09.11.2014 Views

The Helminthological Society of Washington - Peru State College

The Helminthological Society of Washington - Peru State College

The Helminthological Society of Washington - Peru State College

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Volume 66<br />

JOURNAL<br />

<strong>of</strong><br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong><br />

A semiannual journal <strong>of</strong>^research devoted to<br />

Helminthology and all branches <strong>of</strong> Parasitology<br />

Supported in part by the<br />

Braytbn H. Ransom Memorial Trust Fund<br />

.-- '< K - r ^ CONTENTS }<br />

-FiORlLLO, -R. /A;, AND W. F. FONT. - Seasonal Dynamics >and Community Structure <strong>of</strong><br />

Helminths <strong>of</strong> Spotted Surifish, JLepomis miriiatus (Osteichthys: Centrarchidae)<br />

from an Oligohaline Estuary in Southeastern Louisiana, U;S. A ....... ------ __.~.H_ 101<br />

YABSLEY, M. J., AND G. P. NOBLET. Nematodes and Acanthocephalans <strong>of</strong> Raccoons<br />

(Procyon lotor), with a New Geographical .Record for Centrorhynchus conspectus<br />

(Acanthoeephala) in South Carolina, U.S.A. —,---------*.---------—.— ~- — ~ —.i- 111~<br />

JVluzZALL, P. M.^Nematode Parasites <strong>of</strong> Yellow Perch, Perca flavescens, from the ,<br />

^aurentian Great Lakes ___ .____________________. ----------- •-— ~ —-,-/..... — 115 •<br />

AMIN, O. M., A. G. CANARIS, AND J. M. KINSELLA. A Taxoriomic Reconsideration (<strong>of</strong><br />

the Genus Plagiorhynchus s. lat. (Acanthoeephala: Plagiorhynchidae), with De- _<br />

- scriptions <strong>of</strong> South African Plagiorhynchus (Prosthorhynchus) cylindraceus from<br />

Shore Birds and P. (P.) malayensis, and a -Key to the Species <strong>of</strong> the Subgenus<br />

"- ProsthorhyncHus _____ .__ ~ _______________ ^ -------- —— ~^-------- ~— . ~, ------ 123<br />

REGO, A.yA., P. M. MACHADO, AND'G. C. PAVANELLI. Sciadocephalus megalodiscus<br />

Diesing, 1 850 (Cestoda: ;Corall6bothriinae), a Parasite <strong>of</strong> Cichla monoculiis Spix,<br />

1831 -(Cichlidae), in the Parana River, <strong>State</strong> <strong>of</strong> Parana, Brazil ______________s^_L£ 133<br />

KRITSKY, D. VC., AND S.-D. KULO. Revisions <strong>of</strong> Protoancylodiscoides and Bagrobdella,<br />

with Redescriptions <strong>of</strong> P. chrysichthes and B. auchenoglanii ^


-• THE SOCIETY meets in October, November, February, April, and May 'for the presentation and<br />

discussion <strong>of</strong> papers in any and all branches <strong>of</strong> parasitology or related sciences. All interested persons<br />

are, invited to attend. ~ -•-.-. ~~ • *•<br />

Persons .interested in membership in the <strong>Helminthological</strong> <strong>Society</strong> ~qf <strong>Washington</strong> may obtain application<br />

blanks in recent issues;<strong>of</strong> the Journal. A year's subscription to the Journal is included in the<br />

annual dues <strong>of</strong> $25.00 domestic ^nd $28.00 foreign. Institutional subscriptions are $50.00 per year.<br />

Applications for membership, accompanied by payments, may be sent .to the Corresponding Secretary-<br />

Treasurer, Nancy D. Pacheco, 9708 DePaul Drive, Bethesda, MD 20817, U.S.A.<br />

:•-<br />

<strong>The</strong> HelmSoc internet home page is located at http://www.gettysburg.edu/~shendrix/helmsoc.html<br />

President: ERIC P. HOB ERG<br />

Vice President: 'RONALD NEAFIE<br />

Corresponding Secretary-Treasurer: NANCY D. PACHECO<br />

Recording Secretary: W. PATRICK CARNEY ; .^<br />

Archivist/Librarian: PATRICIA A. PILITT ~ - _'<br />

Custodian <strong>of</strong> Back Issues: J. RALPH-LICHTENFELS ,<br />

: _<br />

Representative to the American <strong>Society</strong> <strong>of</strong> Parasitologists: ERIC P. HOB ERG __' / ••/•<br />

Executive Committee Members-at-Large: LYNN K. CARTA, 1999<br />

; MARK C. JENKINS, 1999 :>.'<br />

- .. WILLIAM E. MOSER, 2000, N "V<br />

•u DENNIS J. RICHARpSONr2000<br />

Immediate Past President: ELLEN ANDERSEN c , _x - ;; - ,<br />

THE JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

<strong>The</strong> Journal -is published semiannually at Lawrence, Kansas -by the HelmiiKhologidal <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong>. -Papersvrieed not-be presented^ a meeting^o be published in the Journal. Effective;with<br />

the January, 2000 issue, the Journal name will be changed to COMPARATIVE PARASITOLOGY.<br />

MANUSCRIPTS should "be sent to the EDITORS, Drs. Willis A- Reid, Jr., and Janet W Reid, 6210<br />

Hollins Drive, Bethesda, MD 20817. email: jwrassoc@erols.com. Manuscripts must be typewritten,<br />

double -spaced, and .in finished form. Consult ^recent issues ,<strong>of</strong>; the /Journal for ^format and style/<strong>The</strong><br />

original and two copies are required. Photocopies <strong>of</strong> drawings•, may,be submitted for review purposes<br />

^but. glossy prints <strong>of</strong> halftones are required; originals will be requested after acceptance <strong>of</strong> the manuscript.<br />

Papers are accepted with the understanding that they-will be published .only in the Journal.<br />

REPRINTS may be ordered from the PRINTER at the same time the corrected'pro<strong>of</strong> is/returned to<br />

the EDITORS. ' ' • • • _ ' ' ,<br />

. JOHN S. MACKIEWICZ<br />

/ BRENT B.NICKOL ,<br />

•-v •:"" 2000<br />

, _ROY C. ANDERSON v <<br />

^ RALPH ;P ECKERLIN v "<br />

RONALD PAYER<br />

•A: MORGAN GOLDEN - > ".<br />

^' ROBIN N: HUETTEL<br />

- - FUAD M. NAHHAS \Y B. PENCE<br />

VASSILIOS THEODORIDES , i<br />

JOSEPH F. URBAN .---<br />

' •" ". - / '<br />

<strong>The</strong> Helfmnthological <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 1999 '<br />

ISSN 1049-233X<br />

This paper meets the requirements <strong>of</strong> ANSI/NISO Z39.48-1992 (Permanence <strong>of</strong> Paper).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 101-110<br />

Seasonal Dynamics and Community Structure <strong>of</strong> Helminths <strong>of</strong><br />

Spotted Sunfish, Lepomis miniatus (Osteichthyes: Centrarchidae)<br />

from an Oligohaline Estuary in Southeastern Louisiana, U.S.A.<br />

RlCCARDO A. FlORILLO1 AND WILLIAM F. FONT<br />

Department <strong>of</strong> Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402 U.S.A. (email:<br />

raf3@ra.msstate.edu and wffont@selu.edu).<br />

ABSTRACT: <strong>The</strong> seasonal dynamics <strong>of</strong> the helminth community <strong>of</strong> the spotted sunfish Lepomis miniatus Warren,<br />

1992, from an oligohaline estuary were investigated over a 1-yr period. From 26 May 1991 to 25 May 1992, 7<br />

helminth species (3 Trematoda, 2 Nematoda, 2 Acanthocephala) were recovered from the gastrointestinal tracts<br />

<strong>of</strong> 200 specimens <strong>of</strong> L. miniatus. <strong>The</strong> parasite community <strong>of</strong> this host was dominated by the trematodes Barbulostomum<br />

cupuloris and Genarchella sp. Both helminths were recruited and matured in this host throughout<br />

the year, but their times <strong>of</strong> peak abundance differed. Barbulostomum cupuloris was most abundant in February-<br />

May, whereas Genarchella sp. abundance peaked in November-February. Camallanus oxycephalus and Leptorhynchoides<br />

thecatus showed a similar pattern <strong>of</strong> seasonal abundance, which was highest in May-August for<br />

both species. <strong>The</strong> remaining 3 helminths, Crepidostomutn cornutum, Neoechinorhyncus cylindratus, and Spinitectus<br />

carolini, were too rare to detect annual patterns <strong>of</strong> abundance. Infra- and component community diversity<br />

and richness did not vary seasonally, but infracommunity predictability was greatest in February-May.<br />

KEY WORDS: parasite, helminth, seasonal dynamics, Centrarchidae, Lepomis miniatus, estuary, infracommunity,<br />

component community, community, Louisiana, USA.<br />

Seasonal fluctuations in prevalence and abundance<br />

are common in many helminths <strong>of</strong> freshwater<br />

fishes (Eure, 1976; Chubb, 1979), but the<br />

mechanisms influencing seasonality are sometimes<br />

difficult to identify. Chubb (1979) concluded<br />

that, in general, seasonal patterns <strong>of</strong> occurrence<br />

<strong>of</strong> helminths are <strong>of</strong>ten species-specific<br />

and dependent upon: 1) how the helminth invades<br />

its host, 2) helminth growth and maturation,<br />

3) accumulation <strong>of</strong> eggs, and 4) loss <strong>of</strong><br />

gravid worms. Abiotic factors such as temperature<br />

may also affect the seasonal cycles <strong>of</strong> many<br />

helminths (Chappell, 1969; Anderson, 1974,<br />

1976; Eure, 1976; Granath and Esch, 1983a-c).<br />

Seasonal patterns <strong>of</strong> abundance <strong>of</strong> the helminths<br />

<strong>of</strong> centrarchid fishes in freshwater environments<br />

have been previously examined<br />

(McDaniel and Bailey, 1974; Cloutman, 1975;<br />

Eure, 1976), but studies addressing temporal<br />

variability <strong>of</strong> helminths in nongame centrarchids<br />

are lacking. More importantly, the helminth fauna<br />

<strong>of</strong> centrarchid fishes inhabiting estuarine environments<br />

has received little attention. Fiorillo<br />

and Font (1996) characterized the helminth communities<br />

<strong>of</strong> 4 species <strong>of</strong> Lepomis from a lowsalinity<br />

estuary and showed that the compound<br />

1 Present address <strong>of</strong> corresponding author: Department<br />

<strong>of</strong> Biological Sciences, Drawer GY, Mississippi<br />

<strong>State</strong> University, Mississippi <strong>State</strong>, Mississippi 39762.<br />

community <strong>of</strong> centrarchid fishes in brackish water<br />

habitats differed from that <strong>of</strong> centrarchids in<br />

freshwater environments.<br />

In this study, we examined the seasonal pattern<br />

<strong>of</strong> abundance <strong>of</strong> all helminths that utilize<br />

Lepomis miniatus Warren, 1992, as a definitive<br />

host in an oligohaline estuary. In addition, we<br />

used community measures to investigate seasonal<br />

fluctuations in the infracommunity and component<br />

community structure <strong>of</strong> L. miniatus.<br />

Materials and Methods<br />

From 26 May 1991 to 25 May 1992, 200 specimens<br />

<strong>of</strong> L. miniatus were collected from a 1.1-km section <strong>of</strong><br />

a canal along Interstate Highway 55 located between<br />

the south bank <strong>of</strong> Pass Manchac and Ruddock, Louisiana,<br />

in St. John the Baptist Parish. This man-made<br />

canal is part <strong>of</strong> the oligohaline Lake Pontchartrain-<br />

Lake Maurepas estuary located in southeastern Louisiana.<br />

<strong>The</strong> salinity <strong>of</strong> this large estuary ranges from 0<br />

ppt at the western shore <strong>of</strong> Lake Maurepas to 15 ppt<br />

at the eastern shore <strong>of</strong> Lake Pontchartrain, but at our<br />

study site, salinity never exceeded 3 ppt. Temporal variation<br />

in water temperature was determined using a<br />

Datasonde 3® water quality data logger (Hydrolab Corporation,<br />

Austin, Texas) located near our study site at<br />

the Turtle Cove Research Station on Pass Manchac,<br />

Louisiana.<br />

Our 1-yr collection period was divided into 4 periods<br />

<strong>of</strong> equal duration. Forty-five specimens were collected<br />

during the May-August period (May 26-August<br />

26), 53 during August-November (August 27-November<br />

26), and 51 each during the November—February<br />

101<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


102 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

(November 27-February 26) and February-May (February<br />

27-May 25) periods. <strong>The</strong>re was a minimum interval<br />

<strong>of</strong> 1 mo between collections made in different<br />

time periods. All hosts were captured by angling or<br />

with hoop nets and crab traps baited with cat food and<br />

checked at 1-2-day intervals. <strong>The</strong> sex and standard<br />

length <strong>of</strong> each fish were recorded, and the stomach,<br />

pyloric ceca, and intestinal tract were examined for<br />

adult helminths. Trematodes were fixed in Berland's<br />

solution (9 parts acetic acid, 1 part 37% formaldehyde)<br />

and stored in AFA (alcohol-formalin-acetic acid).<br />

Nematodes were fixed in Berland's solution and placed<br />

in glycerine alcohol. After acanthocephalans were refrigerated<br />

in distilled water overnight to extrude the<br />

proboscis, several small holes were made in the body<br />

wall with fine dissecting pins prior to fixation in AFA.<br />

Trematodes and acanthocephalans were stained with<br />

Semichon's carmine, dehydrated in a graded alcohol<br />

series, cleared in xylene, and mounted in Permount®.<br />

Nematodes were cleared and mounted in glycerine jeliy-<br />

<strong>The</strong> influence <strong>of</strong> host body size (standard length,<br />

mm) on helminth abundance and community attributes<br />

was examined with Pearson's correlations. <strong>The</strong> prevalence<br />

and abundance (Bush et al., 1997) <strong>of</strong> all helminths<br />

were calculated overall and for each time period.<br />

Helminth abundance data were square root transformed<br />

prior to statistical analyses. Seasonal patterns<br />

<strong>of</strong> helminth prevalence and abundance were analyzed<br />

with chi-square tests and ANOVA or ANCOVA, respectively.<br />

Because Barbidostomum cupuloris and Genarchella<br />

sp. were the most abundant helminths in the component<br />

community <strong>of</strong> this host, a contingency table analysis<br />

was used to examine for concurrent patterns <strong>of</strong><br />

infection. Based on gonadal development, these 2<br />

trematodes were assigned to 1 <strong>of</strong> 3 developmental<br />

stages. Specimens <strong>of</strong> B. cupuloris were scored as immature,<br />

mature, or gravid, and specimens <strong>of</strong> Genarchella<br />

sp. were categorized as nongravid, gravid, or<br />

heavily gravid. Immature specimens <strong>of</strong> B. cupuloris<br />

were defined as individuals having incomplete gonadal<br />

development and lacking vitellaria. Mature worms<br />

were characterized by complete gonadal development,<br />

but egg production had not yet begun. Individuals with<br />

eggs and highly packed vitellaria were classified as<br />

gravid. Specimens <strong>of</strong> Genarchella sp. that possessed<br />

incompletely developed gonads and lacked eggs were<br />

classified as nongravid. Gravid worms were characterized<br />

by completely formed testes and ovary, but the<br />

lobes <strong>of</strong> the vitellaria <strong>of</strong> these specimens were not<br />

clearly distinct. <strong>The</strong> uteri <strong>of</strong> these gravid specimens<br />

contained eggs, but they were only slightly convoluted<br />

and well confined within the intercecal space. Heavily<br />

gravid worms were characterized by vitellaria possessing<br />

distinct lobes. <strong>The</strong> uteri <strong>of</strong> heavily gravid specimens<br />

were distended with eggs, highly convoluted,<br />

and typically extended laterally beyond the ceca. <strong>The</strong><br />

seasonal patterns <strong>of</strong> abundance <strong>of</strong> these developmental<br />

stages were examined with ANOVA or ANCOVA.<br />

Voucher specimens <strong>of</strong> all species and developmental<br />

stages have been deposited in the U.S. National Parasite<br />

Collection (USNPC), Beltsville, Maryland, under<br />

USNPC accession numbers 84483-84485, 84489,<br />

84490, 88573 and 88574.<br />

Overall and within each time period, Brillouins's diversity<br />

index, which is appropriate for fully censused<br />

communities (Pielou, 1977), was used to estimate infracommunity<br />

and component community diversity.<br />

Seasonal mean infracommunity diversity was compared<br />

using ANOVA. As a measure <strong>of</strong> infracommunity<br />

predictability, Renkonen's coefficient <strong>of</strong> similarity was<br />

used to determine overall and within-season infracommunity<br />

similarity. Seasonal mean infracommunity similarity<br />

was compared using ANOVA, and in addition,<br />

Renkonen's coefficient <strong>of</strong> similarity was used to compare<br />

the component community <strong>of</strong> this host among<br />

time periods.<br />

Results<br />

Seven helminth species (3 Trematoda, 2 Nematoda,<br />

2 Acanthocephala), Barbidostomum cupuloris,<br />

Genarchella sp., Crepidostomum cornutum,<br />

Camallanus oxycephalus, Spinitectus<br />

carolini, Leptorhynchoides thecatus, and Neoechinorhyncus<br />

cylindratus, were recovered from<br />

the alimentary tracts <strong>of</strong> 200 L, miniatus (standard<br />

length in mm: x ± SE, range; 96.9 ± 0.91,<br />

68-126) collected from the Lake Pontchartrain-<br />

Lake Maurepas estuary. Host body size differed<br />

significantly among seasons (ANOVA, P <<br />

0.05). <strong>The</strong> largest hosts were collected in the<br />

May-August time period (104 ± 1.51, 84.5-<br />

126). Host body size decreased through August-<br />

November (101 ± 1.3, 83.1-121) and November-February<br />

(99.1 ± 1.42, 78.1-118) and was<br />

lowest in February-May (84.0 ± 1.6, 68.0-109).<br />

Water temperature in this oligohaline estuary<br />

was highest in July and gradually decreased to<br />

its lowest value in January (Fig. 1).<br />

With the exception <strong>of</strong> C. cornutum, whose<br />

abundance was greater in female hosts (x ± SE,<br />

range; 0.12 ± 0.04, 0-3) (male hosts, 0.02 ±<br />

0.02, 0-2) (r-test, P < 0.05), there were no sexrelated<br />

differences in helminth abundance. In<br />

addition, only C. cornutum (x2 = 5.137, P <<br />

0.05) and L. thecatus (x2 = 10.442, P < 0.05)<br />

showed host sex-related differences in prevalence,<br />

and as a result, both sexes were pooled<br />

for subsequent statistical analyses.<br />

Only the abundance <strong>of</strong> B. cupuloris displayed<br />

a statistically significant relationship with host<br />

body size (overall, r = -0.254, P < 0.01). In<br />

addition, no statistically significant correlations<br />

between host size and helminth species abundance<br />

were found within each collecting period<br />

(P > 0.05).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 103<br />

35<br />

30<br />

^•1 All stages<br />

I I IMM<br />

f~1 MAT<br />

1777, GRV<br />

25<br />

E 20<br />

15<br />

10<br />

Ifeii<br />

May-Aug Aug-Nov Nov-Feb Feb-May<br />

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr<br />

Figure 1. Mean monthly water temperature<br />

(°C) in Lake Pontchartrain-Lake Maurepas estuary<br />

(1992-1995). Vertical hars represent ±1 standard<br />

error <strong>of</strong> the mean.<br />

All stages<br />

NGR<br />

GRV<br />

HGR<br />

Helminth seasonal dynamics<br />

Prevalence <strong>of</strong> B. cupuloris differed significantly<br />

among time periods (x2 = 28.98, P <<br />

0.05). Thirty-six percent <strong>of</strong> hosts examined in<br />

May-August harbored at least 1 specimen. Prevalence<br />

increased to 40% in August-November<br />

and 41% in November-February before reaching<br />

82% in February-May. Irrespective <strong>of</strong> developmental<br />

stage, B. cupuloris was most abundant<br />

in February-May (8.8 ± 1.28, 0-37), displaying<br />

an 82% increase in abundance from the<br />

previous November-February time period (1.6<br />

± 0.47, 0-20) and a considerable decrease in the<br />

subsequent May-August period (1.1 ± 0.4, 0-<br />

15) (2-way ANCOVA, P < 0.05) (Fig. 2a).<br />

Abundance also differed with respect to developmental<br />

stage (2-way ANCOVA, P < 0.05),<br />

but no interaction effect was found (2-way AN-<br />

COVA, P > 0.05). Mature specimens were most<br />

abundant (1.5 ± 0.24, 0-21), followed by gravid<br />

specimens (1.4 ± 0.22, 0-18) and immature<br />

worms (0.6 ± 0.13, 0-14). In addition, each developmental<br />

stage <strong>of</strong> B. cupuloris showed a statistically<br />

significant seasonal cycle <strong>of</strong> abundance<br />

(ANCOVA, P < 0.05 for each stage). <strong>The</strong> abundance<br />

<strong>of</strong> each stage was lowest in May-August,<br />

remained low in the following August-November<br />

and November-February periods, and<br />

reached maximum abundance in February-May<br />

(Fig. 2a).<br />

Thirteen percent <strong>of</strong> hosts in May-August<br />

May-Aug Aug-Nov Nov-Feb Feb-May<br />

Figure 2. Seasonal abundances <strong>of</strong> (a) Barbulostomum<br />

cupuloris (all stages) and each developmental<br />

stage (IMM, immature; MAT, mature; GRV,<br />

gravid); (b) Genarchella sp. (all stages) and each<br />

developmental stage (NGR, nongravid; GRV, gravid;<br />

HGR, heavily gravid). Vertical bars represent<br />

± 1 standard error <strong>of</strong> the mean.<br />

were infected with Genarchella sp. Prevalence<br />

increased through August-November (34%) to<br />

reach a peak in November-February (49%) before<br />

decreasing in February-May (39%) (x2 =<br />

13.69, P < 0.05). Genarchella sp. was most<br />

abundant in November—February (6.9 ± 1.62,<br />

0-41), a 44% increase from the previous August—November<br />

time period (3.9 ± 1.39, 0—43)<br />

and showed its lowest abundance in May—August<br />

(1.4 ± 0.74, 0-23) (2-way ANOVA, P <<br />

0.05) (Fig. 2b). Overall, there was no difference<br />

in abundance among developmental stages and<br />

no interaction effect (2-way ANOVA, P ><br />

0.05). Both nongravid and gravid worms showed<br />

statistically significant seasonal cycles <strong>of</strong> abundance<br />

(ANOVA, P < 0.05 for each stage). Nongravid<br />

and gravid worms were most abundant in<br />

November-February (2.5 ± 0.89, 0-27) and Au-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


104 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

gust-November (2.2 ± 0.94, 0-41), respectively,<br />

and least abundant in May-August (nongravid:<br />

0.09 ± 0.09, 0-4; gravid: 0.1 ± 0.08, 0-3)<br />

(Fig. 2b).<br />

Camallanus oxycephalus was most prevalent<br />

and abundant in May-August (36%) (0.7 ±<br />

0.26, 0-11). Prevalence and abundance declined<br />

throughout the year and were lowest in February-May<br />

(10%) (0.1 ± 0.05, 0-2), (x2 = 12.888,<br />

P < 0.05) (ANOVA, P < 0.01), respectively<br />

(Table 1, Fig. 3). Prevalence <strong>of</strong> L. thecatus did<br />

not change seasonally (x2 = 5.278, P > 0.05)<br />

(Table 1), but its abundance did vary among<br />

time periods and peaked in May-August (0.6 ±<br />

0.19, 0-5) (ANOVA, P < 0.05) (Fig. 3). Crepidostomum<br />

cornutum, S. carolini, and N. cylindratus<br />

were uncommon (prevalence <strong>of</strong> each,<br />

< 7%), and too few individuals (abundance <strong>of</strong><br />

each, < 0.1) were recovered to determine seasonal<br />

patterns <strong>of</strong> prevalence and abundance (Table<br />

1).<br />

Parasite abundance (overall: 8.2 ± 0.8, 0—56)<br />

differed significantly among time periods (AN-<br />

COVA, P < 0.05). Abundance was lowest in<br />

May-August (4.0 ± 0.87, 0-26), increased during<br />

August-November (7.3 ± 1.66, 0-53) and<br />

November-February (8.5 ± 1.54, 0-45), and<br />

reached its highest value during February-May<br />

(12.8 ± 1.81, 0-56).<br />

Infracommunity analysis<br />

Overall, host body size was correlated with<br />

infracommunity diversity (r = 0.18, P < 0.05),<br />

but this relationship was not significant within<br />

time periods. <strong>The</strong> most diverse infracommunity<br />

was found in November-February (1.294 ±<br />

0.197, 0.0-4.14), whereas in February-May, infracommunity<br />

diversity was lowest (0.689 ±<br />

0.136, 0.0—3.35). <strong>The</strong> remaining 2 time periods,<br />

May—August and August-November, showed intermediate<br />

levels <strong>of</strong> infracommunity diversity<br />

(0.889 ± 0.151, 0.0-3.40 and 0.959 ± 0.185,<br />

0.0-4.01, respectively). However, infracommunity<br />

diversity did not differ significantly among<br />

time periods (ANCOVA, P > 0.05). Overall infracommunity<br />

diversity was 0.963 ± 0.087 (0.0-<br />

4.14).<br />

Both overall and within time periods, host<br />

body size did not influence infracommunity species<br />

richness. Helminth richness was lowest in<br />

May-August (1.244 ± 0.143, 0-4) and increased<br />

in August—November (1.302 ± 0.139,<br />

0-3) and November-February (1.353 ± 0.096,<br />

0-3). Infracommunity richness was greatest in<br />

February-May (1.549 ± 0.113, 0-3). However,<br />

infracommunity species richness did not differ<br />

significantly among time periods (ANOVA, P ><br />

0.05). Overall infracommunity species richness<br />

was 1.365 ± 0.062 (0-4). Infracommunity predictability<br />

differed significantly among time periods<br />

(ANOVA, P < 0.001). Infracommunity<br />

similarity was greatest in February-May (0.56<br />

± 0.01, 0-1) and lowest in May-August (0.22<br />

± 0.01, 0-1). In August-November and November-February,<br />

infracommunity similarity values<br />

were intermediate (0.31 ± 0.01, 0-1 and 0.34 ±<br />

0.01, 0-1, respectively). Overall infracommunity<br />

similarity was low (0.31 ± 0.003, 0-1).<br />

Component community analysis<br />

<strong>The</strong> trematodes B. cupuloris and Genarchella<br />

sp. were the most prevalent and abundant helminths<br />

and dominated the component community<br />

<strong>of</strong> Lepomis miniatus (Table 1). Barbulostomum<br />

cupuloris was most prevalent (50%), and<br />

although Genarchella sp. was recovered from<br />

fewer hosts (35%), its overall abundance (3.9 ±<br />

0.64, 0-43) did not differ significantly from that<br />

<strong>of</strong> B. cupuloris (3.5 ± 0.46, 0-37) (Mest, P ><br />

0.05). Although together these 2 trematodes accounted<br />

for 1,485 <strong>of</strong> the total 1,662 worms recovered<br />

during this study (89%), no significant<br />

association was found between them with respect<br />

to concurrent patterns <strong>of</strong> infection (x2 =<br />

0.032, P > 0.05). <strong>The</strong> nematode C. oxycephalus<br />

was recovered from 24% <strong>of</strong> hosts examined, but<br />

its abundance was low (0.4 ± 0.08, 0-11). <strong>The</strong><br />

remaining 4 helminth species showed low prevalence<br />

and abundance and, together with C. oxycephalus,<br />

represented only 11 % <strong>of</strong> the total helminth<br />

specimens recovered (Table 1).<br />

Component community diversity was low<br />

(0.47). It was greatest in February-May (1.16),<br />

progressively declined through May-August<br />

(0.63) and August-November (0.45), and was<br />

lowest in November-February (0.34). Component<br />

community species richness changed slightly<br />

over the year. Six helminth species were recovered<br />

during May—August, August—November,<br />

and November-February, whereas 7 helminth<br />

species were found in February-May<br />

(Table 1). <strong>The</strong> trematode C. cornutum and the<br />

acanthocephalan TV. cylindratus were the only<br />

helminths not found in all 4 time periods (Table<br />

1). Component community comparisons among<br />

time periods were made using Renkonen's co-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 105<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


106 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 2. Renkonen's coefficients <strong>of</strong> component<br />

community similarity <strong>of</strong> helminths <strong>of</strong> Lepomis miniatus<br />

between paired time periods.<br />

Caox<br />

Leth<br />

May-Aug.<br />

Aug.—Nov.<br />

Nov.-Feb.<br />

Aug.-Nov. Nov.—Feb. Feb.—May<br />

0.46 0.41<br />

0.77<br />

0.46<br />

0.62<br />

0.45<br />

suit, the nature <strong>of</strong> the observed seasonal patterns<br />

<strong>of</strong> this and all other helminth species is biological<br />

and not a result <strong>of</strong> changes in host demographics.<br />

May-Aug Aug-Nov Nov-Feb Feb-May<br />

Figure 3. Seasonal abundance <strong>of</strong> Camallanus<br />

oxycephalus (Caox) and Leptorhynchoides thecatus<br />

(Leth). Vertical bars represent ±1 standard error<br />

<strong>of</strong> the mean.<br />

efficient <strong>of</strong> similarity. Mean seasonal component<br />

community similarity was 0.53 ± 0.058, 0.41-<br />

0.77. <strong>The</strong> helminth community <strong>of</strong> L. miniatus in<br />

August-November and November-February<br />

showed the greatest similarity (0.77), whereas<br />

the May-August and November-February communities<br />

were least similar (0.45). <strong>The</strong> remaining<br />

comparisons are shown in Table 2.<br />

Discussion<br />

<strong>The</strong> species composition, richness, and diversity<br />

<strong>of</strong> the helminth community <strong>of</strong> L. miniatus<br />

were similar throughout the year. Species-specific<br />

and overall abundance <strong>of</strong> these helminths,<br />

infracommunity similarity, and host body size<br />

did vary somewhat with season. <strong>The</strong> trematodes<br />

B. cupuloris, described from L. miniatus (as Lepomis<br />

punctatus (Valenciennes, 1831)) collected<br />

within our study site (Ramsey, 1965), and Genarchella<br />

sp. were the most prevalent and abundant<br />

helminths recovered in this study. <strong>The</strong>se<br />

parasites have been reported only in estuarine<br />

centrarchid fishes (Fiorillo and Font, 1996), in<br />

which they showed distinct seasonal cycles <strong>of</strong><br />

prevalence and abundance.<br />

Barbulostomum cupuloris was the only helminth<br />

to show, possibly as a result <strong>of</strong> an ontogenetic<br />

shift in diet, a significant relationship<br />

with host body size. However, the influence <strong>of</strong><br />

host size was removed statistically from the subsequent<br />

seasonal abundance analysis. As a re-<br />

Seasonal dynamics <strong>of</strong> helminth infections<br />

Conditions were optimal for the recruitment<br />

and maturation <strong>of</strong> B. cupuloris in February-<br />

May, when prevalence was greatest, and each<br />

developmental stage <strong>of</strong> this worm displayed<br />

maximum abundance. Following that period, the<br />

abundance <strong>of</strong> each developmental stage and the<br />

overall prevalence declined to their lowest values<br />

(Fig. 2a). Overall, most B. cupuloris specimens<br />

recovered were mature or gravid. <strong>The</strong>se<br />

data suggest that B. cupuloris matures quickly<br />

after recruitment. Immature, mature, and gravid<br />

specimens were recovered in all 4 collecting periods,<br />

indicating that recruitment and egg production<br />

occurred throughout the year, irrespective<br />

<strong>of</strong> water temperature. Because <strong>of</strong> south Louisiana's<br />

near-subtropical climate, seasonal<br />

changes in water temperature are not extreme<br />

(Fig. 1). Although water temperature does not<br />

affect egg production in B. cupuloris, temperature<br />

can influence timing and rate <strong>of</strong> cercarial<br />

production and dispersal (Chappell, 1969; review<br />

in Chubb, 1979) and the seasonal abundance<br />

<strong>of</strong> first or second intermediate hosts (Fernandez<br />

and Esch, 199la, b). It is likely that both<br />

factors interact to affect the seasonal abundance<br />

<strong>of</strong> B. cupuloris in its definitive host.<br />

Similarly, water temperature did not affect recruitment<br />

and maturation <strong>of</strong> Genarchella sp. in<br />

L. miniatus. As with B. cupuloris, all 3 developmental<br />

stages <strong>of</strong> Genarchella sp. were found<br />

throughout the year, but this helminth showed a<br />

more gradual increase in recruitment, which<br />

peaked in November-February (Fig. 2b). At that<br />

time <strong>of</strong> year, many gravid worms were also recovered.<br />

<strong>The</strong> seasonal cycles <strong>of</strong> Genarchella sp.<br />

and B. cupuloris were asynchronous. Unlike B.<br />

cupuloris, which showed maximum prevalence<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 107<br />

and abundance in February-May, Genarchella<br />

sp. was more common and numerous in November—February<br />

(Fig. 2a, b). However, as in B. cupuloris,<br />

the seasonal cycle <strong>of</strong> Genarchella sp. in<br />

L. rniniatus may be linked to the seasonal dynamics<br />

<strong>of</strong> cercarial production and dispersal and<br />

to the abundance <strong>of</strong> the intermediate host.<br />

<strong>The</strong> life cycles <strong>of</strong> B. cupuloris and Genarchella<br />

sp. are not known but are probably dependent<br />

on brackish water food webs for successful<br />

transmission (Ramsey, 1965; Fiorillo and<br />

Font, 1996). <strong>The</strong> lack <strong>of</strong> a concurrent pattern <strong>of</strong><br />

infection, as well as the apparent asynchrony in<br />

the seasonal cycles <strong>of</strong> these trematodes, suggest<br />

that they do not share the same intermediate<br />

hosts.<br />

A qualitative analysis <strong>of</strong> the gut contents <strong>of</strong><br />

L. miniatus in May-August showed that this<br />

centrarchid preyed primarily on amphipods<br />

(Fiorillo and Font, 1996). Similarly, Levine<br />

(1980) reported that amphipods made up 75% <strong>of</strong><br />

all prey items <strong>of</strong> L. miniatus in the Lake Pontchartrain-Lake<br />

Maurepas estuary. However,<br />

Fiorillo and Font (1996) showed that in May-<br />

August, both helminths were much more prevalent<br />

and abundant in redear sunfish Lepomis<br />

microlophus (Giinther, 1859), a host well known<br />

for its specialized diet <strong>of</strong> bivalves and other mollusks<br />

(Wilburn, 1969; Lauder, 1983). In this estuary,<br />

Levine (1980) reported that the diet <strong>of</strong> L.<br />

microlophus consisted primarily <strong>of</strong> molluscs, but<br />

some amphipods were also taken. A qualitative<br />

gut analysis in May-August showed that L. microlophus<br />

preyed on amphipods, isopods, and<br />

bivalves (Fiorillo and Font, 1996). <strong>The</strong>se data<br />

suggest that amphipods and bivalves may represent<br />

potential second intermediate hosts for<br />

these 2 trematodes.<br />

<strong>The</strong> nematode C. oxycephalus was most prevalent<br />

and abundant in May-August. Prevalence<br />

and abundance declined through the subsequent<br />

time periods and were lowest in February-May.<br />

It is likely that the seasonal dynamics <strong>of</strong> C. oxycephalus<br />

in this estuary are dependent on the<br />

seasonal abundance <strong>of</strong> its copepod intermediate<br />

host as shown by Stromberg and Crites (1975)<br />

in Lake Erie. Unfortunately, we have no data on<br />

the seasonal dynamics <strong>of</strong> copepod populations<br />

in the Lake Ponchartrain-Lake Maurepas estuary<br />

to support this assumption, but, generally, zooplankton<br />

populations in temperate climates increase<br />

in the summer months (Pennak, 1989).<br />

Although in our study C. oxycephalus abundance<br />

was low, we did recover gravid specimens,<br />

suggesting that L. miniatus is a suitable<br />

host for this nematode.<br />

As in C. oxycephalus, abundance <strong>of</strong> L. thecatus<br />

was low, but this acanthocephalan did<br />

show a seasonal cycle <strong>of</strong> abundance that peaked<br />

in May-August. Fiorillo and Font (1996)<br />

showed that, in this estuary, L. thecatus was<br />

much more prevalent and abundant in redear<br />

sunfish, L. microlophus, and C. oxycephalus occurred<br />

more frequently in bluegill, L. macrochirus<br />

Rafinesque, 1819, suggesting that L. miniatus<br />

is a suitable rather then a required host for<br />

these helminths. Leong and Holmes (1981) suggested<br />

that, within its environment, the seasonal<br />

cycle <strong>of</strong> a helminth is mostly determined by its<br />

seasonal dynamics within its most common host<br />

in which the parasite can become reproductive<br />

(required host). <strong>The</strong>refore, the seasonal cycles <strong>of</strong><br />

L. thecatus and C. oxycephalus in L. miniatus<br />

may not be indicative <strong>of</strong> the seasonal pattern<br />

found in L. microlophus and L. macrochirus, respectively.<br />

Too few specimens <strong>of</strong> the remaining<br />

3 helminth species were found to determine seasonal<br />

cycles <strong>of</strong> prevalence and abundance, but<br />

all are common parasites <strong>of</strong> centrarchids and<br />

other fishes from freshwater environments (see<br />

H<strong>of</strong>fman, 1967) (Table 1).<br />

Mostly because <strong>of</strong> increases in abundance <strong>of</strong><br />

B. cupuloris and Genarchella sp. (Fig. 2a, b),<br />

the overall parasite abundance was greatest in<br />

February-May. That time <strong>of</strong> year is generally<br />

associated with an increase in the feeding activity<br />

<strong>of</strong> fishes in Louisiana as water temperature<br />

begins to rise (Fig. 1) and many centrarchid species<br />

approach the reproductive season (Carlander,<br />

1977). Many invertebrate potential intermediate<br />

hosts also show seasonal changes in<br />

density, with abundance peaks in early spring<br />

(Heard, 1982). Seasonal dynamics <strong>of</strong> invertebrate<br />

intermediate hosts, coupled with seasonal<br />

variation in feeding rates and diet <strong>of</strong> L. miniatus,<br />

may play an important role in determining the<br />

seasonal cycles <strong>of</strong> abundance <strong>of</strong> these helminths.<br />

Infracommunity structure<br />

Kennedy (1990) characterized the helminth<br />

community <strong>of</strong> freshwater fishes as depauperate<br />

and isolationist. <strong>The</strong> infracommunity <strong>of</strong> L. miniatus<br />

displayed both characteristics. Infracommunities<br />

were characterized by a lack <strong>of</strong> helminth<br />

interactions, were species-poor, and included<br />

a small number <strong>of</strong> worms. Consequently,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


108 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

overall mean infracommunity diversity and species<br />

richness <strong>of</strong> L. miniatus were low, similar to<br />

other freshwater fishes (Kennedy et al., 1986).<br />

Most fish display indeterminate growth (Wooten,<br />

1990), so that body size is <strong>of</strong>ten highly correlated<br />

with age (Ricker, 1979; Swales, 1986).<br />

In the present study, larger hosts harbored a<br />

more diverse infracommunity. This was probably<br />

because <strong>of</strong> greater exposure time, which may<br />

increase the probability <strong>of</strong> these hosts being colonized<br />

by the less common helminth species.<br />

Cloutman (1975) noted a similar relationship between<br />

age and helminth diversity in largemouth<br />

bass, Micropterus salmoides (Lacepede, 1802).<br />

Seasonality did not affect infracommunity diversity<br />

and species richness. With the exception<br />

<strong>of</strong> C. cornutum and TV. cylindratus, all remaining<br />

helminths were recovered in all time periods,<br />

suggesting that the larval forms <strong>of</strong> the majority<br />

<strong>of</strong> these helminths are capable <strong>of</strong> colonizing L.<br />

miniatus year-round. However, the proportion <strong>of</strong><br />

infected intermediate hosts, as shown by Fernandez<br />

and Esch (199la, b), may have changed<br />

seasonally, resulting in the discrete cycles <strong>of</strong><br />

abundance shown by some <strong>of</strong> these helminths.<br />

Overall, the infracommunity structure <strong>of</strong> L.<br />

miniatus was not highly predictable, suggesting<br />

that each infracommunity represented a random<br />

subset <strong>of</strong> the parasites found in the component<br />

community <strong>of</strong> this host. Poulin (1997) noted that<br />

low infracommunity predictability is also a characteristic<br />

<strong>of</strong> isolationist communities, because<br />

helminth interactions, which <strong>of</strong>ten result in more<br />

predictably structured assemblages, are lacking.<br />

Infracommunity predictability did differ<br />

among time periods. Infracommunity structure<br />

was most and least predictable in February—May<br />

and May—August, respectively. In February-<br />

May, increases in prevalence and abundance <strong>of</strong><br />

B. cupuloris were largely responsible for the<br />

greatest degree <strong>of</strong> infracommunity similarity,<br />

whereas reductions in prevalence and abundance<br />

<strong>of</strong> this trematode, along with Genarchella sp.,<br />

may have contributed to low infracommunity<br />

predictability in the following season. <strong>The</strong> greater<br />

predictability in February-May suggests that<br />

larval helminths are more prevalent in their intermediate<br />

hosts during that time <strong>of</strong> year so that<br />

the probability <strong>of</strong> individual hosts acquiring a<br />

similar suite <strong>of</strong> parasites is greater.<br />

Component community structure<br />

<strong>The</strong> trematodes B. cupuloris and Genarchella<br />

sp. were the dominant species in the component<br />

community <strong>of</strong> L. punctatus and accounted for<br />

the majority <strong>of</strong> all worms recovered during this<br />

year-long study. <strong>The</strong>se helminths are not found<br />

in freshwater centrarchids but have been reported<br />

from other Lepomis spp. in the Lake Pontchartrain-Lake<br />

Maurepas estuary (Fiorillo and<br />

Font, 1996). Ramsey (1965) noted that B. cupuloris<br />

was replaced by the closely related Homalometron<br />

armatum (MacCallum, 1895) in centrarchid<br />

hosts collected in freshwater ponds located<br />

near this estuary. In this estuary, B. cupuloris<br />

and Genarchella sp. are more prevalent<br />

and abundant in L. microlophus (Fiorillo and<br />

Font, 1996), suggesting that L. miniatus is a suitable<br />

but not a required host for these trematodes<br />

(Leong and Holmes, 1981). However, the specificity<br />

<strong>of</strong> B. cupuloris and Genarchella sp. for<br />

estuarine hosts reaffirms the importance <strong>of</strong> ecological<br />

associations to the component community<br />

structure <strong>of</strong> L. miniatus.<br />

<strong>The</strong> remaining 5 helminths recovered from L.<br />

miniatus are common parasites <strong>of</strong> freshwater<br />

centrarchid fishes (see H<strong>of</strong>fman, 1967). Although<br />

mature forms were found in L. miniatus,<br />

these helminths showed low prevalence and<br />

abundance (Table 1). However, all 5 species<br />

were more prevalent and abundant in other Lepomis<br />

spp. from this estuary (Fiorillo and Font,<br />

1996). <strong>The</strong>se patterns suggest that L. miniatus is<br />

a suitable host for these helminths (Leong and<br />

Holmes, 1981) but that their occurrence in L.<br />

miniatus may represent accidental infections.<br />

Component community diversity was low and<br />

similar to that <strong>of</strong> other freshwater fishes (Kennedy<br />

et al., 1986). Qualitatively, component diversity<br />

varied seasonally and was greatest in<br />

February—May when B. cupuloris and Genarchella<br />

sp. occurred frequently and abundances<br />

were high. <strong>The</strong> component community <strong>of</strong> this<br />

host in August-November and November-February<br />

was most similar. In those time periods,<br />

most <strong>of</strong> the helminths recovered displayed similar<br />

measures <strong>of</strong> prevalence and abundance (Table<br />

1), resulting in a greater degree <strong>of</strong> similarity.<br />

Overall, the helminth species composition <strong>of</strong><br />

L. miniatus was similar to that <strong>of</strong> other centrarchid<br />

hosts in this estuary (see Fiorillo and Font,<br />

1996). All helminths found in the present study<br />

were also recovered in L. macrochirus and, with<br />

the exception <strong>of</strong> C. cornutum, in L. megalotis.<br />

However, compared to L. miniatus, species richness<br />

was much lower in L. microlophus. Dietary<br />

differences between and among hosts may ac-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


FIORILLO AND FONT—SEASONAL DYNAMICS OF HELMINTH INFECTIONS 109<br />

count for this result (Bell and Burt, 1991), but<br />

unequal sampling effort may have biased this<br />

pattern (see Levine, 1980; Fiorillo and Font,<br />

1996, for diet analyses).<br />

Further studies are necessary to determine the<br />

life cycles <strong>of</strong> B. cupuloris and Genarchella sp.<br />

Knowledge <strong>of</strong> the intermediate hosts <strong>of</strong> these<br />

trematodes and their seasonal patterns <strong>of</strong> abundance,<br />

as well as <strong>of</strong> temporal changes in the trophic<br />

interactions <strong>of</strong> intermediate hosts and fish,<br />

is essential to our understanding <strong>of</strong> the mechanisms<br />

that determine the seasonal dynamics <strong>of</strong><br />

these helminths and the parasite community<br />

structure <strong>of</strong> this centrarchid host. In addition, a<br />

better understanding <strong>of</strong> these life cycles and seasonal<br />

patterns <strong>of</strong> incidence and abundance<br />

would further elucidate the importance <strong>of</strong> L.<br />

miniatus to the circulation <strong>of</strong> these helminths in<br />

this estuarine ecosystem.<br />

Acknowledgments<br />

We thank G. W. Childers, R. A. Seigel, R. W.<br />

Hastings, and G. P. Shaffer for their counsel and<br />

support. We thank Bill Lutterschmidt, Becky<br />

Fiorillo, John Chelchowski, Scott Thompson,<br />

and Kelley Smith for their help in the field. We<br />

are especially grateful to Tom Blanchard for his<br />

relentless help in the field and support throughout<br />

the duration <strong>of</strong> this study and to an anonymous<br />

reviewer for a critical and perceptive review<br />

<strong>of</strong> the manuscript and recommendations<br />

for its improvement.<br />

Literature Cited<br />

Anderson, R. M. 1974. Population dynamics <strong>of</strong> the<br />

cestode Caryophyllaeus laticeps (Fellow, 1781) in<br />

the bream (Abramus brama L.). Journal <strong>of</strong> Animal<br />

Ecology 43:305-321.<br />

. 1976. Seasonal variation in the population dynamics<br />

<strong>of</strong> Caryophyllaeus laticeps. Parasitology<br />

72:281-305.<br />

Bell, G., and A. Burt. 1991. <strong>The</strong> comparative biology<br />

<strong>of</strong> parasite species diversity: internal helminths <strong>of</strong><br />

freshwater fish. Journal <strong>of</strong> Animal Ecology 60:<br />

1047-1064.<br />

Bush, A. O., K. D. Lafferty, J. M. Lotz, and A. W.<br />

Shostak. 1997. Parasitology meets ecology on its<br />

own terms: Margolis et al. revisited. Journal <strong>of</strong><br />

Parasitology 83:575-583.<br />

Carlander, K. D. 1977. Handbook <strong>of</strong> Freshwater<br />

Fishery Biology. Life History Data on Centrarchid<br />

Fishes <strong>of</strong> the United <strong>State</strong>s and Canada. Iowa<br />

