IL-13 and IFNgamma<br />

in controlling resistance to gastrointestinal<br />

nematodes." Following the meeting a wine<br />

and cheese reception was held in the Allam<br />

House with support from Pfizer Animal Health<br />

and the Laboratory <strong>of</strong> Parasitology, University<br />

<strong>of</strong> Pennsylvania.<br />

Respectfully submitted,<br />

W. Patrick Carney<br />

Recording Secretary<br />

J. Helminthol. Soc. Wash.<br />

662, 1999 pp. 212<br />

AUTHOR INDEX FOR VOLUME 66<br />

Aguirre-Macedo, L., 146<br />

Akahane, H., 41<br />

Alvarez-Cadena, J. N., 194<br />

Amin, O., 47, 123<br />

Bangs, M. J., 187<br />

Barnes, D. K., 70<br />

Bauer, A. M., 78<br />

Beck, C. A., 67<br />

Beckett, R. G., 202<br />

Blaney, L. M., 70<br />

Brugni, N. L., 92<br />

Bursey, C. R., 37, 78, 89, 175, 180,<br />

205<br />

Caillot, C., 95<br />

Camarillo-Rangel, J. L., 205<br />

Camp, J. W., 70<br />

Canaris, A. G., 123<br />

Cezar, A. D., 14, 81<br />

Cezar, G., 133<br />

Cheam, H., 78<br />

Ching, H. L., 25<br />

Conlogue, G., 202<br />

Deines, K. M., 202<br />

Dronen, N. O., 21<br />

Dvojnos, G. M., 56<br />

Endo, B. Y., 155<br />

Faliex, E., 95<br />

Fiorillo, R. A., 101<br />

Font, W. F, 101<br />

Forrester, D. J., 1, 7<br />

Garcia-Prieto, L., 41<br />

Gillilland, M. G., Ill, 73<br />

Goldberg, S. R., 37, 78, 89, 175,<br />

180, 205<br />

Gomez del Prado-Rosas, M. C.,<br />

194<br />

Hendrix, S. S., 47<br />

Hernandez, S., 89<br />

Holiday, D. M., 202<br />

Kamiya, M., 28<br />

Kharchenko, V. A., 56<br />

Kinsella, J. M., 1,7, 123<br />

Koga, M., 41<br />

Korting, W., 146<br />

Kritsky, D. C., 138<br />

Kuchta, R., 146<br />

Kulo, S.-D., 138<br />

Laclette, J. P., 197<br />

Lamothe-Argumedo, R., 41, 194<br />

Lichtenfels, J. R., 56<br />

Luque, J. L., 14, 81<br />

Machado, P. M., 133<br />

Madhavi, R., 25<br />

Marchand, B., 95<br />

Martinez-Cruz, J. M., 41<br />

Matsuo, K., 28<br />

Mignucci-Giannoni, A. A., 67<br />

Montoya-Ospina, R. A., 67<br />

Morand, S., 95<br />

Muller-Graf, C. M., 95<br />

Muzzall, P. M., 73, 115<br />

Ogata, K., 41<br />

Oku, Y., 28<br />

Osorio-Saraiba, D., 41<br />

Perez-Ponce de Leon, G., 197<br />

Pilitt, P. A., 56<br />

Purnomo, 187<br />

Razo-Mendivil, U., 197<br />

Rego, A. A., 133<br />

Richardson, D. J., 202<br />

Rossi, P. R., 33<br />

Salgado-Maldonado, G., 146<br />

Scholz, T., 146<br />

Segura-Puertas, L., 194<br />

Sepulveda, M. S., 7<br />

Smales, L. R., 33<br />

Spalding, M. G., 7<br />

Tehrany, M. R., 21<br />

Turner, H. M., 86<br />

Vargas-Vazquez, J., 146<br />

Vidal-Martinez, V, 146<br />

Viozzi, G. P., 92<br />

Walker, D. J., 82<br />

Wardle, W. J., 21<br />

Wergin, W.. P., 155<br />

Williams, E. H., Jr., 67<br />

Wittrock, D. D., 82<br />

Wolter, J., 146<br />

Yabsley, M. J., Ill<br />

Ganzorig, S., 28<br />

Noblet, G. P., Ill<br />

Zunke, U., 155<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

662, 1999 pp. 213-216<br />

KEYWORD AND SUBJECT INDEX FOR VOLUME 66<br />

Abbreviate! sp., 89, 175<br />

Abundance, 1, 7, 14, 28, 70, 73, 78,<br />

89, 92, 101, 115,175, 197,<br />

Acanthocephala, 7, 47, 70, 95, 101,<br />

111, 123<br />

Acanthocephalus dims, 70<br />

Acanthogyrus (Acanthosentis) tilapiae,<br />

47<br />

Acanthogyrus (Acanthosentis)<br />

malawiensis sp. n., 47<br />

Acanthostomidae, 146<br />

Acuaria rnultispinosa, 7<br />

Africa, 123, 138<br />

Alaeuris geochelone sp. n., 28<br />

Allodiscocotylidae, 81<br />

Alloglossoides caridicola, 86<br />

Amauroronis phoenicums, 123<br />

Amphibia, 73, 180, 187, 197<br />

Amphimenis arcticus, 1<br />

Anatomy, 155<br />

Andracantha gravida, 1<br />

Anguidae, 205<br />

Anguilla anguilla, 95<br />

Anguillicola crassus, 95<br />

Anniversary Award, 209<br />

Anura, 187, 197<br />

Anuretes anurus, 14<br />

Apharyngostrigea pipientis, 7<br />

Apophallus brevis, 1<br />

Arborophilia crudigularis, 123<br />

Ardca albus, 1<br />

Argentina, 92<br />

Arhymorhynchus pumilirostris, 1<br />

Ariidae, 146<br />

Ariopsis assimilis, 146<br />

Ariopsis seemani, 146<br />

Aristochromis christyi, 47<br />

Arius fe Us, 146<br />

Arius guatemalensis, 146<br />

Arkansas, U.S.A., 86<br />

Armadoskrjabini rostellata, 1<br />

Arthrocephalus lotoris, 111<br />

Ascocotyle gemina, 1<br />

Ascocotyle mcintoshi, 7<br />

Ascocotyle temiicollis, 1<br />

Ascocotyle (Phagicola) diminuta, 1<br />

Ascocotyle (Phagicola) nana, 1, 7<br />

Atlantic spadefish, 14<br />

Auchenoglanis occidentalis, 138<br />

Australia, 33, 89, 123, 175<br />

Austrobilharzia terrigalensis, 1<br />

Aves, 1, 7, 123<br />

Avioserpens galliardi, 7<br />

Bagridae, 47, 138<br />

Bagrobdella, 138<br />

Bagrobdella aiichenoglanii, 138<br />

Bagrus meridionalis, 47<br />

Bandicoot, 33<br />

Barbulostomum cupuloris, 101<br />

Barisia imbricata, 205<br />

Barnacle, 67<br />

Bathyclarias nyasensis, 47<br />

Birds, 1, 7, 123<br />

Blacksmith plover, 123<br />

Bolbogonotylus corkumi, 82<br />

Bolbophorus confusus, 21<br />

Borneo, 123<br />

Bothriocephalus claviceps, 95<br />

Brachycoelium salamandrae, 205<br />

Brazil, 14, 81, 133<br />

Brown pelican, 21<br />

Bursacetabulus macrobursus sp. n.,<br />

21<br />

Bursacetabulus pelecanus sp. n., 21<br />

Caecidotea spp., 70<br />

Calidris ferruginea, 123<br />

Caligus minimus, 96<br />

Caligus mutabilis, 14<br />

Caligus haemulonis, 14<br />

Carnallanus oxycephalus, 101<br />

Capillaria herodiae, 7<br />

Capillaria mergi, 1<br />

Carangidae, 81<br />

Caribbean Sea, 67, 194<br />

Catfish, 138, 146<br />

Centrarchidae, 101<br />

Centrorhynchus conspectus, 111<br />

Cercaria owreae, 194<br />

Cestoda, 7, 73, 78, 95, 123, 133,<br />

175, 202<br />

Chaetognath, 194<br />

Chaetopterus faber, 14<br />

Chandler'onema longigutterata, 7<br />

Charadriiformes, 123<br />

Charadrius alexandrinus, 123<br />

Charadrius rnarginatus, 123<br />

Charadrius pallidus, 123<br />

Charadrius pccuarius, 123<br />

Charadrius ruficapillus, 123<br />

Charadrius tricollaris, 123<br />

Chelonibia manati, 67<br />

Chetumal, Mexico, 146<br />

Chicken, 92<br />

Chiorchis fabaceus, 67<br />

Chrysichthys nigrodigitatus, 138<br />

Cichla monoculus, 133<br />

Cichlidae, 47, 133<br />

Clarias rnossambicus, 47<br />

Clariidae, 47<br />

Clinostomum sp., 73<br />

Clinostomum attenuatum, 7<br />

213<br />

Clinostomum complanatum, 7<br />

Coastal zone, 14<br />

Cochleotrerna cochleotrema, 67<br />

Collared bush-robin, 123<br />

Colombia, 146<br />

Colorado, U.S.A., 123<br />

Columnar cells, 155<br />

Commensals, 67<br />

Common loon, 1<br />

Component community, 101<br />

Community structure, 14, 101<br />

Contracaecum multipapillatum, 7<br />

Contracaecum sp., 1, 115<br />

Cook Islands, 37<br />

Copepoda, 14, 95<br />

Copidochrornis cf. thinos, 47<br />

Corallobothriinae, 133<br />

Coronocyclus coronatus, 56<br />

Coronocyclus sagittatus, 56<br />

Corsica, 95<br />

Cosmocephalus obvelatus, 1, 7<br />

Cosmocercoides dukae, 73<br />

Cosmocercoides variabilis, 205<br />

Cotylurus erraticus, 1<br />

Cotylurus platycephalus, 1<br />

Crayfish, 86<br />

Crepidostomum cornutum, 101<br />

Crustacea, 14, 70, 86, 95<br />

Cryptogonimidae, 82<br />

Cryptogonimus chyli, 82<br />

Ctenopharynx (Otopharynx) pictus,<br />

47<br />

Ctenotus leonhardii, 86<br />

Ctenotus quattuordecimlineatus, 89<br />

Cucullanus sp., 95<br />

Curlew sandpiper, 123<br />

Cyathostoma phenisci, 1<br />

Cyathostominea, 56<br />

Cyclustera ibisae, 1, 7<br />

Cyprinidae, 47<br />

Cyst, 73, 78, 82, 95<br />

Dactylogyridae, 138<br />

Dasyuridae, 33<br />

Day gecko, 78<br />

Deformities, 73<br />

Dendritobilharzia pulverulenta, 1<br />

Dendrouterina ardeae, 7<br />

Denmark, 56<br />

Deropristis inflata, 95<br />

Desmidocercella numidica, 7<br />

Desportesius invaginatus, 7<br />

Desportesius larvae, 7<br />

Desportesius trianuchae, 7<br />

Diagnosis, 202<br />

Diagnostic parasitology course, 40<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


214 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Diasiella diasi, 7<br />