<strong>State</strong> University Press, Ames, Iowa. 431 pp.<br />

Chappell, L. H. 1969. <strong>The</strong> parasites <strong>of</strong> the threespined<br />

stickleback Gasterosteus aculeatus L. from<br />

a Yorkshire pond. I. Seasonal variation <strong>of</strong> parasite<br />

fauna. Journal <strong>of</strong> Fish Biology 1:137-152.<br />

Chubb, J. S. 1979. Seasonal occurrence <strong>of</strong> helminths<br />

in freshwater fishes. Part II. Trematoda. Pages<br />

141-313 in W. H. R. Lumsden, R. Muller, and J.<br />

R. Baker, eds. Advances in Parasitology. Vol. 17.<br />

Academic Press, London. 415 pp.<br />

Cloutman, D. G. 1975. Parasite community structure<br />

<strong>of</strong> largemouth bass, warmouth, and bluegill in<br />

Lake Fort Smith, Arkansas. Transactions <strong>of</strong> the<br />

American Fisheries <strong>Society</strong> 104:277-283.<br />

Eure, H. 1976. Seasonal abundance <strong>of</strong> Neoechinorhyncus<br />

cylindratus from the largemouth bass<br />

(Micropterus salmoides) in a heated reservoir.<br />

Parasitology 73:355-370.<br />

Fernandez, J., and G. W. Esch. 199la. Guild structure<br />

<strong>of</strong> larval trematodes in the snail Helisoma<br />

anceps and its impact on fecundity <strong>of</strong> the snail<br />

host. Journal <strong>of</strong> Parasitology 77:528-539.<br />

, and . 1991b. <strong>The</strong> component community<br />

structure <strong>of</strong> larval trematodes in the pulmonate<br />

snail Helisoma anceps. Journal <strong>of</strong> Parasitology<br />

77:540-550.<br />

Fiorillo, R. A., and W. F. Font. 1996. Helminth community<br />

structure <strong>of</strong> four species <strong>of</strong> Lepomis (Osteichthyes:<br />

Centrarchidae) from an oligohaline estuary<br />

in southeastern Louisiana. Journal <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 64:24-<br />

30.<br />

Granath, W. O., and G. W. Esch. 1983a. Temperature<br />

and other factors that regulate the composition<br />

and infrapopulation densities <strong>of</strong> Bothriocephalus<br />

acheilognathi (Cestoda) in Gambusia affinis<br />

(Pisces). Journal <strong>of</strong> Parasitology 69:1 1 16-1124.<br />

, and . 1983b. Survivorship and parasite-induced<br />

mortality among mosquito fish in a<br />

predator-free, North Carolina cooling reservoir.<br />

American Midland Naturalist 110:314-323.<br />

, and . 1983c. Seasonal dynamics <strong>of</strong><br />

Bothriocephalus acheilognathi in ambient and<br />

thermally altered areas <strong>of</strong> a North Carolina cooling<br />

reservoir. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 50:205-218.<br />

Heard, R. W. 1982. Guide to common tidal marsh<br />

invertebrates <strong>of</strong> the northeastern Gulf <strong>of</strong> Mexico.<br />

Mississippi Alabama Sea Grant Consortium Publication<br />

79-004. 82 pp.<br />

H<strong>of</strong>fman, G. L. 1967. Parasites <strong>of</strong> North American<br />

Freshwater Fish. University <strong>of</strong> California Press,<br />

Berkeley. 486 pp.<br />

Kennedy, C. R. 1990. Helminth communities in freshwater<br />

fish: structured communities or stochastic<br />

assemblages? Pages 131-156 in G. W. Esch, O.<br />

Bush, and J. M. Aho, eds. Parasite Communities:<br />

Patterns and Process. Chapman and Hall, London.<br />

335 pp.<br />

, A. O. Bush, and J. M. Aho. 1986. Patterns<br />

in helminth communities: why are birds and fish<br />

different? Parasitology 93:205-215.<br />

Lauder, G. V. 1983. Functional and morphological<br />

bases <strong>of</strong> trophic specialization in sunfishes (Teleostei,<br />

Centrarchidae). Journal <strong>of</strong> Morphology<br />

178:1-21.<br />

Leong, T. S., and J. C. Holmes. 1981. Communities<br />

<strong>of</strong> metazoan parasites in open water fishes <strong>of</strong> Cold<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


110 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Lake, Alberta. Journal <strong>of</strong> Fish Biology 18:693-<br />

713.<br />

Levine, S. J. 1980. Gut contents <strong>of</strong> 44 Lake Pontchartrain<br />

fish species. Pages 973-1029 in J. H.<br />

Stone, ed. Environmental Analysis <strong>of</strong> Lake Pontchartrain,<br />

Louisiana, Its Surrounding Wetlands<br />

and Selected Land Uses. Vol. 2. Coastal Ecology<br />

Laboratory, Center for Wetland Resources, Louisiana<br />

<strong>State</strong> University, Baton Rouge, Louisiana.<br />

Technical Report 899-1030. 1219 pp.<br />

McDaniel, J. S., and H. H. Bailey. 1974. Seasonal<br />

population dynamics <strong>of</strong> some helminth parasites<br />

<strong>of</strong> centrarchid fishes. Southwestern Naturalist 18:<br />

403-416.<br />

Pennak, R. W. 1989. Fresh-water Invertebrates <strong>of</strong> the<br />

United <strong>State</strong>s: Protozoa to Mollusca, 3rd ed. John<br />

Wiley & Sons, New York. 628 pp.<br />

Pielou, E. C. 1977. Mathematical Ecology. John Wiley<br />

& Sons, New York. 385 pp.<br />

Poulin, R. 1997. Species richness <strong>of</strong> parasite assemblages:<br />

evolution and patterns. Annual Review <strong>of</strong><br />

Ecology and Systematics 28:341-358.<br />

Ramsey, J. S. 1965. Barbulostomiim cupuloris gen. et<br />

sp. n. (Trematoda: Lepocreadiidae) from sunfishes<br />

(Lepomis spp.) in Lake Pontchartrain, Louisiana.<br />

Journal <strong>of</strong> Parasitology 51:777-780.<br />

Ricker, W. E. 1979. Growth rates and models. Pages<br />

677-743 in W. S. Hoar, D. J. Randall, and J. R.<br />

Brett, eds. Fish Physiology. Vol. 8. Academic<br />

Press, London. 792 pp.<br />

Stromberg, P. C., and J. L. Crites. 1975. An analysis<br />

<strong>of</strong> the changes in the prevalence <strong>of</strong> Camallanus<br />

oxycephalus (Nematoda: Camallanidae) in western<br />

Lake Erie. Ohio Journal <strong>of</strong> Science 75:1-6.<br />

Swales, S. 1986. Population dynamics, production and<br />

angling catch <strong>of</strong> brown trout, Salmo trutta, in a<br />

mature upland reservoir in Mid-Wales. Environmental<br />

Biology <strong>of</strong> Fishes 16:279-293.<br />

Wilbur, R. L. 1969. <strong>The</strong> Redear Sunfish in Florida.<br />

Florida Game and Fish Commission Fisheries<br />

Bulletin 5. 64 pp.<br />

Wootton, R. J. 1990. An Ecology <strong>of</strong> Teleost Fishes.<br />

Chapman and Hall, New York. 404 pp.<br />

Editors' Acknowledgments<br />

In addition to the members <strong>of</strong> the Editorial Board, we would like to acknowledge, with thanks,<br />

the following persons for providing their valuable help and insights in reviewing manuscripts for<br />

the Journal: Jasem Abdul-Salam, Martin Adamson, Omar Amin, James Baldwin, Diane Barton,<br />

George Benz, Ian Beveridge, Walter Boeger, Burton Bogitsh, Daniel Brooks, Charles Bursey, Albert<br />

Bush, Gilbert Castro, Hilda Ching, Rebecca Cole, Bruce Conn, John Crites, John Cross, Murray<br />

Dailey, Tommy Dunagan, Donald Forrester, Stephen Goldberg, David Hall, Hideo Hasegawa, Richard<br />

Heard, Gary Hendrickson, Sherman Hendrix, Russell Hobbs, Jane Huffman, Hugh Jones,<br />

James Joy, Michael Kinsella, Thomas Klei, Delane Kritsky, Ralph Lichtenfels, Donald Linzey,<br />

Jeffrey Lotz, Eugene Lyons, David Marcogliese, Gary MacCallister, Donald McAlpine, Lena Measures,<br />

Frantisek Moravec, Darwin Murrell, Patrick Muzzall, Brent Nickol, Thomas Nolan, Paul<br />

Nollen, David Oetinger, Robin Overstreet, Raphael Payne, Danny Pence, Thomas Platt, Mark Pokras,<br />

Dennis Richardson, Guillermo Salgado-Maldonado, Gerhard Schad, Mark Siddall, Donald<br />

Smith, Marilyn Spalding, George Stewart, Michael Sukhdeo, Dennis Thoney, John Ubelaker.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 11 1-114<br />

Nematodes and Acanthocephalans <strong>of</strong> Raccoons (Procyon lotor}, with<br />

a New Geographical Record for Centrorhynchus conspectus<br />

(Acanthocephala) in South Carolina, U.S.A.<br />

MICHAEL J. YABSLEY AND GAYLE PITTMAN NoBLET1<br />

Department <strong>of</strong> Biological Sciences, Clemson University, Clemson, South Carolina 29634-1903, U.S.A. (e--<br />

mail: myabsle@clemson.cdu; gnoblet@clemson.edu)<br />

ABSTRACT: From April 1997 through April 1998, 128 raccoons (Procyon lotor (Linnaeus)) collected from 7<br />

sites representing 4 physiographic areas in South Carolina were examined for gastrointestinal helminth parasites.<br />

Four species <strong>of</strong> nematodes (Gnathostoma procyonis (Chandler), Physaloptera rara Hall and Wigdor, Arthrocephahis<br />

lotoris (Schwartz), and Molineus barhatus Chandler) and 2 species <strong>of</strong> acanthocephalans (Macracanthorhynchus<br />

ingens (von Linstow) and Centrorhynchus conspectus Van Cleave and Pratt) were collected. <strong>The</strong><br />

finding <strong>of</strong> 11 immature C. conspectus in 3 South Carolina raccoons represents a new geographical record for<br />

this species.<br />

KEY WORDS: Centrorhynchus conspectus, raccoon, Procyon lotor, Nematoda, Acanthocephala, helminths,<br />

Gnathostoma procyonis, Physaloptera rara, Arthrocephalus lotoris, Molineus barbatus, Macracanthorhynchus<br />

ingens, South Carolina, U.S.A.<br />

<strong>The</strong> raccoon (Procyon lotor (Linnaeus, 1758))<br />

is an omnivore that ranges over most <strong>of</strong> North<br />

America and occurs in both rural and urban settings.<br />

Consequently, the range <strong>of</strong> zoonoses for<br />

raccoons is important in assessing risk to humans<br />

and domestic animals. In South Carolina,<br />

only limited studies on helminth parasites <strong>of</strong> raccoons<br />

have been reported previously (Harkema<br />

and Miller, 1964; Stansell, 1974). More recent<br />

reports <strong>of</strong> serious human illnesses from the<br />

northern and midwestern United <strong>State</strong>s, such as<br />

cerebrospinal nematodiasis because <strong>of</strong> infection<br />

with the gastrointestinal nematode Baylisascaris<br />

procyonis (Stefanski and Zarnowski, 1951), led<br />

to the current study, which includes raccoons<br />

collected statewide from a wide variety <strong>of</strong> habitats<br />

(e.g., mountains, farms, urban areas, beaches,<br />

swamps, and barrier islands), allowing for a<br />

comparison <strong>of</strong> parasite burdens and consideration<br />

<strong>of</strong> human health risks associated with these<br />

parasites (Williams et al., 1997; Boschetti and<br />

Kasznica, 1995).<br />

Materials and Materials<br />

Raccoons (n = 128) were collected between April<br />

1997 and April 1998 with foot-hold traps or wire livetraps.<br />

Traps were set at 7 sites that included 4 <strong>of</strong> the<br />

5 physiographic areas <strong>of</strong> South Carolina. Site 1 included<br />

both urban and waterfowl management areas<br />

(WMA) in Pickens County (Foothills); Site 2 was a<br />

WMA in Union County (Piedmont); Site 3 was inland<br />

1 Corresponding author.<br />

111<br />

farm areas <strong>of</strong> Horry County (Lower Coastal Plains<br />

North, LCPN); Site 4 included both beach and wooded<br />

habitats in the tourist area <strong>of</strong> Myrtle Beach, Horry<br />

County (LCPN); Site 5 was a swamp located on the<br />

Savannah River in Hampton County (Lower Coastal<br />

Plains South, LCPS); and Sites 6 and 7 were both on<br />

barrier islands located in Charleston County (LCPS).<br />

John's Island (Site 6), next to and continuous with the<br />

mainland at times <strong>of</strong> low tide, is primarily forest and<br />

farmland with many freshwater ponds, whereas Seabrook<br />

Island (Site 7) is a small residential island about<br />

1.5 km <strong>of</strong>fshore, which lacks freshwater habitats. Each<br />

raccoon was subjected to multiple evaluations, which<br />

included not only our study <strong>of</strong> gastrointestinal helminth<br />

parasites, but also seroprevalence, culture and<br />

DNA studies for Trypanosoma cruzi, and museum<br />

study specimens. In addition, most animals were included<br />

in a trap-type capture effectiveness study conducted<br />

by the South Carolina Department <strong>of</strong> Natural<br />

Resources (SCDNR).<br />

Raccoons were either euthanized by intramuscular<br />

injection <strong>of</strong> 0.2 ml/kg ketamine/xylazine followed by<br />

intraperitoneal injection <strong>of</strong> 1 ml/kg sodium pentobarbital,<br />

or were hunter-shot. Stomach and intestines from each<br />

animal were examined as soon as possible after death<br />

(within 1-2 hr). However, animals from 2 <strong>of</strong> the physiographic<br />

regions (Sites 3-7) were frozen at — 4°C for<br />

1-3 mo prior to examination for helminths because <strong>of</strong><br />

the use <strong>of</strong> the animals for a trap-type study conducted<br />

by the International Association <strong>of</strong> Fish and Wildlife<br />

Agencies. <strong>The</strong>refore, trematodes and cestodes were excluded<br />

from the overall analyses because freezing <strong>of</strong> a<br />

large number <strong>of</strong> hosts resulted in difficult collection<br />

and unreliable identification <strong>of</strong> flatworms.<br />

All nematodes collected from the stomachs and<br />

small intestines <strong>of</strong> raccoons were preserved and stored<br />

in a 70% ethanol-5% glycerine solution. Representative<br />

specimens <strong>of</strong> each nematode were mounted in glycerine<br />

jelly. Acanthocephalans collected from the small<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


M<br />

*<br />

12 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

intestine were placed in water until the proboscis everted,<br />

preserved in acetic acid-formalin-alcohol (AFA),<br />

and stored in 70% ethanol. Temporary wet mounts and<br />

permanent Mayer's acid carmine-stained mounts in<br />

Canada balsam were made for identification. Voucher<br />

specimens deposited at the U.S. National Parasite Collection<br />

in Beltsville, Maryland, have been assigned<br />

USNPC accession numbers 87838-87843. Fisher's exact<br />

test was used to detect significant differences (P <<br />

0.05) in helminth prevalence (%) between study sites.<br />

Two-thirds <strong>of</strong> the animals caught were male, and 85%<br />

<strong>of</strong> all animals were mature. Because <strong>of</strong> the large bias<br />

toward males and adults, no statistical analyses were<br />

performed.<br />

Results and Discussion<br />

Of the 128 raccoons examined, 103 (80%)<br />

were infected with 1 or more <strong>of</strong> the 4 nematodes<br />

and 2 acanthocephalans listed in Table 1. Gnathostoma<br />

procyonis Chandler, 1942, and Physaloptera<br />

rara Hall and Wigdor, 1918, were recovered<br />

primarily from the stomach. Arthrocephalus<br />

(=Placoconus) lotoris (Schwartz, 1925)<br />

and Molineus barbatus Chandler, 1942, were<br />

collected from the posterior and anterior ends <strong>of</strong><br />

the small intestine, respectively. Both Macracanthorhynchus<br />

ingens (von Linstow, 1879) and<br />

Centrorhynchus conspectus Van Cleave and<br />

Pratt, 1940, were recovered exclusively from the<br />

small intestine. Interestingly, 96.1% <strong>of</strong> raccoons<br />

examined from Sites 1-6 were infected with at<br />

least 1 helminth species, whereas only 5 <strong>of</strong> 26<br />

(19.2%) raccoons examined from Seabrook Island<br />

(Site 7) were infected.<br />

Gnathostoma procyonis, a stomach nematode<br />

that forms large nodules in the mucosa, was<br />

found at Sites 3 and 5 in significantly larger<br />

numbers than at other sites (Table 1). Extensive<br />

freshwater habitats were present at both sites,<br />

providing a favorable environment for the required<br />

first intermediate host, which is 1 <strong>of</strong> several<br />

species <strong>of</strong> cyclopoid copepods (Miyazaki,<br />

1960). In contrast, no infections <strong>of</strong> G. procyonis<br />

were observed at 2 coastal locations (Sites 4 and<br />

7), which lacked permanent freshwater habitats.<br />

Physaloptera rara, a spirurid nematode recovered<br />

from both the stomach and small intestine<br />

<strong>of</strong> hosts, does not require the presence <strong>of</strong> freshwater<br />

habitats, because raccoons become infected<br />

by ingestion <strong>of</strong> various terrestrial arthropods<br />

(e.g., Gryllus pennsylvanicus Burmeister, 1838,<br />

Pennsylvania field cricket; Blattella germanica<br />

(Linnaeus, 1767), German cockroach; and Centophiles<br />

spp., camel crickets) (Lincoln and Anderson,<br />

1973). Compared to all other sites, a sig-<br />

"E a<br />

^N<br />

OJj<br />

3<br />

o<br />

5<br />

t^<br />

sON<br />

iH<br />

9 c a<br />

E o£a<br />

j30<br />

«<br />

U<br />

—*j<br />

o<br />

JS<br />

i<br />

1"o 0<br />

c ,g<br />

~<br />

|><br />

1<br />

Qq<br />

e<br />

o<br />

u<br />

u<br />

03<br />

£<br />

00<br />

E<br />

0<br />

tM<br />

C<br />

JS<br />

a<br />

u<br />

o<br />

1<br />

s<br />

•o ea<br />

VI<br />

0<br />

a u<br />

X s<br />

*o<br />

" CN<br />

1)<br />

.S II<br />

00 ^<br />

c .<br />

fll ^<br />

.« o<br />

oo J-<br />

OJ<br />

a<br />

D.<br />

O<br />

X<br />

tL)<br />

u<br />

a.<br />

00<br />

NO<br />

>O C — ^J" ^j" CO<br />

— — oo ON •* ON<br />

J. J. J. J. ' '<br />

__<br />

V") t~-; NO ON CO P~;<br />

O V~l CO NO •— CN<br />

+1 +1 +1 +1 +1 +1<br />

CN r- ON NO r- t-<br />

•^t oo ON CO ON CO<br />

CO — CN<br />

— 00 00 CO CO ^^<br />

^t CO CN -^<br />

V~) CN<br />

CN ON NO NO OO CO<br />

IO ^1" CO • — ' NO<br />

^^ >-^ ^-~. ^^<br />

o o ** c<br />

C O — O<br />

r-~ ^^<br />

— o<br />

TJ- C<br />

!o oo ^ ^ in ^<br />

V) — ^ ^t ON i/~) ON<br />

NO CN >/1 — NO —<br />

-^ ^<br />

f^ C S o ^-.<br />

oo r- CN — oo o<br />

ON >O t —• "^" 00 O<br />

CN CN N<br />

C 00 CN — NO C<br />

O — CO CN OO O<br />

^ ^ ^^ ^ ^ ^<br />

r — r^- CN t — NO —<br />

— — CO — ON (N<br />

0 ^ O ^ O ^<br />

•* O •* O CN C<br />

CN O CN O<br />

— O<br />

. — X , — s , * ^ — s<br />

— CO O CO -3" C<br />

*t O >/~> OO CN O<br />

CN —<br />

•—<br />

__<br />

tjo<br />

^<br />

oo oo" oo So<br />

>•<br />

oo oo<br />

c^<br />

I; 5<br />

-Ii ^<br />

'S -^2 ^ Ci.<br />

K c -^ K<br />

G<br />

s *»<br />

s ~?<br />

S<br />

"B "5<br />

S "*-<br />

^ "5<br />

3*<br />

•S X *^- ^ Q" S ^<br />

S^"^J"-* CJ "^"^<br />

^<br />

"O ^; *^. O ^ O C ^<br />

2*5i?h^ -^ P § ^ t: £ ^^§<br />

£


YABSLEY AND NOBLET—HELMINTHS OF RACCOONS 13<br />

nificantly higher prevalence <strong>of</strong> P. ram was observed<br />

in raccoons trapped at Site 1, with urbancaptured<br />

animals dominating the number <strong>of</strong><br />

infected animals. Because broad host specificity<br />

has been documented for physalopteroids, domesticated<br />

animals could accumulate large numbers<br />

<strong>of</strong> these worms by ingesting an infected intermediate<br />

host that commonly occurs in urban<br />

settings (Morgan, 1941).<br />

High prevalences <strong>of</strong> both the raccoon hookworm,<br />

A. lotoris, and the trichostrongylid, M.<br />

barbatus, frequently have been reported in previous<br />

surveys (Harkema and Miller, 1964; Cole<br />

and Shoop, 1987). In the present study, however,<br />

overall prevalence <strong>of</strong> A. lotoris and M. barbatus<br />

was 28.1 and 12.5%, respectively (Table 1).<br />

Data from Seabrook Island are consistent with<br />

those <strong>of</strong> Harkema and Miller (1962), who previously<br />

reported an almost complete absence <strong>of</strong><br />

A. lotoris and M. barbatus from Cape Island,<br />

South Carolina. <strong>The</strong>se investigators suggested<br />

that the low prevalence <strong>of</strong> these 2 nematodes on<br />

coastal islands was due possibly to the detrimental<br />

effect <strong>of</strong> high tides, salinity <strong>of</strong> soil, and<br />

dry habitats on the free-living larval stages <strong>of</strong><br />

these helminths. Additionally, seasonal variations<br />

have been documented, with lower prevalence<br />

during winter months (Smith et al., 1985),<br />

which could have contributed to the lower numbers<br />

observed in the current survey.<br />

Although B. procyonis was not collected from<br />

any raccoon examined in this study, surveillance<br />

for this parasite should be continued because <strong>of</strong><br />

its medical and veterinary significance and its<br />

reported widespread distribution in the United<br />

<strong>State</strong>s (Kazacos and Boyce, 1989). Based on reports<br />

from southeastern states, Jones and Mc-<br />

Ginnes (1983) suggested that B. procyonis was<br />

found primarily in the more mountainous regions.<br />

<strong>The</strong> northwestern range <strong>of</strong> our study site,<br />

although classified as "Foothills," is not truly<br />

mountainous, which might account for the lack<br />

<strong>of</strong> B. procyonis. In contrast, however, B. procyonis<br />

recently was found in 70% <strong>of</strong> 33 raccoons<br />

examined in southern coastal Texas (Kerr<br />

et al., 1997). <strong>The</strong>se investigators suggested that<br />

the nematode could have been acquired by ingestion<br />

<strong>of</strong> larvae in migratory wild birds, introduced<br />

from infected translocated raccoons, or<br />

the result <strong>of</strong> a northern expansion from Latin<br />

America. This recent finding <strong>of</strong> B. procyonis in<br />

southern Texas and limited reports from the adjacent<br />

state <strong>of</strong> Georgia (only 2 reports, each <strong>of</strong><br />

a single infected raccoon [Babero and Shepperson,<br />

1958; Kazacos and Boyce, 1989]) suggests<br />

the possibility <strong>of</strong> introduction <strong>of</strong> this nematode<br />

into South Carolina.<br />

<strong>The</strong> most prevalent parasite collected was the<br />

acanthocephalan M. ingens. Infections occurred<br />

in raccoons from all study sites, with an overall<br />

prevalence <strong>of</strong> 53%. Although not considered a<br />

threat to public health, M. ingens infection in<br />

humans has been reported (Dingley and Beaver,<br />

1985).<br />

Six species <strong>of</strong> the acanthocephalan genus<br />

Centrorhynchus have been reported from North<br />

American birds <strong>of</strong> prey; however, little is known<br />

about the life cycle, geographical distribution, or<br />

prevalence <strong>of</strong> these acanthocephalan species.<br />

Read (1950) demonstrated experimentally that<br />

Centrorhynchus spinosus (Kaiser, 1893) was capable<br />

<strong>of</strong> developing to adults in laboratory rats,<br />

suggesting that members <strong>of</strong> this genus have the<br />

ability to complete development not only in bird<br />

definitive hosts, but also in mammalian hosts.<br />

One raccoon from John's Island (Site 6) and 2<br />

raccoons from the Horry County inland site (Site<br />

3) were infected with immature C. conspectus.<br />

Prior to the current study, immature forms <strong>of</strong> C.<br />

conspectus had been reported from 26 mammals<br />

representing 6 host species (3 Didelphis virginiana<br />

Kerr, 1792, Virginia opossum; 3 P. lotor,<br />

raccoon; 17 Mustela vison Schreber, 1775, mink;<br />

1 Spilogale putorius (Linnaeus, 1758), spotted<br />

skunk; 1 Blarina brevicauda Gray, 1838, shorttailed<br />

shrew; and 1 Urocyon cinereoargenteus<br />

Schreber, 1775, gray fox) from 5 states (Virginia,<br />

Arkansas, North Carolina, Ohio, and Florida)<br />

(Nickol, 1969; see Richardson and Nickol,<br />

1995). <strong>The</strong> largest number <strong>of</strong> worms previously<br />

reported from any individual mammalian host<br />

was 2 worms, whereas 1 raccoon in the current<br />

survey from the inland Horry County site (Site<br />

3) was infected with 9 C. conspectus (see Richardson<br />

and Nickol, 1995). Several owl species,<br />

including Bubo virginianus (Gmelin, 1788), the<br />

great horned owl; Otus asio (Linnaeus, 1758),<br />

the eastern screech owl; and Strix varia Barton,<br />

1799, the barred owl, have been reported as definitive<br />

hosts for C. conspectus (Richardson and<br />

Nickol, 1995). No intermediate host has been<br />

identified, although cystacanths <strong>of</strong> C. conspectus<br />

have been found in paratenic hosts (Nerodia sipedon<br />

(Linnaeus, 1758), the water snake, from<br />

North Carolina; Rana clamitans Latreille, 1801,<br />

the aquatic green frog, from Virginia; and Des-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


114 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

inognathus fuscus (Green, 1818), the northern<br />

dusky salamander and Plethodon glutinosus<br />

(Green, 1818), the slimy salamander from Louisiana)<br />

(Nickol, 1969; see Richardson and Nickol,<br />

1995). <strong>The</strong> finding <strong>of</strong> 11 immature C. conspectus<br />

in 3 South Carolina raccoons represents<br />

a new geographical record for this species. <strong>The</strong><br />

collection only <strong>of</strong> immature C. conspectus from<br />

raccoons in this study supports earlier reports<br />

that suggested that wild mammals are aberrant<br />

hosts for this parasite (Richardson, 1993).<br />

Acknowledgments<br />

<strong>The</strong> authors thank Osborne E. (Buddy) Baker<br />

III, SCDNR, for aid in procuring coastal raccoon<br />

specimens, and Dr. William C. Bridges, Jr., Department<br />

<strong>of</strong> Experimental Statistics, Clemson<br />

University, for assistance with statistical methods.<br />

Literature Cited<br />

Babero, B. B., and J. R. Shepperson. 1958. Some<br />

helminths <strong>of</strong> raccoons in Georgia. Journal <strong>of</strong> Parasitology<br />

44:519.<br />

Boschetti, A., and J. Kasznica. 1995. Visceral larva<br />

migrans induced eosinophilic cardiac pseudotumor:<br />

a cause <strong>of</strong> sudden death in a child. Journal<br />

<strong>of</strong> Forensic Sciences 40:1097-1099.<br />

Cole, R. A., and W. L. Shoop. 1987. Helminths <strong>of</strong><br />

the raccoon (Procyon lotor) in western Kentucky.<br />

Journal <strong>of</strong> Parasitology 73:762-768.<br />

Dingley, D., and P. C. Beaver. 1985. Macracanthorhynchus<br />

ingens from a child in Texas. American<br />

Journal <strong>of</strong> Tropical Medicine and Hygiene 34:<br />

918-920.<br />

Harkema, R., and G. C. Miller. 1962. Helminths <strong>of</strong><br />

Procyon lotor solutus from Cape Island, South<br />

Carolina. Journal <strong>of</strong> Parasitology 48:333-335.<br />

, and . 1964. Helminth parasites <strong>of</strong> the<br />

raccoon, Procyon lotor, in the southeastern United<br />

<strong>State</strong>s. Journal <strong>of</strong> Parasitology 50:60-66.<br />

Jones, E. J., and B. S. McGinnes. 1983. Distribution<br />

<strong>of</strong> adult Baylisascaris procyonis in raccoons from<br />

Virginia. Journal <strong>of</strong> Parasitology 69:653.<br />

Kazacos, K. R., and W. M. Boyce. 1989. Baylisascaris<br />

larva migrans. Journal <strong>of</strong> the American Veterinary<br />

Medical Association 195:894-903.<br />

Kerr, C. L., S. C. Henke, and D. B. Pence. 1997<br />

Baylisascariasis in raccoons from southern coastal<br />

Texas. Journal <strong>of</strong> Wildlife Diseases 33:653-655.<br />

Lincoln, R. C., and R. C. Anderson. 1973. <strong>The</strong> relationship<br />

<strong>of</strong> Physaloptera maxillaris (Nematoda:<br />

Physalopteroidea) to skunk (Mephitis mephitis).<br />

Canadian Journal <strong>of</strong> Zoology 51:437-441.<br />

Miyazaki, I. 1960. On the genus Gnathostoma and<br />

human gnathostomiasis, with special reference to<br />

Japan. Experimental Parasitology 9:338-370.<br />

Morgan, B. B. 1941. A summary <strong>of</strong> Physalopterinae<br />

(Nematoda) <strong>of</strong> North America. Proceedings <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 8:28-30.<br />

Nickol, B. B. 1969. Acanthocephala <strong>of</strong> Louisiana Caudata<br />

with notes on the life history <strong>of</strong> Centrorhynchus<br />

conspectus. American Midland Naturalist 81:<br />

262-265.<br />

Read, C. P. 1950. <strong>The</strong> rat as an experimental host <strong>of</strong><br />

Centrorhynchus spinosus (Kaiser, 1893), with remarks<br />

on host specificity <strong>of</strong> the Acanthocephala.<br />

Transactions <strong>of</strong> the American Microscopical <strong>Society</strong><br />

69:179-182.<br />

Richardson, D. J. 1993. Acanthocephala <strong>of</strong> the Virginia<br />

opossum (Didelphis virginiand) in Arkansas,<br />

with a note on the life history <strong>of</strong> Centrorhynchus<br />

wardae (Centrorhynchidae). Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 60:128-130.<br />

, and B. B. Nickol. 1995. <strong>The</strong> genus Centrorhynchus<br />

(Acanthocephala) in North America<br />

with description <strong>of</strong> Centrorhynchus robustus n.<br />

sp., redescription <strong>of</strong> Centrorhynchus conspectus,<br />

and a key to species. Journal <strong>of</strong> Parasitology 81:<br />

737-772.<br />

Smith, R. A., M. L. Kennedy, and W. E. Wilhelm.<br />

1985. Helminth parasites <strong>of</strong> the raccoon (Procyon<br />

lotor) from Tennessee and Kentucky. Journal <strong>of</strong><br />

Parasitology 71:599-601.<br />

Stansell, K. B. 1974. Internal parasites <strong>of</strong> coastal raccoons<br />

with notes on changes in parasite burdens<br />

after transportation and release in the upper Piedmont<br />

section <strong>of</strong> South Carolina. <strong>State</strong>wide Wildlife<br />

Research Project, South Carolina Wildlife and<br />

Marine Resources Department, 112 pp.<br />

Williams, C. K., R. D. McKown, J. K. Veatch, and<br />

R. D. Applegate. 1997. Baylisascaris sp. found<br />

in a wild northern bobwhite (Colinus virginianus).<br />

Journal <strong>of</strong> Wildlife Diseases 33:158-160.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 115-122<br />

Nematode Parasites <strong>of</strong> Yellow Perch, Perca flavescens, from the<br />

Laurentian Great Lakes<br />

PATRICK M. MUZZALL<br />

Department <strong>of</strong> Zoology, Natural Science Building, Michigan <strong>State</strong> University, East Lansing, Michigan 48824<br />

U.S.A. (e-mail: muzzall@pilot.msu.edu)<br />

ABSTRACT: Yellow perch, Perca flavescens (Mitchill), from 4 localities in the Laurentian (North American)<br />

Great Lakes were examined for nematodes: from eastern Lake Michigan in 1990; from southern Lake Michigan<br />

in 1991; from <strong>The</strong> Black Hole, Saginaw Bay, Lake Huron in 1991; and from Oak Point, Saginaw Bay, Lake<br />

Huron in 1996. Dichelyne cotylophora (Ward and Magath) infected perch from each location and had the highest<br />

prevalence, mean intensity, and mean abundance at Oak Point. Eustrongylides tubifex (Nitzsch) Jagerskiold was<br />

a common parasite <strong>of</strong> perch from Saginaw Bay, but it infrequently infected Lake Michigan perch. Philometra<br />

cylindracea (Ward and Magath) Van Cleave and Mueller was found in perch only from Saginaw Bay. Contracaecum<br />

sp. infrequently infected perch from Lake Michigan and <strong>The</strong> Black Hole. A comparative summary <strong>of</strong><br />

the literature on nematodes infecting yellow perch from the Great Lakes is presented, listing 27 studies published<br />

since 1917. Four nematode genera utilize perch as intermediate hosts, and 5 genera utilize them as definitive<br />

hosts. Information on the life cycles and pathology caused by nematodes infecting yellow perch is presented.<br />

KEY WORDS: Yellow perch, Perca flavescens, Percidae, Pisces, parasites, nematodes, Laurentian Great Lakes,<br />

Lake Michigan, Lake Huron, Saginaw Bay.<br />

Several nematodes have been reported from<br />

yellow perch, Perca flavescens (Mitchill, 1814)<br />

(Percidae), in the Laurentian (North American)<br />

Great Lakes. In recent years, federal and state<br />

fisheries personnel, aquaculturists, and anglers<br />

have asked me to identify nematodes infecting<br />

yellow perch from the Great Lakes and to answer<br />

questions about them. Declines in the catch<br />

rates <strong>of</strong> perch have been reported in southern<br />

Lake Michigan; Saginaw Bay, Lake Huron; and<br />

western Lake Erie (Francis et al., 1996). <strong>The</strong><br />

present study reports on the occurrence <strong>of</strong> Dichelyne<br />

cotylophora (Ward and Magath, 1917);<br />

Eustrongylides tubifex (Nitzsch, 1819) Jagerskiold,<br />

1909; Philometra cylindracea (Ward and<br />

Magath, 1917) Van Cleave and Mueller, 1934;<br />

and Contracaecum sp. in yellow perch from<br />

Lake Michigan and Saginaw Bay, Lake Huron.<br />

A summary <strong>of</strong> the nematodes infecting yellow<br />

perch from the Great Lakes is presented, with<br />

accompanying information on their life cycles<br />

and pathology. <strong>The</strong> possible relationship between<br />

the decline <strong>of</strong> yellow perch populations<br />

in some areas <strong>of</strong> the Great Lakes and the occurrence<br />

<strong>of</strong> parasitic nematodes is also discussed.<br />

Materials and Methods<br />

A total <strong>of</strong> 364 yellow perch was collected by beach<br />

seine and trawl from southern Lake Michigan (Michigan<br />

City, Indiana) in 1991; eastern Lake Michigan<br />

(Ludington, Michigan) in 1990; Saginaw Bay, Lake<br />

Huron (<strong>The</strong> Black Hole) in 1991; and Saginaw Bay,<br />

Lake Huron (Oak Point) in 1996. Ludington is approximately<br />

247 km north <strong>of</strong> Michigan City. Fish were<br />

sampled from the open water in Lake Michigan and<br />

also along the shore at Ludington. Saginaw Bay, a<br />

large shallow eutrophic bay divided into inner and outer<br />

areas, is the southwestern extension <strong>of</strong> Lake Huron<br />

located in east central Michigan. <strong>The</strong> inner area is shallower<br />

and warmer than the outer area, and is enriched<br />

with domestic, agricultural, and industrial inputs from<br />

the Saginaw River. <strong>The</strong> Black Hole in the Inner Saginaw<br />

Area and Oak Point in the Outer Saginaw Area<br />

are approximately 50 km apart.<br />

Perch were put on ice in the field, frozen at the<br />

laboratory, and measured and sexed at necropsy when<br />

the abdominal cavity, viscera, muscle, gastrointestinal<br />

tract, and head were examined. Dichelyne cotylophora,<br />

Eustrongylides tubifex, and Contracaecum sp. were<br />

preserved in 70% alcohol and later cleared in glycerin<br />

for identification. Philometra cylindracea were broken<br />

during necropsy and pieces were placed in glycerin on<br />

a glass slide, allowed to clear, and examined with a<br />

light microscope; specimens were not kept. Prevalence<br />

is the percentage <strong>of</strong> fish infected in each sample, mean<br />

intensity is the mean number <strong>of</strong> nematodes <strong>of</strong> a species<br />

per infected fish, and mean abundance is the mean<br />

number <strong>of</strong> worms per examined fish. Voucher specimens<br />

have been deposited in the United <strong>State</strong>s National<br />

Parasite Collection (USNPC), Beltsville, Maryland<br />

20705: Dichelyne cotylophora (USNPC 88506)<br />

and Eustrongylides tubifex (USNPC 88507).<br />

Results<br />

Yellow perch from 2 locations in Lake Michigan<br />

and 2 locations in Saginaw Bay, Lake Huron,<br />

were examined for nematodes (Table 1).<br />

115<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


116 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Number, collection time, and mean total length (mm) <strong>of</strong> Perca flavescens examined from Lake<br />

Michigan and Saginaw Bay, Lake Huron.<br />

Location<br />

Month(s), year<br />

Mean total length<br />

± SD (range, 95%<br />

confidence interval)<br />

Michigan City, Indiana, southern Lake Michigan (100)* August 1991<br />

Ludington, Michigan, eastern Lake Michigan (64)* May-September 1990<br />

<strong>The</strong> Black Hole, inner Saginaw Bay, Lake Huron, Michigan September 1991<br />

(100)*<br />

Oak Point, outer Saginaw Bay, Lake Huron, Michigan (100)* August 1996<br />

154 ± 67(50-280, 141-168)<br />

136 ± 23(105-177, 131-142)<br />

172 ± 36(110-278, 164-178)<br />

202 ± 23(170-287,197-206)<br />

* (Number <strong>of</strong> yellow perch examined.)<br />

<strong>The</strong>re was a significant difference in the lengths<br />

<strong>of</strong> perch between locations (analysis <strong>of</strong> variance,<br />

F = 35.9, P < 0.0001) with those from Oak<br />

Point being larger. Forty-eight percent (48) <strong>of</strong><br />

yellow perch from Michigan City in 1991, 26%<br />

(17) from Ludington in 1990, 96% (96) from<br />

<strong>The</strong> Black Hole in 1991, and 98% (98) from<br />

Oak Point in 1996 were infected with 1 or more<br />

nematodes.<br />

Gravid Dichelyne cotylophora infected the intestines<br />

<strong>of</strong> yellow perch from each location (Table<br />

2). It was significantly more prevalent in<br />

perch from Michigan City than from Ludington,<br />

Michigan (chi-square, x2 = 26.6, P < 0.005);<br />

intensities were not significantly different, but<br />

abundances were (Mann-Whitney test, U =<br />

9,187, P < 0.0001). In Saginaw Bay, prevalence<br />

(chi-square, x2 = 128.6, P < 0.005) and abundance<br />

(Mann-Whitney test, U = 6,064, P <<br />

0.0001) <strong>of</strong> D. cotylophora were significantly<br />

higher in perch from Oak Point than from <strong>The</strong><br />

Black Hole. Contracaecum sp. infrequently occurred<br />

encysted on the surface <strong>of</strong> the heart, in<br />

the liver, and associated with the mesentery <strong>of</strong><br />

perch from Lake Michigan and <strong>The</strong> Black Hole.<br />

Eustrongylides tubifex was most common in<br />

perch from Saginaw Bay. <strong>The</strong> intensity (Mann-<br />

Whitney test, U = 9,773, P < 0.0001) and abundance<br />

(Mann-Whitney test, U = 12,798, P <<br />

0.0001) <strong>of</strong> E. tubifex were significantly higher<br />

in perch from <strong>The</strong> Black Hole than from Oak<br />

Point. Larvae occurred in capsules associated<br />

with the mesentery on the surface <strong>of</strong> the ovaries,<br />

testes, liver, spleen, and gastrointestinal tract and<br />

free in the body cavity, viscera, and muscle. Of<br />

the 303 E. tubifex found in perch from Oak Point<br />

in 1996, 92% <strong>of</strong> the worms or capsules with<br />

worms were seen with the unaided eye, whereas<br />

8% were detected only with a dissecting microscope.<br />

Small and large E. tubifex were found in<br />

perch from both Saginaw Bay locations.<br />

Philometra cylindracea, some <strong>of</strong> which were<br />

larvigerous, occurred free in the body cavity <strong>of</strong><br />

perch only from Saginaw Bay, and was most<br />

common at Oak Point. Remains <strong>of</strong> crenulated<br />

and hardened masses <strong>of</strong> nematodes, probably<br />

dead P. cylindracea from past infections, were<br />

found in the body cavities and viscera <strong>of</strong> yellow<br />

perch from <strong>The</strong> Black Hole and Oak Point. All<br />

perch from Saginaw Bay in 1991 and 69% <strong>of</strong><br />

them in 1996 that were infected with P. cylindracea<br />

were concurrently infected with E. tubifex.<br />

Ninety-six percent <strong>of</strong> Oak Point perch harbored<br />

at least 1 E. tubifex or P. cylindracea or<br />

remains <strong>of</strong> dead P. cylindracea.<br />

<strong>The</strong>re were no significant differences in the<br />

prevalence (chi-square analysis, P > 0.05) and<br />

intensity or abundance (Mann-Whitney test, P<br />

> 0.05) <strong>of</strong> D. cotylophora, E. tubifex, P. cylindracea,<br />

and Contracaecum sp. between female<br />

and male perch at any location. <strong>The</strong>re were no<br />

significant correlations between the intensities <strong>of</strong><br />

each nematode species and host length.<br />

Discussion<br />

At least 27 studies mentioning the nematode<br />

parasites <strong>of</strong> yellow perch from the Great Lakes<br />

have been published since 1917. <strong>The</strong> number <strong>of</strong><br />

studies (in parentheses) performed in each Great<br />

Lake and associated connecting waters are: Lake<br />

Michigan (5), Lake Superior (1), St. Marys River<br />

(1), Lake Huron (7), Lake St. Clair (1), Lake<br />

Erie (12), and Lake Ontario (3) (Table 3). Many<br />

<strong>of</strong> these investigations did not report the number,<br />

length, and age <strong>of</strong> perch. Rosinski et al. (1997)<br />

reported that the nematode fauna <strong>of</strong> yellow<br />

perch in Saginaw Bay, Lake Huron, and Lake<br />

Huron proper are similar.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


MUZZALL—NEMATODES OF YELLOW PERCH 17<br />

S3<br />

E<br />

o<br />

CM<br />

55<br />

^U<br />

1<br />

4<br />

AS<br />

M<br />

U<br />

cS<br />

*aa 0)<br />

1<br />

cd<br />

e<br />

'o<br />

I<br />

4><br />

U<br />

1<br />

T3 C<br />

S<br />

e<br />

E<br />

•a<br />

3-<br />

^n<br />

0)<br />

A<br />

3<br />

S<br />

E<br />

3<br />

•g<br />

03<br />

*<br />

HH<br />

^ •4J OB<br />

11<br />

I.S<br />

c «<br />

1 £<br />

g^" fe, £<br />

rti<br />

C3<br />

u C<br />

It cs cfl<br />

£"§<br />

CL, a<br />

e<br />

as<br />

.C u<br />

cc 12<br />

H fi<br />

N §0<br />

^<br />

2<br />

^<br />

><<br />

1<br />

Q<br />

CO<br />

+1<br />

§<br />

0.<br />

u<br />

S •*<br />

oo<br />

•*' (^ d<br />

+1 +1 +1<br />

*o ^ NO<br />

(N C<br />

^t r*"<br />

..<br />

^ ^<br />

(N —<br />

(N<br />

d<br />

, £<br />

+ 1 +1 +1<br />

O O O<br />

in ^t _;<br />

Q CO<br />

+1<br />

-^<br />

^<br />

,— s<br />

o<br />

c ,—,<br />

•^ X<br />

a<br />

0. _§<br />

O<br />

Q<br />

CO<br />

03"<br />

CO<br />

+1<br />

S<br />

D-<br />

Q<br />

CO<br />

fe 1<br />

^<br />

X<br />

a<br />

§<br />

I<br />

03<br />

Q<br />

CO<br />

03"<br />

00 +1<br />

S<br />

0.<br />

Q<br />

CO<br />

+1<br />

<<br />

•1—<br />

2<br />

ff ^_^<br />

S- X d<br />

J<br />

S Q<br />

CO<br />

+1<br />

§<br />

Cu<br />

Q<br />

CO<br />

+1<br />

*<br />

-1-<br />

2<br />

x-^<br />

•:•:•<br />

U<br />

§<br />

_J<br />

rt r<br />

d<br />

d d r-<br />

+1 +1 +1 +1<br />

•3- >n o O O vO —<br />

d d 06 d<br />

O O<br />

ON —<br />

NO<br />

NO<br />

d ri<br />

+ 1 +1<br />

in oo<br />

— r-<br />

d d<br />

^ 00<br />

CM r-<br />

+1 +1<br />

S o (N<br />

(N •*<br />

OO<br />

ON<br />

CN OO r<br />

d m —<br />

+1 +1 +1<br />

co in c*<br />

O — C i<br />

d IN d<br />

ON*<br />

+ 1<br />

O<br />

- **' -<br />

m r- rn<br />

><br />

d|||<br />

|<br />

«<br />

| |-5 "^<br />

U<br />

a ~<br />

g "f'<br />

If<br />

5 •-« » '1^<br />

(J Q t<br />

3 a,<br />

H<br />

'1<br />

a<br />

O<br />

^«<br />

03<br />

CS<br />

C<br />

'5b<br />

«<br />

CO<br />

II<br />

OH<br />

0<br />

n<br />

CO<br />

r<br />

u<br />

"o<br />

X<br />

5<br />

u<br />

x<br />

H<br />

>><br />

1<br />

B<br />

'oo CS<br />

CO<br />

X<br />

03<br />

PQ<br />

CO<br />

B<br />

0<br />

00<br />

•a<br />

J<br />

c<br />

_M<br />

o<br />

S<br />

0)<br />

3<br />

j<br />

-<br />

j<br />

u<br />

c<br />

Cd '<br />

•<br />

00 -a<br />

•g B<br />

is 1 x<br />

- x ^n c D<br />

.*« -g ^<br />

•S i e<br />

§ r-J<br />

QJ O TD<br />

y — ] tu<br />

II "o J<br />

u s S<br />

s.li<br />

Si!<br />

•v- ^^ .{.}.<br />

A total <strong>of</strong> 15 nematode taxa has been reported<br />

from yellow perch in the Great Lakes (Table 3).<br />

Of these, Agamonema sp., Contracaecum sp., E.<br />

tubifex, Eustrongylides sp., Hysterothylacium<br />

brachyurum (Ward and Magath, 1917) Van<br />

Cleave and Mueller, 1934, Raphidascaris acus<br />

(Bloch, 1779) Railliet and Henry, 1915, and Raphidascaris<br />

sp. are represented by larval or immature<br />

stages. Of the 10 nematodes identified to<br />

species, 6 mature in the intestine <strong>of</strong> perch. Prevalence<br />

data from the literature indicate that D.<br />

cotylophora is the most common nematode infecting<br />

perch from Lake Michigan, R. acus is<br />

most common in Lake Superior perch, and D.<br />

cotylophora and E. tubifex are most common in<br />

perch from Lakes Huron and Erie. <strong>The</strong> nematodes<br />

<strong>of</strong> perch from Lake Ontario have prevalences<br />

<strong>of</strong> 8% or less. <strong>The</strong> report <strong>of</strong> Bangham and<br />