Dicentrarchus labrax, 95<br />

Dichelyne cotylophora, 115<br />

Didymozoidae, 25<br />

Digenea, 14, 25, 67, 70, 95, 146,<br />

197<br />

Dimidiochrornis kiwinge, 47<br />

Dioctophymatoidea, 92<br />

Diplectanum aequens, 95<br />

Diplostomidae, 21<br />

Diplostominae, 21<br />

Diplostomum gavium, 1<br />

Diplostomurn immer, 1<br />

Diplostomum ardeae, 1<br />

Diplostomum sp., 70<br />

Distribution, 86<br />

Dog, 41<br />

Dormitator latifrons, 146<br />

Echeneis neucratoides, 67<br />

Echinochasmus skrjabini, 1<br />

Echinochasmus dietzevi, 7<br />

Echinonematinae, 33<br />

Ectoparasites, 95<br />

Editors' Acknowledgments, 110<br />

Eggshell surface, 47<br />

Egret, 7<br />

Egypt, 56<br />

Electron microscopy, 28, 41, 82,<br />

133, 155, 194<br />

Eleotridae, 146<br />

Emended diagnosis, 138<br />

Endoparasites, 95<br />

Ephippidae, 1<br />

Equus caballus, 56<br />

Ergasilus lizae, 95<br />

Ergasilus gibbus, 95<br />

Erschoviorchis lintoni, 1<br />

Estado de Mexico, Mexico, 197,<br />

205<br />

Estuary, 101<br />

Etheostoma flabellare, 82<br />

European eel, 95<br />

Eustrongylides sp., 70, 93<br />

Eustrongylides tubifex, 1,115<br />

Eustrongylides ignotus, 1<br />

Euthynnus affinis, 25<br />

Experimental infection, 41, 92, 202<br />

Fantail darter, 83<br />

Female reproductive system, 155<br />

Ferosagitta hispida, 194<br />

Fibricola sp., 73<br />

Fibrocyte, 83<br />

Filarioidea, 187<br />

Fishes, 14, 25, 47, 70, 81, 82, 92,<br />

95, 101, 115, 133, 138, 146<br />

Flaccisagitta enflata, 194<br />

Flathead gray mullet, 95<br />

Florida, U.S.A., 1, 7, 146<br />

Formosan hill partridge, 123<br />

France, 95<br />

French Polynesia, 37<br />

Frog, 73, 187, 197<br />

Froglets, 73<br />

Galaxias maculatus, 92<br />

Galaxiidae, 92<br />

Galeichthys (=Ariopsis) seemani,<br />

146<br />

Galveston, Texas, 21<br />

Gastrografin, 202<br />

Gavia immer, 1<br />

Gecko, 37, 78, 175<br />

Gehyra oceanica, 33<br />

Gekkonidae, 37, 78, 175<br />

Genarchella sp., 101<br />

Genychromis mento, 47<br />

Geochelone elegans, 25<br />

Gerrhonotus ophiurus, 205<br />

Glossocercus caribaensis, 7<br />

Glycocalyx, 83<br />

Glypthelmins californiensis, 197<br />

Glypthelmins facioi, 197<br />

Glypthelmins quieta, 197<br />

Gnathostoma, 41<br />

Gnathostoma cf. binucleatum, 41<br />

Gnathostoma procyonis, 111<br />

Gnathostomiasis, 41<br />

Gobiidae, 70<br />

Gobiomorus maculatus, 146<br />

Golden plover, 123<br />

Gorgodera amplicava, 73<br />

Great Lakes (Laurentian), 70, 115<br />

Great egret, 7<br />

Gulf <strong>of</strong> Mexico, 21<br />

Haplosplanchnus pachysornus, 95<br />

Haplosporus sp., 95<br />

Hawaii, 123<br />

Helminths, 1, 7, 67, 70, 73, 78,<br />

101, 111, 123, 133, 138, 146,<br />

155, 175, 180, 187, 194, 197,<br />

202, 205<br />

Heterocheilus tunicatus, 67<br />

Hidalgo, Mexico, 205<br />

Himantopus himantopus, 123<br />

Himasthia alincia, 1<br />

Histochemistry, 82<br />

Holopterus arrnatus, 123<br />

Horse, 56<br />

Hymenolepis diminuta, 202<br />

Hypnobiidae, 180<br />

Ignavia venusta, 7<br />

Illinois, U.S.A., 70<br />

Indian star tortoise, 25<br />

Indiana, U.S.A., 70, 115<br />

Indonesia, 25, 123, 187<br />

Infracommunity, 101<br />

Inglechina virginiae, sp. n., 33<br />

Intensity, 1, 7, 14, 28, 70, 73, 78,<br />

89, 92, 95, 205, 111, 115, 146,<br />

194<br />

Introduced species, 70<br />

Isoodon macrourus, 33<br />

Isopoda, 70, 95<br />

Israel, 123<br />

Jalisco, Mexico, 146<br />

Japan, 28, 56, 180<br />

Japanese clawed salamander, 180<br />

Java, 187<br />

Kansas, U.S.A., 123<br />

Kentish plover, 123<br />

Kittlitz' plover, 123<br />

Labeo cylindricus, 47<br />

Labeotropheus fullerborni, 47<br />

Labidochromis vellicans, 47<br />

Laboratory rat, 202<br />

Labratrema minimus, 96<br />

Lake Huron, 115<br />

Lake Malawi, 47<br />

Lake Maurepas, 101<br />

Lake Michigan, 70, 115<br />

Lake Nyasa, 47<br />

Lake Ponchartrain, 101<br />

Larva, 194<br />

Laurentian Great Lakes, 115<br />

Lecithocladium chaetodipteri, 14<br />

Lepomis miniatus, 101<br />

Leptorhynchoides thecatus, 101<br />

Lernanthropus kroyeri, 95<br />

Lernanthropus pupa, 14<br />

Lesion nematode, 155<br />

Lichnochromis acuticeps, 47<br />

Ligophorus rnugilinus, 95<br />

Ligophorus chabaudi, 95<br />

Lizard, 205<br />

Lobatocystis euthynni sp. n., 25<br />

Loon, 1<br />

Louisiana, U.S.A., 86, 101<br />

Mackerel tuna, 25<br />

Macracanthorhynchus ingens, 111<br />

Macroderoididae, 86, 197<br />

Malawi, 47<br />

Mammalia, 67, 111, 202<br />

Manatee, 67<br />

Mangrove frog, 187<br />

Marine fish, 14<br />

Maritrema sp., 1<br />

Maritrema sp. near eroliae, 1<br />

Marsupialia, 33<br />

Masked lapwing, 123<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


INDEX 215<br />

Mastacembelidae, 52<br />

Mastacembelus shiranus, 52<br />

Maxvachonia brygooi, 175<br />

Maxvachonia chabaudi, 89<br />

Maxvachonia dimorpha, 78<br />

Meeting Minutes, 211<br />

Meeting Schedule, 174<br />

Mehdiella microstoma, 28<br />

Melanochromis cf. melanopterus,<br />

47<br />

Melanochromis heterochromis, 47<br />

Melanochromis auratus, 47<br />

Melanosis, 92<br />

Membership application, 99<br />

Mesocestoides sp., 73<br />

Mesorchis denticulatus, 1, 7<br />

Mesostephanus appendiculatoides, 1<br />

Message from the editors, 20<br />

Metacamopia oligoplites, 81<br />

Metacamopiella euzeti, 81<br />

Metacercaria, 73, 82, 146<br />

Metamicrocotyla cephalus, 95<br />

Metriaclima zebra, 47<br />

Metriaclima zebra "redtop", 47<br />

Mexico, 47, 146, 194, 197, 205<br />

Michigan, U.S.A., 73, 115<br />

Michoacan, Mexico, 197<br />

Microcotyle mugilis, 95<br />

Micropai-yphium facetum, 1, 7<br />

Microphallus spp., 1<br />

Microphallus forresteri, 1<br />

Microphallus nicolli, 1<br />

Microsomacanthus pseudorostellatus,<br />

1<br />

Mississippi, U.S.A., 86<br />

Mitochondria, 83<br />

Molineus barbatus, 111<br />

Mollusca, 70<br />

Mongolia, 56<br />

Monogenea, 14, 81, 95<br />

Monogenoidea, 138<br />

Moorea, 37<br />

Morphology, 47, 56, 187, 194<br />

Morphometry, 56<br />

Mugil cephalus, 95<br />

Multitestis (Multitestis) inconstant, 14<br />

Multitestis (Multitestoides) brasiliensis,<br />

14<br />

Myxosporidia, 95<br />

Myxozoa, 95<br />

Namibia, 78<br />

Nebraska, U.S.A., 123<br />

Nematoda, 7, 28, 33, 37, 56, 67,<br />

70,73,89,93,95, 101, 111, 115,<br />

155, 175, 205<br />

Neoechinorhynchus agilis, 95<br />

Neoechinorhynchus cylindratus, 101<br />

Neogobius melanostornus, 70<br />

Neovalipera parvispinae, 1<br />

Nephrurus laevissirnus, 175<br />

Nephrurus levis, 175<br />

Nephrurus vertebralis, 175<br />

Nerocila orbignyi, 95<br />

New books available, 55<br />

New combination(s), 180<br />

New genus, 21, 187<br />

New geographical record(s), 1, 7,<br />

14, 21, 28, 47, 56, 67, 70, 73, 78,<br />