Hunter (1939) <strong>of</strong> Agamonema sp. from perch in<br />

Lake Erie refers to an unidentified larval form,<br />

an immature nematode (J. Crites, pers. comm.),<br />

and will not be considered further.<br />

In the present study, Contracaecum sp. is reported<br />

for the first time from perch in Lakes<br />

Michigan and Huron; all other nematodes found<br />

have been reported infecting perch from these<br />

lakes. Four nematode taxa were found in perch<br />

in the present study compared to the 15 nematode<br />

taxa reported in the literature. <strong>The</strong>re are<br />

several possible reasons for this, including 1) I<br />

only examined perch from 2 Lake Michigan locations<br />

and Saginaw Bay, 2) more parasitological<br />

studies have been done on perch in Lakes<br />

Erie and Huron, and 3) it is difficult to determine<br />

if fish were collected from different habitats. It<br />

is pointless to discuss whether some nematodes<br />

<strong>of</strong> yellow perch have disappeared in the Great<br />

Lakes, because so few studies have been done<br />

in the past to which I can compare this study.<br />

Dichelyne cotylophora infects yellow perch<br />

from all the Great Lakes and is commonly found<br />

in the anterior intestine. Visible lesions were not<br />

observed at the sites <strong>of</strong> adult attachment. I have<br />

found worms up to 8 mm in length. Based on<br />

experimental evidence, Baker (1984b) suggested<br />

that prey fish (cyprinid minnows) are intermediate<br />

hosts for D. cotylophora. This parasite is<br />

not host-specific to perch, since it has been reported<br />

from several fish species in Lake Michigan,<br />

St. Marys River, Lake Huron, Lake St.<br />

Clair, Lake Erie, and Lake Ontario (Ward and<br />

Magath, 1917; Pearse, 1924; Bangham, 1933,<br />

1955; Bangham and Hunter, 1939; Muzzall,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


118 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 3. Reported nematodes <strong>of</strong> Perca flavescens from the Laurentian Great Lakes.<br />

Species<br />

Lake*<br />

Prevalencet<br />

Locality<br />

Reference<br />

Agamonema sp.±<br />

E<br />

2(2/128)<br />

OH<br />

Bangham and Hunter, 1939<br />

Contracaecum sp.i<br />

M<br />

H<br />

3 (3/100)<br />

8 (5/640)<br />

4 (4/100)<br />

IN<br />

MI<br />

MI<br />

Michigan City, this study<br />

Ludington, this study<br />

<strong>The</strong> Black Hole, this study<br />

Camallanus oxycephalus<br />

H<br />

E<br />

— §<br />

2(1/45)<br />

5 (5/93)<br />

— S<br />

6 (45/735)<br />

7 (27/408)<br />

MI<br />

OH, ONT<br />

OH<br />

OH<br />

OH<br />

ONT<br />

Rosinski et al., 1997<br />

Bangham and Hunter, 1939<br />

Bangham, 1972<br />

Stromberg and Crites, 1972<br />

Cooper et al., 1977<br />

Dechtiar and Nepszy, 1988<br />

Dichelync cotylophora<br />

Eustrongylid.es tubifex'j.<br />

Eustrongylides sp . ±<br />

Hysterothylacium brachyiintm^<br />

Philometra cylindracea<br />

M<br />

S<br />

SMR<br />

H<br />

LSC<br />

E<br />

0<br />

M<br />

H<br />

E<br />

E<br />

0<br />

E<br />

S<br />

E<br />

O<br />

H<br />

—8<br />

9(1/11)<br />

47 (47/100)<br />

19(12/64)<br />

42(10/24)<br />

33 (24/73)<br />

— §<br />

55(110/201)<br />

2(3/134)<br />

— §<br />

4(4/100)<br />

68 (68/100)<br />

— §<br />

— S<br />

65 (45/69)<br />

10 (76/735)<br />

— §<br />

50(6/12)||<br />

6 (25/408)<br />

— §<br />

— S<br />

5 (7/150)<br />

2 (4/374)<br />

3 (3/100)<br />

35(293/831)<br />

2(3/134)<br />

80(193/240)<br />

95 (95/100)<br />

74 (74/100)<br />

38 (19/50)<br />

41 (304/735)<br />

—5<br />

— §<br />

50 (204/408)<br />

8(5/150)<br />

8 (8/98)<br />

33 (8/24)<br />

4(16/408)<br />

8(5/150)<br />

1 (2/201)<br />

4(5/134)<br />

— §<br />

24 (57/240)<br />

10(10/100)<br />

16(16/100)<br />

WI<br />

WI, IL<br />

IN<br />

MI<br />

ONT<br />

MI<br />

ONT<br />

ONT<br />

ONT<br />

MI<br />

MI<br />

MI<br />

—<br />

ONT<br />

OH, ONT,<br />

NY, PA<br />

OH<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

MI<br />

IN<br />

MI<br />

ONT<br />

MI<br />

MI<br />

MI<br />

OH<br />

OH<br />

OH<br />

OH<br />

ONT<br />

ONT<br />

OH<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

MI<br />

MI<br />

MI<br />

MI<br />

Pearse, 1924<br />

Amin, 1977<br />

Michigan City, this study<br />

Ludington, this study<br />

Dechtiar and Lawrie, 1988<br />

Muz/.all, 1984<br />

Smedley, 1934<br />

Bangham, 1955<br />

Dechtiar et al., 1988<br />

Rosinski et al., 1997<br />

<strong>The</strong> Black Hole, this study<br />

Oak Point, this study<br />

Ward and Magath, 1917<br />

Smedley, 1934<br />

Bangham and Hunter, 1939<br />

Cooper et al., 1977<br />

Baker, 1984a<br />

Baker, 1984b<br />

Dechtiar and Nepszy, 1988<br />

Tedla and Fernando, 1 969<br />

Tedla and Fernando, 1970<br />

Dechtiar and Christie, 1988<br />

Allison, 1966<br />

Michigan City, this study<br />

Allison, 1966<br />

Dechtiar et al., 1988<br />

Rosinski et al., 1997<br />

<strong>The</strong> Black Hole, this study<br />

Oak Point, this study<br />

Measures, 1988b<br />

Cooper et al., 1977<br />

Cooper et al., 1978<br />

Crites, 1982<br />

Dechtiar and Nepszy, 1988<br />

Dechtiar and Christie, 1988<br />

Bangham, 1972<br />

Dechtiar and Lawrie, 1988<br />

Dechtiar and Nepszy, 1988<br />

Dechtiar and Christie, 1988<br />

Bangham, 1955<br />

Dechtiar et al., 1988<br />

Salz, 1989<br />

Rosinski et al., 1997<br />

<strong>The</strong> Black Hole, this study<br />

Oak Point, this study<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


MUZZALL—NEMATODES OF YELLOW PERCH 19<br />

Table 3. Continued.<br />

Species<br />

Lake*<br />

Prevalencet<br />

Locality<br />

Reference<br />

Raphidascaris acus$<br />

Raphidascaris sp.t<br />

Rhabdochona canadensis<br />

Moravec and Aral, 1971<br />

Rhabdochona ovtfikanenta<br />

Weller, 1938<br />

Spinitectux carolini Roll,<br />

1928<br />

E<br />

0<br />

S<br />

11<br />

E<br />

M<br />

S<br />

E<br />

S<br />

1 (1/128)<br />

8 (62/735)<br />

— §<br />

10(40/408)<br />

5(8/150)<br />

63(15/24)<br />

2(3/134)<br />

— §<br />

8 (32/408)<br />

1 (1/136)<br />

8 (2/24)<br />

9 (6/69)<br />

8 (2/24)<br />

OH, ONT<br />

OH<br />

OH<br />

ONT<br />

ONT<br />

ONT<br />

ONT<br />

Spinitectus gracilis Ward 0<br />

1 (2/150) ONT<br />

Dechtiar and Christie, 1988<br />

and Magath, 1917<br />

Spinitectus sp. 5 (5/98) OH Bangham, 1972<br />

* E, Lake Erie; M, Lake Michigan; H, Lake Huron; S, Lake Superior;<br />

Ontario.<br />

t Percent infected (number <strong>of</strong> fish infected/number <strong>of</strong> fish examined).<br />

± Larval stage.<br />

S Parasite present but prevalence not given.<br />

|| Prevalence calculated from winter 1984 sample.<br />

MI<br />

ONT<br />

MI<br />

ONT<br />

OH<br />

ONT<br />

Bangham and Hunter, 1939<br />

Cooper et al., 1977<br />

Crites, 1982<br />

Dechtiar and Nepszy, 1988<br />

Dechtiar and Christie, 1988<br />

Dechtiar and Lawrie, 1988<br />

Dechtiar et al., 1988<br />

Rosinski et al., 1997<br />

Dechtiar and Nepszy, 1988<br />

Weller, 1938<br />

Dechtiar and Lawrie, 1988<br />

Jilek and Crites, 1981<br />

Dechtiar and Lawrie, 1988<br />

SMR, St. Marys River; LSC, Lake St. Clair; O, Lake<br />

1984; Dechtiar and Christie, 1988). Cooper et<br />

al. (1977) demonstrated that the prevalence <strong>of</strong><br />

D. cotylophora in perch in the western basin <strong>of</strong><br />

Lake Erie decreased from 1927-1929, to 1957,<br />

to 1974.<br />

Rhabdochona spp. and Spinitectus spp. infrequently<br />

occur in yellow perch from Lakes Michigan,<br />

Superior, and Erie, and Lakes Superior,<br />

Erie, and Ontario, respectively. Both genera are<br />

found in the intestine <strong>of</strong> several fish species and<br />

do little or no damage to their hosts. <strong>The</strong>y utilize<br />

mayfly larvae and other arthropods as intermediate<br />

hosts.<br />

Species not found as adults in the intestine <strong>of</strong><br />

yellow perch are: H. brachyurum, R. acus, Raphidascaris<br />

sp., Contracaecum sp., P. cylindracea,<br />

E. tubifex, and Eustrongylides sp. Larval H.<br />

brachyurum have been reported in perch from 3<br />

<strong>of</strong> the Great Lakes. Dechtiar and Lawrie (1988)<br />

found H. brachyurum and R. acus larvae in the<br />

liver <strong>of</strong> perch from Lake Superior and suggested<br />

that moderate to heavy liver damage occurred<br />

with iibrosis. Similarly, encysted H. brachyurum<br />

caused liver damage to perch in Lake Ontario<br />

(Dechtiar and Christie, 1988). Piscivorous fishes<br />

serve as definitive hosts for H. brachyurum and<br />

Raphidascaris spp. Contracaecum spp. mature<br />

in piscivorous birds and mammals.<br />

<strong>The</strong> redworm nematode complex <strong>of</strong> yellow<br />

perch in the Great Lakes is composed <strong>of</strong> Camallanus<br />

oxycephalus, P. cylindracea, and E. tubifex.<br />

<strong>The</strong> term "redworm" was coined by anglers<br />

asking the question, "What are these red<br />

worms in my fish?" (J. Crites, pers. comm.). Camallanus<br />

oxycephalus has been reported from<br />

yellow perch in 2 <strong>of</strong> the Great Lakes. Stromberg<br />

and Crites (1974) found that during July and August<br />

in Lake Erie, female C. oxycephalus protrude<br />

from the anus <strong>of</strong> white bass, Morone chrysops,<br />

and rupture, releasing infective larvae that<br />

are ingested by copepods. <strong>The</strong> life cycle is completed<br />

when infected copepods or small paratenic<br />

forage fish hosts are eaten by larger fish. Cooper<br />

et al. (1977) found that the prevalence <strong>of</strong> C.<br />

oxycephalus in yellow perch in western Lake<br />

Erie increased from 1927-1929, to 1957, to<br />

1974.<br />

In the present study, P. cylindracea only occurred<br />

in yellow perch from Saginaw Bay. Copepods<br />

are intermediate hosts for P. cylindracea<br />

(see Molnar and Fernando, 1975; Crites, 1982).<br />

It is not known if P. cylindracea utilizes a trans-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


120 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

port host in its life cycle. Philometra cylindracea<br />

has been found in perch from 3 <strong>of</strong> the Great<br />

Lakes, occurring unencysted in the body cavity.<br />

This nematode matures in, and is host-specific<br />

to, yellow perch, since it has been reported from<br />

no other fish species. Mature females are about<br />

the same length as males (4 mm) or longer. Larvigerous<br />

females, which are delicate and have a<br />

thin transparent cuticle, may exceed 100 mm in<br />

length and are easily broken during host necropsy.<br />

Eustrongylides tubifex had significantly higher<br />

prevalences, mean intensities, and mean abundances<br />

in yellow perch from Saginaw Bay than<br />

in those from Lake Michigan. Karmanova<br />

(1968) and Measures (1988a, b) reported that<br />

tubificid oligochaetes serve as intermediate hosts<br />

for E. tubifex. Although Brinkhurst (1967) and<br />

Schneider et al. (1969) found large numbers <strong>of</strong><br />

tubificids in Saginaw Bay, Haas and Schaeffer<br />

(1992) did not find tubificids in perch stomachs<br />

in Saginaw Bay, and Rosinski et al. (1997)<br />

found them to be infrequent. <strong>The</strong> lack <strong>of</strong> tubificids<br />

in stomachs is surprising, since perch from<br />

Saginaw Bay and other areas <strong>of</strong> Lake Huron are<br />

heavily infected. Tubificids have been found in<br />

the stomachs <strong>of</strong> yellow perch from Lake Erie (J.<br />

Crites, pers. comm.), another lake where E. tubifex<br />

commonly occurs. <strong>The</strong> difference in infection<br />

values <strong>of</strong> E. tubifex between Saginaw Bay<br />

and Lake Michigan may be explained by the<br />

large number <strong>of</strong> tubificids in the bay and by the<br />

small numbers <strong>of</strong> them in Lake Michigan. Piscivorous<br />

birds (e.g., mergansers, Mergus merganser<br />

Linnaeus, 1758; see Measures, 1988c)<br />

serve as definitive hosts for E. tubifex, and differences<br />

in their numbers between these locations<br />

may also play a role in this difference.<br />

Eustrongylides tubifex has been reported from<br />

yellow perch in 4 <strong>of</strong> the Great Lakes. It is infrequent<br />

in Lake Michigan, and the small number<br />

<strong>of</strong> perch examined from Lake Superior may<br />

not reflect its absence. Allison (1966) reported<br />

perch from the Detroit River infected with E.<br />

tubifex. Dechtiar and Christie (1988) found E.<br />

tubifex in several fish species from Lake Ontario<br />

and suggested that it caused damage to perch.<br />

This nematode is very common in yellow perch<br />

from Lake Erie. Interestingly, Bangham and<br />

Hunter (1939) did not report E. tubifex in an<br />

extensive survey <strong>of</strong> parasites <strong>of</strong> Lake Erie fishes,<br />

including 128 yellow perch. Bangham (1972)<br />

was the first to report the occurrence <strong>of</strong> E. tubifex<br />

in yellow perch collected in 1957 from<br />

Lake Erie.<br />

Eustrongylides tubifex is pink to red in color<br />

and thicker than P. cylindracea. Larval E. tubifex<br />

in fish intermediate hosts can reach 10 cm in<br />

length. Cooper et al. (1978) and Crites (1982)<br />

demonstrated experimentally that E. tubifex can<br />

be transferred when a small infected fish is eaten<br />

by a larger one. Crites (1982) reported that E.<br />

tubifex can live in capsules <strong>of</strong> host origin for at<br />

least 1.5 yr and demonstrated that the walls <strong>of</strong><br />

the capsule have several different tissues and are<br />

furnished with capillaries. <strong>The</strong> larvae are nourished<br />

during their development and growth in<br />

these capsules. Measures (1988b) reported on<br />

the pathology <strong>of</strong> E. tubifex in fishes, including<br />

the yellow perch. It appears that E. tubifex infections<br />

in perch do not give rise to immunity,<br />

since larvae <strong>of</strong> different lengths were found in<br />

the same perch in the present study.<br />

Crites (1982) showed that E. tubifex and P.<br />

cylindracea were associated with weight loss in<br />

yellow perch. It is not known if this weight loss<br />

affected fecundity. In addition, P. cylindracea<br />

sometimes infected the ovaries <strong>of</strong> perch, but<br />

whether this impairs reproductive capacity was<br />

not determined. Allison (1966) and Salz (1989)<br />

suggested these E. tubifex and P. cylindracea<br />

play a role in reduced perch growth and high<br />

mortality.<br />

Excluding the Salmoniformes, percids are<br />

probably the most important group <strong>of</strong> fishes in<br />

the Great Lakes. Based on a review <strong>of</strong> the literature<br />

and the present study, it appears that<br />

nematodes do not greatly harm yellow perch, except<br />

for E. tubifex and P. cylindracea, which<br />

commonly infect perch in Saginaw Bay, other<br />

areas <strong>of</strong> Lake Huron, and Lake Erie (Allison,<br />

1966; Crites, 1982; Salz, 1989; Rosinski et al.,<br />

1997). <strong>The</strong>se are Great Lakes areas where the<br />

catch rates <strong>of</strong> perch have declined (Francis et al.,<br />

1996), but the direct effects <strong>of</strong> E. tubifex and P.<br />

cylindracea on reducing the numbers <strong>of</strong> perch<br />

in these areas are not known.<br />

Acknowledgments<br />

I thank Dan Brazo, Indiana Department <strong>of</strong><br />

Natural Resources, Michigan City, Indiana; Tom<br />

McComish, Ball <strong>State</strong> University, Muncie, Indiana;<br />

Rob Elliott and Doug Peterson, Michigan<br />

<strong>State</strong> University, East Lansing, Michigan; and<br />

Bob Haas, Jack Hodge, Dave Fielder, and Larry<br />

Shubel, Michigan Department <strong>of</strong> Natural Re-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


MUZZALL—NEMATODES OF YELLOW PERCH 121<br />

sources, Mt. Clemens and Alpena, Michigan, for<br />

providing the yellow perch; Bernadette Hermann<br />

for technical assistance in 1996; and John<br />

Crites for reviewing an early draft <strong>of</strong> the manuscript<br />

and sharing information on the nematodes<br />

<strong>of</strong> yellow perch in the Great Lakes.<br />

Literature Cited<br />

Allison, L. N. 1966. <strong>The</strong> redworm (Philometra cylindraced)<br />

<strong>of</strong> yellow perch (ferca flavescens) in<br />

Michigan waters <strong>of</strong> the Great Lakes. Michigan<br />

Department <strong>of</strong> Conservation Research and Development<br />

Report 53, Institute for Fisheries Report<br />

1712. 8 pp.<br />

Amin, O. M. 1977. Helminth parasites <strong>of</strong> some southwestern<br />

Lake Michigan fishes. Proceedings <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 44:210—<br />

217.<br />

Baker, M. R. 1984a. Redescription <strong>of</strong> Dichelyne (Cucullanellus)<br />

cotylophora (Ward and Magath,<br />

1917) (Nematoda: Cucullanidae) parasitic in<br />

freshwater fishes <strong>of</strong> eastern North America. Canadian<br />

Journal <strong>of</strong> Zoology 62:2053—2061.<br />

. 1984b. On the biology <strong>of</strong> Dichelyne (Cucullanellus)<br />

cotylophora (Ward and Magath, 1917)<br />

(Nematoda: Cucullanidae) in perch (Perca flavescens)<br />

from Lake Erie, Ontario. Canadian Journal<br />

<strong>of</strong> Zoology 62:2062-2073.<br />

Bangham, R. V. 1933. Parasites <strong>of</strong> the spotted bass,<br />

Micropterus pseudoalplites Hubbs, and summary<br />

<strong>of</strong> parasites <strong>of</strong> smallmouth and largemouth bass<br />

from Ohio streams. Transactions <strong>of</strong> the American<br />

Fisheries <strong>Society</strong> 63:220-227.<br />

. 1955. Studies on fish parasites <strong>of</strong> Lake Huron<br />

and Manitoulin Island. American Midland Naturalist<br />

53:184-194.<br />

. 1972. A resurvey <strong>of</strong> the fish parasites <strong>of</strong> western<br />

Lake Erie. Bulletin <strong>of</strong> the Ohio Biological<br />

Survey 4:1-23.<br />

-, and G. W. Hunter III. 1939. Studies on fish<br />

parasites <strong>of</strong> Lake Erie. Distribution studies. Zoologica<br />

24:385-448.<br />

Brinkhurst, R. O. 1967. <strong>The</strong> distribution <strong>of</strong> aquatic<br />

oligochaetes in Saginaw Bay, Lake Huron. Limnology<br />

and Oceanography 12:137-143.<br />

Cooper, C. L., R. R. Ashmead, and J. L. Crites.<br />

1977. Prevalence <strong>of</strong> certain endoparasitic helminths<br />

<strong>of</strong> the yellow perch from western Lake<br />

Erie. Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong> 44:96.<br />

, J. L. Crites, and D. J. Sprinkle-Fastkie.<br />

1978. Population biology and behavior <strong>of</strong> larval<br />

Eiistrongylides tubifex (Nematoda: Dioctophymatida)<br />

in poikilothermous hosts. Journal <strong>of</strong> Parasitology<br />

64:102-107.<br />

Crites, J. L. 1982. Impact <strong>of</strong> the nematode parasite<br />

Eiistrongylides tubifex on yellow perch in Lake<br />

Erie. U.S. Department <strong>of</strong> Commerce Commercial<br />

Fisheries Research and Developmental Project. 3-<br />

298-D. Clear Technical Report 258. 84 pp.<br />

Dechtiar, A. O., and W. J. Christie. 1988. Survey <strong>of</strong><br />

the parasite fauna <strong>of</strong> Lake Ontario fishes, 1961-<br />

1971. Great Lakes Fisheries Commission, Technical<br />

Report 51:66-106.<br />

, J. J. Collins, and J. A. Reckahn. 1988. Survey<br />

<strong>of</strong> the parasite fauna <strong>of</strong> Lake Huron fishes,<br />

1961-1971. Great Lakes Fisheries Commission,<br />

Technical Report 51:19-48.<br />

, and A. H. Lawrie. 1988. Survey <strong>of</strong> the parasite<br />

fauna <strong>of</strong> Lake Superior fishes, 1969-1975.<br />

Great Lakes Fisheries Commission, Technical Report<br />

51:1-18.<br />

, and S. J. Nepszy. 1988. Survey <strong>of</strong> the parasite<br />

fauna <strong>of</strong> selected fish species from Lake Erie,<br />

1970-1975. Great Lakes Fisheries Commission,<br />

Technical Report 51:49-65.<br />

Francis, J. T., S. R. Robillard, and J. E. Marsden.<br />

1996. Yellow perch management in Lake Michigan:<br />

a multi-jurisdictional challenge. Fisheries 21:<br />

18-20.<br />

Haas, R. C., and J. S. Schaeffer. 1992. Predator-prey<br />

and competitive interactions among walleye, yellow<br />

perch, and other forage fishes in Saginaw<br />

Bay, Lake Huron. Michigan Department <strong>of</strong> Natural<br />

Resources, Fisheries Division, Research Report<br />

1984. 135 pp.<br />

Jilek, R., and J. L. Crites. 1981. Prevalence <strong>of</strong> Spinitectus<br />

carolini Holl, 1928, and Spinitectus gracilis<br />

Ward and Magath, 1916 (Spirurida: Nematoda)<br />

in fishes from Lake Erie. Canadian Journal <strong>of</strong><br />

Zoology 59:141-142.<br />

Karmanova, E. M. 1968. Dioctophymidea <strong>of</strong> Animals<br />

and Man and Diseases Caused by <strong>The</strong>m. Fundamentals<br />

<strong>of</strong> Nematology. Vol. 20. Academy <strong>of</strong> Science<br />

<strong>of</strong> the USSR. Translated and published for<br />

U.S. Department <strong>of</strong> Agriculture. Amerind Publishing,<br />

New Delhi, 1985. 383 pp.<br />

Measures, L. N. 1988a. <strong>The</strong> development <strong>of</strong> Eiistrongylides<br />

tubifex (Nematoda: Dioctophymatoidea) in<br />

oligochaetes. Journal <strong>of</strong> Parasitology 74:296-304.<br />

. 1988b. Epizootiology, pathology, and description<br />

<strong>of</strong> Eustrongylides tubifex (Nematoda: Dioctophymatoidea)<br />

in fish. Canadian Journal <strong>of</strong> Zoology<br />

68:2212-2222.<br />

. 1988c. <strong>The</strong> development and pathogenesis <strong>of</strong><br />

Eustrongylides tubifex (Nematoda: Dioctophymatoidea)<br />

in piscivorous birds. Canadian Journal <strong>of</strong><br />

Zoology 66:2223-2232.<br />

Molnar, K., and C. H. Fernando. 1975. Morphology<br />

and development <strong>of</strong> Philometra cylindracea<br />

(Ward and Magath, 1916) (Nematoda: Philometridae).<br />

Journal <strong>of</strong> Helminthology 49:19-24.<br />

Muzzall, P. M. 1984. Helminths <strong>of</strong> fishes from the St.<br />

Marys River, Michigan. Canadian Journal <strong>of</strong> Zoology<br />

62:516-519.<br />

Pearse, A. S. 1924. <strong>The</strong> parasites <strong>of</strong> lake fishes. Transactions<br />

<strong>of</strong> the Wisconsin Academy <strong>of</strong> Sciences,<br />

Arts, and Letters 21:161-194.<br />

Rosinski, J. L., P. M. Muzzall, and R. C. Haas.<br />

1997. Nematodes <strong>of</strong> yellow perch from Saginaw<br />

Bay, Lake Huron with emphasis on Eustrongylides<br />

tubifex (Dioctophymatidae) and Philometra<br />

cylindracea (Philometridae). Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 64:96-101.<br />

Salz, R. J. 1989. Factors influencing growth and survival<br />

<strong>of</strong> yellow perch from Saginaw Bay, Lake<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Huron. Michigan Department <strong>of</strong> Natural Resourc- Magath, 1916 (Nematoda: Camallanidae). Journal<br />

es, Fisheries Division, Fisheries Research Report <strong>of</strong> Parasitology 60:117-124.<br />

1964. 80 pp. Tedla, S., and C. H. Fernando. 1969. Observations<br />

Schneider, J. C., F. C. Hooper, and A. M. Beeton. on the seasonal changes <strong>of</strong> the parasite fauna <strong>of</strong><br />

1969. <strong>The</strong> distribution and abundance <strong>of</strong> benthic yellow perch (Perca flavescens) from the Bay <strong>of</strong><br />

fauna in Saginaw Bay, Lake Huron. Proceedings Quinte, Lake Ontario. Journal <strong>of</strong> the Fisheries Re<strong>of</strong><br />

the 12th Conference <strong>of</strong> Great Lakes Research search Board <strong>of</strong> Canada 26:833-843.<br />

1969:80-90. , and . 1970. On the characterization <strong>of</strong><br />

Smedley, E. M. 1934. Some parasitic nematodes from the parasite fauna <strong>of</strong> the yellow perch (Perca flu-<br />

Canadian fishes. Journal <strong>of</strong> Helminthology 12: viatilis L.) in five lakes in southern Ontario, Can-<br />

205-220. ada. Helminthologia 11:23-33.<br />

Stromberg, P. C., and J. L. Crites. 1972. A new Ward, H. B., and T. B. Magath. 1917 (dated 1916).<br />

nematode Dichelyne bullocki sp. n. (Cucullanidae) Notes on some nematodes from freshwater fishes,<br />

from Fundulus heteroclitus (Linnaeus). Proceed- Journal <strong>of</strong> Parasitology 3:57-64.<br />

ings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> Washing- Weller, T. H. 1938. Description <strong>of</strong> Rhabdochona oviton<br />

39:131-134. filamenta n. sp. (Nematoda: <strong>The</strong>laziidae) with a<br />

, and . 1974. <strong>The</strong> life cycle and devel- note on the life history. Journal <strong>of</strong> Parasitology<br />

opment <strong>of</strong> Camallanus oxycephalus Ward and 24:403-408.<br />

NOTICE<br />

EFFECTIVE WITH THE JANUARY, 2000 (VOL. 67, NO. 1) ISSUE, THE<br />

JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

WILL BE RENAMED<br />

COMPARATIVE PARASITOLOGY<br />

THE FIRST VOLUME NUMBER WILL BE "VOLUME 67",<br />

INDICATING THAT<br />

COMPARATIVE PARASITOLOGY<br />

WILL BE<br />

"CONTINUING THE JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON'<br />

YOUR MEMBERSHIP IN THE SOCIETY WILL CONTINUE TO BRING YOUR SEMIANNUAL<br />

ISSUES OF COMPARATIVE PARASITOLOGY<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 123-132<br />

A Taxonomic Reconsideration <strong>of</strong> the Genus Plagiorhynchus s. lat.<br />

(Acanthocephala: Plagiorhynchidae), with Descriptions <strong>of</strong> South<br />

African Plagiorhynchus (Prosthorhynchus) cylindraceus from Shore<br />

Birds and P. (P.) malayensis, and a Key to the Species <strong>of</strong> the<br />

Subgenus Prosthorhynchus<br />

OMAR M. AMIN,M ALBERT G. CANARis,2 AND J. MICHAEL KINSELLAS<br />

1 Institute <strong>of</strong> Parasitic Diseases, P.O. Box 28372, Tempe, Arizona 85285 and Department <strong>of</strong> Zoology, Arizona<br />

<strong>State</strong> University, Tempe, Arizona 85287 U.S.A. (e-mail: omaramin@aol.com),<br />

2 P.O. Box 1479, Hamilton, Montana 59840-1479 U.S.A. (e-mail: acanaris@bitterroot.net), and<br />

3 2108 Hilda Avenue, Missoula, Montana 59801 U.S.A. (e-mail: wormdwb@aol.com)<br />

ABSTRACT: A population <strong>of</strong> Plagiorhynchus (Prosthorhynchus) cylindraceus (Goeze) Schmidt and Kuntz is<br />

described from 4 species <strong>of</strong> shore birds in South Africa. Specimens <strong>of</strong> 3 supposed synonyms <strong>of</strong> P. (P.) cylindraceus,<br />

namely P. (P.) formosus Van Cleave, P. (P.) taiwanensis Schmidt and Kuntz, and P. (P.) transversus<br />

(Rudolphi) Travassos, were studied and this synonymy was verified. <strong>The</strong> taxonomic status <strong>of</strong> Plagiorhynchus s.<br />

str. and <strong>of</strong> Prosthorhynchus was reconsidered, and both were retained as subgenera. Females <strong>of</strong> Plagiorhynchus<br />

(Prosthorhynchus) malayensis (Tubangui) Schmidt and Kuntz (nee malayense) are described for the first time;<br />

males are redescribed. A key to species <strong>of</strong> the subgenus Prosthorhynchus is provided.<br />

KEY WORDS: Acanthocephala, Plagiorhynchus (Prosthorhynchus) cylindraceus, description, South Africa,<br />

shore birds, Aves, subgenera Plagiorhynchus s. str. and Prosthorhynchus, Plagiorhynchus (Prosthorhynchus)<br />

malayensis, taxonomic key.<br />

A collection <strong>of</strong> acanthocephalans was made<br />

by one <strong>of</strong> us (A.G.C.) from 7 species <strong>of</strong> shore<br />

birds in South Africa in 1981. All 7 species<br />

yielded a new centrorhynchid acanthocephalan,<br />

Neolacunisoma geraldschmidti Amin and Canaris,<br />

1997. Additionally, 5 <strong>of</strong> these 7 host species<br />

harbored 2 species <strong>of</strong> plagiorhynchid acanthocephalans.<br />

One unidentified species <strong>of</strong> Plagiorhynchus<br />

infected 1 host species, and the other 4 host species<br />

were infected with Plagiorhynchus (Prosthorhynchus)<br />

cylindraceus (Goeze, 1782)<br />

Schmidt and Kuntz, 1966. <strong>The</strong> study <strong>of</strong> the latter<br />

species, a number <strong>of</strong> its synonyms, and various<br />

plagiorhynchid species prompted reconsideration<br />

<strong>of</strong> the generic-subgeneric status <strong>of</strong> Plagiorhynchus<br />

and Prosthorhynchus and the construction<br />

<strong>of</strong> a key to species <strong>of</strong> the latter subgenus.<br />

Among the acanthocephalans borrowed for this<br />

study were a few specimens <strong>of</strong> Plagiorhynchus<br />

(Prosthorhynchus) malayensis (Tubangui, 1935)<br />

Schmidt and Kuntz, 1966 (nee malayense), that<br />

were sufficiently informative to describe females<br />

for the first time and redescribe males. This paper<br />

reports on these findings.<br />

4 Corresponding author.<br />

Materials and Methods<br />

Twenty-eight individuals (12 males and 16 females)<br />

<strong>of</strong> P. (P.) cylindraceus were recovered from 4 species<br />

<strong>of</strong> shore birds (Charadriiformes) collected by one <strong>of</strong><br />

us (A.G.C.) from the Berg River, Cape Province, South<br />

Africa, between 24 May and 31 July 1981. <strong>The</strong> host<br />

species were the curlew sandpiper (Calidris ferruginea<br />

(Pontoppidan, 1763), 1 individual infected with 25<br />

acanthocephalans); Kittlitz' plover (Charadrius pecuarius<br />

(Temminck, 1823), 1 <strong>of</strong> 4 individuals infected<br />

with 1 acanthocephalan); triple-banded plover (Charadrius<br />

tricollaris (Vieillot, 1818), 1 <strong>of</strong> 5 individuals<br />

infected with 1 acanthocephalan); and blacksmith plover<br />

(Holopterus armatus (Burchell, 1822), 1 <strong>of</strong> 7 individuals<br />

infected with 1 acanthocephalan). In addition,<br />

26 unidentifiable plagiorhynchid acanthocephalans<br />

were collected by A.G.C. from 2 white-fronted<br />

sand plovers (Charadrius marginatus Vieillot, 1818)<br />

and 10 uninformative plagiorhynchid acanthocephalans<br />

from the stilt (Himantopus hirnantopus (Linnaeus,<br />

1758)), H. armatus, Charadrius pallidus Strickland,<br />

1852, and C. pecuarius. <strong>The</strong>se unidentified specimens<br />

are in the collection <strong>of</strong> M. Kinsella, Missoula, Montana.<br />

Specimens were processed by the late Gerald D.<br />

Schmidt. We do not know the processing method used.<br />

Measurements, made using an ocular micrometer and<br />

conversion table, are in micrometers unless otherwise<br />

stated. Width measurements refer to maximum width.<br />

Most specimens were deposited in the United <strong>State</strong>s<br />

National Parasite Collection (USNPC), Beltsville,<br />

Maryland, and a few were retained in the collection <strong>of</strong><br />

the first author (O.M.A.). A few study specimens were<br />

123<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


124 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

loaned from USNPC, but most were from the Harold<br />

W. Manter Laboratory Collection (HWMLC), University<br />

<strong>of</strong> Nebraska <strong>State</strong> Museum, Lincoln, Nebraska.<br />

We report the results <strong>of</strong> examination <strong>of</strong> the specimens<br />

collected from the South African shore birds.<br />

Results and Discussion<br />

Plagiorhynchus (Plagiorhynchus} sp.<br />

<strong>The</strong> 26 specimens <strong>of</strong> Plagiorhynchus (Plagiorhynchus)<br />

sp. collected from C. marginatus<br />

were slender, with the proboscis wider near its<br />

middle, long lemnisci and uterus, a near-terminal<br />

female gonopore, elliptical eggs with polar prolongation<br />

<strong>of</strong> the fertilization membrane, and cement<br />

glands <strong>of</strong> unequal length and altogether<br />

about as long as the 2 testes. <strong>The</strong> specimens<br />

were not sufficiently informative to make a specific<br />

designation.<br />

Plagiorhynchus (Prosthorhynchus)<br />

cylindraceus (Goeze, 1782) Schmidt and<br />

Kuntz, 1966<br />

Except for 1 female in the ovarian ball stage,<br />

all 13 other female and 11 male P. (P.) cylindraceus<br />

collected from the single curlew sandpiper<br />

examined were sexually mature adults<br />

with ripe eggs and sperm, respectively. Of the<br />

other 3 host species examined, 1 individual <strong>of</strong><br />

each was infected with 1 immature female. <strong>The</strong><br />

curlew sandpiper appears to be the natural host<br />

<strong>of</strong> P. (P.) cylindraceus in South Africa.<br />

Our South African specimens were diagnosed<br />

as P. (P.) cylindraceus based on their close similarities<br />

with that species and taxa now synonymized<br />

with it, as listed in Amin (1985) and<br />

compared herein (Table 1). Measurements <strong>of</strong> the<br />

1 available female Plagiorynchus (Prosthorhynchus)<br />

transversus (Rudolphi, 1819) Travassos,<br />

1926, the other supposed synonym (USNPC<br />

#65269) agreed with those listed in the table.<br />

Some <strong>of</strong> the specimens examined, and particularly<br />

European P. (P.) cylindraceus, however,<br />

appeared less robust and more slender, and females<br />

as long as 40 mm were reported (Golvan,<br />

1956, Fig. 1). Another difference was related to<br />

the roots <strong>of</strong> the middle proboscis hooks, which<br />

were longer than the blades in European P. (P.)<br />

cylindraceus (see Golvan, 1956, pi. 1A). This<br />

was also observed in some but not all P. (P.)<br />

cylindraceus from Long Island, New York, and<br />

New Hampshire, U.S.A. (HWMLC 33444-<br />

33452), but not in specimens from Israel<br />

(HWMLC 34871). Golvan's specimens reached<br />

lengths <strong>of</strong> 15 mm in males and 40 mm in females<br />

and had as many as 24 longitudinal rows<br />

<strong>of</strong> proboscis hooks. In all other respects, the synonymy<br />

<strong>of</strong> P. (P.) cylindraceus, P. (P.) transversus,<br />

Plagiorhynchus (Prosthorhynchus) formosus<br />

Van Cleave, 1918, and Plagiorhynchus<br />

(Prosthorhynchus) taiwanensis Schmidt and<br />

Kuntz, 1966, was upheld.<br />

Description <strong>of</strong> South African Plagiorhynchus<br />

(Prosthorhynchus) cylindraceus<br />

GENERAL: Specimens robust and bluntly<br />

pointed, females not much longer but more<br />

plump than males. Subdermal nuclei discoidal,<br />

in shallow ameboid branched interconnected<br />

vesicles, appearing rod-shaped in pr<strong>of</strong>ile, with<br />

vertical orientation at almost regular intervals<br />

from anterior end <strong>of</strong> trunk to short distance from<br />

posterior end. Secondary lacunar vessels transverse<br />

throughout trunk. Proboscis hooks in<br />

straight longitudinal rows, without dorsoventral<br />

or any other differentiation. Blades generally<br />

similar in length, but becoming slightly shorter<br />

abruptly anteriorly and more gradually posteriorly<br />

(Table 1). Hook roots simple, posteriorly<br />

directed, and usually about as long as or slightly<br />

shorter than blades. Posterior 2 hooks <strong>of</strong> each<br />

row spiniform, second to last hook with short<br />

root which may be further reduced to large<br />

knob; last hook rootless and invariably with<br />

small knob instead. Lemnisci long and slender,<br />

much longer than proboscis receptacle, nucleated,<br />

subequal, sometimes branched or multiple,<br />

may extend past posterior end <strong>of</strong> posterior testis.<br />

Testes ovoid, contiguous, usually in anterior half<br />

<strong>of</strong> trunk. Four cement glands in 2 sets <strong>of</strong> 2 each,<br />

originating at various levels beginning anteriorly<br />

near posterior end <strong>of</strong> posterior testis. Four separate<br />

cement gland ducts originating anteriorly<br />

at level <strong>of</strong> anterior end <strong>of</strong> Saefttigen's pouch and<br />

joining pouch at its posterior end. Gonopore<br />

near-terminal in adult males but distinctly subterminal<br />

in adult females, vagina usually curved<br />

anteriad in a 90 degree angle. Ripe eggs mostly<br />

elliptical with concentric shell and no polar prolongation<br />

<strong>of</strong> fertilization membrane. Fertilization<br />

membrane <strong>of</strong> a few eggs in gravid females (5—<br />

15%) may exhibit unipolar or, less frequently,<br />

bipolar prolongation.<br />

SPECIMENS DEPOSITED: USNPC 88031 (10<br />

males and 10 females on 10 slides from Calidris<br />

ferruginea in the Berg River, Cape Province,<br />

South Africa).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


Table 1. Comparison between the South African Plagiorhynchus (Prosthorhynchus) cylindraceus and<br />

paper) in selected diagnostic characteristics.<br />

South Africa,<br />

this paper<br />

(n = 23)<br />

P. cylindraceus<br />

Golvan,<br />

1956<br />

(n = ?)<br />

This paper<br />

(n = 20)<br />

P. formosus<br />

Van Cleave, 1918, 1942;<br />

Schmidt and Olsen,<br />

1964 (n = ?)<br />

This pape<br />

(n = 20)<br />

Trunk (mm)<br />

Males<br />

Females<br />

7.79-0.15<br />

8.97-11.06<br />

X 1.67-1.88<br />

X 2.06-2.55<br />

Proboscis (mm)<br />

Males 1.15-1.21 X 0.21-0.24<br />

Females 1.24-1.39 X 0.24-0.27<br />

Proboscis hooks<br />

Rows (no.) 14-17<br />

10-15 X<br />

20-40 X<br />

14-20, up<br />

to 24<br />

Hooks/row 15-18 10-18<br />

Proboscis hooks (mean length from anterior)<br />

M(ll)* 59 62 64 68 68 71 70 71 69 72 71 69 68 62 59 56 53 Eggs 64-78 F(12)* 56 66 69 69 69 73 75 76 76 73 73 73 69 66 62 60 60 X 25-28 M<br />

NGt<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

80 X<br />

F<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

NG<br />

30<br />

4.545-10.45<br />

5.15-12.12<br />

X 0.61-1.82<br />

X 0.45-2.818<br />

0.88-1.03 X 0.24-0.33<br />

0.97-1.15 x 0.27-0.33<br />

M(8)<br />

53<br />

66<br />

67<br />

66<br />

70<br />

70<br />

69<br />

74<br />

71<br />

67<br />

71<br />

71<br />

66<br />

66<br />

56<br />

—<br />

—<br />

42-70 X<br />

16-17<br />

13-15<br />

F(12)<br />

55<br />

67<br />

66<br />

72<br />

73<br />

79<br />

79<br />

78<br />

82<br />

80<br />

75<br />

72<br />

64<br />

63<br />

61<br />

—<br />

—<br />

12-34<br />

8-13 X 1.5-2.5<br />

9-15 X 2-3<br />

0.80-1.10 X 0.25-0.33<br />

0.80-1.10 X 0.25-0.33<br />

V.C.<br />

71<br />

77<br />

83<br />

83<br />

83<br />

83<br />

83<br />

83<br />

83<br />

77<br />

77<br />

77<br />

65<br />

—<br />

—<br />

—<br />

—<br />

40-75+<br />

15-18<br />

11-15<br />

S.&O.<br />

60<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

60<br />

60<br />

—<br />

—<br />

X 18-30+<br />

5.61-12.42<br />

8.03-13.32<br />

X 1.2<br />

X 1.3<br />

0.94-1.12 X 0.2<br />

1.00-1.21 X 0.<br />

M(10)<br />

56<br />

56<br />

62<br />

70<br />

72<br />

73<br />

77<br />

77<br />

75<br />

73<br />

75<br />

69<br />

66<br />

63<br />

60<br />

—<br />

—<br />

56-73<br />

13-17<br />

13-15<br />

F<br />

X 25-<br />

* Numbers in parentheses indicate the numbers <strong>of</strong> specimens used for determination.<br />

t ?, Number <strong>of</strong> specimens examined not given.<br />

± NG, not given.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


126 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 1-8. Species <strong>of</strong> Plagiorhynchus (Prosthorhynchus) and /*. (Plagiorhynchus). 1-5. Plagiorhynchus<br />

(Prosthorhynchus) inalayensis, female. 1. Lateral view <strong>of</strong> whole specimen. 2. Posterior end and reproductive<br />

system. 3. Egg from the body cavity. 4. Proboscis. 5. Proboscis hook numbers 1, 4, 8, 13, 18, 20 <strong>of</strong> 1 row.<br />

6. Plagiorhynchus (Prosthorhynchus) bullocki, egg from the body cavity <strong>of</strong> a gravid female. 7, 8. Plagiorhynchus<br />

(Plagiorhynchus) paulus. 7. Egg from the body cavity <strong>of</strong> a gravid female. 8. Posterior end and<br />

reproductive system <strong>of</strong> a female, showing the subterminal position <strong>of</strong> the gonopore.<br />