83, 86,89,92,95, 111, 123, 133,<br />

138, 146, 194, 197, 205<br />

New Hampshire, U.S.A., 123<br />

New host record(s), 7, 21, 28, 47,<br />

78, 89, 175, 194, 197, 205<br />

New species, 21, 25, 28, 33, 37, 47,<br />

175, 180, 187<br />

New synonym, 81, 146<br />

New York, U.S.A., 123<br />

Nipergasilus bora, 95<br />

Northern Territory, Australia, 33,<br />

175<br />

Northern leopard frog, 73<br />

Northern brown bandicoot, 33<br />

Obituary notice, Richard M. Sayer, 24<br />

Oceanic gecko, 37<br />

Odhneria odhneri, 1<br />

Oligoplites palometa, 81<br />

Onchocercidae, 187<br />

Onychodactylus japonicus, 180<br />

Oochoristica piankai, 175<br />

Oochoristica truncata, 78<br />

Oocyte development, 155<br />

Oregon, U.S.A., 123<br />

Oreochromis sp., 47<br />

Oswaldocruzia pipiens, 205<br />

Oswaldocruzia priceae, 73<br />

Oxyuroidea, 37<br />

Pacific islands, 37<br />

Panama, 56, 146<br />

Paracuaria adunca, 1<br />

Parana River, Brazil, 133<br />

Parancylodiscoides sp., 14<br />

Parapharyngodon japonicus sp.<br />

n., 180<br />

Parapharyngodon kartana, 89<br />

Parapharyngodon rotundatus, 78<br />

Paraochoterenella javanensis gen.<br />

et sp. n., 187<br />

Parasite ecology, 14<br />

Parorchis acanthus, 1<br />

Parvatrerna sp., 1<br />

Patagonia, 92<br />

Pathology, 92, 115<br />

Pelaezia sp., 146<br />

Pelecanidae, 21<br />

Pelecanus occidentalis, 21<br />

Pelecanus erythrorhynchos, 41<br />

Pelican, 21, 41<br />

Pentastomida, 175<br />

Peramelidae, 33<br />

Perca flavescens, 115<br />

Percidae, 115<br />

Perciformes, 70, 146<br />

Petrotilapia genalutea, 47<br />

Phagicola longa, 1<br />

Pharyngodon oceanicus sp. n., 37<br />

Pharyngodon tiliquae, 175<br />

Pharyngodonidae, 28, 37, 78, 89,<br />

175, 180<br />

Philometra cylindracea, 115<br />

Pholeter ante routerus, 7<br />

Physaloptera rara, 111<br />

Physaloptera retusa, 205<br />

Physaloptera sp., 175<br />

Physalopteroides filicauda, 89, 175<br />

Physalopteroides impar, 78<br />

Physocephalus sp., 78<br />

Pisces, 14, 25, 47, 70, 81, 82, 92,<br />

95, 101, 115, 133, 138, 146<br />

Placidochromis johnstoni, 47<br />

Placidochromis johnstoni "gold", 47<br />

Plagiorchidae, 73<br />

Plagiorhynchus s. lat., s. str., 123<br />

Plagiorhynchus (Plagiorhynchus)<br />

charadrii, 123<br />

Plagiorhynchus (Plagiorhynchus)<br />

paulus, 123<br />

Plagiorhynchus (Plagiorhynchus)<br />

sp., 123<br />

Plagiorhynchus (Prosthorhynchus),<br />

123<br />

Plagiorhynchus (Prosthorhynchus)<br />

bullocki, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

cylindraceus, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

golvani, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

gracilis, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

malayensis, 123<br />

Plerocercoid, 7<br />

Plotnikovia fodiens, 1<br />

Pluvialis dominica, 123<br />

Polymorphus brevis, 1, 7<br />

Posthodiplostomum boydae, 1<br />

Posthodiplostomum opisthosicya, 7<br />

Posthodiplostomum minimum, 1, 7<br />

Posthodiplostomum macrocotyle, 7<br />

Posthodiplostomum sp., 1, 7<br />

Pratylenchidae, 155<br />

Pratylenchus penetrans, 155<br />

Prevalence, 7, 14, 28, 47, 70, 73,<br />

86, 89, 92, 95, 101, 111, 115,<br />

175, 194, 197, 205<br />

Procarnbarus acutus, 86<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


216 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Procyon lotor, 111<br />

Prosogonotrema bilabiatum, 14<br />

Prosthogonimus ovatus, 1<br />

Prosthorhynchus, 123<br />

Proteocephalidae, 133<br />

Protoancylodiscoides, 138<br />

Protoancylodiscoides chrysichthes,<br />

138<br />

Protomelas annectens, 47<br />

Protomelas cf. taeniolatus, 47<br />

Pseudacanthostomum floridensis,<br />

146<br />

Pseudacanthostomum panamense,<br />

146<br />

Pseudacanthostomum sp., 146<br />

Pseudocaligus apodus, 95<br />

Pseudodactylogyrus anguillae, 95<br />

Pseudotropheus tropheops "broadmouth",<br />

47<br />

Pseudotropheus tropheops "orange<br />

chest", 47<br />

Pseudotropheus elongatus "aggressive",<br />

47<br />

Puerto Rico, 67<br />

Quadrigyridae, 47<br />

Quintana Roo, Mexico, 146<br />

Raccoon, 111<br />

Radiographic imaging, 202<br />

Raillietnema brachyspiculatum, 205<br />

Raillietnema sp., 73<br />

Raillietiella scincoides, 175<br />

Rana berlandieri, 197<br />

Rana cancrivora, 187<br />

Rana dunni, 197<br />

Rana megapoda, 197<br />

Rana montezumae, 197<br />

Rana neovolcanica, 197<br />

Rana pipiens, 73<br />

Rana vaillanti, 197<br />

Ranidae, 73, 187, 197<br />

Rarotonga, 37<br />

Rat, 202<br />

Rat tapeworm, 202<br />

Red cheeked dunnart, 33<br />

Redworm, 115<br />

Remora, 67<br />

Renicola pollaris, 1<br />

Renicola sp., 7<br />

Report <strong>of</strong> the Brayton H. Ransom<br />

Memorial Trust Fund, 186<br />

Reptilia, 28, 37, 78, 89, 175, 205<br />

Rhabdias ranae, 73<br />

Rhoptropus afer, 78<br />

Rhoptropus barnardi, 78<br />

Ribeiroia ondatrae, 1, 7<br />

Rio de Janeiro, Brazil, 14, 81<br />

Round goby, 70<br />

Russia, 56<br />

Saginaw Bay, U.S.A., 115<br />

Sagitta helenae, 194<br />

Salamander, 180<br />

Sauria, 37, 78, 89, 175, 205<br />

Scanning electron microscopy, 41,<br />

28, 133, 194<br />

Sciadiocara rugosa, 1<br />

Sciadocephalus megalodiscus, 133<br />

Scincidae, 89<br />

Sculpins, 70<br />

Sea bass, 95<br />

Seasonal dynamics, 101<br />

SEM, 41, 28, 133, 194<br />

Serranicotyle labracis, 95<br />

Serratosagitta serratodentata, 194<br />

Seuratidae, 33<br />

Shore birds, 123<br />

Siluriformes, 138, 146<br />

Sirenia, 67<br />

Skinks, 89<br />

Skrjabinodon piankai sp. n., 175<br />

Sminthopsis virginiae, 33<br />

Smooth knobtail gecko, 175<br />

<strong>Society</strong> Islands, 37<br />

South Africa, 123<br />

South Carolina, U.S.A., Ill<br />

Southwellina hispida, 1<br />

Spauligodon petersi, 78<br />

Spermatheca, 155<br />

Spinifex knobtail gecko, 175<br />

Spinitectus carolini, 101<br />

Spiroxys sp., 73<br />

Splendid<strong>of</strong>ilaria fallisensis, 1<br />

Spotted sunfish, 101<br />

Sprostoniella sp., 14<br />

<strong>State</strong> <strong>of</strong> Parana, Brazil, 133<br />

<strong>State</strong> <strong>of</strong> Rio de Janeiro, Brazil, 14<br />

Stegophorus diomedeae, 1<br />

Stictodora lariformicola, I<br />

Stigornatochromis woodi, 47<br />

Stilt, 123<br />

Storr's knobtail gecko, 175<br />

Streptocara formosus, 1<br />

Streptocara crassicauda longispiculatus,<br />

1<br />

Strigeidae, 73<br />

Subgenus, 123<br />

Sulawesi Island, Indonesia, 25<br />

Survey, 1, 7, 14, 21, 28, 47, 67, 70,<br />

73, 78, 86, 89, 95, 205<br />

Tachygonetria conica nicollei, 28<br />

Tachygonetria dentata quentini, 28<br />

Tachygonetria macrolaimus dessetae,<br />

28<br />

Taeniolethrinops praeorbitalis, 47<br />

Tahiti, 37<br />

Taiwan, 123<br />

Tanaisia fedtschenkoi, 1<br />

Tapeworm, 202<br />

Tarsiger johnstoniae, 123<br />

Tasmania, 123<br />

Taxonomic description, 25, 28, 33,<br />

37, 47, 123, 133, 138, 146, 175,<br />

180, 187<br />

Taxonomic key, 123, 187<br />

Teleostei, 14, 81, 133<br />

TEM, 82, 155<br />

Tenebrio molitar, 202<br />

Testudinidae, 28<br />

Tetrabothrius macrocephalus, 1<br />

Tetrameres microspinosa, 7<br />

Tetrameres sp., 7<br />

Texas, U.S.A., 21, 86<br />

<strong>The</strong>landros awakoyai comb, n.,<br />

180<br />

<strong>The</strong>landros senisfaciecaudus comb.<br />

n., 180<br />

Thubunaea fitzsimonsi, 78<br />

Timoniella praeteritum, 95<br />

Togo, 138<br />

Tortoise, 28<br />

Trachinotus carolinus, 81<br />

Transmission electron microscopy,<br />

82, 155<br />

Trematocranus placodon, 47<br />

Trematoda, 7, 73, 82, 86, 101, 194,<br />

205<br />

Trichechus manatus, 67<br />

Triple-banded plover, 123<br />

Tuna, 25<br />

Tucunare, 133<br />