SPECIMENS EXAMINED: P. (P.) cylindraceus<br />

adults: HWMLC 33443-33449, 33451, 35658,<br />

36785 (Nebraska, New Hampshire, New York,<br />

U.S.A.); 34871, 34882 (Israel). P. (P.)formosus<br />

adults: USNPC 4598 (syntypes), 60023;<br />

HWMLC 30539, 30978, 30983, 30987, 31037,<br />

33877, 33938-33941, 34480, 34652, 35005<br />

(Colorado, Oregon, and Kansas, U.S.A.), many<br />

slides <strong>of</strong> larvae from various intermediate hosts.<br />

HWMLC 30975, 30978, 30983, 30987, 31037,<br />

31037, 31061 labeled "Plagiorhynchus formosus<br />

ex. Sturnus vulgaris, intestine; Kansas"<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


AMIN ET AL.—PLAGIORHYNCHUS IN SOUTH AFRICA AND REVIEW 127<br />

were clearly misidentified and placed in the<br />

wrong genus as judged by their thin body form<br />

and small size, proboscis size and armature, and<br />

eggs; some had spiny trunks. P. (P.) taiwanensis<br />

adults: USNPC 60718 (paratypes). HWMLC<br />

34124-34126 (paratypes). P. (P.) transversus<br />

adult: USNPC 65269.<br />

<strong>The</strong> examined specimens provided additional<br />

data that are not included in Table 1: 1 P. (P.)<br />

transversus female (USNPC 65269) had hook<br />

roots that were considerably longer than the<br />

blades and eggs with concentric membranes,<br />

with no more than 5% having polar prolongation<br />

<strong>of</strong> the fertilization membrane. <strong>The</strong> position <strong>of</strong><br />

the gonopore was obscured. <strong>The</strong> P. (P.) formosus<br />

specimens had proboscides with only up to<br />

15 hooks per row. <strong>The</strong> roots <strong>of</strong> the middle proboscis<br />

hooks were longer than the blades in<br />

some specimens. Gravid females had up to 10%<br />

<strong>of</strong> their ripe eggs showing some polar prolongation<br />

<strong>of</strong> the fertilization membrane. <strong>The</strong> female<br />

gonopore was invariably and definitively subterminal.<br />

<strong>The</strong> P. (P.) taiwanensis specimens were<br />

robust and almost identical to P. (P.) formosus.<br />

Distinct differences in lemniscal length, which<br />

were used to justify the designation <strong>of</strong> P. (P.)<br />

taiwanensis as a separate species (Schmidt and<br />

Kuntz, 1966), were not observed in this study,<br />

in agreement with later observations by Schmidt<br />

(1981). <strong>The</strong> proboscis had only up to 15 hooks<br />

per row. <strong>The</strong> roots <strong>of</strong> the middle proboscis<br />

hooks were invariably slightly shorter than the<br />

blades. Up to 15% <strong>of</strong> the ripe eggs had some<br />

polar prolongation <strong>of</strong> the fertilization membrane.<br />

<strong>The</strong> female gonopore was definitively subterminal.<br />

Plagiorhynchus (Prosthorhynchus) malayensis<br />

(Tubangui, 1935) Schmidt and Kuntz, 1966<br />

(Figs. 1-5)<br />

GENERAL: Tubangui (1935) originally described<br />

this species from 1 male specimen obtained<br />

from the gruiform bird, the banded landrail<br />

Gallirallus (=Hypotaenidia) philippensis<br />

Linnaeus, 1766, in Luzon, Philippines, as Oligoterorhynchus<br />

malayensis. It was later transferred<br />

to the genus Prosthorhynchus by Yamaguti<br />

(1963) because <strong>of</strong> its cylindrical proboscis.<br />

Schmidt and Kuntz (1966) redescribed the males<br />

based on 2 new specimens (USNPC 60730) collected<br />

from 2 other species <strong>of</strong> gruiform birds<br />

from Taiwan (the white-breasted water hen,<br />

Amauromis phoenicurus chinensis (Boddaert,<br />

1783) and the banded crake, Rallina eurozonoides<br />

formosana Seebohm, 1894) and on the original<br />

description. <strong>The</strong> female remained unknown.<br />

Eleven specimens (6 males and 5 females on 8<br />

slides) <strong>of</strong> the same species, all from the G. D.<br />

Schmidt collection, became available for this<br />

study (10 specimens from HWMLC, 1 from<br />

USNPC). Seven <strong>of</strong> the 8 slides were dated 1965;<br />

the remaining slide (1 male specimen) was dated<br />

1972. One <strong>of</strong> the 2 males described by Schmidt<br />

and Kuntz (1966) (USNPC 60730) was also dated<br />

1965. <strong>The</strong> 5 female specimens in this collection<br />

were adequate for description. <strong>The</strong> 6 male<br />

specimens in the same collection also provided<br />

additional new information.<br />

FEMALE: Trunk elongate, slender, cylindrical<br />

(Fig. 1), 11.5-18.2 (Jc = 15.1) mm long by 1.12-<br />

1.37 (1.23) mm wide. Proboscis cylindrical,<br />

rounded anteriorly 1.06-1.30 (1.18) mm long by<br />

0.26-0.30 (0.28) mm wide (Fig. 4), with 19<br />

hook rows, each with 20-21 hooks. All hooks<br />

similar in shape, except basal hooks spiniform.<br />

Hooks increasing in size posteriorly to hooks 4-<br />

8, then gradually decreasing to hooks 20, 21,<br />

reaching size <strong>of</strong> anterior hooks. Lengths <strong>of</strong> 1<br />

row <strong>of</strong> hooks <strong>of</strong> 1 female (Figs. 1, 4, 5) from<br />

anterior 48, 53, 56, 56, 62, 62, 62, 64, 62, 62,<br />

62, 59, 56, 56, 56, 56, 56, 53, 53, 50, 50. Roots<br />

<strong>of</strong> posterior 4 hooks in each row greatly and<br />

more progressively reduced posteriorly, well developed<br />

in all other hooks, and with anterior manubria<br />

in anterior 4-6 hooks; manubria most developed<br />

anteriorly (Fig. 5). Neck <strong>of</strong> same female<br />

303 long by 333 wide. Proboscis receptacle<br />

1.97-2.03 (2.00) mm long by 0.27-0.48 (0.37)<br />

mm wide. Lemnisci narrow and much longer<br />

than proboscis receptacle, 4.30-5.45 (4.74) mm<br />

long by 0.12 mm wide. Reproductive system<br />

short, robust with well-developed vagina, very<br />

short uterus, and comparatively large uterine<br />

bell, 757 long (5% <strong>of</strong> trunk length). Gonopore<br />

decidedly subterminal (Fig. 2). Eggs elongate<br />

ovoid, 53-84 (64) long by 22-31 (28) wide; external<br />

shell sculptured with elevated ridges and<br />

grooves particularly at poles, all shells concentric<br />

(Fig. 3) with less than 5% <strong>of</strong> ripe eggs showing<br />

mild to moderate polar prolongation <strong>of</strong> fertilization<br />

membrane.<br />

FEMALE (Fig. 1): HWMLC 36329.<br />

OTHER FEMALES: HWMLC 33878, 36327,<br />

36328.<br />

HOST: Amauromis phoenicurus (Boddaert,<br />

1783).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

SITE OF INFECTION: Intestine.<br />

17, 16) and most ripe eggs (at least 80%)<br />

LOCALITY: Borneo, Indonesia; Taiwan. showed mild to strong polar prolongation <strong>of</strong> the<br />

MALE: Trunk slender, cylindrical, 10.0-13.0 fertilization membrane (Fig. 6). Schmidt and<br />

(11.5) mm long by 0.82-1.42 (1.09) mm wide.<br />

Proboscis cylindrical with rounded anterior end,<br />

1.00-1.21 (1.11) mm long by 0.20-0.24 (0.23)<br />

mm wide. Proboscis with 16-21 longitudinal<br />

rows <strong>of</strong> 20-22 hooks each. Differences between<br />

anterior, middle, and posterior hook sizes and<br />

shape and size <strong>of</strong> roots comparable to females.<br />

Lengths <strong>of</strong> hooks from anterior 42 (42), 48-56<br />

(52), 53-56 (54), 53-59 (56), 50-59 (54), 50-<br />

62 (57), 50-56 (54), 48-59 (54), 48-64 (57),<br />

Kuntz (1966) did not refer to a polar prolongation<br />

<strong>of</strong> the fertilization membrane, and their figure<br />

11 shows none. <strong>The</strong> gonopore <strong>of</strong> both sexes<br />

is decidedly subterminal. <strong>The</strong> above 2 traits are<br />

in conflict with the traditional criteria for the<br />

subgenus Prosthorhynchus (females with subterminal<br />

gonopore and eggs with concentric shells)<br />

or the subgenus Plagiorhynchus (females with<br />

terminal gonopore and eggs with polar prolongation<br />

<strong>of</strong> fertilization membrane). See Remarks<br />

48-56 (53), 45-56 (52), 45-59 (53), 48-56 (53), following.<br />

48-56 (53), 48-56 (53), 45-56 (51), 45-56 (50), SPECIMENS EXAMINED: HWMLC 34074,<br />

45-56 (51), 45-53 (49), 45-50 (47), 42-48 (45). 34133.<br />

Neck 151-242 (181) long by 212-333 (273)<br />

wide. Proboscis receptacle 1.88-2.12 (1.98) mm<br />

long by 0.30-0.42 (0.34) mm wide. Lemnisci<br />

narrow and markedly longer than proboscis receptacle,<br />

2.36-3.33 (2.82) mm long. Testes<br />

ovoid, contiguous, at middle <strong>of</strong> trunk. Anterior<br />

testis 0.94-1.15 (1.05) mm long by 0.45-0.70<br />

(0.52) mm wide. Posterior testis 0.91-1.88<br />

(1.14) mm long by 0.45-0.73 (0.55) mm wide.<br />

Four tubular cement glands, 2.12-4.24 (3.14)<br />

mm long by 0.09-0.30 (0.18) mm wide; cement<br />

glands begin at posterior end <strong>of</strong> posterior testis<br />

and join into 2 cement ducts posteriorly at level<br />

<strong>of</strong> anterior end <strong>of</strong> Saefftigen's pouch, which they<br />

join at its posterior end. Saefftigen's pouch<br />

1.21-1.36 (1.29) mm long by 0.45-0.48 (0.47)<br />

mm wide. Bursa 0.94—1.36 (1.15) mm long by<br />

0.97-1.21 (1.09) mm wide.<br />

SPECIMENS EXAMINED: USNPC 60730;<br />

HWMLC 33878, 36327, 36328, 36329.<br />

Other species <strong>of</strong> the 2 Plagiorhynchus subgenera<br />

were studied to help with the construction<br />

<strong>of</strong> the following key. This study produced<br />

the following unexpected information, which<br />

demonstrated the wide variability within the genus<br />

Plagiorhynchus and provided a context<br />

against which its taxonomic complexity could be<br />

evaluated.<br />

Plagiorhynchus (Prosthorhynchus) bullocki<br />

Schmidt and Kuntz, 1966<br />

<strong>The</strong> specimens (5 males and 4 females from<br />

the Formosan hill partridge, Arborophilia crudigularis<br />

(Swinhoe, 1864) from Taiwan) were in<br />

general agreement with the original description,<br />

except that proboscis hooks numbered 17—18 in<br />

each <strong>of</strong> 14-16 longitudinal rows (instead <strong>of</strong> 16-<br />

Plagiorhynchus (Prosthorhynchus) gracilis<br />

(Petrochenko, 1958) Schmidt and Kuntz, 1966<br />

One male from the intestine <strong>of</strong> the masked<br />

lapwing, Vanellus miles (Boddaert, 1783), in<br />

Tasmania was slender and somewhat robust anteriorly,<br />

with lemnisci about as long as the proboscis<br />

receptacle. <strong>The</strong> proboscis had 21 rows <strong>of</strong><br />

more than 15 hooks each and 6 tubular cement<br />

glands. All <strong>of</strong> Petrochenko's (1958) male specimens<br />

were "wrinkled," and the resulting "corrugation"<br />

affected the "subsequent distribution<br />

<strong>of</strong> internal organs." His males had 20 proboscis<br />

hook rows, each with 16 hooks and only 3 tubular<br />

cement glands (Petrochenko, 1958, p.<br />

182).<br />

SPECIMEN EXAMINED: HWMLC 39385.<br />

Plagiorhynchus (Prosthorhynchus) golvani<br />

Schmidt and Kuntz, 1966<br />

Observations on 1 male from the intestine <strong>of</strong><br />

a collared bush-robin, Tarsiger (=Erithacus)<br />

johnstoniae (Ogilvie-Grant, 1906) (Turdidae), in<br />

Taiwan were in agreement with the original description.<br />

SPECIMEN EXAMINED: HWMLC 34299.<br />

Plagiorhynchus (Plagiorhynchus) charadrii<br />

(Yamaguti, 1939) Van Cleave, 1951<br />

<strong>The</strong> specimens (9 males and 12 females on 10<br />

slides), dated 1965 to 1978 and collected from<br />

shore birds in Taiwan, Hawaii, and Tasmania,<br />

generally agreed with the descriptions <strong>of</strong> Yamaguti<br />

(1939) and Schmidt and Kuntz (1966).<br />

<strong>The</strong> proboscides had 17-18 rows <strong>of</strong> 14-15<br />

hooks each. <strong>The</strong> gonopore was terminal in both<br />

sexes, but eggs varied considerably in size and<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


AMIN ET M_.—PLAGIORHYNCHUS IN SOUTH AFRICA AND REVIEW 129<br />

degree <strong>of</strong> polar prolongation <strong>of</strong> the middle membrane,<br />

if any. For example, females collected<br />

from the Kentish plover, Charadrius alexandrinus<br />

Deignan, 1941, and the golden plover Pluvialis<br />

dominica Gmelin, 1789, in Taiwan and<br />

Hawaii had eggs up to 85 X 28 and 132 X 50,<br />

respectively. <strong>The</strong>se eggs mostly had a polar prolongation<br />

<strong>of</strong> the middle membrane as described<br />

by Yamaguti (1939) and Schmidt and Kuntz<br />

(1966), whose specimens' eggs measured 105-<br />

120 X 30-45. Some females from the redcapped<br />

plover, Charadrius (Alexandrinus) ruficapillus<br />

Temminck, 1822, in Tasmania had larger<br />

eggs, up to 168 X 67, that mostly had no<br />

visible prolongation <strong>of</strong> the fertilization membrane.<br />

In most other females examined, however,<br />

about 80% <strong>of</strong> the eggs normally had no<br />

polar prolongation. This extreme variation in the<br />

polar swelling <strong>of</strong> the fertilization membrane poses<br />

taxonomic problems and is clearly not related<br />

to egg size or maturity. It may be associated<br />

with host species or with unknown geographical<br />

factors.<br />

SPECIMENS EXAMINED: HWMLC 34128, 34747,<br />

39347, 39374.<br />

Plagiorhynchus (Plagiorhynchus) paulus Van<br />

Cleave and Williams, 1951<br />

Measurements <strong>of</strong> 2 males and 2 females from<br />

the varied thrush, Zoothera (=Ixoreus) naevius<br />

(Gmelin, 1784), in the <strong>State</strong> <strong>of</strong> <strong>Washington</strong>,<br />

U.S.A., did not agree with the original description.<br />

For example, testes were longer (anterior<br />

0.848 X 0.364 mm, posterior 0.666 X 0.364<br />

mm), proboscis receptacle 1.060 X 0.212 mm in<br />

1 male and 1.394 X 0.273 mm in 1 female, cement<br />

glands 0.697 X 0.106 mm to 1.515 X<br />

0.121 mm and eggs 50-76 (66) X 14-28 (19)<br />

(n = 8). A few (5-10%) <strong>of</strong> the eggs showed no<br />

polar prolongation <strong>of</strong> the fertilization membrane,<br />

but most did (Fig. 7). <strong>The</strong> female gonopore was,<br />

however, not terminal as would be expected in<br />

a species placed in Plagiorhynchus. <strong>The</strong> female<br />

gonopore was actually subterminal (Fig. 8). No<br />

reference to the position <strong>of</strong> the female gonopore<br />

was made in the original description (Van<br />

Cleave and Williams, 1951) or in subsequent accounts<br />

by other authors (e.g., Petrochenko,<br />

1958). Based on this character alone, this species<br />

would be assigned to Prosthorhynchus.<br />

However, the polar prolongation <strong>of</strong> the egg fertilization<br />

membrane, among other factors discussed<br />

below, further complicates the issue. No<br />

reassignment is made at this time.<br />

SPECIMEN EXAMINED: HWMLC 34333.<br />

Inclusion <strong>of</strong> species in the key<br />

Amin (1985) listed 19 species in the subgenus<br />

Prosthorhynchus, and Golvan (1994) listed 27,<br />

while Hoklova (1986) listed 11 species from<br />

land vertebrates. Part <strong>of</strong> this discrepancy is because<br />

<strong>of</strong> synonyms not acknowledged by Golvan<br />

(1994) or Hoklova (1986) and hence not included<br />

in the key. <strong>The</strong> following species are not recognized<br />

as valid: P. (P.) formosus, P. (P.) taiwanensis,<br />

and P. (P.) transversus (synonyms <strong>of</strong><br />

P. (P.) cylindraceus, see this paper; Schmidt,<br />

1981; Amin, 1985). Other synonyms <strong>of</strong> P. (P.)<br />

cylindraceus noted by Golvan (1994) are P. (P.)<br />

rosai (Porta, 1910) Meyer, 1932, and P. (P.)<br />

upupae Lopez-Neyra, 1946. Rhadinorhynchus<br />

asturi Gupta and Lata, 1967, was erroneously<br />

named Prosthorhynchus asturi by Golvan<br />

(1994); this species, with a spinose trunk, is<br />

clearly a rhadinorhynchid. Golvan (1956) proposed<br />

other synonymies that he later retracted<br />

(Golvan, 1994). Plagiorhynchus (Prosthorhynchus}<br />

pupa (von Linstow, 1905) Meyer, 1931, is<br />

a synonym <strong>of</strong> Polymorphic pupa (von Linstow,<br />

1905) Kostylev, 1922 (see Amin, 1992). Golvan<br />

(1994) removed Prosthorhynchus (Prosthorhynchus}<br />

limnobaeni Tubangui, 1933, to the subgenus<br />

Plagiorhynchus despite the fact that this<br />

species is known from only 2 males. This reassignment<br />

to Plagiorhynchus is unjustified, and<br />

the species is retained in the subgenus Prosthorhynchus.<br />

It is not, however, included in the<br />

key because <strong>of</strong> controversy regarding the only<br />

usable diagnostic trait, the proboscis armature.<br />

Tubangui (1933) indicated that proboscis hooks<br />

are "in forty-three alternating anteroposterior<br />

rows <strong>of</strong> eight hooks each," but his Plate 5, Figure<br />

1 shows a proboscis with about 18-20 longitudinal<br />

rows, each with 30 hooks. Golvan<br />

(1956) accepted the 43 X 8 formula and Petrochenko<br />

(1958, after Meyer, 1932-1933) indicated<br />

16 longitudinal rows <strong>of</strong> 17 hooks each. Yamaguti<br />

(1963) quoted both figures, 43 X 8 and<br />

16 x 17. Both Petrochenko (1958) and Yamaguti<br />

(1963) retained the species in Prosthorhynchus<br />

as originally described. Golvan (1956,<br />

1994) synonymized P. (Prosthorhynchus) rectus<br />

Sphern, 1942 nee Linton, 1892, with "Prosthorhynchus<br />

schmidti nom. nov." This entity,<br />

originally described as Echinorhynchus rectus<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


130 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Linton, 1892, was declared incertae sedis by Posterior 1-8 hooks smaller, spine-like, with<br />

Schmidt<br />

o i- •_! b»"ock! Sc^1 d Kunt7' 196J<br />

Proboscis with 1-4 spine-like hooks 6<br />

(1994) also listed "Prosthorhynchus luehei Tra- 6 Proboscis with 3_4 spine-like hooks having<br />

vassos, 1916" (=Echinorhynchus spirilla Ru- greatly reduced but definite roots<br />

dolphi, 1819; E. spirilla Linstow, 1878, 1897;<br />

P- (P.) malayensis<br />

Gigantorhynchus spirula Porta, 1908, 1909; (Tubangui, 1935) Schmidt and Kuntz, 1966<br />

_ , , . , , . „ ir,nr n ; Proboscis with 1-3 spine-like hooks having<br />

Prosthenorchis luhei Travassos, 1916; Prosthor- underdeveloped, rudimentary, or no roots 7<br />

hynchus spiralis (Rudolphi, 1809) Schmidt and 7 Adults very long (males 45 mm, females 60<br />

Kuntz, 1966). <strong>The</strong> species is considered incertae mm) P. (P.) scolopacidis<br />

sedis (Schmidt and Kuntz, 1966) and is not in- (Kostylev, 1915) Schmidt and Kuntz, 1966<br />

eluded in the key because its inadequate descrip- Adults sj°rter (alef UP to 30 mm' females o<br />

,, . , . . , , up to 40 mm long) 8<br />

tion does not allow its placement in either <strong>of</strong> the g Eggs large> 125_i3o x 45-50 ..... P. (P.) pittamm<br />

2 subgenera <strong>of</strong> Plagiorhynchus. Another spe- (Tubangui, 1935) Schmidt and Kuntz, 1966<br />

cies, Plagiorhynchus kuntzi Gupta and Fatma, Eggs smaller than 125-130 x 45-50 9<br />

1988, is not included in the key because it is not 9- Proboscis with 8 rows <strong>of</strong> hooks, posterior<br />

assignable to either subgenus. <strong>The</strong> position <strong>of</strong> ho°ks with very short roots; most eggs with<br />

; , . , , , , . , polar prolongation or fertilization memthe<br />

female gonopore was described as terminal brane<br />

or subterminal"; the description was based on .... p. (/>.) ,-usselli (Tadros, 1970) Golvan, 1994<br />

only 1 female and 1 male (Gupta and Fatma, Proboscis with 14 or more rows <strong>of</strong> hooks, pos-<br />

1988). Petrochenko (1958) and Yamaguti (1963) terior hooks with greatly reduced, rudimenlisted<br />

22 and 21 species <strong>of</strong> Prosthorhynchus, re- ^ or no roots; most e§§s with Concentric<br />

, shells<br />

spectively, but the taxonomic status and assign- 1Q Vaginal sphincter strongly developed on 1 side<br />

10<br />

ment <strong>of</strong> many <strong>of</strong> these species also has been p. (/>.) asymmetricus Belopolskaja, 1983<br />

changed since. Vaginal sphincter symmetrical 11<br />

Based on the above account, 21 species are 1L Lemnisci considerably shorter than proboscis<br />

considered valid and are included in the follow- receptacle; proboscis with 18 rows, each<br />

. _ _ , , , /ir> each with 10-22 hooks 12<br />

cies from the former U.S.S.R., some <strong>of</strong> which 12' Ventral surface <strong>of</strong> female gonopore with elevated<br />

papilla<br />

are synonyms. p (/)) genitopapillosus Lundstrom, 1942<br />

No papilla at female gonopore 13<br />

Key to Species <strong>of</strong> the Subgenus 13. Proboscis small, 640-770 x 190-230, with 18<br />

Prosthorhynchus rows <strong>of</strong> hooks P. (P.) ogati (Fukui<br />

and Morisita, 1936) Schmidt and Kuntz, 1966<br />

1. Proboscis with 30 rows <strong>of</strong> hooks; eggs small Proboscis larger, with 14-20 rows <strong>of</strong> hooks 14<br />

(40 X 20); trunk pigmented 14. Proboscis less than 1.0 mm long 15<br />

P. (P.) pigmentatus Proboscis 1.0 mm long, or longer 16<br />

(Marval, 1902) Meyer, 1932 15. Proboscis 800-900 X 200 with 16-18 rows <strong>of</strong><br />

Proboscis with 8-21 rows <strong>of</strong> hooks; eggs larg-<br />

15-18 hooks each, hooks very small, middle<br />

er; trunk not pigmented 2 and posterior hooks 23 and 4 long; females<br />

2. All proboscis hooks <strong>of</strong> almost uniform size 17 mm long; eggs 70 X 10 P. (P.) rheae<br />

(50-54 long), with rectangular well-devel- (Marval, 1902) Schmidt and Kuntz, 1966<br />

oped roots P. (P.) limnobaeni Proboscis 957 X 65 with 16—18 rows <strong>of</strong> 20—<br />

(Tubangui, 1933) Golvan, 1956 22 hooks each, middle and posterior hooks<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


AMIN ET AL.—PLAGIORHYNCHUS IN SOUTH AFRICA AND REVIEW 131<br />

39 and 13 long; females 4.6 mm long; eggs<br />

44-46 X 26-28 P. (P.) rossicus<br />

(Kostylev, 1915) Schmidt and Kuntz, 1966<br />

16. Proboscis consistently longer than 1.0 mm ___ 17<br />

Proboscis length averaging about 1.0 mm ..... 20<br />

17. Proboscis with 18-20 rows <strong>of</strong> hooks 18<br />

Proboscis with 14-16 rows <strong>of</strong> hooks 19<br />

18. Proboscis 1.25-1.44 X 0.33 mm with 18-20<br />

rows <strong>of</strong> 15 hooks each, middle hooks 58-59<br />

long, posterior 3 hooks rootless<br />

- P. (P.) gallinagi (Schachtachtinskaia, 1953)<br />

Schmidt and Kuntz, 1966<br />

Proboscis 1.18 X 0.260-0.033 mm with 20<br />

rows <strong>of</strong> 16 hooks each, middle hooks 71-77<br />

long, posterior 3 hooks with underdeveloped<br />

but definite roots<br />

P. (P.) gracilis<br />

(Petrochenko, 1958) Schmidt and Kuntz, 1966<br />

19. Proboscis 1.0-1.3 mm long with 16-17 hooks<br />

per row, 1—3 basal hooks with broadened<br />

base but no definite root; females 12-15 mm<br />

long; eggs 80 X 40 P. (P.) reticulatus<br />

(Westrumb, 1821) Golvan, 1956<br />

Proboscis 1.1 X 0.3 mm with 14-15 hooks per<br />

row, posterior hooks spiniform and rootless;<br />

females 7.0-8.5 mm long; eggs 70 X 35<br />

P. (P.) nicobarensis (Soota and Kansal, 1970)<br />

Zafar and Farooqi, 1981<br />

20. Proboscis 0.96-1.1 X 0.19-0.22 mm with 20<br />

rows <strong>of</strong> 19-20 hooks each, most posterior<br />

hooks rootless; proboscis receptacle 1.8 mm<br />

long; males 7 X 1.1 mm, females 8X1.1<br />

mm<br />

P. (P.) longirostris<br />

(Travassos, 1927) Amin, 1985<br />

Proboscis 0.8-1.3 X 0.2-0.36 mm with 14-20<br />

(usually 14-18) rows <strong>of</strong> 10-18 (usually 13-<br />

18) hooks each, posterior 1-3 spiniform<br />

hooks with greatly reduced or no roots; proboscis<br />

receptacle 2.0-2.5 mm long; males<br />

4.5-30 X 0.6-2.4 mm, females 5-40 X 0.4-<br />

3.2 mm P. (P.) cylindraceus<br />

(Goeze, 1782) Schmidt and Kuntz, 1966<br />

Remarks<br />

Plagiorhynchinae was established by Meyer<br />

(1931) as a subfamily <strong>of</strong> Polymorphidae, within<br />

which he included the genera Plagiorhynchus<br />

Liihe, 1911, and Prosthorhynchus Kostylew<br />

1915, as well as Sphaerechinorhynchus Johnston<br />

and Deland, 1929, and Porrorchis Fukui, 1929.<br />

Golvan (1956, 1960) erected 2 new subfamilies,<br />

Porrorchinae and Sphaerechinorhynchinae, to<br />

accommodate forms with short spheroid proboscides.<br />

This left only 2 genera, Plagiorhynchus<br />

and Prosthorhynchus, in the Plagiorhynchinae.<br />

Petrochenko (1956) established the family Prosthorhynchidae<br />

to contain Prosthorhynchus,<br />

among other genera, that infect terrestrial vertebrates<br />

as adults and terrestrial insects as larvae<br />

and that have eggs with concentric shells and no<br />

polar prolongations. Yamaguti (1963) placed<br />

Plagiorhynchidae Golvan, 1960 emend, in Echinorhynchidea<br />

Southwell and Macfie, 1925, in<br />

which adult and larval worms infected aquatic<br />

vertebrates and crustaceans, respectively, and<br />

eggs had a polar prolongation <strong>of</strong> the middle<br />

membrane. Schmidt and Kuntz (1966) synonymized<br />

Prosthorhynchus with Plagiorhynchus<br />

and reduced the 2 genera to subgenera <strong>of</strong> the<br />

genus Plagiorhynchus s. lat. Schmidt and Kuntz<br />

(1966) observed that the only 2 consistent morphological<br />

differences between the 2 taxa, the<br />

position <strong>of</strong> the female genital pore and the presence<br />

or absence <strong>of</strong> polar swelling in the egg fertilization<br />

membrane, were "not invariable."<br />

Amin (1982, 1985) accepted Schmidt and<br />

Kuntz's (1966) classification, and additional<br />

documentation was produced by this study. Hoklova<br />

(1986) and Golvan (1994), however, preferred<br />

to retain the original independent status<br />

<strong>of</strong> the 2 genera in Polymorphidae.<br />

In the present work, an examination <strong>of</strong> many<br />

specimens and a review <strong>of</strong> relevant literature<br />

provided additional documentation and justification<br />

<strong>of</strong> Schmidt and Kuntz's (1966) decision<br />

to reduce Plagiorhynchus s. str. and Prosthorhynchus<br />

to subgenera <strong>of</strong> the genus Plagiorhynchus<br />

s. lat. All characteristics examined were<br />

found to vary considerably within each taxon,<br />

and to overlap between the 2 taxa. Characters<br />

found with some degree <strong>of</strong> variation and with<br />

very little but evident overlap include hosts, egg<br />

membranes, and female gonopore. Species <strong>of</strong><br />

the subgenus Plagiorhynchus s. str. normally infect<br />

shore and aquatic arthropods (crustaceans<br />

and insects) as larvae, have a terminal gonopore<br />

in the female, and have eggs with polar prolongation<br />

<strong>of</strong> the fertilization membrane. Species <strong>of</strong><br />

subgenus Prosthorhynchus normally infect terrestrial<br />

birds and occasionally mammals as<br />

adults and terrestrial arthropods as larvae, have<br />

a subterminal gonopore in the female, and have<br />

eggs with concentric shells showing no prolongation<br />

<strong>of</strong> any membrane. Despite Golvan's<br />

(1994) assertions and Hoklova's (1986) reservations,<br />

we have found exceptions to each <strong>of</strong><br />

these 3 more stable characteristics, constituting<br />

an overlap between the concept <strong>of</strong> Plagiorhynchus<br />

s. str. and that <strong>of</strong> Prosthorhynchus. Our P.<br />

(Prosthorhynchus) cylindraceus specimens from<br />

South Africa were collected from 5 species <strong>of</strong><br />

shore birds, suggesting an aquatic life cycle in<br />

the definitive and intermediate hosts. <strong>The</strong> same<br />

specimens and many others reported as syno-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


132 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

nyms <strong>of</strong> the same species included females having<br />

up to 15% <strong>of</strong> their eggs with polar prolongation<br />

<strong>of</strong> the fertilization membrane. Most eggs<br />

(at least 80%) <strong>of</strong> the P. (Prosthorhynchus) bullocki<br />

female specimens examined also had polar<br />

prolongation <strong>of</strong> the fertilization membrane. Females<br />

<strong>of</strong> P. (Prosthorhynchus) bullocki have a<br />

definite subterminal gonopore; thus, this taxon<br />

remains in limbo between the 2 subgenera. Similarly,<br />

females <strong>of</strong> P. {Plagiorhynchus) paulus<br />

with eggs mostly having prolongation <strong>of</strong> the fertilization<br />

membrane have a subterminal gonopore.<br />

Because the eggs vary in size, shape, and<br />

the presence and degree <strong>of</strong> polar prolongation<br />

and because host ecological parameters are not<br />

consistent within each subgenus, the position <strong>of</strong><br />

the female gonopore becomes the only remaining<br />

reliable trait distinguishing the 2 subgenera.<br />

Examples <strong>of</strong> the limitations to sole use <strong>of</strong> this<br />

characteristic include that <strong>of</strong> P. (P.) paulus and<br />

the fact that males cannot be keyed out. Variability<br />

within and between the 2 subgenera in all<br />

3 characteristics (host, female gonopore, eggs)<br />

should be considered in toto while considering<br />

the limitations inherent in each.<br />

Despite the above documented variations and<br />

limitations, no new subgeneric diagnoses are<br />

given or believed necessary; those provided by<br />

Schmidt and Kuntz (1966) are considered adequate.<br />

Literature Cited<br />

Amin, O. M. 1982. Acanthocephala. Pages 933-941<br />

in S. P. Parker, ed. Synopsis and Classification <strong>of</strong><br />

Living Organisms. McGraw-Hill Book Company,<br />

New York.<br />

. 1985. Classification. Pages 27-72 in D. W. T.<br />

Crompton and B. B. Nickol, eds. Biology <strong>of</strong> the<br />

Acanthocephala. Cambridge University Press,<br />

London.<br />

-. 1992. Review <strong>of</strong> the genus Polymorphus<br />

Liihe, 1911 (Acanthocephala: Polymorphidae),<br />

with the synonymization <strong>of</strong> Hexaglandula Petrochenko,<br />

1950, and Subcorynozoma Hoklova,<br />

1967, and a key to the species. Qatar University<br />

Science Journal 12:115-123.<br />

Golvan, Y. J. 1956. Acanthocephales d'oiseaux. Troisieme<br />

note. Revision des especes Europeennes de<br />

la sous-famille de Plagiorhynchinae A. Meyer<br />

1931 (Polymorphidae). Annales de Parasitologie<br />

Humaine et Comparee 31:351-384.<br />

. 1960. Le phylum des Acanthocephala. Troisieme<br />

note. La classe de Palaeacanthocephala<br />

(Meyer 1931). Annales de Parasitologie Humaine<br />

et Comparee 35:350-386.<br />

-. 1994. Nomenclature <strong>of</strong> the Acanthocephala.<br />

Research and Reviews in Parasitology 54:35-205.<br />

Gupta, V. and S. Fatma. 1988. On four acanthocephalan<br />

parasites <strong>of</strong> vertebrates from Uttar Pradesh<br />

and Tamil Nadu. Indian Journal <strong>of</strong> Helminthology<br />

(1987) 39:128-142.<br />

Hoklova, I. G. 1986. <strong>The</strong> Acanthocephalan Fauna <strong>of</strong><br />

Terrestial Vertebrates <strong>of</strong> S.S.S.R. Nauka Press,<br />

Moscow. 276 pp.<br />

Meyer, A. 1931. Neue Acanthocephalen aus dem Berliner<br />

Museum. Begrundung eines neuen Acanthocephalensystems<br />

auf Grund einer Untersuchung<br />

der Berliner Sammlung. Zoologische Jahrbucher,<br />

Abteilung fiir Systematik, Okologie und Geographic<br />

der Tiere 62:53-108.<br />

. 1932-1933. Acanthocephala. Pages 1-582 in<br />

Dr. H. G. Bronn's Klassen und Ordnungen des<br />

Tier-Reichs. Vol. 4. Akademisch Verlagsgesellschaft<br />

MBH, Leipzig.<br />

Petrochenko, V. I. 1956. Acanthocephala <strong>of</strong> Domestic<br />

and Wild Animals. Vol. 1. Izdatel'stvo Academii<br />

Nauk S.S.S.R., Moscow. 465 pp. (English translation<br />

by Israel Program for Scientific Translations<br />

Ltd., 1971)<br />

. 1958. Acanthocephala <strong>of</strong> Domestic and Wild<br />

Animals. Vol. 2. Izdatel'stvo Akademii Nauk<br />

S.S.S.R., Moscow. 478 pp. (English translation by<br />

Israel Program for Scientific Translations Ltd.,<br />

1971)<br />

Schmidt, G. D. 1981. Plagiorhynchus formosus Van<br />

Cleave, 1918, a synonym <strong>of</strong> Plagiorhynchus cylindraceus<br />

(Goeze, 1782) Schmidt and Kuntz,<br />

1966. Journal <strong>of</strong> Parasitology 67:597-598.<br />

, and R. E. Kuntz. 1966. New and little-known<br />

plagiorhynchid Acanthocephala from Taiwan and<br />

the Pescadores Islands. Journal <strong>of</strong> Parasitology 52:<br />

520-527.<br />

-, and O. W. Olsen. 1964. Life cycle and development<br />

<strong>of</strong> Prosthorhynchus formosus (Van<br />

Cleave, 1918) Travassos, 1926, an acanthocephalan<br />

parasite <strong>of</strong> birds. Journal <strong>of</strong> Parasitology 50:<br />

721-730.<br />

Tubangui, M. A. 1933. Notes on Acanthocephala in<br />

the Philippines. Philippine Journal <strong>of</strong> Science 50:<br />

115-128, 6 plates.<br />

. 1935. Additional notes on Philippine Acanthocephala.<br />

Philippine Journal <strong>of</strong> Science 56:13-<br />

17, 2 plates.<br />

Van Cleave, H. J. 1918. <strong>The</strong> Acanthocephala <strong>of</strong> North<br />

American birds. Transactions <strong>of</strong> the American Microscopical<br />

<strong>Society</strong> 37:19-47.<br />

. 1942. A reconsideration <strong>of</strong> Plagiorhynchus<br />

formosus and observations <strong>of</strong> Acanthocephala<br />

with atypical lemnisci. Transactions <strong>of</strong> the American<br />

Microscopical <strong>Society</strong> 61:206-210.<br />

Yamaguti, S. 1939. Studies on the helminth fauna <strong>of</strong><br />

Japan. Part 29. Acanthocephala, II. Japanese Journal<br />

<strong>of</strong> Zoology 13:317-351.<br />

. 1963. Systema Helminthum. Vol. 5. Acanthocephala.<br />

Interscience Publishers, New York. 423<br />

pp.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 133-137<br />

Sciadocephalus megalodiscus Diesing, 1850 (Cestoda:<br />

Corallobothriinae), a Parasite <strong>of</strong> Cichla monoculus Spix, 1831<br />

(Cichlidae), in the Parana River, <strong>State</strong> <strong>of</strong> Parana, Brazil<br />

AMILCAR ARANDAS REGO,' PATRICIA MIYUKI MACHADO,2 AND GILBERTO CEZAR<br />

PAVANELLI2-3<br />

1 Department <strong>of</strong> Helminthology, Fundacao Institute Oswaldo Cruz (FIOCRUZ), Rua Marques de Valen9a, 25,<br />

Apt. 1004, 20550-030, Rio de Janeiro, Rio de Janeiro, Brazil (e-mail: arego@openlink.com.br)<br />

2 Center for Research in Limnology, Ichthyology and Aquaculture (NUPELIA), <strong>State</strong> University <strong>of</strong> Maringa,<br />

87020-900 Maringa, Parana, Brazil (e-mail: gcpavanelli@ppg.uem.br)<br />

ABSTRACT: Sciadocephalus megalodiscus Diesing, gen. et sp. inquirenda, is redescribed from the tucunare,<br />

Cichla monoculus Spix, collected in the Parana River, Brazil. <strong>The</strong> position <strong>of</strong> the reproductive system <strong>of</strong> the<br />

parasite is clarified, thus revalidating the genus and species. Sciadocephalus megalodiscus is recorded from the<br />

Parana River for the first time.<br />

KEY WORDS: Cestoda, Proteocephalidae, Sciadocephalus megalodiscus, Cichla monoculus, Cichlidae, Teleostei,<br />

Parana River, Brazil.<br />

<strong>The</strong> basis <strong>of</strong> the taxonomy <strong>of</strong> the South American<br />

cestodes <strong>of</strong> the Order Proteocephalidea<br />

Mola, 1928, parasitizing freshwater fishes was<br />

established by W. N. F. Woodland, who, in a<br />

series <strong>of</strong> studies published in the 1930's, described<br />

numerous proteocephalid parasites <strong>of</strong><br />

fishes <strong>of</strong> the Amazon basin. Some older species<br />

were described by Diesing (1850, 1855). Interest<br />

in these helminths has increased recently, and<br />

new cestodes are frequently being added to the<br />

South American species list (Rego et al., 1999).<br />

Some <strong>of</strong> the older species were placed as species<br />

inquirenda, as is the case with Sciadocephalus<br />

megalodiscus Diesing, 1850, which Diesing<br />

(1850) described from the tucunare, Cichla monoculus<br />

Spix, 1831, collected in the state <strong>of</strong> Mato<br />

Grosso, Brazil. This parasite was later found by<br />

Woodland (1933) in Amazonia from the same<br />

fish species. Because there were doubts as to the<br />

subfamily to which this species belonged, because<br />

the position <strong>of</strong> the reproductive organs (a<br />

fundamental character in classification <strong>of</strong> the<br />

taxon) was unclear, Wardle and McLeod (1952)<br />

and Rego (1994) preferred to treat it as genus<br />

and species inquirenda.<br />

Sciadocephalus megalodiscus had not previously<br />

been found in the Parana River. It is important<br />

to note that C. monoculus is not native<br />

to the Parana River, where it was introduced<br />

some years ago. Recently, one <strong>of</strong> us (P.M.M.)<br />

had the opportunity to collect several specimens<br />

1 Corresponding author.<br />

<strong>of</strong> this parasite, and with the present description,<br />

the genus and species are revalidated.<br />

Materials and Methods<br />

A total <strong>of</strong> 136 C. monoculus were caught in the<br />

Parana River from July 1996 through October 1997.<br />

After removal from the intestine, the cestodes were<br />

fixed in 4% hot formalin. Cestodes were stained with<br />

alcoholic carmine or Dclafield's hematoxylin, dehydrated<br />

in an alcohol series, cleared in Eugenol® or in<br />

beech creosote, and mounted in Canada balsam. Cestodes<br />

for histological sections were embedded in paraffin,<br />

cut in 8 (Jim cross-sections, and stained with hematoxylin<br />

and eosin. Illustrations were made with the<br />

aid <strong>of</strong> a drawing tube. Measurements are in millimeters<br />

(mm). Photomicrographs were made with a scanning<br />

electron microscope (SEM). <strong>The</strong> terms "prevalence"<br />

and "mean intensity <strong>of</strong> infection" are used according<br />

to Bush et al. (1997). Representative specimens were<br />

deposited in the <strong>Helminthological</strong> Collection <strong>of</strong> the<br />

Funda?ao Institute Oswaldo Cruz (FIOCRUZ), Rio de<br />

Janeiro, state <strong>of</strong> Rio de Janeiro, Brazil, under accession<br />

numbers 33951, 33952, and 33953a-c.<br />

Results<br />

Proteocephalidae La Rue, 1911<br />

Corallobothriinae Freze, 1965<br />

Sciadocephalus megalodiscus Diesing, 1850<br />

(Figs. 1-7)<br />

Description<br />

GENERAL (based on 11 specimens): Strobila<br />

6.1-9.3 (7.9) long X 1.1-1.7 (1.3) wide. Strobila<br />

comprised <strong>of</strong> 17—22 proglottids, including 6—8<br />

(7) immature proglottids, 4-6 (5) mature proglottids,<br />

8-12 (10) gravid proglottids. All proglottids<br />

several times wider than long. Scolex<br />

133<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


134 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 1, 2. SEM photomicrographs <strong>of</strong> Sciadocephalus inegalodiscus Diesing, 1850. 1. Small specimen<br />

(entire). 2. Scolex and metascolex. Apical view.<br />

wider than strobila, with umbrella-shaped metascolex<br />

with borders turned upwards. Scolex<br />

enveloped by these borders, comprised <strong>of</strong> 4<br />

muscular suckers and 1 apical sucker (Figs. 1-<br />

3). Scolex and metascolex 1.4-2.2 (1.9) long X<br />

2.8-2.9 (2.8) wide; suckers 0.385-0.515 (0.454)<br />

in diameter and apical sucker 0.115 in diameter.<br />

Neck inconspicuous. Immature proglottids wider<br />

than long, 0.1 X 1.8 to 0.2 X 1.4 (0.2 X 1.6).<br />

Gravid proglottids wider than long, 0.3 X 1.8 to<br />

0.9 X 1.4 (0.6 X 1.7). Last few proglottids more<br />

Figure 3. SEM photomicrograph <strong>of</strong> the scolex,<br />

detail <strong>of</strong> a sucker and apical sucker <strong>of</strong> Sciadocephalus<br />

inegalodiscus Diesing, 1850.<br />

or less rectangular. Genital opening in anterior<br />

Vs <strong>of</strong> proglottid, alternating irregularly. Vagina<br />

opening anterior or posterior to cirrus pouch.<br />

Vaginal sphincter inconspicuous. Cirrus pouch<br />

long and narrow, 0.3 X 0.1 to 0.4 X 0.1 (0.4 X<br />

0.1). Cirrus pouch about 0.2 times width <strong>of</strong> proglottid.<br />

Testes about 26, medullar, 0.07 in diameter,<br />

arranged in 2 distinct fields, separated by<br />

ovary. Ovary medullar, compact, indistinctly bilobate,<br />

central, 0.415-0.465 (0.442) in width.<br />

Vitellaria medullar, diffuse, not forming follicles,<br />

occupying lateral body region. Uterus medullar,<br />

rapidly resolving into capsules containing<br />

varying numbers <strong>of</strong> eggs. In last segments, some<br />

capsules not containing eggs and modified in<br />

form (Figs. 4, 7). Some capsules passing from<br />

medulla to cortex, opening through tegument.<br />

Eggs not containing developed embryos. Hexacanth<br />

hooks not observed. Musculature with numerous<br />

isolated longitudinal fibers, distributed<br />

throughout entire proglottid. Demarcation between<br />

medulla and cortex indicated by delicate<br />

transverse fibers situated next to longitudinal fibers<br />

(Fig. 6). Tegument <strong>of</strong> strobila with 2-4 longitudinal<br />

sulci (Fig. 5).<br />

Taxonomic summary<br />

HOST: Cichla monoculus Spix, 1831 (Cichlidae),<br />

"tucunare."<br />

LOCALITY: Parana River, region <strong>of</strong> Porto<br />

Rico, <strong>State</strong> <strong>of</strong> Parana, Brazil.<br />

SITE OF INFECTION: Intestine.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


REGO ET AL.—SC/ADOCEPHALUS MEGALODISCUS IN C1CHLA MONOCULUS 135<br />

Vit ex<br />

-<br />

tf<br />

ex<br />

Vit<br />

eoc<br />

Figures 4—7. Sciadocephalus megalodiscus Diesing, 1850. Scales in millimeters (mm). 4. Entire specimen;<br />

note that most proglottids are gravid. 5. Small specimen; note small sulci present on tegument (tc).<br />

6. Cross-section <strong>of</strong> gravid proglottid, showing vitellaria (Vit), excretory canal (ex), testes (t), transverse<br />

fibers (tf), uterus (u), ovary (ov), longitudinal fibers (If). 7. Gravid proglottid; note some ovigerous capsules<br />

with eggs and others without eggs and modified; empty ovigerous capsule (eoc), cirrus pouch (cp).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