Tyrannochromis nigriventer, 47<br />

Tyrannochromis macrostoma, 47<br />

Ultrastructure, 28, 41, 82, 133, 155,<br />

194<br />

U.S.A., 1, 7, 21, 67, 70, 73, 82, 86,<br />

101, 111, 115<br />

Vanellus miles, 123<br />

Varied thrush, 123<br />

Veracruz, Mexico, 197, 205<br />

Waltonellinae, 187<br />

Wanaristrongylus ctenoti, 89, 175<br />

<strong>Washington</strong> state, U.S.A., 123<br />

Western Australia, 33, 89, 175<br />

Whitefin remora, 67<br />

White-fronted sand plover, 123<br />

Wisconsin, U.S.A., 82<br />

X-ray, 202<br />

Yellow perch, 115<br />

Zebra mussels, 70<br />

Zoonoses, 111<br />

Zoothera naevius, 123<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


APPLICATION FOR MEMBERSHIP<br />

in the<br />

HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

(Please Type or Print Legibly)<br />

Name:<br />

Mailing Address:<br />

Present Position and Name <strong>of</strong> Institution:<br />

Phone:<br />

FAX:<br />

E-Mail:<br />

Highest Degree Earned and the Year Received:<br />

Are You a Student? If so, for what degree and where?<br />

Fields <strong>of</strong> Interest:<br />

If you are experienced in your field, would you consent to be a reviewer for manuscripts<br />

submitted for publication in the Journal! If so, what specific subject area(s) do you feel<br />

most qualified to review?<br />

Signature <strong>of</strong> Applicant<br />

Date<br />

Signature <strong>of</strong> Sponsor (a member)<br />

Date<br />

Mail the completed application along with a check or money order (in U.S. currency) for<br />

the first year's dues (US$25 for domestic active members and US$28 for foreign active<br />

members) to the Corresponding Secretary-Treasurer, Nancy D. Pacheco, 9708 DePaul<br />

Drive, Bethesda, Maryland, U.S.A. 20817<br />

217<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

MISSION & VISION STATEMENTS<br />

May 7, 1999.<br />

THE MISSION<br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>, the prototype scientific organization for parasitological<br />

research in North America was founded in 1910 by a devoted group <strong>of</strong> parasitologists in<br />

<strong>Washington</strong>, D.C. Forging a niche in national and international parasitology over the past century,<br />

the <strong>Society</strong> focuses on comparative research, emphasizing taxonomy, systematics, ecology, biogeography<br />

and faunal survey and inventory within a morphological and molecular foundation. Interdisciplinary<br />

and crosscutting, comparative parasitology links contemporary biodiversity studies with<br />

historical approaches to biogeography, ecology and coevolution within a cohesive framework.<br />

Through its 5 meetings in the <strong>Washington</strong> area annually, and via the peer reviewed Comparative<br />

Parasitology (continuing the Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> in its 67th<br />

Volume), the <strong>Society</strong> actively supports and builds recognition for modern parasitological research.<br />

Taxonomic diversity represented in the pages <strong>of</strong> the <strong>Society</strong>'s journal treats the rich helminth faunas<br />

in terrestrial and aquatic plants, invertebrates and vertebrates, as well as parasitic protozoa and<br />

arthropods. Parasitology, among the most integrative <strong>of</strong> the biological sciences, provides data critical<br />

to elucidation <strong>of</strong> general patterns <strong>of</strong> global biodiversity.<br />

THE VISION<br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> celebrates a century <strong>of</strong> tradition and excellence<br />

in global parasitology, solving challenges and responding to opportunities for the future <strong>of</strong> society<br />

and the environment.<br />

Members <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> contribute to understanding and protecting<br />

human health, agriculture and the biosphere through comparative research emphasizing taxonomy,<br />

systematics, ecology, biogeography and biodiversity assessment <strong>of</strong> all parasites. <strong>The</strong> <strong>Society</strong><br />

projects the exceptional relevance <strong>of</strong> its programs to broader research and education in global<br />

biodiversity and conservation biology through the activities <strong>of</strong> its members and its journal, Comparative<br />