136 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

PREVALENCE: 13.2%.<br />

MEAN INTENSITY OF INFECTION:<br />

8.6.<br />

Discussion<br />

This is the third report <strong>of</strong> S. megalodiscus.<br />

<strong>The</strong> species was initially described by Diesing<br />

(1850) from C. monoculus in the state <strong>of</strong> Mato<br />

Grosso, Brazil. Woodland (1933) redescribed it<br />

from the same fish species in Brazilian Amazonia.<br />

<strong>The</strong> latter author's description <strong>of</strong> the arrangement<br />

<strong>of</strong> the reproductive system was incomplete<br />

in that he did not note whether this<br />

system is medullar or cortical. Woodland (1933,<br />

p. 193) stated that "It is important to note that<br />

a definite band <strong>of</strong> longitudinal muscle fibres is<br />

entirely absent, though individual fibres may be<br />

scattered in the parenchyma. <strong>The</strong>re is no question<br />

as to organs being medullary or cortical in<br />

position." <strong>The</strong> classification system for proteocephalids<br />

(sensu Freze, 1965) defined 2 families,<br />

Proteocephalidae and Monticelliidae, according<br />

to whether the gonads are located in the medullar<br />

or cortical parenchyma. For this reason,<br />

some authors (Wardle and McLeod, 1952; Rego,<br />

1994) considered the genus and species as inquirenda.<br />

Sciadocephalus megalodiscus have no groups<br />

<strong>of</strong> longitudinal fibers separating the cortex from<br />

the medulla (Woodland, 1933). However, as described<br />

in the present work (Fig. 6), the isolated<br />

fibers, together with the transverse fibers, sufficiently<br />

delimit the medulla from the cortex. We<br />

can therefore determine that the gonads and the<br />

vitelline glands are entirely medullar. Vitellaria<br />

do not form true follicles as in the majority <strong>of</strong><br />

the proteocephalids, but appear as diffuse bodies,<br />

arranged laterally in the proglottids.<br />

<strong>The</strong> metascolex is the most interesting characteristic<br />

<strong>of</strong> this species. Its umbrella form is<br />

different from typical "collar-type" metascolices<br />

found in genera <strong>of</strong> proteocephalids such as<br />

Amphoteromorphus Woodland, 1935; Goezeella<br />

Fuhrmann, 1916; and Spatulifer Woodland,<br />

1934. Rego (1999) defined the metascolex as<br />

"any development <strong>of</strong> folds and wrinkles in the<br />

posterior part <strong>of</strong> the scolex or on the surface <strong>of</strong><br />

the scolex proper, encircling the suckers or not."<br />

<strong>The</strong>re are several types <strong>of</strong> metascolex, as many<br />

as the number <strong>of</strong> described species with metascolices.<br />

<strong>The</strong> scolex <strong>of</strong> Sciadocephalus has some<br />

resemblances to that <strong>of</strong> Corallotaenia Freze,<br />

1965. Brooks and Deardorff (1980) reported an<br />

unidentified Corallotaenia sp. from the flatnose<br />

catfish, Ageneiosus caucanus Steindachner,<br />

1880, in Colombia. Unfortunately, the authors<br />

did not provide a formal description <strong>of</strong> the<br />

worms. Sciadocephalus differs from Corallotaenia<br />

by the umbrella-shaped metascolex, the<br />

disposition <strong>of</strong> the ovary, the nonfolliculate vitellaria,<br />

and the uterus resolving into ovigerous<br />

capsules. It is important to emphasize that the<br />

other South American genera that possess a metascolex<br />

have the reproductive systems arranged<br />

variously, but partly or entirely located in the<br />

cortical parenchyma. Sciadocephalus megalodiscus<br />

is an exception; the gonads and vitellaria<br />

are entirely medullar.<br />

Brooks and Rasmussen (1984) stated the importance<br />

<strong>of</strong> the metascolex to eliminate cases <strong>of</strong><br />

parallel evolution in a cladogram. However, subsequent<br />

authors did not attribute much importance<br />

to these structures, probably because <strong>of</strong><br />

difficulties in characterizing the metascolex<br />

types. Rego et al. (1999) produced a phylogenetic<br />

analysis <strong>of</strong> the subfamilies <strong>of</strong> Proteocephalidea,<br />

but in regard to the character metascolex,<br />

they stated: "only two states (presence<br />

versus absence) were considered until such time<br />

as the various forms <strong>of</strong> metascolices are clearly<br />

defined and distinguished." <strong>The</strong> preliminary results<br />

<strong>of</strong> a phylogenetic analysis <strong>of</strong> South American<br />

genera (Rego et al., unpubl.) indicate a<br />

closer phylogenetic relationship between Sciadocephalus<br />

and Megathylacus Woodland, 1935.<br />

It therefore becomes necessary to present a new<br />

generic diagnosis in order to revalidate the genus.<br />

Sciadocephalus Diesing, 1850<br />

GENERIC DIAGNOSIS: Strobila small. Scolex<br />

wider than strobilus. Metascolex umbrellashaped,<br />

sometimes with edges turned upwards.<br />

Suckers muscular, round, and turned upwards.<br />

Apical sucker conspicuous. Genital openings alternating<br />

in regular fashion. Ovary compact,<br />

central. Testes in 2 fields, separated by ovary.<br />

Vitellaria diffuse, not forming follicles. Cirrus<br />

pouch elongate. Vaginal opening posterior or anterior<br />

to cirrus pouch. Uterus rapidly resolving<br />

into ovigerous capsules, with varying numbers<br />

<strong>of</strong> eggs. Eggs not embryonated. Longitudinal canals<br />

in tegument <strong>of</strong> strobilus. Gonads and vitellaria<br />

entirely medullar. Musculature consisting<br />

<strong>of</strong> numerous isolated, irregularly arranged longitudinal<br />

fibers, present in medullar parenchyma,<br />

but concentrated in cortex/medulla separa-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


REGO ET AL.—SC/ADOCEPHALUS MEGALODISCUS IN CICHLA MONOCULUS 137<br />

tion. Cortex/medulla separation best characterized<br />

by presence <strong>of</strong> transverse fibers.<br />

Acknowledgments<br />

We are grateful to Dr. Alain de Chambrier,<br />

Geneva, Switzerland, for preparing the SEM micrographs,<br />

and to Dr. Ricardo Massato Takemoto,<br />

<strong>State</strong> University <strong>of</strong> Maringa, for assistance<br />

in preparing drawings and sectioning proglottid<br />

material. <strong>The</strong> editors, Drs. Janet W. Reid<br />

and Willis A. Reid, Jr., assisted in translating the<br />

text into English.<br />

Literature Cited<br />

Brooks, D. R., and T. L. Deardorff. 1980. Three proteocephalids<br />

from Colombian siluriform fishes, including<br />

Nomimoscolex alovarius sp.n. (Monticelliidae:<br />

Zygobothriinae). Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 47:15-21.<br />

, and G. Rasmussen. 1984. Proteocephalidean<br />

cestodes from Venezuelan siluriform fishes, with<br />

a revised classification <strong>of</strong> the Monticelliidae. Proceedings<br />

<strong>of</strong> the Biological <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

97:748-760.<br />

Bush, A. O., K. D. Lafferty, J. M. Lotz, and A. W.<br />

Shostak. 1997. Parasitology meets ecology on its<br />

own terms: Margolis et al. revisited. Journal <strong>of</strong><br />

Parasitology 83:575-583.<br />

Diesing, K. M. 1850. Systema Helminthum. Vol. 1.<br />

Wilhelm Braumuller, Vindobonae. 679 pp.<br />

. 1855. Sechzehn Gattungen von Binnewurmen<br />

und ihre Arten. Denkschriften der Kaiserlichen<br />

Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche<br />

Classe 13:556-616.<br />

Freze, V. I. 1965. Essentials <strong>of</strong> Cestodology. Vol. 5.<br />

Proteocephalata in Fish, Amphibians and Reptiles.<br />

Izdatel'stvo Nauka, Moscow. 538 pp. (In Russian;<br />

English translation, Israel Program for Scientific<br />

Translation, 1969.)<br />

Rego, A. A. 1994. Order Proteocephalidea Mola,<br />

1928. Pages 257-293 in L. F. Khalil, A. Jones,<br />

and R. A. Bray, eds. Keys to the Cestode Parasites<br />

<strong>of</strong> Vertebrates. Commonwealth Agricultural Bureaux<br />

International, St. Albans, U.K.<br />

. 1999. Scolex morphology <strong>of</strong> proteocephalid<br />

cestode parasites <strong>of</strong> neotropical freshwater fishes.<br />

Memorias do Institute Oswaldo Cruz 94:37-52.<br />

, J. Chubb, and G. C. Pavanelli. 1999. Ces<br />

todes in South American freshwater fishes: keys<br />

to genera and brief descriptions <strong>of</strong> species. Revista<br />

Brasileira de Zoologia 16(2):(in press)<br />

, A. de Chambrier, V. Hanzelova, E. Hoberg,<br />

T. Scholz, P. Weekes, and M. Zehnder. 1998.<br />

Preliminary phylogenetic analyses <strong>of</strong> subfamilies<br />

<strong>of</strong> the Proteocephalidea (Eucestoda). Systematic<br />

Parasitology 40:1-19.<br />

Wardle, R. A., and J. A. McLeod. 1952. <strong>The</strong> Zoology<br />

<strong>of</strong> Tapeworms. University <strong>of</strong> Minnesota<br />

Press, Minneapolis. 780 pp.<br />

Woodland, W. N. F. 1933. On the anatomy <strong>of</strong> some<br />

fish cestodes described by Diesing from the Amazon.<br />

Quarterly Journal <strong>of</strong> Microscopical Science<br />

76:175-208.<br />

Obituary Notice<br />

FRANCIS G. TROMBA<br />

1920-1999<br />

Elected to Membership in 1951;<br />

Recording Secretary, 1957;<br />

Vice President, 1962 President, 1963;<br />

Editor, 1967-1970; Life Member, 1983;<br />

Anniversary Award, 1991<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 138-145<br />

Revisions <strong>of</strong> Protoancylodiscoides and Bagrobdella, with<br />

Redescriptions <strong>of</strong> P. chrysichthes and B. auchenoglanii<br />

(Monogenoidea: Dactylogyridae) from the Gills <strong>of</strong> Two Bagrid<br />

Catfishes (Siluriformes) in Togo, Africa<br />

DELANE C. KRiTSKY1-3 AND SiM-Dozou KuLO2<br />

1 <strong>College</strong> <strong>of</strong> Health Pr<strong>of</strong>essions, Campus Box 8090, Idaho <strong>State</strong> University, Pocatello, Idaho 83209 U.S.A.<br />

(e-mail: kritdela@isu.edu) and<br />

2 Laboratoire de Parasitologie, Faculte des Sciences, Universite du Benin, B.P. 1515, Lome, Togo<br />

ABSTRACT: <strong>The</strong> generic diagnoses <strong>of</strong> Protoancylodiscoides Paperna and Bagrobdella Paperna, are emended<br />

based on the study and redescription <strong>of</strong> the respective type species: P. chrysichthes Paperna from the gills <strong>of</strong><br />

the bagrid catfishes Chrysichthys nigrodigitatus (Lacepede) and B. auchenoglanii Paperna from the gills <strong>of</strong><br />

Auchenoglanis occidentalis (Cuvier and Valenciennes) collected from Togo, Africa. Protoancylodiscoides is<br />

characterized by species possessing hook shanks comprised <strong>of</strong> 2 subunits (proximal subunit variably expanded)<br />

in hook pairs 1, 6, and 7; a dorsal striated pouch (onchium) through which the extrinsic dorsal muscles extend;<br />

a sinistral vaginal pore; a V-shaped ventral bar and straight dorsal bar; tandem (or slightly overlapping) gonads<br />

(germarium pretesticular); and 2 seminal vesicles. Bagrobdella includes species with tandem gonads (germarium<br />

pretesticular); a sinistral vaginal aperture; hook pairs 1-4, 6, and 7 with shank comprised <strong>of</strong> 2 subunits (basal<br />

subunit variably expanded); and straight bars. <strong>The</strong> ventral bar in species <strong>of</strong> Bagrobdella possesses a long<br />

anteromedial projection associated with a lightly sclerotized skirt; the dorsal bar is adorned with a shield-like<br />

projection originating from the posterior margin <strong>of</strong> the bar.<br />

KEY WORDS: Monogenoidea, Dactylogyridae, Protoancylodiscoides, Bagrobdella, Protoancylodiscoides chrysichthes,<br />

Bagrobdella auchenoglanii, Chrysichthys nigrodigitatus, Auchenoglanis occidentalis, catfish, Siluriformes,<br />

Bagridae, Pisces, Togo, Africa.<br />

This paper is a continuation <strong>of</strong> our series on<br />

dactylogyrid genera from Africa. Earlier papers<br />

dealt with Characidotrema Paperna and Thurston,<br />

1968, Quadriacanthus Paperna, 1961, and<br />

Schilbetrema Paperna and Thurston, 1968 (see<br />

Kritsky et al., 1987; Kritsky and Kulo, 1988;<br />

1992a, respectively). In addition, 2 new genera<br />

<strong>of</strong> African Dactylogyridae have been proposed:<br />

Quadriacanthoides Kritsky and Kulo, 1988 (a<br />

junior subjective synonym <strong>of</strong> Paraquadriacanthus<br />

Ergens, 1988; see Kritsky, 1990), and Schilbetrematoides<br />

Kritsky and Kulo, 1992 (see Kritsky<br />

and Kulo, 19925). In the present paper, Protoancylodiscoides<br />

Paperna, 1969, and Bagrobdella<br />

Paperna, 1969, are revised, and<br />

Protoancylodiscoides chrysichthes Paperna,<br />

1969, and Bagrobdella auchenoglanii Paperna,<br />

1969, the type species <strong>of</strong> their respective genera,<br />

are redescribed from the gills <strong>of</strong> siluriform fishes<br />

in Togo, Africa.<br />

Materials and Methods<br />

Fish hosts Chrysichthys nigrodigitatus (Lacepede,<br />

1803) and Auchenoglanis occidentalis (Cuvier and Va-<br />

Corresponding author.<br />

lenciennes, 1840) were collected from localities in<br />

Togo during 1995-1996. Methods <strong>of</strong> collection, preservation,<br />

mounting, and illustration <strong>of</strong> helminths were<br />

those described by Kritsky et al. (1987). Measurements,<br />

all in micrometers, were made with a filar micrometer<br />

according to procedures <strong>of</strong> Mizelle and Klucka<br />

(1953), except that length <strong>of</strong> the male copulatory<br />

organ (MCO) <strong>of</strong> P. chrysichthes is an approximation<br />

<strong>of</strong> total length obtained by using a calibrated Minerva<br />

curvimeter on camera lucida drawings. Average measurements<br />

are followed by ranges and the number (n)<br />

<strong>of</strong> specimens measured in parentheses. Flattened specimens<br />

mounted in Gray and Wess' medium were used<br />

to obtain measurements <strong>of</strong> the hooks, anchors, and the<br />

copulatory complex. All other measurements were obtained<br />

from unflattened specimens stained with Gomori's<br />

trichrome or Mayer's carmine and mounted in<br />

synthetic resin. Voucher specimens <strong>of</strong> P. chrysichthes<br />

and B. auchenoglanii collected from Togo were deposited<br />

in the U.S. National Parasite Collection<br />

(USNPC), the helminth collections <strong>of</strong> the H. W. Manter<br />

Laboratory (HWML) <strong>of</strong> the University <strong>of</strong> Nebraska<br />

<strong>State</strong> Museum, and the Musee Royal de 1'Afrique Centrale<br />

(MRAC) as indicated in the respective redescriptions.<br />

For comparative purposes, the following type<br />

specimens were examined: holotype and 3 paratypes<br />

(all on 1 slide) <strong>of</strong> Protoancylodiscoides mansourensis<br />

El-Naggar, 1987 (British Museum <strong>of</strong> Natural History<br />

[BMNH], London, 1985.1.8.1-2); 9 paratypes (all on<br />

1 slide) <strong>of</strong> Protoancylodiscoides malapteruri Bilong,<br />

Birgi, and Le Brim, 1997 (BMNH 1996.4.7.6-7); 17<br />

138<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 139<br />

paratypes (on 2 slides) <strong>of</strong> P. malapteruri (Museum National<br />

d'Histoire Naturelle [MNHN 113 HF], Paris);<br />

holotype <strong>of</strong> P. chrysichthes Paperna, 1969 (MRAC<br />

35.566); holotype <strong>of</strong> B. auchenoglanii Paperna, 1969<br />

(MRAC 35.581); holotype <strong>of</strong> Bagrobdclla fraudidenta<br />

Euxet and Le Brun, 1990 (MRAC 35.915).<br />

Results<br />

Class Monogenoidea Bychowsky, 1937<br />

Order Dactylogyridea Bychowsky, 1937<br />

Dactylogyridae Bychowsky, 1933<br />

Protoancylodiscoides Paperna, 1969<br />

EMENDED DIAGNOSIS: Body elongate, fusiform,<br />

comprised <strong>of</strong> cephalic region, trunk, peduncle,<br />

haptor. Tegument thin, smooth. Two terminal,<br />

2 bilateral cephalic lobes; head organs<br />

present; cephalic glands unicellular, lateral or<br />

posterolateral to pharynx. Two pairs <strong>of</strong> eyes;<br />

granules subspherical. Mouth subterminal, midventral;<br />

pharynx muscular, glandular; esophagus<br />

present; 2 intestinal ceca, confluent posterior to<br />

gonads, lacking diverticula. Genital pore midventral<br />

near level <strong>of</strong> intestinal bifurcation. Gonads<br />

intercecal, tandem or slightly overlapping;<br />

germarium pretesticular. Vas deferens looping<br />

left cecum, ascending to level <strong>of</strong> genital pore<br />

where it empties into saccate seminal vesicle;<br />

short duct arises from seminal vesicle dilating<br />

into large granule-filled vesicle that empties into<br />

base <strong>of</strong> male copulatory organ (MCO). Copulatory<br />

complex comprising nonarticulated tubular<br />

MCO, accessory piece; accessory piece serving<br />

as guide for MCO; 2 dorsal glandular masses<br />

lying immediately posterior to genital atrium;<br />

prostatic reservoir present. Seminal receptacle<br />

pregermarial; vaginal aperture sinistral. Vitellaria<br />

coextensive with intestine, frequently extending<br />

into peduncle. Haptor with dorsal, ventral<br />

anchor/bar complexes, 7 pairs <strong>of</strong> hooks with ancyrocephaline<br />

distribution (Mizelle, 1936; see<br />

Mizelle and Price, 1963); hook pairs 1, 6, 7 with<br />

shanks comprised <strong>of</strong> 2 subunits, proximal subunit<br />

expanded; pairs 2-5 with shanks <strong>of</strong> 1 subunit.<br />

Dorsal striated tissue pouch (onchium) present.<br />

Ventral bar V-shaped; dorsal bar straight.<br />

Parasites <strong>of</strong> gills <strong>of</strong> African siluriform fishes.<br />

TYPE SPECIES: Protoancylodiscoides chrysichthes<br />

Paperna, 1969, from Chrysichthys nigrodigitatus<br />

(Bagridae).<br />

OTHER SPECIES: Protoancylodiscoides malapteruri<br />

Bilong, Birgi, and Le Brun, 1997, from<br />

Malapterurus electricus Gmelin, 1789 (Malapteruridae);<br />

P. mansourensis El-Naggar, 1987,<br />

from Chrysichthys auratus Ge<strong>of</strong>frey, 1809<br />

(Bagridae).<br />

REMARKS: Paperna (1969) proposed Protoancylodiscoides<br />

for P. chrysichthes from the<br />

gills <strong>of</strong> Chrysichthys nigrodigitatus collected<br />

from 3 locations in Volta Lake, Ghana. He characterized<br />

the genus and differentiated it from<br />

Ancylodiscoides Yamaguti, 1937, by species<br />

having a "non-sclerotized bar" associated with<br />

the tip <strong>of</strong> the superficial root <strong>of</strong> each dorsal anchor,<br />

hooks <strong>of</strong> 2 different morphological types,<br />

and male reproductive organs shifted to the extreme<br />

posterior end <strong>of</strong> the body. Paperna (1969)<br />

clearly erred when describing the "non-sclerotized<br />

bars," as these structures represent the<br />

well-developed dorsal extrinsic muscles that insert<br />

on the tip <strong>of</strong> the superficial root <strong>of</strong> each<br />

dorsal anchor and extend to the midline <strong>of</strong> the<br />

haptor where their direction abruptly curves toward<br />

their origins in the peduncle or trunk (El-<br />

Naggar, 1987; Bilong et al., 1997). At the midline<br />

<strong>of</strong> the haptor, these muscles extend through<br />

a superficial dorsal pouch-like structure (onchium)<br />

before proceeding anteriorly toward their<br />

origins (Fig. 4). Contraction <strong>of</strong> the muscles apparently<br />

results in lateral displacement <strong>of</strong> the anchor<br />

points, thereby embedding its tip in host<br />

tissue during attachment.<br />

Apparently Paperna (1969) considered<br />

"hooks <strong>of</strong> two types" to refer to the hook shank<br />

being composed <strong>of</strong> either 1 or 2 subunits, with<br />

the proximal subunit (when present) dilated to<br />

varying degrees. However, the presence <strong>of</strong> multiple<br />

hook types within species <strong>of</strong> Dactylogyridae<br />

is common and should probably not be used<br />

to differentiate genera without determination <strong>of</strong><br />

the type present in homologous hook pairs.<br />

Hook types similar to those shown in Figures 5,<br />

6, 9, and 10 for hook pairs 1, 6, and 7 in Protoancylodiscoides<br />

chrysichthes are also found in<br />

some African and Asian species infesting siluriform<br />

fishes: Quadriacanthus Paperna, 1961<br />

(pairs 1, 6, and 7; see Kritsky and Kulo, 1988);<br />

Bychowskyella Achmerow, 1952 (pairs 1, 6, and<br />

7; see Lim, 1991); and Bagrobdella Paperna,<br />

1969 (pairs 1-4, 6, and 7). Also, in species <strong>of</strong><br />

Chauhanellus Bychowsky and Nagibina, 1969<br />

(all marine), and some (but not all) freshwater<br />

species <strong>of</strong> Demidospermus Suriano, 1983 (neotropical),<br />

all <strong>of</strong> which infest siluriform fishes,<br />

similar hooks have been reported (pairs 1-4, 6,<br />

and 7 in Chauhanellus; and pairs 1, 2, and 7 in<br />

Demidospermus (see Lim, 1994; Kritsky and<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


140 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Gutierrez, 1998, respectively). Based on hook<br />

types, therefore, species <strong>of</strong> Protoancylodiscoides<br />

show affinity to those <strong>of</strong> Quadriacanthus and<br />

Bychowskyella and perhaps those <strong>of</strong> Bagrobdella<br />

and Chauhanellus.<br />

Although Protoancylodiscoides chrysichthes<br />

and P. mansourensis have elongate MCOs that<br />

extend from the level <strong>of</strong> the ovary to that <strong>of</strong> the<br />

esophageal bifurcation, the positions <strong>of</strong> this and<br />

other male reproductive organs are not outstanding.<br />

<strong>The</strong> only "shifting" <strong>of</strong> organs posteriorly<br />

in these 2 species are those <strong>of</strong> the distal seminal<br />

vesicle and prostatic reservoir to near the body<br />

midlength; both shifts are apparently accommodations<br />

to the posterior position <strong>of</strong> the base<br />

<strong>of</strong> the elongate MCO. In P. malapteruri, with a<br />

comparatively shorter MCO, these organs lie in<br />

the usual position <strong>of</strong> the anterior trunk (Bilong<br />

et al., 1997). Although Paperna (1969) showed<br />

the testis far posterior to the germarium in his<br />

whole-mount drawing <strong>of</strong> P. chrysichthes, the<br />

specimen on which the drawing was based was<br />

clearly distorted and flattened, which may have<br />

produced the pattern illustrated. In the present<br />

specimens, including the types <strong>of</strong> P. mansourensis<br />

and P. malapteruri, the gonads are tandem<br />

or slightly overlapping.<br />

Based on its emended diagnosis, Protoancylodiscoides<br />

is now characterized by the combined<br />

presence <strong>of</strong> 1) hook shanks comprised <strong>of</strong><br />

2 subunits (proximal subunit expanded to varying<br />

amounts) in hook pairs 1, 6, and 7; 2) a<br />

striated pouch (onchium) on the dorsal surface<br />

<strong>of</strong> the haptor and through which the dorsal extrinsic<br />

muscles extend; 3) a sinistral vaginal<br />

pore; 4) a V-shaped ventral bar and a straight<br />

dorsal bar; 5) tandem (or slightly overlapping)<br />

gonads; and 6) a proximal saccate seminal vesicle<br />

followed by a fusiform distal vesicle.<br />

Protoancylodiscoides chrysichthes Paperna,<br />

1969<br />

(Figs. 1-14)<br />

HOST AND LOCALITY: Gills <strong>of</strong> Chrysichthys<br />

nigrodigitatus, Bagridae; Anie River, Kpehoun,<br />

Togo.<br />

PREVIOUS RECORDS: Chrysichthys nigrodigitatus<br />

from 3 localities on Volta Lake, Ghana<br />

(Paperna, 1969, 1979); C. auratus from Lake<br />

Tiga, Kano, northern Nigeria (Ndifon and Jimeta,<br />

1990).<br />

SPECIMENS STUDIED: Forty-nine voucher<br />

specimens, USNPC 88263, 88264, 88265,<br />

88266, 88267, HWML 39924, MRAC 37.422<br />

(all from Togo).<br />

REDESCRIPTION: Body 637 (410-884; n =<br />

29) long; greatest width 90 (73-115; n = 33)<br />

near midlength. Cephalic region ventrally concave,<br />

lobes moderately developed, 3 bilateral<br />

pairs <strong>of</strong> head organs. Members <strong>of</strong> posterior pair<br />

<strong>of</strong> eyes slightly larger, closer together than those<br />

<strong>of</strong> anterior pair; subspherical granules moderately<br />

large; accessory granules absent or few in cephalic<br />

region. Pharynx ovate, greatest diameter<br />

30 (23-43; n = 35); esophagus elongate. Peduncle<br />

elongate; haptor subhexagonal, 99 (79-140;<br />

n = 29) long, 94 (74-127; n = 23) wide. Ventral<br />

anchor 33 (29-38; n = 5) long; with differentiated<br />

roots connected by delicate or perforated<br />

web; thickened ridge originating from posterior<br />

margin <strong>of</strong> deep root, extending across base <strong>of</strong><br />

shaft; shaft curved, point elongate; base 20 (17-<br />

22; n = 3) wide. Dorsal anchor 64 (55-69; n =<br />

10) long, with elongate superficial root with<br />

curled tip, short truncate deep root, curved shaft,<br />

elongate point; base 31 (27-36; n = 6) wide.<br />

Ventral bar 68 (55-80; n = 12) long, 45 (35-<br />

69; n = 15) between ends, V-shaped, with slightly<br />

enlarged terminations; dorsal bar 41 (34-46;<br />

n = 20) long, straight, with short blunt anteromedial<br />

projection, pair <strong>of</strong> bilateral sliver-like<br />

projections frequently present on anterior margin,<br />

ends enlarged. Hook pairs 1, 6, 7 with shank<br />

<strong>of</strong> 2 subunits, proximal subunit lightly sclerotized,<br />

variably expanded, point delicate; hook<br />

pairs 2, 3, 4 with shank comprised <strong>of</strong> 1 subunit,<br />

slightly expanded; hook pair 5 delicate, with depressed<br />

thumb. Hook pair 1: 42 (38-45; n = 3);<br />

hook pairs 2, 3, 4: 16 (14-17; n = 12); hook<br />

pair 5: 18 (17-19; n = 4); hook pair 6: 23 (20-<br />

26; n = 6); hook pair 7: 30 (22-35; n = 4) long;<br />

Figures 1-14. Protoancylodiscoides chrysichthes Paperna, 1969. All figures are drawn to the 25 (Jim<br />

scale, except Figure 1 (200 u.m scale). 1. Whole mount (ventral, composite). 2. Vagina and distal seminal<br />

receptacle. 3. Copulatory complex (ventral). 4. Dorsal pouch, dorsal extrinsic muscle and hook pair 7. 5.<br />

Hook pair 1. 6. Hook pair 1 (variant). 7. Hook pair 5. 8. Hook pair 4. 9. Hook pair 7. 10. Hook pair 6.<br />

11. Ventral bar. 12. Dorsal bar. 13. Ventral anchor. 14. Dorsal anchor.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 141<br />

14<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


142 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

hook pair 1 (variant): 22 (n = 1) long. Filamentous<br />

booklet (FH) loop extending to proximal<br />

end <strong>of</strong> distal subunit <strong>of</strong> shank. MCO an elongate<br />

tube winding from base at level <strong>of</strong> germarium<br />

to genital atrium near level <strong>of</strong> intestinal bifurcation,<br />

base <strong>of</strong> MCO with sclerotized margin;<br />

MCO 255 (162-365: n = 5) long. Accessory<br />

piece variable, comprising 2 or 3 articulated subunits,<br />

elongate nipple (preputium) guiding distal<br />

portion <strong>of</strong> MCO shaft. Testis 50 (32-71; n = 8)<br />

long, 24 (21-32; n = 8) wide, elongate ovate;<br />

saccate proximal seminal vesicle subconical, lying<br />

sinistral to genital atrium, separated from<br />

distal vesicle by short duct with sphincter-like<br />

muscle; distal vesicle fusiform; prostatic reservoir<br />

fusiform, lying ventral to left cecum at midlength<br />

<strong>of</strong> body. Germarium fusiform, with irregular<br />

margins, 85 (61-113; n = 15) long, 31 (21-<br />

40; n — 15) wide; oviduct, ootype not observed;<br />

vaginal aperture at body midlength; vagina<br />

comprising distal thick-walled funnel, proximal<br />

coiled tube poorly sclerotized with 2-3 rings<br />

(ring direction counterclockwise proximally, reversing<br />

to a clockwise direction distally), emptying<br />

into subovate seminal receptacle overlying<br />

anterior extremity <strong>of</strong> germarium; diameter <strong>of</strong><br />

vaginal ring 16 (13-20; n = 26); vitellaria dense<br />

throughout trunk, extending into peduncle, absent<br />

in regions <strong>of</strong> other reproductive organs.<br />

REMARKS: Protoancylodiscoides chrysichthes<br />

is very similar to P. mansourensis, and differentiation<br />

<strong>of</strong> the 2 species is based on relatively<br />

few moiphometric characters. Comparison<br />

with the holotype and 3 paratypes <strong>of</strong> the latter<br />

species has revealed the following differences:<br />

1) in P. chrysichth.es, the coiled vagina has 2-3<br />

rings (4—5 rings in P. mansourensis); 2) the diameter<br />

<strong>of</strong> the rings <strong>of</strong> the vagina is greater in P.<br />

mansourensis (24 to 27 u.m) than in P. chrysichthes<br />

(13 to 20 |xm).<br />

In addition, El-Naggar (1987) differentiated<br />

the 2 species utilizing moiphometric features,<br />

the presence/absence <strong>of</strong> a "preputium" associated<br />

with the tip <strong>of</strong> the MCO, and a haptoral<br />

funnel-like structure through which the dorsal<br />

extrinsic muscles extend. However, our measurements<br />

<strong>of</strong> the type specimens <strong>of</strong> P. mansourensis<br />

showed that body length (497-650 fjim)<br />

does not differ from that <strong>of</strong> our specimens <strong>of</strong> P.<br />

chrysichthes (410-884 |xm). Indeed, our measurements<br />

<strong>of</strong> body length <strong>of</strong> the flattened holotype<br />

and paratypes <strong>of</strong> P. mansourensis did not<br />

fall within the range (710-1,000 u.m) reported<br />

by El-Naggar (1987), indicating that some <strong>of</strong> his<br />

conversions were in error. Although measurements<br />

<strong>of</strong> body length presented by Paperna<br />

(1969) for P. chrysichthes had only 1 significant<br />

digit, resulting in difficulty in determining the<br />

rounding effects, his range (400—500 u,m) falls<br />

within those reported herein for the types <strong>of</strong> P.<br />

mansourensis and for our specimens from Togo.<br />

With the exception <strong>of</strong> the total length <strong>of</strong> the<br />

dorsal anchor, differences in all other measurements<br />

<strong>of</strong> P. chrysichthes and P. mansourensis<br />

reported herein may be explained by potential<br />

rounding effects. In specimens <strong>of</strong> P. chrysichthes<br />

from Togo, the length <strong>of</strong> the dorsal anchor<br />

ranged from 55 to 69 |Jim, whereas our values<br />

for the type specimens <strong>of</strong> P. mansourensis<br />

were 78 to 83 u,m. Paperna (1969) reported 100<br />

to 110 u,m for this parameter, but this range does<br />

not necessarily exclude our measurements because<br />

<strong>of</strong> possible rounding effects. <strong>The</strong>refore,<br />

dorsal anchor length is problematic in differentiating<br />

P. mansourensis from P. chrysichthes.<br />

Although Paperna (1969) described a "preputium"<br />

associated with the distal end <strong>of</strong> the<br />

MCO, we were unable to find this structure in<br />

our specimens. However, it is likely that Paperna's<br />

"preputium" refers to a small, elongate, <strong>of</strong>ten<br />

longitudinally striated portion <strong>of</strong> the accessory<br />

piece through which the tip <strong>of</strong> the MCO<br />

projects. A similar component <strong>of</strong> the accessory<br />

piece is also visible in the holotype and paratypes<br />

<strong>of</strong> P. mansourensis. Finally, presence <strong>of</strong> a<br />

dorsal "funnel-like structure" (<strong>of</strong> El-Naggar,<br />

1987) or "onchium" (<strong>of</strong> Bilong et al., 1997)<br />

through which the dorsal extrinsic muscles <strong>of</strong><br />

the haptor extend is probably a generic character,<br />

because it also occurs in our specimens <strong>of</strong><br />

P. chrysichthes.<br />

It is clear that P. chrysichthes and P. mansourensis<br />

are poorly differentiated, and they<br />

may be synonyms. However, we do not feel that<br />

available information on the 2 forms (species)<br />

justifies proposal <strong>of</strong> synonymy at this time. Additional<br />

collections from throughout the range <strong>of</strong><br />

the host would be necessary to determine intraspecific<br />

variation within the species. If the 2 species<br />

are distinct, the record <strong>of</strong> P. chrysichthes<br />

from C. auratus in Nigeria (Ndifon and Jimeta,<br />

1990) must be confirmed.<br />

Protoancylodiscoides malapteruri is easily<br />

differentiated from the 2 species discussed<br />

above by the presence <strong>of</strong> a elongate proximal<br />

rod in the accessory piece (absent in P. chrys-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 143<br />

ichthes and P. mansourensis}. In P. malapteruri,<br />

the MCO is shorter and less convoluted than that<br />

<strong>of</strong> P. chrysichthes or P. mansourensis.<br />

Bagrobdella Paperna, 1969<br />

EMENDED DIAGNOSIS: Body robust, fusiform,<br />

comprised <strong>of</strong> broad cephalic region, trunk, peduncle,<br />

haptor. Tegument thin, smooth. Two terminal,<br />

2 bilateral cephalic lobes; head organs<br />

present; cephalic glands unicellular, posterolateral<br />

to pharynx. Two pairs <strong>of</strong> eyes; granules subspherical.<br />

Mouth subterminal, midventral; pharynx<br />

muscular, glandular; esophagus short; 2 intestinal<br />

ceca, confluent posterior to gonads, lacking<br />

diverticula. Genital pore dextroventral about<br />

Vi distance between germarium and intestinal bifurcation.<br />

Gonads intercecal, tandem; germarium<br />

pretesticular. Vas deferens looping left cecum;<br />

seminal vesicle a simple dilation <strong>of</strong> vas<br />

deferens. Copulatory complex a coiled tube with<br />

clockwise rings (see Kritsky et al., 1985), directed<br />

posteriorly from MCO base, lacking accessory<br />

piece; prostatic vesicle present. Seminal<br />

receptacle pregermarial; vaginal aperture sinistral.<br />

Vitellaria coextensive with intestine. Haptor<br />

with dorsal, ventral anchor/bar complexes, 7<br />

pairs <strong>of</strong> hooks with ancyrocephaline distribution<br />

(Mizelle, 1936; see Mizelle and Price, 1963);<br />

pairs 1-4, 6, 7 with shanks comprised <strong>of</strong> 2 subunits,<br />

proximal subunit expanded; pair 5 with<br />

shank <strong>of</strong> 1 subunit. Ventral bar straight, with<br />

long anterior projection associated with lightly<br />

sclerotized skirt; dorsal bar straight, with posterior<br />

shield-like projection. Parasites <strong>of</strong> gills <strong>of</strong><br />

siluriform fishes.<br />

TYPE SPECIES: Bagrobdella auchenoglanii<br />

Paperna, 1969, from Auchenoglanis occidentalis<br />

(Bagridae).<br />

OTHER SPECIES: Bagrobdella fraudulenta Euzet<br />

and Le Brun, 1990 (syn. B. auchenoglanii <strong>of</strong><br />

Paperna, 1971), B. anthopenis Euzet and Le<br />

Brun, 1990, both from Auchenoglanis occidentalis.<br />

REMARKS: Euzet and Le Brun (1990)<br />

emended the diagnosis <strong>of</strong> Bagrobdella and corrected<br />

some initial observations on internal anatomy<br />

and haptoral sclerites <strong>of</strong>fered by Paperna<br />

(1969). Our emendation adds to their diagnosis<br />

the morphologic differences between respective<br />

hook pairs and details <strong>of</strong> the coil <strong>of</strong> the MCO.<br />

Bagrobdella auchenoglanii Paperna, 1969<br />

(Figs. 15-24)<br />

HOST AND LOCALITY: Gills <strong>of</strong> Auchenoglanis<br />

occidentalis, Bagridae; Barrage du "Chantier<br />

Rouge," Kara River, Kara, Togo.<br />

PREVIOUS RECORDS: Auchenoglanis occidentalis,<br />

Volta Lake, Ghana (Paperna, 1969, 1979);<br />

Niger River at Bamako, Mali (Euzet and Le<br />

Brun, 1990).<br />

SPECIMENS STUDIED: Forty-four vouchers,<br />

USNPC 88258, 88259, 88260, 88261, 88262,<br />

HWML 39925, MRAC 37.423 (all from Togo).<br />

REDESCRIPTION: Body 457 (361-686; n =<br />

25) long; greatest width 103 (78-130; n = 25)<br />

in posterior trunk. Cephalic region broad; cephalic<br />

lobes well developed. Eyes subequal;<br />

members <strong>of</strong> posterior pair farther apart than<br />

members <strong>of</strong> anterior pair; granules small; accessory<br />

granules absent, infrequently few in cephalic<br />

region. Pharynx subspherical to ovate, 28<br />

(24-33; n = 24) in greatest diameter. Peduncle<br />

broad; haptor subhexagonal, 91 (78-113; n =<br />

25) long, 93 (79-104; n = 27) wide. Ventral<br />

anchor 42 (37-45; n = 11) long, with short<br />

roots, evenly curved elongate shaft abruptly<br />

flexed immediately distal to anchor base; tip <strong>of</strong><br />

point recurved; base 22 (19-24; n = 10) wide.<br />

Dorsal anchor 56 (50-58; n = 11) long, with<br />

poorly differentiated roots, curved shaft, long<br />

point; base 22 (18—25; n = 7) wide. Ventral bar<br />

46 (42-53; n = 17) long, with bifurcated ends<br />

surrounding superficial surface <strong>of</strong> anchor base;<br />

anteromedial projection 27 (24-31; n = 19)<br />

long, distally trifid; skirt delicate. Dorsal bar 59<br />

(53-65; n = 24) long, yoke shaped, with subtrapezoidal<br />

posterior shield; shield 35 (31-40; n<br />

= 25) long. Hook pair 1: 35 (30-37; n = 11),<br />

pairs 2, 3, 4: 21 (20-23; n = 14), pairs 6, 7: 29<br />

(26-36; n = 10) long, each with truncate thumb,<br />

delicate shaft, point, proximal subunit <strong>of</strong> shaft<br />

variable in length between hook pairs; hook pair<br />

5: 16-17 (n = 3) long, with delicate point, shaft,<br />

shank with 1 subunit; FH loop about length <strong>of</strong><br />

distal subunit <strong>of</strong> shank. MCO 63 (52-74; n =<br />

11) long, a coil <strong>of</strong> about 6 rings, proximal 3<br />

rings poorly defined, distal 3 rings with delicate<br />

cup-like processes; base expanded, lightly sclerotized.<br />

Testis 40 (28-53; n = 10) long, 28 (20-<br />

35; n — 7) wide, ovate; seminal vesicle ovate;<br />

prostatic reservoir elongate fusiform. Germarium<br />

pyriform, 44 (35-56; n = 22) long, 29 (20-<br />

42; n = 22) wide; oviduct broad; ootype not<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


144 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 15-24. Bagrobdella auchenoglanii Paperna, 1969. All figures are drawn to the 25 fjim scale,<br />

except Figure 15 (200 (Jim scale). 15. Whole mount (ventral, composite). 16. Hook pair 1. 17. Hook pair<br />

5. 18. Hook pairs 2, 3, 4, 7. 19. Hook pair 6. 20. Copulatory complex (ventral). 21. Ventral bar. 22. Dorsal<br />

bar. 23. Ventral anchor. 24. Dorsal anchor.<br />

observed; uterus delicate; vagina a simple nonsclerotized<br />

straight tube; seminal receptacle submedian,<br />

pregermarial. Vitellaria dense throughout<br />

trunk, except absent in regions <strong>of</strong> other reproductive<br />

organs.<br />

REMARKS: Measurements <strong>of</strong> specimens <strong>of</strong><br />

Bagrobdella auchenoglanii from Togo compare<br />

favorably with those reported by Euzet and Le<br />

Brun (1990) for their material from Mali. Paperna's<br />

(1969) measurements are generally greater<br />

than those reported herein. Reported differences<br />

between respective studies are not considered<br />

sufficient to separate the collections into<br />

separate species and likely represent intraspecific<br />

variability between geographic localities.<br />

Because Paperna's (1971) redescription <strong>of</strong><br />

Bagrobdella auchenoglanii from Auchenoglanis<br />

occidentalis in Lake Albert, Uganda, was based<br />

on specimens <strong>of</strong> B. fraudulenta (see Euzet and<br />

Le Brun, 1990), the Ugandan records reported<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


KRITSKY AND KULO—MONOGENEANS FROM AFRICAN CATFISHES 145<br />

by Paperna (1971, 1979) are for the latter species.<br />

Bagrobdella auchenoglanii is not known<br />

from Uganda.<br />

Acknowledgments<br />

We are grateful to J.-L. Justine (MNHN), F.<br />

Puylaert (MRAC), David Gibson (BMNH), and<br />

Eileen Harris (BMNH) for allowing us to examine<br />

type specimens in their care. Financial<br />

support for this study was provided, in part, by<br />

the Idaho <strong>State</strong> University Faculty Research<br />

Committee (award 740).<br />

Literature Cited<br />

Bilong, C. F. B., E. Birgi, and N. Le Brun. 1997.<br />

Protoancylodiscoides malapteruri n. sp. (Monogenea,<br />

Dactylogyridea, Ancyrocephalidae), parasite<br />

branchial de Malapterurus electricus Gmelin<br />

(Silurifonnes, Malapteruridae), au Cameroun.<br />

Systematic Parasitology 38:203-210.<br />

El-Naggar, M. M. 1987. Protoancylodiscoides mansourensis<br />

n. sp. A monogenean gill parasite <strong>of</strong> the<br />

Egyptian freshwater fish Chrysichthys auratus<br />

Ge<strong>of</strong>frey, 1809. Arab Gulf Journal <strong>of</strong> Scientific<br />

Research, Agricultural and Biological Science B5<br />

3:441-454.<br />

Euzet, L., and N. Le Brun. 1990. Monogenes du<br />

genre Bagrobdella Paperna, 1969 parasites branchiaux<br />

d'Auchenaglanis occidentalis (Cuvier et<br />

Valenciennes, 1840) (Teleostei, Siluriformes, Bagridae).<br />

Journal <strong>of</strong> African Zoology (Revue de<br />

Zoologie Africaine) 104:37-48.<br />

Kritsky, D. C. 1990. Synonymy <strong>of</strong> Paraquadriacanthus<br />

Ergens, 1988 and Quadriacanthoides Kritsky<br />

et Kulo, 1988 (Monogenea Dactylogyridae) and<br />

their type species. Folia Parasitologica 37:76.<br />

, W. A. Boeger, and V. E. Thatcher. 1985.<br />

Neotropical Monogenea. 7. Parasites <strong>of</strong> the pirarucu,<br />

Arapaima gigas (Cuvier), with descriptions<br />

<strong>of</strong> two new species and redescription <strong>of</strong> Dawestretna<br />

cycloancistrium Price and Nowlin, 1967<br />

(Dactylogyridae: Ancyrocephalinae). Proceedings<br />

<strong>of</strong> the Biological <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 98:321-<br />

331.<br />

, and P. A. Gutierrez. 1998. Neotropical Monogenoidea.<br />

34. Species <strong>of</strong> Demidospermus (Dactylogyridae,<br />

Ancyrocephalinae) from the gills <strong>of</strong><br />

pimelodids (Teleostei, Siluriformes) in Argentina.<br />

Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

65:147-159.<br />

, and S.-D. Kulo. 1988. <strong>The</strong> African species <strong>of</strong><br />

Quadriacanthus with proposal <strong>of</strong> Quadriacanthoides<br />

gen. n. (Monogenea: Dactylogyridae).<br />

Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> 55:175-187.<br />

, and . 1992a. A revision <strong>of</strong> Schilbetrema<br />

(Monogenoidea: Dactylogyridae), with descriptions<br />

<strong>of</strong> four new species from African Schilbeidae<br />

(Siluriformes). Transactions <strong>of</strong> the American<br />

Microscopical <strong>Society</strong> 111:278-301.<br />

, and . 1992b. Schilbetrematoides pseudodactylogyrus<br />

gen. et sp. n. (Monogenoidea,<br />

Dactylogyridae, Ancyrocephalinae) from the gills<br />

<strong>of</strong> Schilhe intermedium (Siluriformes, Schilbeidae)<br />

in Togo, Africa. Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 59:195-200.<br />

-, and W. A. Boeger. 1987. Resurrection<br />

<strong>of</strong> Characidotrema Paperna and Thurston,<br />

1968 (Monogenea: Dactylogyridae) with description<br />

<strong>of</strong> two new species from Togo, Africa. Proceedings<br />

<strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> 54:175-184.<br />

Lim, L. H. S. 1991. Three new species <strong>of</strong> Bvchowskyella<br />

Achmerow, 1952 (Monogenea) from peninsular<br />

Malaysia. Systematic Parasitology 19:33—<br />

41.<br />

. 1994. Chauhanellus Bychowsky & Nagibina,<br />

1969 (Monogenea) from ariid fishes (Siluriformes)<br />

<strong>of</strong> peninsular Malaysia. Systematic Parasitology<br />

28:99-124.<br />

Mizelle, J. D. 1936. New species <strong>of</strong> trematodes from<br />

the gills <strong>of</strong> Illinois fishes. American Midland Naturalist<br />

17:785-806.<br />

, and A. R. Klucka. 1953. Studies on monogenetic<br />

trematodes. XIV. Dactylogyridae from<br />

Wisconsin fishes. American Midland Naturalist<br />

49:720-733.<br />

, and C. E. Price. 1963. Additional haptoral<br />

hooks in the genus Dactylogyrus. Journal <strong>of</strong> Parasitology<br />

49:1028-1029."<br />

Ndifon, G. T., and R. S. Jimeta. 1990. Preliminary<br />

observations <strong>of</strong> the parasites <strong>of</strong> Chrysichthys auratus<br />

Ge<strong>of</strong>froy in Tiga Lake, Kano, Nigeria. Nigerian<br />

Journal <strong>of</strong> Parasitology 9-11:139-144.<br />

Paperna, I. 1969. Monogenetic trematodes <strong>of</strong> the fish<br />

<strong>of</strong> the Volta basin and south Ghana. Bulletin de<br />

1'Institut Francaise d'Afrique Noire (Serie A) 31:<br />

840-880.<br />

. 1971. Redescription <strong>of</strong> Bagrobdella auchenoglanii<br />

Paperna, 1969 (Monogenea, Dactylogyridae).<br />

Revue de Zoologie et de Botanique Africaines<br />

83:141-146.<br />

•. 1979. Monogenea <strong>of</strong> inland water fish in Africa.<br />

Annales-Serie IN-8°-Sciences Zoologiques,<br />

Musee Royal de 1'Afrique Centrale 226:1-131, 48<br />

plates.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 146-154<br />

Redescription <strong>of</strong> Pseudacanthostomum panamense Caballero, Bravo-<br />

Hollis, and Grocott, 1953 (Digenea: Acanthostomidae), a Parasite <strong>of</strong><br />

Siluriform Fishes <strong>of</strong> the Family Ariidae, with Notes on Its Biology<br />

TOMAS ScHOLZ,1-7 LEOPOLDINA AouiRRE-MACEDO,2 GUILLERMO SALGAOO-MALDONADO,3<br />

JOAQUIN VARGAS-VAZQUEZ,2 VICTOR VlDAL-MARTINEZ,2 JAN WOLTER,4 ROMAN KUCHTA,5<br />

AND WOLFGANG KoRTiNG6<br />

1 Institute <strong>of</strong> Parasitology, Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, Branisovska 31, 370 05 Ceske<br />

Budejovice, Czech Republic (e-mail: tscholz@paru.cas.cz),<br />

2 Center for Investigation and Advanced Studies <strong>of</strong> the National Polytechnic Institute (CINVESTAV-IPN)<br />

Unidad Merida, Carretera Antigua a Progreso Km 6, A.P. 73 "Cordemex," C.P. 97310 Merida, Yucatan,<br />

Mexico,<br />

3 Institute <strong>of</strong> Biology, National Autonomous University <strong>of</strong> Mexico (UNAM), A.P. 70-153, C.P. 04510,<br />

Mexico D.F., Mexico,<br />

4 Wexstrasse 39, 10715 Berlin, Germany,<br />

5 Faculty <strong>of</strong> Biology, University <strong>of</strong> South Bohemia, Branisovska 31, 370 05 Ceske Budejovice,<br />

Czech Republic, and<br />

6 Fish Diseases Research Unit, School <strong>of</strong> Veterinary Medicine, Biinteweg 17, 30559 Hannover, Germany.<br />

ABSTRACT: <strong>The</strong> acanthostomid trematode Pseudacanthostomum panamense Caballero, Bravo-Hollis, and Grocott<br />

is redescribed on the basis <strong>of</strong> examination <strong>of</strong> its holotype and new material from Galeichthys (=Ariopsis)<br />

seemani (Giinther) (type host) from Colombia (new geographical record), and Ariopsis assirnilis (Giinther) and<br />

Arius guatemalensis (Giinther) (new host records) (all Siluriformes: Ariidae) from the Atlantic and Pacific coasts<br />

<strong>of</strong> Mexico (new geographical record). It was found that P. panamense possesses intestinal ceca that are connected<br />

with the excretory bladder near the posterior extremity and opening outside by an uroproct. <strong>The</strong> actual number<br />

<strong>of</strong> circumoral spines <strong>of</strong> the holotype is 27; the number <strong>of</strong> spines is stable, with most specimens possessing 27<br />

spines and a very few 26 or 28. Pseudacanthostomum floridensis Nahhas and Short, described from Galeichthys<br />

(= Arius) fells (Linnaeus) from Florida, U.S.A., is considered a synonym <strong>of</strong> P. panamense. Metacercariae <strong>of</strong> P.<br />

panamense from the eleotrid fishes Dormitator latifrons (Richardson) and Gobiomorus maculatus (Giinther)<br />

from the Pacific coast <strong>of</strong> Mexico (Jalisco state) are described for the first time.<br />

KEY WORDS: Pseudacanthostomum panamense, Digenea, metacercariae, Acanthostomidae, taxonomy, catfish,<br />

Siluriformes, Ariidae, Pisces, Mexico, Colombia.<br />

During parasitological examination <strong>of</strong> fish and geographical regions. Metacercariae <strong>of</strong> this<br />

from Colombia and Mexico, acanthostomid trematode are described for the first time, and<br />

trematodes were found, both as adults in catfish the taxonomic status <strong>of</strong> Pseudacanthostomum<br />

<strong>of</strong> the family Ariidae and as metacercariae in floridensis Nahhas and Short, 1965, the only<br />

eleotrid fish. <strong>The</strong>y were identified as Pseuda- congeneric species, is discussed.<br />

canthostomum panamense Caballero, Bravo-<br />

Hollis, and Grocott, 1953, a species described<br />

Materials and Methods<br />

from Galeichthys (_= Ariopsis) seemani (Giinther, Trematodes studied were found in Ariopsis seemani<br />

1864) from Panama (Caballero et al., 1953). Ex- (7 specimens examined) from Colombia (locality not<br />

animation <strong>of</strong> the holotype <strong>of</strong> P. panamense known; May 1996)MnV^,, ///, (Cninther, 1864),<br />

, , . . . , , .. ., from Laguna Bacalar near the village <strong>of</strong> Bacalar, Qumshowed<br />

that its original description had not pro- tana Roo Mexico January 1995 (, specimen)> and<br />

vided data on some taxonomically important from Chetumal Bay, Quintana Roo, Mexico, October<br />

features such as the morphology <strong>of</strong> the intestinal 1996 (96 specimens); and Arius guatemalensis (Giinceca;<br />

in addition, no information about intraspe- ther' 1864>


SCHOLZ ET AL.—REDESCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 147<br />

Jalisco, Mexico, September 1995 (7 specimens); and<br />

in Gobiomorus maculatus (Giinther, 1859) from the<br />

Cuitzmala River at Emiliano Zapata, Jalisco, Mexico,<br />

January, March, and September 1995 (89 specimens).<br />

Holotypes <strong>of</strong> P. panamense from Ariopsis seemani<br />

from Panama (National <strong>Helminthological</strong> Collection <strong>of</strong><br />

the Institute <strong>of</strong> Biology, National Autonomous University<br />

<strong>of</strong> Mexico, Mexico City, Mexico-CNHE 947)<br />

and P. floridcnsis from Galeichthys (= Arius) felis<br />

(Linnaeus, 1766) from Florida (U.S. National Parasite<br />

Collection, Beltsville, Maryland, U.S.A.-USNPC<br />

60087) were compared with the present material.<br />

Measurements (length and width) <strong>of</strong> 59 undeformed,<br />

uncollapsed eggs <strong>of</strong> P. panamense (from Ariopsis seemani,<br />

Panama and Colombia and A. assimilis, Bacalar<br />

and Chetumal, Mexico) and P. floridensis (from Arius<br />

felis, Florida, U.S.A.) were compared by ANOVA (Tukey's<br />

HSD for unequal N; Spojotvoll/Stoline test).<br />

<strong>The</strong> specimens studied are deposited in the helminthological<br />

collections <strong>of</strong> the Institute <strong>of</strong> Parasitology,<br />

Ceske Budejovice, Czech Republic (IPCAS D-384);<br />

Institute <strong>of</strong> Biology, National Autonomous University<br />

<strong>of</strong> Mexico, Mexico City, Mexico (CNHE 3239); Laboratory<br />

<strong>of</strong> Parasitology, CINVESTAV-IPN Merida,<br />

Mexico (CHCM 181); and the U.S. National Parasite<br />

Collection, Beltsville, Maryland, U.S.A. (USNPC<br />

87809, 87810). <strong>The</strong> nomenclature <strong>of</strong> the fish hosts<br />

(catfish) follows that presented by Eschmeyer (1998).<br />

Measurements are in micrometers unless otherwise<br />

noted.<br />

Results<br />

Comparison <strong>of</strong> acanthostomid trematodes occurring<br />

in Ariopsis seemani from Colombia and<br />

A. assimilis and A. guatemalensis from Mexico<br />

with the holotype <strong>of</strong> Pseudacanthostomum panamense<br />

from A. seemani from Panama revealed<br />

their conspecificity (Figs. 1, 2; Table 1). All<br />

specimens, including the holotype <strong>of</strong> P. panamense<br />

(Fig. 1), possess long intestinal ceca connected<br />

near the posterior extremity with the excretory<br />

bladder, thus forming an uroproct (Figs.<br />

ID, 2D, F). Vitelline follicles are distributed between<br />

the ventral sucker and the anterior testis<br />

(Figs. IB, 2A, C, F, G), ventrally forming 2 separate<br />

fields and, in the same specimens, are dorsally<br />

confluent at the ovarian level (Figs. 1F-H,<br />

2C). <strong>The</strong> uterine loops are sinuous, filling the<br />

space between the ventral sucker and the posterior<br />

extremity (Figs. 1C, 2A, C, G). A thinwalled,<br />

coiled seminal vesicle is situated posterodextrally<br />

to the ventral sucker (Figs. IB, 2C,<br />

F), and a genital pore is located just anterior to<br />

the ventral sucker (Fig. IB). With the exception<br />

<strong>of</strong> 3 specimens, all trematodes (TV = 40), including<br />

the holotype (Fig. 1A), had 27 circumoral<br />

spines (Table 2).<br />

<strong>The</strong> present study also demonstrated that the<br />

trematodes studied are identical in all but 1 morphological<br />

and biometrical character to P. floridensis,<br />

a species described from Arius felis from<br />

Florida, U.S.A (Nahhas and Short, 1965; see Table<br />

1). No significant difference between these<br />

2 taxa was found in the size (length and width)<br />

<strong>of</strong> eggs (Fig. 3). <strong>The</strong> only difference between P.<br />

panamense and P. floridensis is the more anterior<br />

position <strong>of</strong> the vitelline follicles in the latter<br />

species. However, the distribution <strong>of</strong> the vitelline<br />

follicles is rather variable (Fig. 1E-H), and its<br />

suitability as a discriminative character between<br />

P. panamense and P. floridensis is doubtful.<br />

Consequently, P. floridensis is considered a junior<br />

synonym <strong>of</strong> P. panamense.<br />

Because the original description <strong>of</strong> P. panamense<br />

was incorrect in some features (the number<br />

<strong>of</strong> circumoral spines, the presence <strong>of</strong> an uroproct,<br />

and the spination <strong>of</strong> the posterior part <strong>of</strong><br />

the body), its redescription based on extensive<br />

material from 4 fish hosts is provided herein. In<br />

addition, metacercariae from the eleotrid fishes<br />

Donnitator latifrons and Gobiomorus maculatus<br />

from Mexico, considered to be conspecific with<br />

P. panamense, are described.<br />

Pseudacanthostomum panamense Caballero,<br />

Bravo-Hollis, and Grocott, 1953<br />

(Figs. 1, 2)<br />

SYNONYMS: Pseudacanthostomum floridensis<br />

Nahhas and Short, 1965 (new synonymy).<br />

Pseudacanthostomum sp. <strong>of</strong> Pineda-Lopez et<br />

al. (1985) (new synonymy).<br />

Pelaezia sp. <strong>of</strong> Scholz and Vargas-Vazquez<br />

(1998) (new synonymy).<br />

DESCRIPTION: Adult (measurements in Table<br />

1): Body elongate, densely covered with fine tegumental<br />

spines, including post-testicular region.<br />

Oral sucker terminal, cup-shaped, with large buccal<br />

cavity; ventral sucker small, pre-equatorial.<br />

Oral sucker surrounded by 1 row <strong>of</strong> 27 large,<br />

straight circumoral spines (Figs. 1A, 2B, J, K);<br />

exceptionally 26 or 28 spines present (Table 2).<br />

Prepharynx present and short (Fig. 1A) or absent<br />

(Fig. 2A); pharynx strongly muscular; esophagus<br />

very short. Intestinal bifurcation pre-equatorial;<br />

intestinal ceca long, connected with excretory<br />

bladder and opening outside by uroproct (Figs.<br />

ID, 2D). Testes tandem, close to posterior extremity.<br />

Vas deferens forming numerous loops,<br />

widened near ventral sucker to form coiled seminal<br />

vesicle; cirrus-sac lacking, ejaculatory duct<br />

slightly curved, opening into hermaphroditic<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


148 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figure 1. Pseudacanthostomum panamense. A-D, holotype from Galeichthys (=Arius) seemani, Panama<br />

(IBUNAM 947), ventral view. A: oral sucker; B: ventral sucker and terminal genitalia; C: anterior part<br />

<strong>of</strong> body; note extent <strong>of</strong> vitelline follicles; D: posterior extremity; note connection <strong>of</strong> intestinal ceca with<br />

excretory bladder and presence <strong>of</strong> uroproct; E-H, acetabular region; note variation in anterior extent <strong>of</strong><br />

vitelline follicles (E, F: specimens from Ariopsis assimilis, Mexico; G, H: specimens from A. seemani,<br />

Columbia; E: dorsal view, ventral follicles omitted; F, G: ventral view, dorsal follicles dashed; H: ventral<br />

view but dorsal follicles drawn in full and ventral follicles dashed). Scale bars in millimeters. Abbreviations:<br />

e, eggs; exb, excretory bladder; gp, genital pore; ic, intestinal ceca; sr, seminal receptacle; sv, seminal<br />

vesicle; u, uterus; up, uroproct; vf, vitelline follicles; vs, ventral sucker.<br />

duct; genital pore close to anterior margin <strong>of</strong> ventral<br />

sucker (Fig. IB). Ovary transversely elongate,<br />

slightly lobate (Fig. 1C) or with almost indistinct<br />

lobes (Fig. 2A), pretesticular. Seminal receptacle<br />

oval, preovarial or anterolateral to ovary<br />

(Fig. 1C). Vitelline follicles numerous, dorsally<br />

filling space between ventral sucker and ovary,<br />

ventrally forming 2 lateral bands starting at acetabular<br />

level or posterior to ventral sucker and<br />

reaching posteriorly to anterior margin <strong>of</strong> anterior<br />

testis (Figs. 1E-G, 2G); exceptionally, vitelline<br />

follicles preacetabular. Uterus sinuous, with numerous<br />

loops, reaching to body extremity posteriorly<br />

and completely filling body posterior to<br />

ovary (Fig. 2A, G, F). Metraterm thin-walled,<br />

opening into hermaphroditic duct. Eggs operculate,<br />

rather variable in size (Figs. 3, 4). Excretory<br />

bladder Y-shaped, long, with anterior branches<br />

anterolateral to intestinal ceca, reaching to pharynx<br />

(Figs. 1C, 2A, C, F).<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SCHOLZ ET AL.—REDHSCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 149<br />

Figure 2. Pseudacanthostomum panamense. Adults from Ariopsis seemani, Colombia (A—D, G); nietacercariae<br />

from Dormltator latifrons, Mexico (E, H, I); adults from A. assimilis, Mexico (F, J, K). A, E, F:<br />

total view. B, H-K: oral sucker with circumoral spines. B: tegumental spines on only the right side and<br />

subtegumental gland cells on the left side are illustrated. C: detail <strong>of</strong> acetabular region with terminal<br />

genitalia; note connection <strong>of</strong> dorsal vitelline follicles (dashed) at level <strong>of</strong> ovary. D: posterior extremity with<br />

connection <strong>of</strong> intestinal ceca, opening to the outside, with the excretory bladder (uroproct). G: posterior<br />

part <strong>of</strong> body; note vitelline follicles reaching posteriorly to level <strong>of</strong> anterior testis. Scale bars in millimeters.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


150 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Measurements <strong>of</strong> Pseudacanthostomum panamense from different hosts* (in micrometers).<br />

Species<br />

Host<br />

Locality<br />

Author<br />

N<br />

Caballero<br />

et al., 1953<br />

3<br />

A. seemani<br />

Panama<br />

Present<br />

datat<br />

1<br />

P. panamense<br />

A. assimilis<br />

Mexico<br />

Present<br />

data<br />

8<br />

A. seemani<br />

Colombia<br />

Present<br />

data<br />

4<br />

P. floridensis<br />

A. fells<br />

U.S.A.<br />

Nahhas and<br />

Short, 1965<br />

2<br />

Present<br />

datav<br />

1<br />

Body length<br />

Body width<br />

Oral sucker<br />

Length<br />

Width<br />

Spines (no.)<br />

Spine length<br />

Spine width<br />

Prepharynx<br />

Pharynx<br />

Length<br />

Width<br />

Esophagus<br />

Ventral sucker<br />

Length<br />

Width<br />

Sucker ratio<br />

Anterior testis<br />

Length<br />

Width<br />

Posterior testis<br />

Length<br />

Width<br />

Ovary<br />

Length<br />

Width<br />

Eggs<br />

Length<br />

Width<br />

Uroproct<br />

2,440-2,540<br />

332-481<br />

76-133<br />

171-228<br />

26<br />

30-38<br />

11<br />

95-133<br />

122-171<br />

95-106<br />

11-19<br />

87-114<br />

106-114<br />

0.33-0.50<br />

175-232<br />

114-194<br />

194-285<br />

125-228<br />

103-129<br />

1 33-236<br />

19-21<br />

11<br />

absent<br />

2,784<br />

360<br />

21 1<br />

214<br />

27<br />

31-37<br />

12-13<br />

154<br />

125<br />

99<br />

14<br />

83<br />

86<br />

0.40<br />

173<br />

118<br />

202<br />

128<br />

112<br />

141<br />

21.5-25<br />

12.5-13.5<br />

present<br />

2,150-3,650<br />

230-370<br />

123-195<br />

130-238<br />

26-27<br />

28-45<br />

8-13<br />

30-138<br />

78-105<br />

63-98<br />

13-42<br />

70-103<br />

68-103<br />

0.41-0.68<br />

1 80-300<br />

78-180<br />

180-380<br />

1 1 5-220<br />

90-170<br />

55-190<br />

20-27.5<br />

10-14<br />

present<br />

1,850-2,580<br />

408-5 1 2<br />

186-208<br />

227-259<br />

27<br />

37-54<br />

9-12<br />

45-56<br />

99-122<br />

85-102<br />

22—23<br />

82-108<br />

83-118<br />

0.38-0.51<br />

214-250<br />

179-256<br />

208-272<br />

205-266<br />

99-122<br />

230-272<br />

23-28<br />

12-14.5<br />

present<br />

2,630-3,000<br />

489-750<br />

1 80-294<br />

309-330<br />

28<br />

42-60<br />

18-24<br />

—<br />

1 29-206<br />

—<br />

v. short<br />

118-155<br />

155-170<br />

0.54<br />

283-309<br />

1 80-283<br />

—<br />

—<br />

232-260<br />

298-309<br />

20-25<br />

1 1-14<br />

present<br />

3,050<br />

730<br />

266<br />

314<br />

28<br />

26-59<br />

15-19<br />

15<br />

218<br />

144<br />

—<br />

154<br />

170<br />

0.56<br />

278<br />

173<br />

317<br />

176<br />

224<br />

317<br />

23-26<br />

12-13.5<br />

present<br />

* Specimens from A. asximili.i from Bacalar, Mexico, are not included because they were flattened during fixation.<br />

t Measurements <strong>of</strong> the holotypes (CNHE 947 and USNPC 60087).<br />

Table 2. Number <strong>of</strong> circumoral spines <strong>of</strong> Pseudacanthostomum<br />

panamense.<br />

Host and country<br />

Ariopsix seemani (Panama)<br />

Ariopsis seemani (Colombia)<br />

Ariusfelis (U.S.A.)<br />

Ariopsis assimilis (Mexico)<br />

Arius gitatemalensis (Mexico)<br />

Dormitator latifrons* (Mexico)<br />

Total<br />

Metacercariae.<br />

Number<br />

<strong>of</strong> spines<br />

26 27 28<br />

— 1 —<br />

— 4 —<br />

— — 1<br />

1 14 2<br />

17<br />

4<br />

1 40 3<br />

Number<br />

<strong>of</strong><br />

specimens<br />

1<br />

4<br />

1<br />

17<br />

17<br />

4<br />

44<br />

HOSTS: Ariopsis seemani (type host), A. assimilis,<br />

Arius guatemalensis, and A. felis (all Siluriformes:<br />

Ariidae) (Table 3).<br />

SITE: Intestine.<br />

GEOGRAPHIC DISTRIBUTION: Panama Viejo,<br />

Pacific coast, Panama (type locality); Colombia;<br />

Mexico (states <strong>of</strong> Tabasco and Quintana Roo,<br />

Atlantic coast; state <strong>of</strong> Jalisco, Pacific coast),<br />

U.S.A. (state <strong>of</strong> Florida) (Caballero et al., 1953;<br />

Nahhas and Short, 1965; Yamaguti, 1971; Pineda-Lopez<br />

et al., 1985; Scholz and Vargas-<br />

Vazquez, 1998).<br />

METACERCARIA: (based on 4 specimens from<br />

Dormitator latifrons; Fig. 2E, H, I): Body <strong>of</strong><br />

excysted metacercariae elongate, 630-845 long<br />

by 147-182 wide. Oral sucker terminal, cup-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SCHOLZ ET AL.—REDESCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 15 1<br />

5 24<br />

z<br />

15.5<br />

14.5<br />

13.5<br />

11.5<br />

10.5<br />

9.5<br />

LENGTH<br />

A.a. MB A.a. MC A.s. C A.s. P A.f. U<br />

GROUP<br />

I Min-Max CH 25%-75% D Median value<br />

WIDTH<br />

8.5<br />

A.a. MB A.a. MC A.s. C A.s. P A.f. U<br />

GROUP<br />

Figure 3. Length (above) and width (below) <strong>of</strong><br />

eggs <strong>of</strong> Pscudacanthostomum panamense from different<br />

hosts and geographical regions. Measurements<br />

in micrometers. Groups: A.a. MB, Ariopsis<br />

assimilis, Bacalar, Mexico; A.a. MC, A. assimilis,<br />

Chetumal Bay, Mexico; A.s. C, A. seemani, Colombia;<br />

A.s. P, A. seemani, Panama (holotype: CNHE<br />

947); A.f. \J, Arius felis, Florida, U.S.A. (holotype <strong>of</strong><br />

P. floridensis: USNPC 60087).<br />

shaped, 111-124 long by 115-147 wide. Ventral<br />

sucker small, equatorial, 35-44 long by 35-41<br />

wide. Sucker ratio 1:0.31-0.34. Oral sucker<br />

armed with 1 circle <strong>of</strong> 27 spines; spines on dorsal<br />

side 21-28 long by 4-7 wide; on ventral side<br />

15-21 long by 4-5 wide. Prepharynx 49-90<br />

long; pharynx oval, 52-59 long by 36-52 wide;<br />

esophagus short. Intestinal ceca long, connected<br />

with excretory bladder near posterior extremity<br />

and opening outside by uroproct. Primordium <strong>of</strong><br />

ovary postacetabular; testis primordia tandem,<br />

near posterior extremity.<br />

HOSTS: Dormitator latifrons and Gobiomorus<br />

maculatus (both Perciformes: Eleotridae)<br />

(Table 3).<br />

SITE: Liver, more rarely musculature <strong>of</strong> gills,<br />

mesentery, intestinal wall, occasionally muscles,<br />

heart, gonads, fins, scales.<br />

GEOGRAPHICAL DISTRIBUTION: Mexico (state<br />

<strong>of</strong> Jalisco, Pacific coast).<br />

Discussion<br />

Acanthostomid trematodes from 3 different<br />

definitive hosts, the ariid catfish Ariopsis seemani,<br />

A. assimilis, and Arius guatemalensis, and<br />

2 geographical regions (Colombia and Mexico)<br />

were found to be conspecinc with Pseudacanthostornum<br />

panamense. Examination <strong>of</strong> the holotype<br />

<strong>of</strong> P. panamense has shown that the original<br />

description (Caballero et al., 1953) was incorrect<br />

in reporting the following characters: 1)<br />

26 circumoral spines (there are in fact 27 spines<br />

in the holotype; Fig. 1A); 2) the absence <strong>of</strong> tegumental<br />

spines in the post-testicular region,<br />

which is actually spined; and 3) the absence <strong>of</strong><br />

an uroproct (i.e., a connection <strong>of</strong> the intestinal<br />

ceca with the excretory bladder), which is actually<br />

present (Fig. ID). Consequently, the species<br />

diagnosis <strong>of</strong> P. panamense, the type species<br />

<strong>of</strong> the genus Pseudacanthostomum Caballero,<br />

Bravo-Hollis, and Grocott, 1953, is emended accordingly.<br />

In 1965, Nahhas and Short described another<br />

species, P. floridensis, to accommodate 2 specimens<br />

from Galeichthys (= Arius) felis from<br />

Florida, U.S.A. <strong>The</strong> authors differentiated this<br />

species from P. panamense by the number <strong>of</strong><br />

circumoral spines (28 compared with 26), the<br />

greater extent <strong>of</strong> the vitellaria, and the presence<br />

<strong>of</strong> an uroproct.<br />

<strong>The</strong> presence <strong>of</strong> an uroproct in P. panamense<br />

was not reported by Caballero et al. (1953), who<br />

stated that there is no connection between the<br />

intestinal ceca and excretory bladder ("Los ciegos<br />

intestinales . . . no se abren en la vesicula<br />

excretora" [p. 121] and "Los ciegos intestinales<br />

no desembocan a la vesicula excretora" [p.<br />

122]). However, this study has demonstrated that<br />

an uroproct is in fact present in P. panamense<br />

(Fig. ID). Consequently, P. panamense and P.<br />

floridensis do not differ in this character (Table<br />

1).<br />

Although the number <strong>of</strong> circumoral spines is<br />

fairly stable in acanthostomid trematodes and<br />

can be species-specific (Brooks, 1980), some<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


152 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

15.5<br />

15.0<br />

14.5<br />

14.0<br />

13.5<br />

13.0<br />

12.5<br />

JE 12.0<br />

Q 11.5<br />

% 11.0<br />

10.5<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

« n<br />

O 0<br />

o o o<br />

0 000<br />

o o o<br />

o o o<br />

o<br />

0 O O<br />

o<br />

o o o<br />

o<br />

o<br />

o<br />

o o<br />

o<br />

o o o o<br />

o o o o o<br />

o<br />

o o o<br />

o<br />

O O O 0<br />

18 19 20 21 22 24 25 26 27 28<br />

LENGTH<br />

Figure 4. Range <strong>of</strong> size <strong>of</strong> eggs (length and width) <strong>of</strong> Pseudacanthostomum panamense. Measurements<br />

<strong>of</strong> all eggs measured (N = 59) grouped together. Values in micrometers.<br />

o<br />

o<br />

variability apparently exists (Brooks and Overstreet,<br />

1977; Ostrowski de Nunez, 1984; Scholz<br />

et al., 1995a, b). This is also the case in the<br />

present material (Table 2). Although a majority<br />

<strong>of</strong> specimens (93%) had 27 spines, including the<br />

holotype <strong>of</strong> P. panamense (see Results and Fig.<br />

1A), a few specimens had a different number <strong>of</strong><br />

spines. One trematode from A. assimilis from<br />

Bacalar (Mexico) possessed 26 spines, and 2<br />

specimens from the same host (A. assimilis)<br />

from Chetumal (Mexico) had 28 spines (i.e., the<br />

identical number reported for P. floridensis) (Table<br />

2).<br />

<strong>The</strong> extent <strong>of</strong> distribution <strong>of</strong> vitelline follicles<br />

in the holotype <strong>of</strong> P. floridensis is actually more<br />

anterior than in P. panamense specimens. However,<br />

there is great variability in this feature.<br />

Trematodes from Ariopsis seemani have follicles<br />

reaching to the acetabular level (Fig. 1G) or<br />

even to the anterior margin <strong>of</strong> the ventral sucker<br />

(Fig. 1H), whereas those from A. assimilis have<br />

vitelline follicles mostly restricted to the postacetabular<br />

region (Fig. IE, F) with vitelline follicles<br />

reaching to the posterior border <strong>of</strong> the ventral<br />

sucker in only a few specimens. It also<br />

seems that contraction <strong>of</strong> the body influences the<br />

position <strong>of</strong> follicles; in contracted specimens vitelline<br />

follicles usually reach to the acetabular<br />

level (Fig. 1G, H), whereas in protracted worms,<br />

the follicles start rather far posterior to the ven-<br />

Table 3. Survey <strong>of</strong> hosts, localities, dates <strong>of</strong> collection, and parameters <strong>of</strong> infection with Pseudacanthostomum<br />

panamense.<br />

Host<br />

Country and locality<br />

No. <strong>of</strong><br />

fish Mean<br />

infected/ inten- Minimum-<br />

Date examined sity maximum<br />

Adults<br />

A riopsis see man i<br />

A riopsis assim His<br />

A rius guatemalensis<br />

Metacercariae<br />

Dormitator latifronx<br />

Gobiomorus maculatus<br />

Colombia<br />

Bacalar, Quintana Roo, Mexico<br />

Chetumal Bay, Quintana Roo, Mexico<br />

Marismas Chalacatepec, Jalisco, Mexico<br />

Marismas Chalacatepec, Jalisco, Mexico<br />

Rio San Nicolas, Jalisco, Mexico<br />

Rio Cuitzmala, Jalisco, Mexico<br />

Rio Cuitzmala, Jalisco, Mexico<br />

5/96<br />

1/95<br />

10/96<br />

3/95<br />

3/95<br />

11/94<br />

9/95<br />

9/95<br />

1/95<br />

3/95<br />

9/95<br />

4/7<br />

1/1<br />

39/96<br />

3/3<br />

1/24<br />

1/5<br />

2/16<br />

5/7<br />

0/25<br />

2/37<br />

22/31<br />

1.5 1-2<br />

12<br />

7.5 1-30<br />

24 9-52<br />

39 39<br />

52 52<br />

1 1<br />

(not counted)<br />

— —<br />

3 1-5<br />

(not counted)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SCHOLZ ET AL.—REDESCRIPTION OF PSEUDACANTHOSTOMUM PANAMENSE 153<br />

tral sucker (Fig. IE). It is evident that this character<br />

is not sufficiently stable and its taxonomic<br />

importance is questionable. Because P. floridensis<br />

was described on the basis <strong>of</strong> only 2 specimens,<br />

the anterior position <strong>of</strong> vitellaria should<br />

be confirmed in much more extensive material.<br />

Statistical analysis <strong>of</strong> egg measurements has<br />

revealed a great intraspecific variability in egg<br />

length and width (Fig. 4). Nevertheless, this<br />

analysis has not demonstrated any significant<br />

differences in the length and width <strong>of</strong> eggs <strong>of</strong><br />

P. panamense and P. floridensis (Fig. 3). Eggs<br />

<strong>of</strong> P. panamense specimens from Colombia<br />

were larger than those <strong>of</strong> conspecific worms<br />

from Mexico, thus being more similar to eggs<br />

<strong>of</strong> P. floridensis (Fig. 3). Because <strong>of</strong> the identity<br />

<strong>of</strong> P. floridensis with P. panamense in almost all<br />

morphological and biometrical characters (the<br />

distribution <strong>of</strong> vitelline follicles is considered a<br />

doubtful and unsuitable taxonomic criterion for<br />

differentiation <strong>of</strong> these taxa), the former species<br />

is synonymized with P. panamense.<br />

On the basis <strong>of</strong> the proposed synonymy, the<br />

genus Pseudacanthostomum becomes monotypic,<br />

currently containing only 1 species, P. panamense.<br />

In the presence <strong>of</strong> an uroproct, P. panamense<br />

resembles members <strong>of</strong> the genus Pelaezia<br />

Lamothe-Argumedo and Ponciano-Rodriguez,<br />

1986, <strong>of</strong> the subfamily Acanthostominae<br />

Nicoll, 1914 (see Lamothe-Argumedo and Ponciano-Rodriguez,<br />

1986). However, Pelaezia differs,<br />

as all other genera <strong>of</strong> the Acanthostominae,<br />

in that the uterus is never situated posterior to<br />

the testes (mostly completely preovarial), whereas<br />

its loops reach to the posterior extremity in<br />

Pseudacanthostomum, the type genus <strong>of</strong> the subfamily<br />

Pseudacanthostominae Yamaguti, 1958.<br />

In addition, both species <strong>of</strong> Pelaezia, P. unami<br />

(Pelaez and Cruz-Lozano, 1953), the type species,<br />

and P. loossi (Perez-Vigueras, 1957), have<br />

different numbers <strong>of</strong> circumoral spines (30 and<br />

23, respectively; Pelaez and Cruz-Lozano, 1953;<br />

Perez-Vigueras, 1957; Brooks, 1980; Salgado-<br />

Maldonado and Aguirre-Macedo, 1991).<br />

<strong>The</strong> subfamily Pseudacanthostominae Poche,<br />

1926 contains only 2 genera, Pseudacanthostomum<br />

and Pseudallacanthochasmus Velasquez,<br />

1961, members <strong>of</strong> which parasitize marine fish<br />

in the Americas and Southeast Asia, respectively<br />

(Yamaguti, 1971). This subfamily differs from<br />

the Acanthostominae in possessing a long prepharynx<br />

(Yamaguti, 1971, p. 212). However, as<br />

demonstrated in this study, the prepharynx is<br />

usually short or even absent (Fig. 2A, F) in<br />

many P. panamense specimens. Moreover, the<br />

length <strong>of</strong> the prepharynx is highly variable, depending<br />

mainly on the state <strong>of</strong> contraction <strong>of</strong> the<br />

worms. <strong>The</strong>refore, this feature should not be<br />

used as a differential criterion for the diagnosis<br />

<strong>of</strong> this subfamily. In other features, the subfamiliar<br />

diagnosis presented by Yamaguti (1971)—<br />

i.e., the uterus extending to the posterior extremity<br />

(different from other acanthostomid subfamilies<br />

except for Anisocladiinae Yamaguti,<br />

1958)—the ceca being equal and reaching to the<br />

posterior extremity, the ventral sucker being<br />

well apart from the anterior extremity, and the<br />

vitelline follicles being both anterior and posterior<br />

to the ovary (differing from Anisocladiinae)<br />

well characterize the subfamily Pseudacanthostominae.<br />

Metacercariae found in eleotrid fishes from<br />

the Pacific coast <strong>of</strong> Mexico are considered to be<br />

conspecific with P. panamense because <strong>of</strong> their<br />

morphology (Fig. 2E, H, I), in particular the<br />

presence <strong>of</strong> 27 circumoral spines (Fig. 2H, I)<br />

and the morphology <strong>of</strong> the intestinal ceca, which<br />

are connected with the excretory bladder near<br />

the posterior extremity, thus forming an uroproct<br />

(Fig. 2E). This is the first record <strong>of</strong> P. panamense<br />

from the second intermediate host. It can<br />

be assumed that the life cycle <strong>of</strong> this taxon resembles<br />

that <strong>of</strong> other acanthostomid trematodes<br />

(Yamaguti, 1975). <strong>The</strong> first intermediate host is<br />

a mollusk (snail), in which the cercariae develop;<br />

the second intermediate hosts are fish in<br />

which the metacercariae are encysted. <strong>The</strong> definitive<br />

host, an ariid catfish, becomes infected<br />

by ingesting fish with metacercariae. Dormitator<br />

latifrons and Gobiomorus maculatus are fish living<br />

in brackish water, i.e., in the same habitat in<br />

which ariid catfish occur; the latter become infected<br />

after consuming prey fish harboring metacercariae.<br />

Pseudacanthostomum panamense seems to be<br />

a common parasite <strong>of</strong> catfishes <strong>of</strong> the family<br />

Ariidae. Existing records <strong>of</strong> P. panamense from<br />

the southern U.S.A. (Florida), Mexico (both Atlantic<br />

and Pacific coasts), Panama (Pacific<br />

coast), and Colombia indicate that it is a species<br />

with a wide distribution in the Neotropical zoogeographical<br />

region on both the Pacific and Atlantic<br />

coasts.<br />

Acknowledgments<br />

<strong>The</strong> authors are indebted to Elizabeth Mayen<br />

Pena, Guillermina Cabanas-Caranza, Juan Ma-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


154 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

nuel Caspeta-Mandujano, Rafael Baez-Vale, and<br />

Isabel Jimenez-Garcia, Institute <strong>of</strong> Biology, National<br />

Autonomous University <strong>of</strong> Mexico<br />

(UNAM), Mexico City, for help in sampling and<br />

examining fish in the state <strong>of</strong> Jalisco and to Raul<br />

Sima-Alvarez, Clara Margarita Vivas-Rodriguez,<br />

Ana Maria Sanchez-Manzanilla, Isabel Jimenez-Garcia,<br />

Sandra Martha Laffon-Leal, Sonia<br />

Zarate-Perez and Victor Ceja-Moreno, Center<br />

for Investigation and Advanced Studies <strong>of</strong> the<br />

National Polytechnic Institute (CINVESTAV-<br />

IPN), Unidad Merida, Mexico, for help in collecting<br />

fish in Quintana Roo. Thanks are due to<br />

Drs. J. Ralph Lichtenfels and Patricia Pilitt, U.S.<br />

National Parasite Collection, Beltsville, Maryland,<br />

U.S.A., and Dr. Rafael Lamothe-Argumedo<br />

and Luis Garcia-Prieto, Institute <strong>of</strong> Biology,<br />

National Autonomous University <strong>of</strong> Mexico<br />

(UNAM), Mexico City, for the loan <strong>of</strong> types <strong>of</strong><br />

Pseudacanthostomum species. Dr. Patricia Pilitt<br />

is further acknowledged for her valuable help<br />

with egg size analysis, Martina Borovkova (Institute<br />

<strong>of</strong> Parasitology, Ceske Budejovice) for<br />

excellent technical help, and Luis Garcia-Prieto<br />

for providing the original description <strong>of</strong> P. panamense.<br />

Literature Cited<br />

Brooks, D. R. 1980. Revision <strong>of</strong> the Acanthostominae<br />

Poche, 1926 (Digenea: Cryptogonimidae). Zoological<br />

Journal <strong>of</strong> the Linnean <strong>Society</strong> 70:313-<br />

382.<br />

, and R. M. Overstreet. 1977. Acanthostome<br />

digeneans from the American alligator in the<br />

southeastern United <strong>State</strong>s. Proceedings <strong>of</strong> the Biological<br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 90:1016-1029.<br />

Caballero y C., E., M. Bravo-Hollis, and R. G. Grocott.<br />

1953. Helmintos de la Republica de Panama.<br />

VII. Descripcion de algunos trematodos de peces<br />

marines. Anales del Institute de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie<br />

Zoologia 24:97-136.<br />

Eschmeyer, W. N. 1998. Catalog <strong>of</strong> Fishes. Vols. 1,<br />

2, 3. California Academy <strong>of</strong> Sciences, San Francisco,<br />

2905 pp.<br />

Lamothe-Argumedo, R., and G. Ponciano-Rodriguez.<br />

1986. Revision de la subfamilia Acanthostominae<br />

Nicoll, 1914 y establecimiento de dos<br />

nuevos generos. Anales del Instituto de Biologfa,<br />

Universidad Nacional Autonoma de Mexico, Serie<br />

Zoologia 56:301-322.<br />

Nahhas, F. M., and R. B. Short. 1965. Digenetic<br />

trematodes <strong>of</strong> marine fishes from Apalachee Bay,<br />

Gulf <strong>of</strong> Mexico. Tulane Studies in Zoology 12:<br />

39-50.<br />

Ostrowski de Nunez, M. 1984. Beitrage zur Gattung<br />

Acanthostomum (Trematoda, Acanthostomatidae)<br />

und zu den Entwicklungszyklen von A. marajoarum<br />

(Freitas & Lent, 1938) und A. loossi (Perez<br />

Vigueras, 1957) in Venezuela. Mitteilungen des<br />

Zoologisches Museum, Berlin 60:179-201.<br />

Pelaez, D., and F. Cruz-Lozano. 1953. Consideraciones<br />

sobre el genero Acanthostomum Looss,<br />

1899 (Trematoda: Acanthostomidae) con descripcion<br />

de 2 especies de Mexico. Memorias del VII<br />

Congreso Cientifico de Mexico, Ciencias Biologicas,<br />

National Autonomous LJniversity <strong>of</strong> Mexico,<br />

Mexico City 7:268-284.<br />

Perez-Vigueras, I. 1957. Contribucion al conocimiento<br />

de la fauna helmintologica cubana. Memorias<br />

de la Sociedad Cubana de la Historia Natural<br />

23(1): 1-36.<br />

Pineda-Lopez, R., V. Carballo, M. Fucugauchi, and<br />

L. Garcia M. 1985. Metazoarios parasites de peces<br />

de importancia comercial de la region de los<br />

Rios, Tabasco, Mexico. Usumacinta 1(1): 196-<br />

270.<br />

Salgado-Maldonado, G., and L. Aguirre-Macedo.<br />

1991. Metacercarias parasitas de Cichlasoma urophthalmus<br />

(Cichlidae) Pelaezici loossi n. comb, y<br />

Phagicola angrense con descripcion de adultos recuperados<br />

experimentalmente. Anales del Instituto<br />

de Biologia, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 62:391-407.<br />

Scholz, T., and J. Vargas-Vazquez. 1998. Trematodes<br />

from fishes <strong>of</strong> the Rio Hondo River and<br />

freshwater lakes <strong>of</strong> Quintana Roo, Mexico. Journal<br />

<strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

65:91-95.<br />

, , F. Moravec, C. Vivas-Rodriguez,<br />

and E. Mendoza-Franco. 1995a. Cenotes (sinkholes)<br />

<strong>of</strong> the Yucatan Peninsula, Mexico, as a habitat<br />

<strong>of</strong> adult trematodes <strong>of</strong> fish. Folia Parasitologica<br />

42:37-47.<br />

, , , , and . 1995b.<br />

Metacercariae <strong>of</strong> trematodes <strong>of</strong> fishes from cenotes<br />

(= sinkholes) <strong>of</strong> the Yucatan Peninsula, Mexico.<br />

Folia Parasitologica 42:173-192.<br />

Yamaguti, S. 1971. Synopsis <strong>of</strong> Digenetic Trematodes<br />

<strong>of</strong> Vertebrates. Parts I, II. Keigaku Publishing Co.,<br />

Tokyo. 1074 pp. + 347 plates.<br />

. 1975. A Synoptical Review <strong>of</strong> Life Histories<br />

<strong>of</strong> Digenetic Trematodes <strong>of</strong> Vertebrates. Keigaku<br />

Publishing Co., Tokyo. 590 pp. + 219 plates.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 155-174<br />

Ultrastructure <strong>of</strong> the Female Reproductive System <strong>of</strong> the Lesion<br />

Nematode, Pratylenchus penetrans (Nemata: Pratylenchidae)<br />

BURTON Y. ENDO', ULRICH ZuNKE2, AND WILLIAM P. WERGiN1-3<br />

1 U.S. Department <strong>of</strong> Agriculture, Agricultural Research Service, Plant Sciences Institute, Nematology<br />

Laboratory, Beltsville, Maryland 20705-2350, U.S.A., and<br />

2 Universtat Hamburg, Institut fur Angewandte Botanik, Marseiller Str. 7, 20355, Hamburg, Germany<br />

ABSTRACT: Transmission electron microscopy <strong>of</strong> the reproductive system <strong>of</strong> adult females <strong>of</strong> Pratvlenchus<br />

penetrans (Cobb) Filipjev and Schuurmans Stekhoven revealed details <strong>of</strong> oocyte development and the transformation<br />

<strong>of</strong> oocytes into eggs. Oogonial cell divisions were not observed; however, oogonial development into<br />

oocytes was distinctive in that most <strong>of</strong> the nuclei <strong>of</strong> ovarian cells were in the pachytene stage (i.e., prophase I<br />