Parasitology.<br />

218<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


*Edna M. Buhrer<br />

*Mildred A. Doss<br />

* Allen Mclntosh<br />

*Jesse R. Christie<br />

* Gilbert F Otto<br />

*George R. LaRue<br />

*William W. Cort<br />

*Gerard Dikmans<br />

*Benjamin Schwartz<br />

*Willard H. Wright<br />

*Aurel O. Foster<br />

*Carlton M, Herman<br />

*May Belle Chitwood<br />

*Elvio H. Sadun<br />

E. J. Lawson Soulsby<br />

David R. Lincicome<br />

Margaret A. Stirewalt<br />

*Leo A. Jachowski, Jr.<br />

*Horace W. Stunkard<br />

*Kenneth C- Kates<br />

ANNIVERSARY AWARD RECIPIENTS<br />

1960<br />

1961<br />

1-962<br />

1964<br />

1965<br />

1966<br />

1966<br />

1967<br />

1969<br />

,1969<br />

1970<br />

1971<br />

1972<br />

1973<br />

1974<br />

1975<br />

1975<br />

1976<br />

1977<br />

1978<br />

* Everett E. Wehr<br />

*O~. Wilford Olsen<br />

*Frank D. Enzie<br />

Lloyd-E. Rozeboom<br />

*Leon Jacobs<br />

Harley G. Sheffield<br />

A. Morgan Golden<br />

Louis S. Diamond<br />

Everett L. Schiller<br />

Milford N. Lunde<br />

J. Ralph Lichtenfels<br />

A. James Haley<br />

Francis G. Tromba<br />

Thomas K. Sawyer<br />

Ralph P. Eckerlin<br />

Willis A. Reid, Jr.<br />

Gerhard A. Schad<br />

Franklin A". Neva<br />

Burton Y. Endo<br />

Sherman S. Hendrix<br />

1979<br />

1980<br />

-1981<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

J998<br />

* George R. LaRue<br />

*Vladimir S. Ershov<br />

*Norman R. StolJ<br />

"Horace W. Stunkard<br />

* Justus' F Mueller<br />

John FA. Sprent<br />

Bernard Bezubik<br />

Hugh M. Gordon /<br />

1959<br />

1962<br />

1976<br />

1977<br />

-1978<br />

1979<br />

1980<br />

1981<br />

!E..'I. Lawson Soulsby<br />

Roy C. Anderson<br />

Louis Euzet<br />

John C. flolmes<br />

•Purnomo<br />

'Naftale Katz - -<br />

^Robert Traub<br />

Alan F. Bird ~"<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

T995<br />

1997<br />

*W. E, Chambers<br />

*Nathan A. Gobb<br />

*Howard Crawley<br />

*Winthrop D. Foster<br />

CHARTER MEMBERS 1910<br />

*Philip E. Garrison<br />

.^Joseph Goldberger<br />

*Henry W. Graybill<br />

*Maurice C. Hall<br />

*Albert Hassall<br />

*George F Leonard<br />

*Charles A. Pfender<br />

^Brayton H. Ransom<br />

*Charles W. Stiles<br />

*Maurice C. Hall<br />

\t Hassall<br />

*Charles W. Stiles<br />

*Paul Bartsch<br />

*Henry E. Ewjng<br />

*William W. Cort<br />

*perard Dikmans -<br />

*Jesse R. Christie<br />

*Gotthold Steiner<br />

*Emmett W. Price<br />

*Elois


JULY 1999<br />

CONTENTS<br />

(Continued from Front Cover)<br />

BURSEY, C. R., AND S. R. GOLDBERG. Skrjabinodon piankai sp. n. (Nematoda: Pharyngodonidae) and<br />

Other Helminths <strong>of</strong> Geckos (Sauria: Gekkonidae: Nephrurus spp.) from Australia >. -__ 175<br />

BURSEY, C. R., AND S. R. GOLDBERG. Pampharyngodon japonicus sp. n. (Nematoda: Pharyngodoni-<br />

-dae) from the Japanese Clawed Salamander, Onychodactylus japonicus (Caudata: Hynobiidae),<br />

from Japan /——; ..- . i II -. -— ..„ '. . 180<br />

PURNOMO, AND M. J. BANGS. Paraochoterenella javanensis gen. et sp. n. (Filarioidea: Onchocercidae)<br />

from Rana cancrivora (Amphibia: Anura) in West Java, Indonesia .„ r . 187<br />

: - RESEARCH NOTES<br />

GOMEZ DEL PRADO-ROSAS, M. DEL C:, J. N. ALVAREZ-CADENA, L. SEGURA-PUERTAS, AND R. LAMOTHE-<br />

ARGUMEDO. New Records, Hosts, and SEM Observations <strong>of</strong> Cercaria owreae (Hutton, 1954)<br />

from the Mexican Caribbean Sea ^_ ... . 194<br />

RAZO-MENDIVIL, U., J. P. LACLETTE, AND G. PEREZ-PONCE DE LEON. New Host and Locality Records<br />

for Three Species <strong>of</strong> Glypthelmins (Digenea: Macroderoididae) in Anurans <strong>of</strong> Mexico : „_ 197<br />

DEINES, K. M.,'D. J. RICHARDSON, G. CONLOGUE, R. G. BECKETT, AND D. M. HOLIDAY. Radiographic<br />

Imaging <strong>of</strong> the Rat Tapeworm, Hymenolepis diminuta ^ „_ 202<br />

GOLDBERG, S. R., C. R. BURSEY, AND J/L. CAMARILLO-RANGEL. Helminths <strong>of</strong> Two Lizards, Barisia<br />

imbricata and Gerrhonotus ophiurus (Saurja: Anguidae), from Mexico 205<br />

ANNOUNCEMENTS<br />

EDITORS' ACKNOWLEDGMENTS -__.__ ~~-l ^.— IL— , '. . . 110<br />

ANNOUNCEMENT OF JOURNAL NAME CHANGE __. : . "~ ._„: 122<br />

OBITUARY NOTICE ; i___^_ , : . •, r 137<br />

MEETING SCHEDULE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!