<strong>of</strong> meiosis). In the midsection <strong>of</strong> the ovary, the oocytes increase in number, enlarge, and accumulate in a single<br />

row. Next, the oocytes enter a muscular oviduct and begin to accumulate lipid bodies and protein granules. <strong>The</strong><br />

plasma membrane <strong>of</strong> the oviduct becomes plicated and forms cisternae; centralized membrane junctions establish<br />

openings for oocytes to enter the spermatheca. Spermatozoa traverse the lumen <strong>of</strong> the uterus and accumulate in<br />

the spermatheca. Each oocyte then passes through the spermatheca proximally and then traverses between<br />

columnar cells. <strong>The</strong> posteriad regions <strong>of</strong> the columnar cells attach to other uterine cells to form the central<br />

lumen <strong>of</strong> the uterus that extends beyond the vaginal opening and into the postvulvar uterine branch <strong>of</strong> the<br />

reproductive system. <strong>The</strong> fertilized egg is deposited to the exterior after passing between cuticle-lined vaginal<br />

and vulval walls supported by anteriad and posteriad muscle bands, which have ventrosublateral insertions on<br />

the body wall.<br />

KEY WORDS: transmission electron microscopy, lesion nematode, female reproductive system, Pratylenchus<br />

penetrans, Nemata, Pratylenchidae.<br />

<strong>The</strong> lesion nematodes, Pratylenchus spp., are<br />

among the most destructive plant pathogenic<br />

nematodes world-wide (Mai et al., 1977; Dropkin,<br />

1989; Zunke, 1990a). Dropkin (1989) reviewed<br />

the disease symptoms and pathogenesis<br />

<strong>of</strong> Pratylenchus species, which occur as single<br />

parasites or in combination with other pathogens.<br />

<strong>The</strong> ectoparasitic and endoparasitic feeding<br />

behavior <strong>of</strong> Pratylenchus penetrans (Cobb,<br />

1917) Filipjev and Schuurmans Stekhoven,<br />

1941, has been studied using video-enhanced<br />

contrast light microscopy (Zunke and Institut fiir<br />

den Wissenschaftlichen Film, 1988; Zunke,<br />

1990b) and transmission electron microscopy<br />

(TEM) (Townshend et al., 1989). Light microscopic<br />

studies also have described embryogenesis<br />

and postembryogenesis, including the molting<br />

process and the development <strong>of</strong> the reproductive<br />

system, in several species <strong>of</strong> Pratylenchus<br />

(Roman and Hirschmann, 1969a, b). In a<br />

related study <strong>of</strong> Ditylenchus triformis, Hirschmann<br />

(1962) illustrated the development <strong>of</strong> male<br />

and female reproductive systems during postembryogenesis,<br />

beginning with the genital primordium.<br />

Recently, we used TEM to describe the<br />

1 Corresponding author.<br />

general anatomy <strong>of</strong> P. penetrans (Endo et al.,<br />

1997) and the development <strong>of</strong> the testis, including<br />

the production and morphology <strong>of</strong> spermatozoa<br />

(Endo et al., 1998). <strong>The</strong>se observations<br />

complement extensive studies on spermatogenesis<br />

and sperm ultrastructure <strong>of</strong> various species<br />

<strong>of</strong> cyst nematodes (Shepherd et al., 1973; Cares<br />

and Baldwin, 1994a, b, 1995). To extend these<br />

studies, TEM was used to describe the ultrastructure<br />

<strong>of</strong> the female reproductive system <strong>of</strong><br />

P. penetrans, with emphasis on oocyte development<br />

in the ovary and the morphology <strong>of</strong> the<br />

oviduct, spermatheca, columnar cells, and central<br />

uterus. <strong>The</strong> studies <strong>of</strong> development <strong>of</strong> the<br />

eggs include evaluation <strong>of</strong> egg shell depositions<br />

in the uterus and the vaginal and vulval muscle<br />

morphology as they relate to egg laying.<br />

Materials and Methods<br />

Infective and parasitic stages <strong>of</strong> P. penetrans were<br />

obtained from root cultures <strong>of</strong> corn (Zea mays Linnaeus<br />

'Ichief') grown in Gamborg's B-5 medium without<br />

cytokinins or auxins (Gamborg et al., 1976). Adults<br />

and juveniles were collected from infected root segments<br />

that were incubated in water. <strong>The</strong> samples were<br />

prepared for electron microscopy as previously described<br />

(Endo and Wcrgin, 1973; Wergin and Endo,<br />

1976). Briefly, nematodes, which were embedded in<br />

2% water agar or in infected roots, were chemically<br />

155<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


156 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

fixed in buffered 3% glutaraldehyde (0.05 M phosphate<br />

buffer, pH 6.8) at 22°C for 1.5 hr, washed for 1 hr in<br />

6 changes <strong>of</strong> buffer, postfixed in buffered 2% osmium<br />

tetroxide for 2 hr, dehydrated in an acetone series, and<br />

infiltrated with a low-viscosity embedding medium<br />

(Spurr, 1969). Silver-gray sections were cut on an ultramicrotome<br />

with a diamond knife and mounted on<br />

uncoated 75 X 300 mesh copper grids. <strong>The</strong> sections<br />

were stained with uranyl acetate and lead citrate and<br />

viewed in a Philips 400T® electron microscope operating<br />

at 60 kV with a 30-|xm objective aperture.<br />

Results<br />

<strong>The</strong> female reproductive system <strong>of</strong> P. penetrans<br />

has amphidelphic development during early<br />

stages <strong>of</strong> postembryogenesis. However, later<br />

in the adult development, the posterior region <strong>of</strong><br />

the ovary becomes reduced to a postvulvar uterine<br />

branch (Fig. 1). This change results in a telogonic<br />

gonad having a prodelphic orientation<br />

and a short postvulvar uterine branch that consists<br />

<strong>of</strong> epithelial cells. <strong>The</strong> cells in the anterior<br />

terminus <strong>of</strong> the ovary have spheroid nuclei, numerous<br />

polyribosomes, and high concentrations<br />

<strong>of</strong> rough endoplasmic reticulum (RER), mitochondria,<br />

Golgi, and electron-dense granules<br />

(Fig. 2 on Foldout 1). <strong>The</strong>se germinal cells are<br />

completely ensheathed by spindle-shaped epithelial<br />

cells (Figs. 2, 3, 5, 6 on Foldout 2) that<br />

lie adjacent to and between the ovarian cells. In<br />

longitudinal view, the anterior gonad occupies<br />

about half the diameter <strong>of</strong> the body cavity (Figs.<br />

1, 6, 7). Nuclear divisions <strong>of</strong> oogonia were not<br />

observed in the specimens studied. However, as<br />

the ovarian cells increase in number and size,<br />

the germ cells contribute to a double row <strong>of</strong><br />

overlapping oogonia (Figs. 3-5). Posteriorly, oocytes<br />

occur in a single row in the ovary and<br />

attain a slightly larger size than the germinal<br />

cells in the anterior region (Figs. 6-8 on Foldout<br />

3). <strong>The</strong> cellular organelles <strong>of</strong> the oocytes found<br />

in the midregion and proximal sites <strong>of</strong> the ovary<br />

are similar to those present in the oogonia (Figs.<br />

2—5). <strong>The</strong> well-defined nuclei <strong>of</strong> oocytes in the<br />

midregion <strong>of</strong> the ovary contain fragments <strong>of</strong><br />

synaptonemal complexes, indicating that the oocytes<br />

are at the pachytene stage <strong>of</strong> prophase I<br />

(Figs. 4, 5). <strong>The</strong> synaptonemal complex is a tripartite<br />

structure consisting <strong>of</strong> a central scalariform<br />

element and a pair <strong>of</strong> lateral elements. This<br />

complex is surrounded by condensed chromatin<br />

(Fig. 5). <strong>The</strong> nucleoli are prominent, large, and<br />

electron-dense (Figs. 3, 5-7). Nuclei occupy a<br />

major part <strong>of</strong> the enlarged volume <strong>of</strong> oocytes in<br />

the proximal region <strong>of</strong> the ovary (Fig. 7). In actively<br />

reproducing females, oocytes near the anterior<br />

entrance <strong>of</strong> the oviduct or within the oviduct<br />

channel have an accumulation <strong>of</strong> electrontranslucent<br />

lipid droplets (Fig. 10).<br />

Oviduct<br />

<strong>The</strong> oviduct (Fig. 11 on Foldout 4) consists<br />

<strong>of</strong> a series <strong>of</strong> irregularly shaped cells having plicated<br />

plasma membranes. Although adjacent<br />

cells are generally separated by many intercellular<br />

spaces, membrane junctions interconnect<br />

the cells and allow for the extensive opening <strong>of</strong><br />

the oviduct that is required during passage <strong>of</strong> the<br />

enlarged oocytes. Muscle filaments are associated<br />

with most <strong>of</strong> the cells along the length <strong>of</strong><br />

the oviduct (Fig. 9). Oviduct cells contain mitochondria<br />

and nuclei with irregularly shaped nuclear<br />

membranes lined with electron-dense chromatin.<br />

<strong>The</strong> cells occupy the ventral region <strong>of</strong> the<br />

body cavity and lie adjacent to the intestinal epithelium<br />

(Fig. 11). In the distal portion <strong>of</strong> the<br />

oviduct, the cells are more tightly packed and<br />

have centrally located membrane junctions (Fig.<br />

12). In this region, the cells are not associated<br />

with muscle filaments. <strong>The</strong>se closely arranged<br />

cells appear to function as a valve for the entry<br />

<strong>of</strong> oocytes into the spermatheca. Sperm were not<br />

observed on this side <strong>of</strong> the spermatheca.<br />

Spermatheca<br />

<strong>The</strong> terminal cells <strong>of</strong> the oviduct are attached<br />

closely to spindle-shaped cells <strong>of</strong> the spheroid<br />

spermatheca (Fig. 11). Membranes <strong>of</strong> the cells<br />

<strong>of</strong> the spermatheca are joined together with<br />

prominent lateral membrane junctions. Spermatozoa<br />

in the center <strong>of</strong> spermatheca have prominent<br />

masses <strong>of</strong> chromatin that are surrounded by<br />

clusters <strong>of</strong> mitochondria and widely dispersed<br />

fibrillar bundles (Fig. 11). <strong>The</strong>se structures are<br />

similar to the major sperm protein bodies that<br />

have been identified and described in other nematode<br />

species (Shepherd et al., 1973). <strong>The</strong> spermatozoa<br />

seem to be suspended in a moderately<br />

electron-dense fluid similar in appearance to the<br />

contents <strong>of</strong> the vas deferens <strong>of</strong> males. <strong>The</strong> posteriad<br />

boundary <strong>of</strong> the spermatheca joins a series<br />

<strong>of</strong> columnar cells <strong>of</strong> the uterus (Figs. 11, 13).<br />

Columnar cells <strong>of</strong> the uterus<br />

Columnar cells leading posteriad from the<br />

spermatheca have plicated limiting membranes<br />

(Fig. 15 on Foldout 5) similar to those <strong>of</strong> cells<br />

in the oviduct (Fig. 8) but differing by the ab-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


A<br />

ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 157<br />

B<br />

oviduct<br />

spermatheca<br />

columnar cells<br />

<strong>of</strong> uterus<br />

proximal region<br />

<strong>of</strong> uterus<br />

vulva<br />

$<br />

columnar cells<br />

<strong>of</strong> uterus<br />

post-vulvar<br />

uterine branch<br />

vagina<br />

postvulvar<br />

uterine branch<br />

anus<br />

I<br />

1<br />

Figure 1. Line drawings <strong>of</strong> the female reproductive system <strong>of</strong> Pratylenchus penetrans, illustrating the<br />

features <strong>of</strong> pseudomonodelphic reproductive development. (A) Anterior region <strong>of</strong> the gonad containing<br />

oogonial cells and oocytes in growth phase. (B) Posterior region <strong>of</strong> the reproductive system showing a<br />

postvulvar uterine branch. Posteriad to the oocytes are the oviduct, spermatheca, columnar cells <strong>of</strong> the<br />

uterus, and the vaginal-vulval regions.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


-<br />

•^ * x-<br />

^*"^ "^^ <<br />

:,>*%-;^ •T'jv-; -v-*. :«.v»"<br />

'^•F-•"•&**£. V; ,1y;.?-- - •'vV-»<br />

.;§ -/^-" -. '•&£<br />

•<br />

t-<br />

'<br />

. ^*@i<br />

"£-«;^<br />

- V.^---.'*X:'i> ."«,>*',«A .•••-•'•<br />

--"^'--V,''<br />

P<br />

-" ^--.v*'^<br />

fm.:< -,Vvx:.* '<br />

•*"<br />

**v<br />

L i ~, *?*• -C Al •*£&<br />

^"%.^<br />

* ,'<br />

-W& &<br />

-j.f> : •, ¥SB?*QF.'**••- «^v,<br />

^'W fp&'-S!<br />

Figure 2. Distal region <strong>of</strong> the ovary <strong>of</strong> P. /7cne/raws showing 3 enlarged distal cells. Germinal cells<br />

(GC) arc precursors to oocyte development. Cells <strong>of</strong> the gonad epithelium lie adjacent to linearly arranged<br />

germ cells (i.e., oogonia and oocytes). GEN, gonad epithelium nucleus; M, mitochondria. (Note: In this<br />

and in later longitudinal figures that are illustrated with fold-outs (Figs. 2, 6, 8, 11, 15, 20), the proximal<br />

or left axis is toward the head <strong>of</strong> the nematode, whereas the distal or right axis is toward the tail. In the<br />

longitudinal sections that are illustrated in the single plates, the head to tail orientation is top to bottom.)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


158 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figure 3. Longitudinal section through oocytes <strong>of</strong> P. pcnetrans in the region <strong>of</strong> their growth phase.<br />

Nucleoplasm with fragments <strong>of</strong> chromatin and electron-dense nucleolus (Nu). GEN, gonad epithelium<br />

nucleus; N, oocyte nucleus.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 159<br />

r^V;"'' " • «aH<br />

..• •" • " '>jK'a*' _-'Jr . JaO*<br />

..... .:; -.--"'v :. -••»• * ' T" • -<br />

c-/-Jx)>".<br />

•*>> 7^?S.'<br />

'- Hp%» ~- • - A*a<br />

'• '' * -v - • -, i<br />

i trv - -- i wdi<br />

rt-v*^4. •* v -1<br />

Figure 4. Longitudinal, submedian section <strong>of</strong> ovary <strong>of</strong> P. penetrans showing oocytes (O) during initial<br />

stages <strong>of</strong> meiosis. M, mitochondria; N, nucleus; SM, somatic muscles.<br />

13). However, a preformed lumen is not appar-<br />

ent. In this region, the spermatozoa may be dis-<br />

placed from the spermatheca as the oocyte<br />

moves through the central part <strong>of</strong> the uterus.<br />

sence <strong>of</strong> muscle filaments within their cell<br />

boundaries. Membrane junctions between cells<br />

near the spermatheca define the region in which<br />

a lumen may form during oocyte passage (Fig.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


160 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

. '~SM$mm^?i••<br />

/.r» •' ' '-'-'-^^^<br />

yfa *• ^iv ' ;^;;!^:^"!tS^^?^^^S^^ ^^'^^^P^ff<br />

Figure 5. Transverse section <strong>of</strong> midregion <strong>of</strong> an ovary <strong>of</strong> P. penetrans, showing oocytes at pachytene<br />

stage <strong>of</strong> meiosis. Oocytes (O) are surrounded by gonad epithelial cells (GE), whose cytoplasm extends<br />

between the germinal cells. GEN, gonad epithelium nucleus; G, Golgi apparatus; M, mitochondria; Nu,<br />

nucleolus; N, nucleus; SC, synaptonemal complex.<br />

uterus have dense clusters <strong>of</strong> mitochondria and<br />

numerous polyribosomes throughout the cyto-<br />

plasm (Figs. 13, 15). <strong>The</strong> distal columnar cells<br />

<strong>of</strong> the uterus contain relatively large clusters <strong>of</strong><br />

electron-dense material (Fig. 15). <strong>The</strong> lumen,<br />

When this occurs, the invagination <strong>of</strong> the plasma<br />

membrane <strong>of</strong> the columnar cell results in a spermatozoan<br />

that appears to have a double membrane<br />

(Fig. 13). Fertilization was not evident in<br />

the oocytes observed. Columnar cells <strong>of</strong> the<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


.- x<br />

^- -N<br />

Figure 6. Longitudinal section <strong>of</strong> the proximal region <strong>of</strong> the ovary <strong>of</strong> P. penetrans, illustrating growth<br />

stage <strong>of</strong> oocytes. GE, gonad epithelium; Nu, nucleolus; N, nucleus.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 161<br />

Figure 7. Longitudinal section <strong>of</strong> oocytes in proximal region <strong>of</strong> ovary <strong>of</strong> P. penetrans. An oocyte lies<br />

adjacent to the plicated cell membrane <strong>of</strong> the oviduct (Od).<br />

which forms as the egg passes into the columella,<br />

merges with the central, fluid-filled channel<br />

<strong>of</strong> the uterus (Fig. 15). <strong>The</strong> main channel <strong>of</strong><br />

the uterus continues posteriad as a flattened or<br />

collapsed region that extends across the ventral<br />

sector <strong>of</strong> the body, terminating in a postvulvar<br />

uterine branch (Figs. 17-19). <strong>The</strong> uterus opens<br />

ventrally through the cuticle-lined vagina and<br />

vulva (Fig. 16).<br />

Egg passage<br />

<strong>The</strong> traversing <strong>of</strong> an oocyte or egg through<br />

the spermatheca or between columnar cells compresses<br />

epithelial cells (Figs. 14, 20 on Foldout<br />

6). In the absence <strong>of</strong> an egg within the uterus,<br />

the abundance <strong>of</strong> mitochondria and ribosomes<br />

and the occurrence <strong>of</strong> scattered secretory globules<br />

suggest that the columnar cells are metabolically<br />

active (Fig. 15). In the presence <strong>of</strong> an<br />

egg in the uterine channel, secretory granules<br />

occur intracellularly in compressed regions <strong>of</strong><br />

uterine cells and extracellularly in the space between<br />

the surface <strong>of</strong> the egg and the limiting<br />

membrane <strong>of</strong> the columnar cells (Fig. 20). <strong>The</strong><br />

accumulated secretory granules appear to contribute<br />

to the electron-dense deposits that form<br />

the egg shell. <strong>The</strong>se deposits (Figs. 20, 21 on<br />

Foldout 6) accumulate on the vitelline layer,<br />

which is derived from the oolemma and has a<br />

unit membrane-like structure. Just below the vitelline<br />

layer is a chitinous layer followed by a<br />

lipid layer. <strong>The</strong> egg shell appears to be separated<br />

from the egg cytoplasm by a unit membrane.<br />

Tangential sections through the egg revealed<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


^•f^aj^a- 7<br />

aK^v"-^- r* ^fe2?lB^<br />

$K> - " IMfi*?*' .;&* - •«. - I<br />

$&»*,":: * rSjs^w > »<br />

%--^A4<br />

•^^ -<br />

" '•***.*'! ^PC^^ yfr'<br />

1<br />

ifr>">C?a 4^-^/<br />

^-•fs^iiri<br />

TV *-*, \-* * - ' A Jito -*. * !*j£3Ua***!K' • />//^< '<br />

t^ -•""-' Y "i* *<br />

L^ggfci<br />

8<br />

Figure 8. Longitudinal section <strong>of</strong> oviduct <strong>of</strong> P. penetrans. Plicated cell membranes (PCM) form cisternac-like<br />

invaginations among the enlarged irregularly shaped cells along the oviduct (Od), which lacks a<br />

preformed lumen.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


162 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2). JULY 1999<br />

Figure 9. Longitudinal section <strong>of</strong> P. penetrans showing the junction between an oocyte and the oviduct<br />

(Od) supported by plicated cell wall membranes (PCM). Some cells with plicated membranes are associated<br />

with muscle filaments (MF). N, nucleus.<br />

electron-transparent lipid bodies, numerous electron-dense<br />

protein granules (Fig. 20), and the<br />

sperm or egg nucleus, which contains prominent<br />

chromatin (Figs. 20, 22 on Foldout 6).<br />

<strong>The</strong> vaginal-vulvar region<br />

<strong>The</strong> wall <strong>of</strong> the vagina is continuous with the<br />

body cuticle (Fig. 16). Hemidesmosomes attach<br />

pairs <strong>of</strong> broad muscle bands to anteriad and posteriad<br />

portions <strong>of</strong> the vulva cuticle. <strong>The</strong>se 4 fiber<br />

bands extending anteriad are believed to correspond<br />

to the anterior dilatores vulvae, whereas<br />

the posteriad muscle fibers are the posterior dilatores<br />

vulvae (Fig. 16). <strong>The</strong> muscle bands project<br />

ventrolaterally and connect with somatic<br />

muscles along the body cuticle (Fig. 17). Adjacent<br />

and internal to the vulva wall muscles is a<br />

broad band <strong>of</strong> sphincter muscles or the constrictor<br />

vaginae. Adjacent and dorsal to the constrictor<br />

muscles are the anterior and posterior dilatores<br />

vaginae (Fig. 16). <strong>The</strong> cuticle <strong>of</strong> the vaginal<br />

wall is continuous with the ventral lining <strong>of</strong><br />

the uterine channel.<br />

Anal region<br />

<strong>The</strong> body wall cuticle forms the lining <strong>of</strong> the<br />

anus and invaginates into the body cavity to<br />

form the lining <strong>of</strong> the rectum, which extends<br />

dorsoanteriad and subterminally into the tail region<br />

(Fig. 23). Proximally, the cuticular rectal<br />

channel is flat and broad (Fig. 25); distally it<br />

becomes elongate and oblong (Fig. 24). <strong>The</strong><br />

noncuticularized region <strong>of</strong> the lumen is supported<br />

by rectal cells. <strong>The</strong> lumen may also be occluded<br />

by membrane evaginations <strong>of</strong> rectal cells<br />

joined laterally by membrane junctions. <strong>The</strong> H-<br />

shaped conformation <strong>of</strong> cells surrounding the<br />

rectum (Figs. 24, 25) coincides with the position<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 163<br />

mn^i*<br />

10<br />

Figure 10. Transverse section <strong>of</strong> an oocyte (O) within the oviduct <strong>of</strong> P. penetrans. <strong>The</strong> oocyte is filled<br />

with large merging lipid droplets (LD) and a few protein granules (PG) that lie within the cytoplasmic<br />

matrix.<br />

<strong>of</strong> the depressor ani muscles that connect the<br />

dorsal rectal cuticle to the dorsal lateral body<br />

cuticle via hemidesmosomes.<br />

Discussion<br />

In a study <strong>of</strong> postembryogenesis, Roman and<br />

Hirschmann (1969a) determined that several<br />

species <strong>of</strong> Pratylenchus, including P. vulnus, P.<br />

c<strong>of</strong>feae, P. penetrans, P. brachyurus, P. zeae, P.<br />

neglectus, and P. crenatus, have an amphidelphic<br />

pattern <strong>of</strong> gonad development. However, the<br />

monosexual species P. scribneri follows a monodelphic<br />

pattern. In the amphidelphic species, 2<br />

gonads develop until the fourth molt, then the<br />

posterior gonad deteriorates. <strong>The</strong> remaining gonad<br />

is prodelphic, similar to that <strong>of</strong> P. penetrans.<br />

<strong>The</strong> distal end <strong>of</strong> the telogonic gonad is occupied<br />

by an ovary with a short germinal zone and<br />

an elongated growth zone. <strong>The</strong> germinal zone<br />

contains oogonial cells that undergo rapid mitotic<br />

divisions. In the growth zone, the oocytes<br />

enlarge. <strong>The</strong> ovary is followed by a narrowly<br />

folded oviduct that is connected to the spermatheca<br />

by a 12-celled constriction (Roman and<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


11<br />

Figure 11. Longitudinal section <strong>of</strong> spermatheca <strong>of</strong> P. penetrans. <strong>The</strong> anterior boundary <strong>of</strong> the spermatheca<br />

(S) is surrounded by epithelial cells that are joined by membrane junctions (MJ). Spermatozoa<br />

(Sp) within the spermatheca contain electron-dense chromatin (C), mitochondria, and fihrHlar bundles<br />

(FB). <strong>The</strong> posteriad boundary <strong>of</strong> the spermatheca merges with enlarged columnar cells (CC) <strong>of</strong> the uterus.<br />

Columnar cells near the spermatheca contain enlarged electron-dense globules (EDG), numerous mitochondria,<br />

and ribosomes.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


164 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figure 12. Transverse section through cells at the proximal region <strong>of</strong> the oviduct and anterior region<br />

<strong>of</strong> the spermatheca <strong>of</strong> P. penetrans. Membrane junctions (MJ) join adjacent cells so that a lumen is formed<br />

for the oocyte passage into the spermatheca.<br />

•^^.^r\&^


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 165<br />

1:0 jum<br />

Figure 14. Longitudinal section <strong>of</strong> an egg emerging from a spermatheca in a female P. penetrans.<br />

Spermatozoa (Sp) remaining in spermatheca (S) after oocyte passage appear to be oriented toward the<br />

emerged egg (E). <strong>The</strong>ir electron-dense nuclei (N) and mitochondria adhere to the internal surface <strong>of</strong> the<br />

leading membrane <strong>of</strong> the spermatozoa. <strong>The</strong> membrane trailing the major body <strong>of</strong> the egg is intact and<br />

clearly separated from the spermatheca and its contents.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


15<br />

Submedian longitudinal section <strong>of</strong> columnar cells (CC) that delineate the lumen in the distal<br />

Figure 15.<br />

region <strong>of</strong> the uterus. <strong>The</strong> uterine channel (UC) posteriad from the columnar cells is filled with electrondense<br />

granular material (EDGM) that extends from beyond the vagina into the postvulvar uterine region<br />

<strong>of</strong> the reproductive system. This submedian section illustrates the continuity <strong>of</strong> the lining <strong>of</strong> the vaginal<br />

lumen (VO) with the body wall cuticle (C), but not with the lumen <strong>of</strong> the uterus. Tangential sections show<br />

muscle fibers that belong to the dilatorcs vaginae (DVa) and dilatores vulvae (DVu), which play a major<br />

role in egg deposition. EDGL, electron-dense globules; MJ, membrane junctions; PCM, plicated cell membranes;<br />

Vu, vulva.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


166 JOURNAL OF THE HRLMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

1.0 Jim<br />

Figure 16. Longitudinal section <strong>of</strong> the uterus and vagina <strong>of</strong> P. penetrans. <strong>The</strong> cuticular lining <strong>of</strong> the<br />

vagina is continuous with the body wall cuticle (C) and extends internally to join the uterine channel<br />

(UC). Hemidesmosomes (H) attach the dilatores vaginae (DVa) and dilatores vulvae (DVu) muscles to the<br />

cuticle lining the vulva and vagina. Constrictores vaginae (CV) or sphincters surround and attach to the<br />

cuticle that forms the inner region <strong>of</strong> the vagina.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


EN DO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 167<br />

17<br />

SM . -.-.<br />

tfPlBFti<br />

. " , >'> - ',<br />

Figure 17. Transverse section through columnar cells (CC) <strong>of</strong> the uterus surrounding the proximal<br />

end <strong>of</strong> the uterine channel (UC) <strong>of</strong> P. penetrans. Muscle elements adjacent to the columnar cells are<br />

extensions <strong>of</strong> dilatores vaginae (DVa) or dilatores vulvae (DVu) muscles. Other extensions <strong>of</strong> these muscles<br />

(DVa and DVu) contact the laterosubventral somatic muscles. SM, somatic muscles.<br />

Hirschmann, 1969b). <strong>The</strong> spermatheca, which is<br />

composed <strong>of</strong> about 10 epithelial cells, is followed<br />

by the uterus that consists <strong>of</strong> 2 portions.<br />

<strong>The</strong> distal portion is composed <strong>of</strong> 12 large gland<br />

cells arranged in 4 rows <strong>of</strong> 4 cells each (tricolumella)<br />

that could have a role in egg shell deposition.<br />

<strong>The</strong> proximal portion is a short tube<br />

lined with a flat epithelium. This portion enters<br />

the vagina, which is lined with cuticle and supported<br />

by muscles and opens through the vulva.<br />

Specialized muscles dilate the vulva during oviposition<br />

(Hirschmann, 1971).<br />

In the present study, the ultrastructural observations<br />

were <strong>of</strong> adult specimens <strong>of</strong> P. penetrans.<br />

<strong>The</strong> morphology <strong>of</strong> the reproductive system that<br />

we observed is similar to the modified amphidelphic<br />

mode <strong>of</strong> development described in previous<br />

studies. Briefly, in Pratylenchus crenatus<br />

and P. penetrans (Dickerson, 1962) and in a diverse<br />

group <strong>of</strong> Pratylenchus species (Roman and<br />

Hirschmann, 1969a), the reproductive system is<br />

comprised <strong>of</strong> a functional anterior ovary and a<br />

posterior branch <strong>of</strong> the ovary reduced to a postvulvar<br />

uterine branch. <strong>The</strong> mitotic divisions occur<br />

in the blunt anterior terminus <strong>of</strong> the developing<br />

ovary (Coomans, 1962; Dickerson, 1962;<br />

Hirschmann, 1962; Yuen, 1964; Roman and<br />

Hirschmann, 1969a). Mitotic divisions were not<br />

observed in distal cells <strong>of</strong> the ovary. <strong>The</strong>se<br />

events may occur rather quickly and may not<br />

have been captured at our fixation times. No distinction<br />

could be made between oogonial and<br />

oocyte cells in the anterior region <strong>of</strong> the ovary<br />

in several mature female specimens. However,<br />

lipid accumulations were observed among oocytes<br />

in the oviduct <strong>of</strong> an actively reproducing<br />

female. In addition, our observations suggest<br />

that extracellular lipid or protein granules could<br />

nourish the oocyte.<br />

Future work should involve labeling experiments<br />

to show the movement <strong>of</strong> secretory granules<br />

from ovarian epithelial cells across the limiting<br />

membranes <strong>of</strong> the oocyte. If this movement<br />

occurs, it could explain the accumulation <strong>of</strong> lipids<br />

and proteins that are associated with oocyte<br />

enlargement. Changes also appear to occur in<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


168 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

SM<br />

v&J'BM<br />

•M$&L,<br />

KK^P<br />

sac «*•<br />

1.0 jim<br />

Figure 18. Transverse section <strong>of</strong> the uterine channel (UC) and muscles associated with the dilation <strong>of</strong><br />

the vagina and vulva during egg deposition by P. penetrans. DVa, dilatores vaginae; DVu, dilatores vulvae;<br />

SM, somatic muscles.<br />

the morphology and porosity <strong>of</strong> the oocyte surface<br />

as it passes through the spermatheca, becomes<br />

fertilized by sperm, and begins to receive<br />

egg shell depositions from columnar cells prior<br />

to egg deposition. <strong>The</strong> electron-dense globules<br />

observed in some cells <strong>of</strong> the distal region <strong>of</strong><br />

the columnar cells are unusual and are dissimilar<br />

to secretory granules observed in the cells forming<br />

the oviduct and proximal regions <strong>of</strong> the uterus.<br />

In our study, nuclear divisions were not observed<br />

in the distal region <strong>of</strong> the ovary <strong>of</strong> the<br />

mature females. This observation is consistent<br />

with the observations <strong>of</strong> Roman and Hirschmann<br />

(1969a), who found that oogonial divisions<br />

occur in the germinal zone <strong>of</strong> the ovary <strong>of</strong><br />

fourth-stage juveniles and probably in young females,<br />

but not in mature, egg-laying females.<br />

Similarly, oogonial divisions were observed in<br />

populations <strong>of</strong> the soybean cyst nematode, Heterodera<br />

glycines, before and during the fourth<br />

molt. This species has a normal meiotic cycle<br />

and reproduces by cross-fertilization (Triantaphyllou<br />

and Hirschmann, 1962).<br />

<strong>The</strong> presence <strong>of</strong> synaptonemal complexes in<br />

many <strong>of</strong> the ovary cells proximal to the anterior<br />

end indicate that many <strong>of</strong> the oocytes are in the<br />

pachytene stage <strong>of</strong> prophase I. <strong>The</strong> presence <strong>of</strong><br />

the tripartite synaptonemal complex is consistent<br />

with observations <strong>of</strong> nuclei in the testes <strong>of</strong> P.<br />

penetrans. This tripartite pattern differs from<br />

that <strong>of</strong> most species <strong>of</strong> Meloidogyne, which have<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.— ULTRASTRUCTURE OF THE LESION NEMATODE 169<br />

uc |jy?<br />

1.0 jim<br />

Figure 19. Transverse section through the uterine channel (UC) <strong>of</strong> P. penetrans showing the broad<br />

opening for egg passage. <strong>The</strong> bands <strong>of</strong> muscles adjacent to the uterine channel are the dilatores vaginae<br />

(DVa). <strong>The</strong> bands <strong>of</strong> muscles midventral and close to the body wall cuticle constitute the vulval wall<br />

muscles, dilatores vulvae (DVu). I, intestine; U, uterus.<br />

a bipartite pattern consisting <strong>of</strong> 2 lateral elements<br />

but lacking striated central elements<br />

(Westergaard and von Wettstein, 1972; Goldstein<br />

and Triantaphyllou, 1995). Whether or not<br />

the tripartite pattern <strong>of</strong> the synaptonemal complex<br />

occurs in most species <strong>of</strong> Pratylenchus is<br />

not yet determined. Observations <strong>of</strong> Caenorhabditis<br />

elegans show that developing oocytes are<br />

arranged in single file along the proximal arm<br />

<strong>of</strong> the ovary, the site <strong>of</strong> gametogenesis in a hermaphrodite.<br />

Oocytes are arrested at diakinesis in<br />

meiotic prophase I. After the oocyte is fertilized,<br />

the zygote moves through the spermatheca to the<br />

uterus, where meiosis is completed (Kimble and<br />

Ward, 1988).<br />

In Xiphinema theresiae, the ovary has 2 types<br />

<strong>of</strong> cells: the ovarian epithelial cells and the germ<br />

cells (Van De Velde and Coomans, 1988). <strong>The</strong><br />

ovarian epithelial cells form a thin layer around<br />

the germ cells and have nuclei between some <strong>of</strong><br />

the germ cells. At some sites, processes <strong>of</strong> ovarian<br />

epithelial cells extend inward to form a central<br />

cytoplasmic mass, which has cytoplasmic<br />

contact with the germ cells. <strong>The</strong>se cells develop<br />

2 membrane-derived features, the villi and the<br />

small coated bulges, which are thought to play<br />

a role in transport. However, X. theresiae does<br />

not have a typical rachis, a large, clearly delineated<br />

structure, around which oogonia are arranged<br />

and make cytoplasmic contact.<br />

Bird and Bird (1991) described a typical rachis<br />

for the telogonic and didelphic reproductive<br />

system <strong>of</strong> the female root-knot nematode, Meloidogyne<br />

javanica. <strong>The</strong> oogonia are radially arranged<br />

around a central anucleate rachis to<br />

which oogonia are attached by cytoplasmic<br />

bridges. In C. elegans, which is monodelphic,<br />

mitotic germ cells occupy the distal end <strong>of</strong> the<br />

ovary, and meiotic cells occupy the remaining<br />

portion <strong>of</strong> the gonad (Kimble and White, 1981).<br />

A typical rachis was not observed in the female<br />

reproductive system <strong>of</strong> P. penetrans.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


SM ,v<br />

20<br />

Figures 20-22. Section <strong>of</strong> an egg <strong>of</strong> Pratylcnchiis penetrans. 20. Tangential section through an egg within the postvulvar uterine branch. This section is from the same specimen shown<br />

shows an oocyte in the oviduct. <strong>The</strong> oocyte cytoplasm is filled primarily with lipid bodies. In contrast, the cytoplasm <strong>of</strong> the egg contains numerous irregularly shaped electron-translucent lip<br />

numerous electron-dense protein granules (PG) that generally occur around the lipid droplets. <strong>The</strong> nucleus (N) is located near one end <strong>of</strong> the egg. <strong>The</strong> egg shell (ES) has a well-defined<br />

vitelline layer and an electron-translucent inner chitinous layer. Electron-dense secretory granules (SG) accumulate on the surface <strong>of</strong> the egg. Similar granules occur singly or in clusters<br />

cells <strong>of</strong> the uterus or supporting cells <strong>of</strong> the uterine channel. <strong>The</strong> intercellular electron-dense granules originating in these cells appear to be secreted and deposited on the egg shell. C,<br />

muscle. 21. Enlargement <strong>of</strong> a portion <strong>of</strong> the egg shell shown in Figure 20. Secretory granules (SG) near the surface <strong>of</strong> the egg shell appear to contribute to the electron-dense outer vitelline<br />

easily distinguished from the electron-translucent inner chitinous layer (CL). 22. Enlargement <strong>of</strong> nucleus (N) <strong>of</strong> egg shown in Figure 20. Chromatin (Cr) occurs within the nucleoplasm.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


170 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 23-25. Section <strong>of</strong> the rectal region <strong>of</strong> Pratylenchus penetrans. 23. Longitudinal section <strong>of</strong> the<br />

rectal region <strong>of</strong> an adult female. <strong>The</strong> complex <strong>of</strong> membrane junctions denotes part <strong>of</strong> the rectal valve<br />

(RV). <strong>The</strong> rectal channel (RC) extends posteriad and is supported by the cell membranes and cuticle. <strong>The</strong><br />

depressor ani muscles (DM) are located on the dorsal surface <strong>of</strong> the rectal cuticle near the anal (A) opening.<br />

SM, somatic muscles; C, cuticle. 24. Transverse section <strong>of</strong> the rectal channel (RC) supported by rectal<br />

cells. 25. Transverse section <strong>of</strong> the rectal channel (RC) near the attachment <strong>of</strong> the depressor ani muscles<br />

(DM) to the cuticle lining <strong>of</strong> the channel. <strong>The</strong> depressor ani muscles have a dorsosublateral orientation.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 171<br />

<strong>The</strong> ovary <strong>of</strong> P. penetrans has cells that appeal'<br />

as single or double rows <strong>of</strong> germ cells enclosed<br />

by epithelial cells that are characterized<br />

by irregularly shaped nuclei. <strong>The</strong>se nuclei have<br />

electron-dense chromatin that tends to accumulate<br />

along the inner surface <strong>of</strong> the nuclear membrane.<br />

Cytoplasmic contact between germ cells<br />

and epithelial cells appears to be minimal and is<br />

not similar to that described for other species<br />

(Hirschmann, 1971). <strong>The</strong> distinctive morphology<br />

<strong>of</strong> epithelial cells <strong>of</strong> P. penetrans ovaries was<br />

also noted in the cluster <strong>of</strong> cells anteriad to the<br />

spermatheca. <strong>The</strong>se epithelial cells, in conjunction<br />

with oviduct cell wall, may affect movement<br />

<strong>of</strong> oocytes from the oviduct into the spermatheca.<br />

<strong>The</strong> plicated membranes <strong>of</strong> cells lining the<br />

oviduct and their capacity to expand and accommodate<br />

the moving oocyte were previously illustrated<br />

for Rotylenchus goodeyi (Coomans,<br />

1962) and the Hoplolaiminae (Yuen, 1964). This<br />

process may also operate in the spermatheca and<br />

columnar cells. However, a fundamental difference<br />

occurs in their cellular contents and functions.<br />

In P. penetrans, the presence <strong>of</strong> muscle<br />

filaments, which line the oviduct, suggests that<br />

they have an active role during oocyte passage<br />

toward the spermatheca. <strong>The</strong> cluster <strong>of</strong> cells,<br />

which have centralized membrane junctions at<br />

the anterior region <strong>of</strong> the spermatheca and are<br />

described as a 12-celled constriction in Pratylenchus<br />

spp. (Roman and Hirschmann, 1969b),<br />

may function as a valve, which opens or closes<br />

to regulate oocyte passage into the spermatheca.<br />

<strong>The</strong> female reproductive system <strong>of</strong> Xiphinema<br />

meridianum has an ovarial sac that is muscular<br />

and an outer membrane that is highly plicated.<br />

<strong>The</strong> proximal part <strong>of</strong> the oviduct is narrow and<br />

tube-like, but widens into the pars dilatata oviductus.<br />

<strong>The</strong> oviduct <strong>of</strong> X. meridianum lacks a<br />

preformed lumen except for the pars dilatata<br />

oviductus, where the lumen is narrow. <strong>The</strong> ultrastructure<br />

<strong>of</strong> the female gonoduct <strong>of</strong> X. theresiae<br />

is similar to that described for X. meridianum<br />

(Van De Velde et al., 1990a, b). In P. penetrans,<br />

the ultrastructure <strong>of</strong> the lumen <strong>of</strong> the<br />

oviduct and that <strong>of</strong> the columnar cells in the central<br />

region is similar to the plicated cell membranes<br />

described for Xiphinema, which also<br />

lacks a preformed oviduct lumen.<br />

Ward and Carrel (1979) described oocyte migration<br />

in the hermaphroditic species C. elegans.<br />

In this species, migration is accompanied by<br />

sporadic contractions <strong>of</strong> the oviduct walls and<br />

the oocyte cytoplasm. As contractions <strong>of</strong> the<br />

oviduct wall increase, the oocyte moves through<br />

the spermathecal constriction and into the spermatheca.<br />

A similar mechanism may propel oocytes<br />

through the muscular oviduct <strong>of</strong> P. penetrans.<br />

<strong>The</strong> spermatheca <strong>of</strong> P. penetrans is denned<br />

by the adjoining columella cells. Columella cells<br />

are joined by a junctional complex to form a<br />

continuous lumen between the spermatheca and<br />

the central uterus. <strong>The</strong> ultrastructure <strong>of</strong> the columella<br />

cells <strong>of</strong> the uterus is distinctly different<br />

from the cells forming the oviduct. In the uterus,<br />

the columella cells have more ribosomes, mitochondria,<br />

secretory granules, and membrane<br />

junctions than the cells adjoining the oviduct. In<br />

the female gonad <strong>of</strong> Rotylenchus goodeyi, the<br />

uterus has two regions: the quadricolumella and<br />

a thin-walled, muscular region that lies between<br />

the quadricolumella and the vagina (Coomans,<br />

1962). This muscular region was not observed<br />

in P. penetrans. However, the muscle bands that<br />

were found near the vagina and vulva appear to<br />

have a major role in the movement <strong>of</strong> the oocyte<br />

or egg through the genital tract as well as in<br />

dilation <strong>of</strong> the vagina and vulva during egg deposition.<br />

In a study <strong>of</strong> about 50 females <strong>of</strong> R. goodeyi,<br />

Coomans (1962) determined that the quadricolumella<br />

is a glandular region in the uterus and<br />

probably secretes the egg shell. <strong>The</strong> glandular<br />

region was particularly large and granular when<br />

a well-developed egg was found in the oviduct.<br />

As the egg passed into the uterus, the glandular<br />

cells appeared to empty and a thin layer formed<br />

around the egg shell. In P. penetrans, the uterus<br />

with eggs has electron-dense secretory granules<br />

in the columella cells, and cells <strong>of</strong> the uterine<br />

wall are appressed and flattened by passage <strong>of</strong><br />

an egg. At this time, the secretory granules are<br />

found between the uterine wall and the limiting<br />

membrane <strong>of</strong> the egg.<br />

We concur that the columella cells serve a<br />

functional role in providing secretions that contribute<br />

to formation <strong>of</strong> the egg shell, as proposed<br />

by Coomans (1962) for R. goodeyi and by investigators<br />

<strong>of</strong> other nematode species (Coomans,<br />

1965; Bleve-Zacheo et al., 1976; McClure and<br />

Bird, 1976; Bird and Bird, 1991). This hypothesis<br />

is further supported by ultrastructural examinations<br />

<strong>of</strong> cross sections <strong>of</strong> egg shells <strong>of</strong> P.<br />

penetrans (Hilgert, 1976). Our study illustrates<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


172 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

sites where secretory granules appear to merge<br />

with the electron-dense outer layer <strong>of</strong> the egg<br />

shell.<br />

Fertilization <strong>of</strong> the oocyte occurs between the<br />

oviduct and the uterus, regardless <strong>of</strong> the presence<br />

or absence <strong>of</strong> a spermatheca (Bird and<br />

Bird, 1991). In a light microscope study, Hung<br />

and Jenkins (1969) observed oogonial divisions<br />

at the apical portions <strong>of</strong> the gonads <strong>of</strong> young<br />

females <strong>of</strong> P. penetrans and P. zeae. In P. penetrans,<br />

only 1 sperm appears to enter each oocyte<br />

as it passes through the spermatheca. After<br />

sperm penetration, the oocyte nucleus moves<br />

centrally and undergoes maturation divisions.<br />

After the initial reduction division and the second<br />

division <strong>of</strong> meiosis, the egg pronucleus is<br />

formed, which in turn fuses with a sperm nucleus<br />

to form the zygote shortly before or after egg<br />

deposition. In P. penetrans, the chromosome<br />

number is 2n = 10, whereas in P. zeae, which<br />

reproduces by mitotic parthenogenesis, 2n = 26.<br />

In the present ultrastructural study <strong>of</strong> P. penetrans,<br />

the stage at which fertilization occurs<br />

could not be determined, but sperm was observed<br />

in the developing eggs inside the uterus.<br />

In Ascaris, Poor (1970) showed that when<br />

male sperm and oocyte membranes establish<br />

contact, the membranes appear to fuse. In other<br />

cases, considerable interdigitation occurs between<br />

the opposing gamete surfaces. Subsequently,<br />

the sperm progresses to a position deep<br />

within the oocyte cytoplasm. In some cases, fusion<br />

appears to take place between the oolemma<br />

and the lateral margins <strong>of</strong> the sperm. After fusion<br />

<strong>of</strong> the gamete membranes, the underlying<br />

interdigitating membranes disappear and the<br />

contents <strong>of</strong> the spermatozoan are within the oocyte<br />

(Poor, 1970).<br />

In P. penetrans, the ultrastructure <strong>of</strong> initial<br />

stages <strong>of</strong> gamete fusion was not examined. Hung<br />

and Jenkins (1969) used light microscopy to<br />

show that the oocyte nucleus <strong>of</strong> P. penetrans<br />

undergoes 2 divisions after sperm penetration.<br />

Roman and Triantaphyllou (1969) studied the<br />

maturation <strong>of</strong> oocytes and fertilization in P. penetrans,<br />

P. vulnus, and P. c<strong>of</strong>feae. In these species,<br />

oocytes in the spermatheca contain a small<br />

number <strong>of</strong> bivalent chromosomes at prometaphase<br />

I. One spermatozoan enters each oocyte,<br />

which then rapidly completes the first division.<br />

At telophase I, the chromosomes that form the<br />

first polar body nucleus are discrete and can be<br />

used to determine the haploid chromosome number.<br />

A second maturation division follows rapidly,<br />

and the sperm pronucleus is formed and<br />

then fuses with the egg pronucleus to form the<br />

zygote nucleus. Fusion <strong>of</strong> the pronuclei was observed<br />

in nondeposited eggs <strong>of</strong> P. penetrans and<br />

in eggs laid by P. c<strong>of</strong>feae. <strong>The</strong> primary oocyte<br />

<strong>of</strong> the dog heartworm, Dir<strong>of</strong>ilaria immitis, completes<br />

meiosis only after fertilization by a male<br />

gamete in the seminal vesicle (Delves et al.,<br />

1986). After meioses I and II are completed in<br />

the oocyte and the 2 polar bodies are extruded,<br />

the haploid chromosome complement <strong>of</strong> the female<br />

unites with that <strong>of</strong> the male and re-establishes<br />

the diploid chromosome number in the zygote.<br />

Oogenesis and the mode <strong>of</strong> reproduction were<br />

also studied in populations <strong>of</strong> the soybean cyst<br />

nematode, H. glycines. Triantaphyllou and<br />

Hirschmann (1962) determined that oogonial divisions<br />

occur before and during the fourth molt.<br />

Maturation <strong>of</strong> oocytes in inseminated females<br />

consists <strong>of</strong> 2 meiotic divisions and the formation<br />

<strong>of</strong> 2 polar nuclei. Nine bivalents are present at<br />

metaphase I in all populations. Sperm enters the<br />

oocytes at late prophase or early metaphase I.<br />

After the second maturation division, sperm and<br />

egg pronuclei fuse to form the zygote nucleus.<br />

<strong>The</strong> vulval walls <strong>of</strong> P. penetrans are attached<br />

to 2 sets <strong>of</strong> dilatores vulvae. Four bands on each<br />

side <strong>of</strong> the vulval wall are directed anteriad and<br />

posteriad and insert ventrolaterally on the body<br />

wall. This orientation <strong>of</strong> muscles coincides with<br />

light microscopic observations <strong>of</strong> R. goodeyi<br />

(Coomans, 1962). <strong>The</strong> dorsally and ventrally located<br />

dilatores vaginae have been diagrammed<br />

for P. penetrans (Kisiel et al., 1972; Hilgert,<br />

1976; Mai et al., 1977). Although the vulval<br />

muscles were not clearly defined in the latter<br />

studies, they did appear as prominent muscle<br />

bands in our study.<br />

In the hermaphrodite C. elegans stained with<br />

phalloidin, a photomicrograph clearly showed 4<br />

<strong>of</strong> 8 vulval muscle cells that were inserted near<br />

the vulval opening and at the lateral epidermis<br />

(Waterston, 1988; Bird and Bird, 1991). Our observations<br />

<strong>of</strong> P. penetrans tend to support the<br />

concept that the dilatores vulvae play a major<br />

role in egg deposition.<br />

In conclusion, the ultrastructure <strong>of</strong> the reproductive<br />

system <strong>of</strong> P. penetrans increases our understanding<br />

<strong>of</strong> the anatomical, physiological,<br />

and phylogenetic relations among a vast array <strong>of</strong><br />

nematodes, including many plant parasitic nem-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


ENDO ET AL.—ULTRASTRUCTURE OF THE LESION NEMATODE 173<br />

atodes. In the future, comparative studies should<br />

be conducted on reproductive anatomy and<br />

physiology <strong>of</strong> sedentary endoparasitic species<br />

such as Meloidogyne, the cyst nematode species,<br />

and the migratory and free-living forms, such as<br />

C. elegans. <strong>The</strong>se observations may provide<br />

clues for modifying or disrupting nematode reproduction<br />

and could lead to new methods <strong>of</strong><br />

control for economically destructive species.<br />

Acknowledgments<br />

<strong>The</strong> authors thank Sharon Ochs for technical<br />

support in specimen preparation for TEM and<br />

photographic processing, Chris Pooley for preparing<br />

the final plates, Naeema Latif for maintenance<br />

and extraction <strong>of</strong> P. penetrans used in<br />

the study, Charles Murphy for TEM support<br />

data, Zafar Handoo for preparing specimens<br />

used in light microscopic observations <strong>of</strong> the reproductive<br />

organs <strong>of</strong> P. penetrans, and Robert<br />

Ewing for the illustration used in Figure 1. Mention<br />

<strong>of</strong> trade names or commercial products in<br />

this article is solely for the purpose <strong>of</strong> providing<br />

specific information and does not imply recommendation<br />

or endorsement by the U.S. Department<br />

<strong>of</strong> Agriculture.<br />

Literature Cited<br />

Bird, A. F., and J. Bird. 1991. <strong>The</strong> Structure <strong>of</strong> Nematodes,<br />

2nd ed. Academic Press, New York. 316<br />

pp.<br />

Bleve-Zacheo, T., M. A. Castellano, and F. Lamberti.<br />

1976. Preliminary studies on the ultrastructure<br />

<strong>of</strong> the female gonad <strong>of</strong> Xiphinema index and<br />

X. mediterraneum (Nematoda: Longidoridae). Nematologia<br />

Mediterranea 4:41-55.<br />

Cares, J. E., and J. G. Baldwin. 1994a. Fine structure<br />

<strong>of</strong> sperm <strong>of</strong> Ekphymatodera thomasoni (Heteroderinae,<br />

Nemata). Journal <strong>of</strong> Nematology 26:375-<br />

383.<br />

, and . 1994b. Comparative fine structure<br />

<strong>of</strong> sperm <strong>of</strong> Verutus volvingentis and Meloidodcra<br />

floridensis (Heteroderinae, Nematoda).<br />

Canadian Journal <strong>of</strong> Zoology 72:1481-1491.<br />

-, and . 1995. Comparative fine structure<br />

<strong>of</strong> sperm <strong>of</strong> Heterodera schachtii and Punctodera<br />

chalcoensis, with phylogenetic implications for<br />

Heteroderinae (Nemata: Heteroderidae). Canadian<br />

Journal <strong>of</strong> Zoology 73:309-320.<br />

Coomans, A. 1962. Morphological observations on<br />

Rotylenchus goodeyi Lo<strong>of</strong> & Oostenbrink, 1958.<br />

II. Detailed morphology. Nematologica 7:242-<br />

250.<br />

. 1965. Structure <strong>of</strong> the female gonads in members<br />

<strong>of</strong> the Dorylaimina. Nematologica 10:601 —<br />

622.<br />

Delves, C. J., R. E. Howells, and R. J. Post. 1986.<br />

Gametogenesis and fertilization in Dir<strong>of</strong>ilaria imrnitis<br />

(Nematoda: Filarioidea). Parasitology 92:<br />

181-197.<br />

Dickerson, O. J. 1962. Gonad development in Pratylenchus<br />

crenatus Lo<strong>of</strong> and observations on the<br />

female genital structures <strong>of</strong> P. penetrans. Proceedings<br />

<strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> 29:173-176.<br />

Dropkin, V. H. 1989. Introduction to Plant Nematology,<br />

2nd ed. John Wiley & Sons, New York. 304<br />

pp.<br />

Endo, B. Y., and W. P. Wergin. 1973. Ultrastructural<br />

investigation <strong>of</strong> clover roots during early stages <strong>of</strong><br />

infection by root-knot nematode, Meloidogyne incognita.<br />

Protoplasma 78:365-379.<br />

, U. Zunke, and W. P. Wergin. 1997. Ultrastructure<br />

<strong>of</strong> the lesion nematode, Pratylenchus penetrans<br />

(Nemata: Pratylenchidae). Journal <strong>of</strong> the<br />

<strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 64:59-<br />

95.<br />

, , and . 1998. Ultrastructure <strong>of</strong><br />

the male gonad and spermatogenesis in the lesion<br />

nematode, Pratylenchus penetrans (Nemata: Pratylenchidae).<br />

Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong> 65:227-242.<br />

Foor, W. E. 1970. Spermatozoan morphology and zygote<br />

formation in nematodes. Biology <strong>of</strong> Reproduction,<br />

Supplement 2:177-202.<br />

Gamborg, O. L., T. Murashige, T. A. Thorpe, and<br />

I. K. Vasil. 1976. Plant tissue culture media. In<br />

Vitro 12:473-478.<br />

Goldstein, P., and A. C. Triantaphyllou. 1995.<br />

Pachytene karyotype analysis <strong>of</strong> the nematode<br />

Meloidogyne spartinae in relation to the genus<br />

Meloidogyne. Cytobios 83:91-103.<br />

Hilgert, A. 1976. Electron microscopic observations<br />

on the female gonad <strong>of</strong> Pratylenchus penetrans.<br />

M.Sc. <strong>The</strong>sis, Rijksuniversiteit Gent, Belgium, (in<br />

Flemish). 56 pp.<br />

Hirschmann, H. 1962. <strong>The</strong> life cycle <strong>of</strong> Ditylenchus<br />

triformis (Nematoda: Tylenchida) with emphasis<br />

on post-embryonic development. Proceedings <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 29:<br />

30-42.<br />

. 1971. Comparative morphology and anatomy.<br />

Pages 11-63 in B. M. Zuckerman, W. F. Mai, and<br />

R. A. Rohde, eds. Plant Parasitic Nematodes. Vol.<br />

1. Academic Press, New York.<br />

Hung, C.-L., and W. R. Jenkins. 1969. Oogenesis<br />

and embryology <strong>of</strong> two plant-parasitic nematodes,<br />

Pratylenchus penetrans and P. zeae. Journal <strong>of</strong><br />

Nematology 1:352-356.<br />

Kimble, J. E., and S. Ward. 1988. Germ-line development<br />

and fertilization. Pages 191-213 in W. B.<br />

Wood, ed. <strong>The</strong> Nematode Caenorhabditis elegans.<br />

Cold Spring Harbor Laboratory, Cold Spring Harbor,<br />

New York.<br />

, and J. G. White. 1981. On the control <strong>of</strong><br />

germ cell development in Caenorhabditis elegans.<br />

Developmental Biology 81:208-219.<br />

Kisiel, M., S. Himmelhoch, and B. M. Zuckerman.<br />

1972. Fine structure <strong>of</strong> the body wall and vulva<br />

area <strong>of</strong> Pratylenchus penetrans. Nematologica 18:<br />

234-238.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


174 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Mai, W. F., J. R. Bloom, and T. A. Chen. 1977.<br />

Biology and ecology <strong>of</strong> the plant-parasitic nematode<br />

Pratylenchus penetrans. Pennsylvania <strong>State</strong><br />

University, Agricultural Experiment Station Bulletin<br />

815. 64 pp.<br />

McClure, M. A., and A. F. Bird. 1976. <strong>The</strong> tylenchid<br />

(Nematoda) egg shell: formation <strong>of</strong> the egg shell<br />

in Meloidogyne javanica. Parasitology 72:29-39.<br />

Roman, J., and H. Hirschmann. 1969a. Embryogenesis<br />

and postembryogenesis in species <strong>of</strong> Pratylenchus<br />

(Nematoda: Tylenchidae). Proceedings <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 36:<br />

164-174.<br />

, and . 1969b. Morphology and morphometrics<br />

<strong>of</strong> six species <strong>of</strong> Pratylenchus. Journal<br />

<strong>of</strong> Nematology 1:363-386.<br />

, and A. C. Triantaphyllou. 1969. Gametogenesis<br />

and reproduction <strong>of</strong> seven species <strong>of</strong> Pratylenchus.<br />

Journal <strong>of</strong> Nematology 1:357-362.<br />

Shepherd, A. M., S. A. Clark, and A. Kempton.<br />

1973. Spermatogenesis and sperm ultrastructure in<br />

some cyst nematodes, Heterodera spp. Nematologica<br />

19:551-560.<br />

Spurr, A. R. 1969. A low-viscosity epoxy resin embedding<br />

medium for electron microscopy. Journal<br />

<strong>of</strong> Ultrastructure Research 26:31-43.<br />

Townshend, J. L., L. Stobbs, and R. Carter. 1989.<br />

Ultrastructural pathology <strong>of</strong> cells affected by Pratylenchus<br />

penetrans in alfalfa roots. Journal <strong>of</strong><br />

Nematology 21:530-539.<br />

Triantaphyllou, A. C., and H. Hirschmann. 1962.<br />

Oogenesis and mode <strong>of</strong> reproduction in the soybean<br />

cyst nematode, Heterodera glycincs. Nematologica<br />

7:235-241.<br />

Van De Velde, M. C., and A. Coomans. 1988. Electron<br />

microscopy <strong>of</strong> the germ cells and the ovarian<br />

wall in Xiphinema (Nematoda). Tissue and Cell<br />

20:881-890.<br />

, , J. Heyns, and M. Claeys. 1990a.<br />

Ultrastructure <strong>of</strong> the female reproductive system<br />

<strong>of</strong> Xiphinema rneridianum (Nematoda). Revue de<br />

Nematologie 13:211-223.<br />

, , , , and M. Hutsebaut.<br />

1990b. Ultrastructure <strong>of</strong> the female gonoduct <strong>of</strong><br />

Xiphinema theresiae (Nematoda). Revue de Nematologie<br />

13:449-461.<br />

Ward, S., and J. S. Carrel. 1979. Fertilization and<br />

sperm competition in the nematode Caenorhabditis<br />

elegans. Developmental Biology 73:304-<br />

321.<br />

Waterston, R. H. 1988. Muscle. Pages 281-335 in W.<br />

B. Wood, ed. <strong>The</strong> Nematode Caenorhabditis elegans.<br />

Cold Spring Harbor Laboratory, Cold<br />

Spring Harbor, New York.<br />

Wergin, W. P., and B. Y. Endo. 1976. Ultrastructure<br />

<strong>of</strong> a neurosensory organ in a root-knot nematode.<br />

Journal <strong>of</strong> Ultrastructure Research 56:258-276.<br />

Westergaard, M., and D. von Wettstein. 1972. <strong>The</strong><br />

synaptonemal complex. Annual Review <strong>of</strong> Genetics<br />

6:71-110.<br />

Yuen, P. H. 1964. <strong>The</strong> female gonad in the subfamily<br />

Hoplolaiminae with a note on the spermatheca <strong>of</strong><br />

Tylenchorhynchus. Nematologica 10:570-580.<br />

Zunke, U. 1990a. Ectoparasitic feeding behavior <strong>of</strong><br />

the root lesion nematode, Pratylenchus penetrans,<br />

on root hairs <strong>of</strong> different host plants. Revue de<br />

Nematologie 13:331-337.<br />

. 1990b. Observations on the invasion and endoparasitic<br />

behavior <strong>of</strong> the root lesion nematode<br />

Pratylenchus penetrans. Journal <strong>of</strong> Nematology<br />

22:309-320.<br />

, and Institut fur den Wissenschaftlichen<br />

Film. 1988. Behavior <strong>of</strong> the Root Lesion Nematode<br />

Pratylenchus penetrans. Film C 1676, Institut<br />

fur den Wissenschaftlichen Film, Gottingen,<br />

Germany.<br />

1999-2000 MEETING SCHEDULE OF THE<br />

HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

13 October 1999<br />

17 November 1999<br />

19 January 2000<br />

12 March 2000<br />

10 May 2000<br />

Animal Parasitology Laboratories, Beltsville Agricultural Research Center,<br />

USDA, Beltsville, MD, 7:30 pm (Contact person: Eric Hoberg, 301-<br />

504-8588)<br />

Anniversary Dinner—meeting location TEA<br />

Smithsonian Institution, National Museum <strong>of</strong> Natural History, <strong>Washington</strong>,<br />

DC, 7:30 pm (Contact person: Bill Moser, 202-357-2473)<br />

Johns Hopkins Montgomery County Center (Provisional), Rockville, MD,<br />

7:30 pm (Contact person: Tom Simpson (JHU), 410-366-8814, or Louis<br />

Miller (NIH), 301-496-2183)<br />

Joint Meeting with the New Jersey <strong>Society</strong> for Parasitology, at the New<br />

Bolton Center, University <strong>of</strong> Pennsylvania, Kennett Square, PA, 2:00<br />

pm (Contact person: Jay Farrell, 215-898-8561)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 175-179<br />

Skrjabinodon piankai sp. n. (Nematoda: Pharyngodonidae) and Other<br />

Helminths <strong>of</strong> Geckos (Sauria: Gekkonidae: Nephrurus spp.) from<br />

Australia<br />

CHARLES R. BURSEYU AND STEPHEN R. GOLDBERG2<br />

1 Department <strong>of</strong> Biology, Pennsylvania <strong>State</strong> University, Shenango Campus, Sharon, Pennsylvania 16146,<br />

U.S.A. (e-mail: cxbl3@psu.edu), and<br />

2 Department <strong>of</strong> Biology, Whittier <strong>College</strong>, Whittier, California 90608, U.S.A. (e-mail:<br />

sgoldberg@whittier.edu)<br />

ABSTRACT: Skrjabinodon piankai sp. n. from the large intestine <strong>of</strong> the Australian gecko Nephrurus laevissimus<br />

is described and illustrated. It is also reported from Nephrurus levis and Nephrurus vertebralis. Skrjabinodon<br />

piankai differs from 6 other Australian realm species in the number <strong>of</strong> tail filament spines and egg shape. Other<br />

helminths found include Oochoristica piankai, Maxvachonia brygooi, Pharyngodon tiliquae, Physalopteroides<br />

filicauda, Wanaristrongylus ctenoti, third-stage larvae <strong>of</strong> Abbreviata sp., third-stage larvae <strong>of</strong> Physaloptera sp.,<br />

and Raillietiella scincoides. New host records are established for O. piankai and R. scincoides in N. laevissimus;<br />

M. brygooi and P. filicauda in N. levis; and P. tiliquae in N. vertebralis.<br />

KEY WORDS: Skrjabinodon piankai sp. n., Pharyngodonidae, helminths, Nephrurus laevissimus, Nephrurus<br />

levis, Nephrurus vertebralis, Gekkonidae, Sauria, Australia.<br />

Four species <strong>of</strong> Skrjabinodon Inglis, 1968<br />

have been reported previously from reptiles <strong>of</strong><br />

Australia. Parathelandros oedurae Johnston and<br />

Mawson, 1947, was originally described from<br />

specimens taken from the robust velvet gecko,<br />

Oedura robusta Boulenger, 1885, collected in<br />

southeast Queensland. Inglis (1968) revised Parathelandros<br />

Diesing, 1861, retaining the genus<br />

for parasites <strong>of</strong> Australian amphibians and erecting<br />

Skrjabinodon as a new genus for parasites<br />

<strong>of</strong> reptiles; 7 species, including P. oedurae, were<br />

placed in the new genus. Skrjabinodon smythi<br />

Angel and Mawson, 1968 was described from<br />

the marbled gecko, Christinus (=Phyllodactylus)<br />

rnarmoratus (Gray, 1845) collected in South<br />

Australia. Skrjabinodon parasmythi Mawson,<br />

1971, from the thick-tailed gecko, Underwoodisaurus<br />

milii (Bory de Saint-Vincent, 1825), and<br />

Skrjabinodon leristae Mawson, 1971, from a<br />

skink, Lerista sp., were described from specimens<br />

collected on Flinders Island, South Australia.<br />

In addition, 2 species, Skrjabinodon trimorphi<br />

Ainsworth, 1990, from the common<br />

skink, Leiolopisma nigriplantara Patterson and<br />

Daugherty, 1990, and Skrjabinodon poicilandri<br />

Ainsworth, 1990 from the common gecko, Hoplodactylus<br />

maculatus Boulenger, 1885, have<br />

been described from specimens collected in New<br />

Zealand (Ainsworth, 1990).<br />

3 Corresponding author.<br />

Nephrurus Giinther, 1876, is an endemic Australian<br />

gecko genus containing arid-adapted species<br />

characterized by large heads and short, fat<br />

tails that terminate in a small knob (Cogger,<br />

1992). <strong>The</strong> spinifex knobtail gecko, Nephrurus<br />

laevissimus Mertens, 1958, occurs in southeastern<br />

Western Australia, northwestern South Australia,<br />

and southern parts <strong>of</strong> the Northern Territory;<br />

the smooth knobtail gecko, Nephrurus levis<br />

De Vis, 1886, occurs from the central coast <strong>of</strong><br />

Western Australia to the arid parts <strong>of</strong> all states<br />

except Victoria; Storr's knobtail gecko, Nephrurus<br />

vertebralis Storr, 1963, occurs from the lower<br />

central interior <strong>of</strong> Western Australia to South<br />

Australia (Cogger, 1992). <strong>The</strong> ranges <strong>of</strong> these 3<br />

nocturnal species overlap in Western Australia<br />

(Cogger, 1992). However, they are reported to<br />

favor different habitats (Pianka, 1972): TV. laevissimus<br />

is associated with sandridges; N. levis<br />

occurs on sandplains vegetated with dense<br />

clumps <strong>of</strong> perennial grasses <strong>of</strong> Triodia Brown,<br />

1810; and N. vertebralis is associated with<br />

shrubs <strong>of</strong> Acacia Miller, 1754.<br />

<strong>The</strong>re are 4 previous reports <strong>of</strong> nematodes<br />

from N. laevissimus (Jones, 1985, 1987, 1995a,<br />

b), 1 report from N. levis (Jones, 1995b), but, to<br />

our knowledge, no reports from N. vertebralis.<br />

We describe here a new species <strong>of</strong> Skrjabinodon<br />

that was found in the large intestines <strong>of</strong> TV. laevissimus,<br />

N. levis, and N. vertebralis from Western<br />

Australia and the Northern Territory and list<br />

other helminth parasites found in these hosts.<br />

175<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


176 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Prevalence (%) and mean abundance <strong>of</strong> helminths <strong>of</strong> Nephrurus laevissimus, N. levis, and N.<br />

vertebralis from Australia.<br />

Nephrurus laevissimus (N = 36) Nephrurus levis (N = 13) Nephrurus vertebralis (N = 3)<br />

Helminth P* (%) A ± SD1 P (%) A ± SD SD<br />

Cestoda<br />

Oochoristica piankai 3± 0.14 ±0.83<br />

Nematoda<br />

Maxvachonia brygooi — —<br />

Pharyngodon tiliquae — —<br />

Physalopteroides filicauda 17<br />

Skrjabinodon piankai 22:]:<br />

Wanaristrongylus ctenoti — —<br />

Abbrcviata sp. (larvae) 5 0.08 ± 0.37<br />

Physaloptera sp. (larvae) 3 0.03 ± 0.17<br />

Pentastomatida<br />

Raillietiella scincoides 5t 0.06 ± 0.23<br />

31*<br />

62$<br />

8<br />

31<br />

16.08 ± 56.47<br />

53.69 ± 78.69<br />

0.15 ± 0.56<br />

0.85 ± 1.95<br />

33:j<br />

66:i<br />

4.00 ± 6.93<br />

55.33 ± 94.98<br />

* P = Prevalence (number <strong>of</strong> hosts infected with a parasite species divided by the number <strong>of</strong> hosts examined X 100).<br />

t A ± SD = mean abundance (summation <strong>of</strong> number <strong>of</strong> individuals <strong>of</strong> a parasite species per host divided by the number <strong>of</strong><br />

hosts examined) ± standard deviation.<br />

$ New host record.<br />

Materials and Methods<br />

Thirty-six N. laevissimus, 13 N. levis, and 3 N. vertebralis<br />

from the collections <strong>of</strong> the Natural History<br />

Museum <strong>of</strong> Los Angeles County (LACM) were examined:<br />

N. laevissimus, mean snout-vent length (SVL)<br />

= 64.6 ± 8.5 mm SD, range 51-80 mm, LACM<br />

57145, 57146, 57156, 57159, 57160, 57162, 57163,<br />

57165, 57170, 57173-57175, 57177, 57180-57182,<br />

57189, 57192, 57193, 57196-57198, 57201, 57204,<br />

57209, 57210, 57213, 57215-57217, 57219, 57220,<br />

57225-57228, collected 34 km west <strong>of</strong> Lorna Glen<br />

homestead, Western Australia (26°14'S, 121°13'E); N.<br />

levis, SVL = 77.2 ± 10.2 mm SD, range 64-98 mm,<br />

LACM 57008, 57009, collected 29 km south <strong>of</strong> Neale<br />

Junction, Western Australia (28°30'S, 125°50'E),<br />

LACM 57011-57014, 38 km east <strong>of</strong> Laverton, Western<br />

Australia (28°28'S, 122°50'E), LACM 57018,<br />

57020, 16 km southeast <strong>of</strong> Renhan's Well, Northern<br />

Territory (21°24'S, 130°53'E), LACM 57026, 57029,<br />

11 km south <strong>of</strong> <strong>The</strong> Granite, Northern Territory<br />

(20°38'S, 130°25'E), LACM 57032, 57037, 57039, 13<br />

km west <strong>of</strong> Neale Junction, Western Australia<br />

(28°17'S, 125°40'E); N. vertebralis, SVL = 81.3 ± 7.6<br />

mm SD, range 73-88 mm, LACM 57047, 6 km east<br />

<strong>of</strong> Stony Point, Western Australia (28°05'S, 124°15'E),<br />

LACM 57049, 57051, 14 km northeast <strong>of</strong> Millrose<br />

homestead, Western Australia (26°17'S, 121°00'E).<br />

<strong>The</strong>se specimens had been collected between October<br />

1966 and January 1968 for use in an ecological study<br />

(Pianka and Pianka, 1976). Because the ecological<br />

study included stomach analysis, only small and large<br />

intestines remained with the carcasses. Each intestine<br />

was searched for helminths using a dissecting microscope.<br />

Cestodes were stained with hematoxylin and<br />

mounted in balsam for identification; other helminths<br />

were identified from the glycerol mounts. Measurements<br />

are in mm unless otherwise indicated.<br />

Results<br />

Helminths representing 9 species were found:<br />

the cestode Oochoristica piankai Bursey, Goldberg,<br />

and Woolery, 1996; the nematodes Maxvachonia<br />

brygooi Mawson, 1972, Pharyngodon<br />

tiliquae Baylis, 1930, Physalopteroides filicauda<br />

Jones, 1985, Skrjabinodon piankai sp. n. (this<br />

paper), Wanaristrongylus ctenoti Jones, 1987,<br />

Abbreviata sp. (third-stage larvae only), Physaloptera<br />

sp. (third-stage larvae only); and the<br />

pentastomid Raillietiella scincoides Ali, Riley,<br />

and Self, 1984. Prevalence and mean abundance<br />

are given in Table 1. Selected specimens were<br />

placed in vials <strong>of</strong> alcohol and deposited in the<br />

U.S. National Parasite Collection (USNPC).<br />

<strong>The</strong>se are parasites from N. laevissimus: O.<br />

piankai, USNPC 88189; P. filicauda, USNPC<br />

88190; 5. piankai, USNPC 88191; Abbreviata<br />

sp. (larva), USNPC 88192; Physaloptera sp.<br />

(larva), USNPC 88193; R. scincoides, USNPC<br />

88194. N. levis: M. brygooi, USNPC 88195; P.<br />

filicauda, USNPC 88196; 5. piankai, USNPC<br />

88197; W. ctenoti, USNPC 88198; Abbreviata<br />

sp. (larva), USNPC 88199. Nephrurus vertebralis:<br />

Pharyngodon tiliquae, USNPC 88200; S.<br />

piankai, USNPC 88201.<br />

Skrjabinodon piankai sp. n.<br />

(Figs. 1-8)<br />

Description<br />

GENERAL: Oxyurida: Pharyngodonidae Travassos,<br />

1919, Skrjabinodon Inglis, 1968. Small,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—SKRJABINODON PIANKA1 SP. N. FROM AUSTRALIA 177<br />

o<br />

CO<br />

8<br />

Figures 1—8. Skrjabinodon piankai sp. n. 1. Female, entire, lateral view. 2. Female, en face view. 3.<br />

Male, entire, lateral view. 4, Egg, pronuclear stage. 5. Egg, morula stage. 6. Male, posterior end, ventral<br />

view. 7. Spicule. 8. Male, posterior end, lateral view.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


178 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

cylindrical nematodes, extremities tapered in<br />

both sexes; moderate sexual dimorphism, males<br />

approximately one-third length <strong>of</strong> females. Cuticle<br />

with fine transverse striations along entire<br />

body. Mouth surrounded by 3 small lips; prominent<br />

lateral amphids just behind lips. Lateral<br />

alae present in both sexes. Tail narrowing<br />

abruptly behind anus to form filamentous appendage.<br />

MALE (based on 10 specimens): Small,<br />

white, fusiform nematodes tapering both anteriorly<br />

and posteriorly, body usually bent to give<br />

comma-shaped appearance. Length 1.27 (1.19-<br />

1.40), body length 1.00 (0.97-1.12), tail filament<br />

0.25 (0.22-0.29). Width at level <strong>of</strong> excretory<br />

pore 0.12 (0.10-0.14). Cuticle with striations approximately<br />

3 |xm apart. Esophagus excluding<br />

bulb 0.216 (0.204-0.242), bulb length 0.049<br />

(0.040-0.054), bulb width 0.052 (0.046-0.057).<br />

Nerve ring 0.118 (0.103-0.125) and excretory<br />

pore 0.342 (0.306-0.383) from anterior end, respectively.<br />

Lateral alae 0.012 (0.010-0.015)<br />

wide, beginning midway between lips and nerve<br />

ring and ending just anterior to third pair <strong>of</strong> caudal<br />

papillae. Spicules 0.055 (0.051-0.057). Tail<br />

filament with 1 (0-2) small spine. Cloaca and<br />

associated papillae slightly raised from body<br />

surface but not on distinct cone. Caudal alae absent,<br />

3 pairs <strong>of</strong> sessile papillae, 1 pair precloacal,<br />

1 pair postcloacal, third pair occurring on base<br />

<strong>of</strong> tail filament. Single tubular testis reflexed just<br />

posterior to excretory pore.<br />

FEMALE (based on 10 gravid specimens):<br />

Small, white nematodes tapering anteriorly and<br />

posteriorly. Length 3.21 (2.80-3.58), body<br />

length 2.55 (2.21-2.86), tail filament 0.66 (0.58-<br />

0.71). Width at level <strong>of</strong> vulva 0.22 (0.18-0.25).<br />

Lateral alae 2 |xm (2-3 |o,m) wide, doubled, approximately<br />

50 (Jim apart at midbody, beginning<br />

in a single point at level <strong>of</strong> nerve ring, ending<br />

in a single point just anterior to beginning <strong>of</strong> tail<br />

filament. Cuticle with transverse striations approximately<br />

2 u,m wide. Mouth with 3 lips, each<br />

lateral lip with 1 small papilla. Esophagus excluding<br />

bulb 0.295 (0.285-0.310), bulb length<br />

0.073 (0.068-0.080), bulb width 0.087 (0.080-<br />

0.094). Nerve ring 0.125 (0.115-0.145), excretory<br />

pore 0.477 (0.410-0.535), and vulva 0.535<br />

(0.485-0.610) from anterior end, respectively.<br />

Thick-walled muscular ovijector extending posteriorly<br />

0.40 mm, then continuing as thin-walled<br />

vagina 0.18 mm in length before joining 2 uteri,<br />

1 directed anteriorly and the other posteriorly.<br />

Ovarian and uterine coils not extending to vulva.<br />

In fully gravid females, uterus extending from<br />

slightly behind vulva to end <strong>of</strong> body. Egg barrel<br />

shaped, slightly flattened on 1 side, operculum<br />

at each end, length 105 fjim (100-108 |xm),<br />

width 34 (Jim (31-37 (xm). Egg surface finely<br />

pitted, having a ground-glass appearance. Development<br />

to morula stage at deposition. Tail<br />

spines 5 (4-7).<br />

Taxonomic summary<br />

TYPE HOST: Nephrurus laevissimus Mertens,<br />

1958.<br />

ADDITIONAL HOSTS: Nephrurus levis De Vis,<br />

1886; N. vertebralis Storr, 1963.<br />

TYPE LOCALITY: 34 km west <strong>of</strong> Lorna Glen<br />

homestead, Western Australia (26°14'S, 121°13'E).<br />

SITE OF INFECTION: Large intestine.<br />

TYPE SPECIMENS: Holotype, male, U.S. National<br />

Parasite Collection no. 88186; allotype,<br />

female, no. 88187; paratypes (9 males, 9 females),<br />

no. 88188.<br />

ETYMOLOGY: <strong>The</strong> specific epithet honors<br />

Eric R. Pianka, Denton A. Cooley Centennial<br />

Pr<strong>of</strong>essor <strong>of</strong> Zoology, University <strong>of</strong> Texas at<br />

Austin, for his pioneering studies on the ecology<br />

<strong>of</strong> Australian lizards.<br />

Remarks<br />

Skrjabinodon piankai is the seventh species <strong>of</strong><br />

Skrjabinodon to be reported from the Australian<br />

biogeographical realm; 5 from Australia and 2<br />

from New Zealand. <strong>The</strong>se species are separated<br />

on the basis <strong>of</strong> tail spines and egg shape. Skrjabinodon<br />

oedurae and S. poicilandri possess 3<br />

caudal body spines that the other 5 species lack.<br />

Females <strong>of</strong> S. oedurae have 19 tail filament<br />

spines; females <strong>of</strong> S. poicilandri have 36-44.<br />

Skrjabinodon leristae, S. parasmythi, S. smythi,<br />

and 5. trimorphi have spindle-shaped eggs; the<br />

eggs <strong>of</strong> S. piankai are barrel-shaped. Eggs <strong>of</strong> S.<br />

parasmythi and S. smythi have plugs at each end,<br />

those <strong>of</strong> 5. leristae and 5. trimorphi do not. Tail<br />

filament spines <strong>of</strong> female 5. parasmythi are slender<br />

and pointed, those <strong>of</strong> female S. smythi are<br />

digitiform. Males <strong>of</strong> 5. parasmythi have a welldeveloped<br />

spicule, males <strong>of</strong> 5. smythi lack a<br />

spicule. Females <strong>of</strong> S. leristae have doubled lateral<br />

alae; females <strong>of</strong> S. trimorphi have single<br />

lateral alae.<br />

Discussion<br />

Other species <strong>of</strong> helminths found in this study<br />

are listed in Table 1. Previously reported hel-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—SKRJAB1NODON PIANKAI SP. N. FROM AUSTRALIA 179<br />

minths <strong>of</strong> N. laevissimus include P. filicauda,<br />

Wanaristrongylus papangawurpae Jones, 1987,<br />

and cysts containing larvae <strong>of</strong> physalopterids;<br />

from N. levis, W. ctenoti and physalopterid larvae<br />

(Jones, 1985, 1987, 1995a, b).<br />

Oochoristica piankai was first described from<br />

specimens taken from the small intestine <strong>of</strong> the<br />

thorny devil, Moloch horridus Gray, 1841, collected<br />

by E. R. Pianka in Western Australia<br />

(Bursey et al., 1996). Nephrurus laevissimus is<br />

the second host for this parasite to be reported.<br />

Maxvachonia brygooi was first described from<br />

the agamid genus Amphibolurus Wagler, 1830,<br />

by Mawson (1972); N. levis is a new host record<br />

for M. brygooi and represents the 10th lizard<br />

species to harbor this helminth. Pharyngodon tiliquae<br />

was first described from the skink Tiliqua<br />

scincoides (White, ex Shaw, 1790) by Baylis<br />

(1930); N. vertebralis is a new host record for<br />

P. tiliquae and represents the 10th lizard species<br />

to harbor this helminth. Physalopteroides filicauda<br />

was described from specimens taken from<br />

the stomach <strong>of</strong> a N. laevissimus collected by E.<br />

R. Pianka in Western Australia (Jones, 1985). It<br />

has been found in at least 38 species <strong>of</strong> Australian<br />

lizards. Wanaristrongylus papangawurpae<br />

and W. ctenoti were also described from specimens<br />

taken from the stomachs <strong>of</strong> N. laevissimus<br />

and N. levis, respectively, collected by E. R.<br />

Pianka in Western Australia (Jones, 1987). Wanaristrongylus<br />

papangawurpae has been found<br />

in 8 species <strong>of</strong> Australian lizards and W. ctenoti<br />

in 12 species (Jones, 1988, 1995a). Raillietiella<br />

scincoides was originally described from T.<br />

scincoides by Ali et al. (1984); N. laevissimus is<br />

the second reported host. Larvae <strong>of</strong> Abbreviata<br />

sp. and Physaloptera sp. are commonly reported<br />

in Australian reptiles (Jones, 1995a). Larvae <strong>of</strong><br />

Abbreviata sp. have submedian teeth on each<br />

pseudolabium; such teeth are absent in larvae <strong>of</strong><br />

Physaloptera sp.<br />

It should be noted that the material examined<br />

by Jones (1995a, b) and our material were from<br />

the same collection <strong>of</strong> lizards by E. R. Pianka;<br />

the stomachs had been deposited in the Western<br />

Australia Museum and the carcasses in LACM.<br />

Further examination <strong>of</strong> Australian lizards will be<br />

necessary before the number <strong>of</strong> hosts for S.<br />

piankai can be known.<br />

Acknowledgments<br />

We thank Robert L. Bezy (Natural History<br />

Museum <strong>of</strong> Los Angeles County) for permission<br />

to examine the geckos; Peggy Firth for the illustrations<br />

constituting Figs. 1-8; and Cynthia<br />

Walser and Cheryl Wong for dissection assistance.<br />

Literature Cited<br />

Ainsworth, R. 1990. Male dimorphism in two new<br />

species <strong>of</strong> nematode (Pharyngodonidae: Oxyurida)<br />

from New Zealand lizards. Journal <strong>of</strong> Parasitology<br />

76:812-822.<br />

Ali, J. H., J. Riley, and J. T. Self. 1984. Further observations<br />

<strong>of</strong> blunt-hooked raillietiellids (Pentastomaida:<br />

Cephalobaenida) from lizards with descriptions<br />

<strong>of</strong> three new species. Systematic Parasitology<br />

6:147-160.<br />

Baylis, H. A. 1930. Some Heterakidae and Oxyuridae<br />

(Nematoda) from Queensland. Annals and Magazine<br />

<strong>of</strong> Natural History, Series 10, 5:354-366.<br />

Bursey, C. R., S. R. Goldberg, and D. N. Woolery.<br />

1996. Oochoristica piankai sp. n. (Cestoda: Linstowiidae)<br />

and other helminths <strong>of</strong> Moloch horridus<br />

(Sauria: Agamidae) from Australia. Journal <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 63:<br />

215-221.<br />

Cogger, H. G. 1992. Reptiles and Amphibians <strong>of</strong> Australia,<br />

5th ed. Reed Books, Chatswood, New<br />

South Wales, Australia. 775 pp.<br />

Inglis, W. G. 1968. Nematodes parasitic in western<br />

Australian frogs. British Museum (Natural History)<br />

Bulletin, Zoology 16:161-183.<br />

Jones, H. I. 1985. Two new species <strong>of</strong> nematode (Spirurida:<br />

Physalopteridae) from Australian lizards<br />

(Reptilia: Scincidae: Gekkonidae). Journal <strong>of</strong> Natural<br />

History 19:1231-1237.<br />

. 1987. Wanaristrongylus gen. n. (Nematoda:<br />

Trichostrongyloidea) from Australian lizards, with<br />

descriptions <strong>of</strong> three new species. Proceedings <strong>of</strong><br />

the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 54:<br />

40-47.<br />

. 1988. Nematodes from nine species <strong>of</strong> Varanus<br />

(Reptilia) from tropical Northern Australia,<br />

with particular reference to the genus Abbreviata<br />

(Physalopteridae). Australian Journal <strong>of</strong> Zoology<br />

36:691-708.<br />

. 1995a. Gastric nematode communities in lizards<br />

from the Great Victoria Desert, and an hypothesis<br />

for their evolution. Australian Journal <strong>of</strong><br />

Zoology 43:141-164.<br />

-. 1995b. Pathology asssociated with physalopterid<br />

larvae (Nematoda: Spirurida) in the gastric<br />

tissues <strong>of</strong> Australian reptiles. Journal <strong>of</strong> Wildlife<br />

Diseases 31:299-306.<br />

Mawson, P. M. 1972. <strong>The</strong> nematode genus Maxvachonia<br />

(Oxyurata: Cosmocercidae) in Australian<br />

reptiles and frogs. Transactions <strong>of</strong> the Royal <strong>Society</strong><br />

<strong>of</strong> South Australia 96:101-108.<br />

Pianka, E. R. 1972. Zoogeography and speciation <strong>of</strong><br />

Australian desert lizards: an ecological perspective.<br />

Copeia 1972:127-145.<br />

, and H. D. Pianka. 1976. Comparative ecology<br />

<strong>of</strong> twelve species <strong>of</strong> nocturnal lizards (Gekkonidae)<br />

in the Western Australian desert. Copeia<br />

1976:125-142.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 180-186<br />

Parapharyngodon japonicus sp. n. (Nematoda: Pharyngodonidae)<br />

from the Japanese Clawed Salamander, Onychodactylus japonicus<br />

(Caudata: Hynobiidae), from Japan<br />

CHARLES R. BURSEYU AND STEPHEN R. GOLDBERG2<br />

1 Department <strong>of</strong> Biology, Pennsylvania <strong>State</strong> University, Shenango Campus, 147 Shenango Avenue, Sharon,<br />

Pennsylvania 16146 U.S.A. (e-mail: cxbl3@psu.edu) and<br />

2 Department <strong>of</strong> Biology, Whittier <strong>College</strong>, Whittier, California 90608 U.S.A. (e-mail: sgoldberg@whittier.edu)<br />

ABSTRACT: Parapharyngodon japonicus sp. n. from the large intestine <strong>of</strong> the Japanese clawed salamander,<br />

Onychodactylus japonicus (Houttuyn), is described and illustrated. Parapharyngodon japonicus is most similar<br />

to P. tyche in that the anterior cloacal lip is smooth, the ovary is postbulbar, and the eggs are thin-walled and<br />

oval in outline. <strong>The</strong>se 2 species differ in that the spicule <strong>of</strong> P. japonicus is half the length <strong>of</strong> that in P. tyche<br />

and the lateral alae <strong>of</strong> P. japonicus end abruptly about 80 u,m anterior to the cloaca, whereas in P. tyche the<br />

lateral alae continue to the end <strong>of</strong> the body. Two species are transferred from Parapharyngodon to <strong>The</strong> land ros<br />

and represent new combinations: <strong>The</strong>landros awakoyai (Babero and Okpala) comb. n. and T. senisfaciecaiidus<br />

(Freitas) comb. n.<br />

KEY WORDS: Parapharyngodon japonicus sp. n., Pharyngodonidae, Onychodactylus japonicus, Hynobiidae,<br />

Amphibia, salamander, Japan.<br />

<strong>The</strong> validity <strong>of</strong> Parapharyngodon Chatterji,<br />

1933, has been in question almost since its proposal<br />

by Chatterji (1933). Baylis (1936) considered<br />

it to be a synonym <strong>of</strong> <strong>The</strong>landros Wedl,<br />

1862; Karve (1938), Garcia-Calvente (1948),<br />

and Skrjabin et al. (1951) maintained this synonymy.<br />

Freitas (1957) reinstated the genus; Chabaud<br />

(1965) returned it to synonymy with <strong>The</strong>landros.<br />

Sharpilo (1976), on the basis <strong>of</strong> the<br />

presence <strong>of</strong> lateral alae, reinstated Parapharyngodon,<br />

but Fetter and Quentin (1976) did not<br />

accept lateral alae as a differential character and<br />

again synonymized Parapharyngodon with <strong>The</strong>landros.<br />

Adamson (1981) reestablished Parapharyngodon<br />

based on the dietary habits <strong>of</strong> the<br />

host, genital cone morphology (well developed<br />

in males <strong>of</strong> <strong>The</strong>landros, reduced or absent in<br />

Parapharyngodon), egg morphology (operculum,<br />

if present, polar in position, larvated at deposition<br />

in <strong>The</strong>landros; subpolar operculum, deposited<br />

in early stage <strong>of</strong> cleavage in Parapharyngodon),<br />

and morphology <strong>of</strong> the tail <strong>of</strong> females.<br />

Castano-Fernandez et al. (1987)<br />

supported retention <strong>of</strong> Parapharyngodon but restricted<br />

separation <strong>of</strong> the 2 genera to morphological<br />

characters, not dietary habits. Males <strong>of</strong><br />

Parapharyngodon lack a genital cone, papillae<br />

surround the cloaca, the accessory piece is absent,<br />

and the tail is subterminal and curved dor-<br />

3 Corresponding author.<br />

sally, whereas males <strong>of</strong> <strong>The</strong>landros have a narrow,<br />

elongated genital cone (sometimes with an<br />

accessory piece), papillae are outside the genital<br />

cone, and the tail is terminal. Females <strong>of</strong> Parapharyngodon<br />

have a conical tail ending in a<br />

short spike and the eggs have a subterminal<br />

operculum and are in the early stages <strong>of</strong> cleavage<br />

when released. Females <strong>of</strong> <strong>The</strong>landros have<br />

various caudal morphologies; in some species<br />

the tail is conical, tapering evenly from the anus,<br />

whereas in others it is rounded and supports a<br />

short filiform appendage. <strong>The</strong> eggs <strong>of</strong> <strong>The</strong>landros<br />

have a terminal operculum and are larvated<br />

at deposition.<br />

<strong>The</strong> Japanese clawed salamander, Onychodactylus<br />

japonicus (Houttuyn, 1782), is restricted to<br />

mountainous areas <strong>of</strong> Honshu and Shikoku Islands,<br />

Japan, where it inhabits coniferous and<br />

broad-leafed deciduous forests 20-2,000 m<br />

above sea level (Kuzmin, 1995). <strong>The</strong> ancestors<br />

<strong>of</strong> O. japonicus supposedly reached Japan from<br />

continental Asia by way <strong>of</strong> the Korean peninsula<br />

(Kuzmin, 1995). Previously reported helminths<br />

<strong>of</strong> Onychodactylus japonicus include: the monogenetic<br />

trematode, Pseudopolystoma dendriticum<br />

(Ozaki, 1948); the digenetic trematodes,<br />

Cephalouterina leoi Uchida, Uchida, and Kamei,<br />

1986, and Mesocoelium brevicaecum Ochi,<br />

1930; the cestode, Cylindrotaenia sp. (=Baerietta<br />

sp., larvae only); and the nematodes, Amphibiocapillaria<br />

tritonispunctati (Diesing, 1851)<br />

180<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—PARAPHARYNGODON JAPONICUS SP. N. 181<br />

( = Capillaria filiformis (Linstow, 1885)), Pseudoxyascaris<br />

japonicus Uchida and Itagaki, 1979,<br />

Pharyngodon sp., and Rhabditis sp. (Wilkie,<br />

1930; Pearse, 1932; Ozaki, 1948; Uchida and<br />

Itagaki, 1979; Uchida et al., 1986). To our<br />

knowledge there are no reports <strong>of</strong> Paraphaiyngodon<br />

from Japanese salamanders, although<br />

Hasegawa (1988) reported an unidentified species<br />

<strong>of</strong> Parapharyngodon from the scincid lizard,<br />

Ateuchosaurus pellopleurus Hallowell,<br />

1860, from Okinawa, Japan. <strong>The</strong> purpose <strong>of</strong> this<br />

paper is to describe a new species <strong>of</strong> nematode,<br />

Parapharyngodon japonicus from a salamander<br />

Onychodactylus japonicus from Japan, and to<br />

provide a current list <strong>of</strong> species assigned to the<br />

genus Parapharyngodon.<br />

Materials and Methods<br />

Sixty-eight Onychodactylus japonicus, mean snoutvent<br />

length = 62.4 ± 4.3 mm (range 43-72 mm), were<br />

collected by hand and fixed in neutral buffered 10%<br />

formalin, preserved in 70% alcohol, examined for intestinal<br />

helminths, then deposited in the Natural History<br />

Museum <strong>of</strong> Los Angeles County (LACM). Sixtyfive<br />

were from Hineomata Village (37°01'N,<br />

139°23'E), 1,100-1,200 m elevation, Fukushima Prefecture,<br />

Honshu Island, Japan (LACM 143245-<br />

143260, collected 13 June 1995; LACM 143715-<br />

143736, 19 June 1996; LACM 144266-144292, 7 June<br />

1997), and 3 were from Hakone Mountain (35°12'N,<br />

139°00'E), ca. 800 m elevation, Hakone, Kanagawa<br />

Prefecture, Honshu Island, Japan (LACM 143714, 28<br />

May 1980; LACM 143712, 13 May 1986; LACM<br />

143713, 8 June 1993). <strong>The</strong> body cavity was opened<br />

by a longitudinal incision from vent to throat and the<br />

gastrointestinal tract was removed and opened longitudinally.<br />

Nematodes were removed, placed in undiluted<br />

glycerol, allowed to clear, and examined under a<br />

light microscope. Measurements are given in micrometers.<br />

Results<br />

Parapharyngodon japonicus sp. n.<br />

(Figs. 1-6)<br />

Description<br />

GENERAL: Robust nematodes with prominent<br />

annulations beginning just behind cephalic extremity<br />

and continuing to anus. Moderate sexual<br />

dimorphism. Triangular oral opening surrounded<br />

by 3 bilobed lips. One small, pedunculate amphid<br />

on each ventrolateral lip. Lateral alae present<br />

in males, absent in females. Males without<br />

caudal alae; caudal filament directed dorsally.<br />

Females with conical tail terminating in short,<br />

stiff spike.<br />

MALE (holotype and 9 paratypes; mean and<br />

range): Length 789 (620-1,170). Width 131<br />

(115—153). Lateral alae beginning near level <strong>of</strong><br />

esophagus isthmus, increasing gradually in<br />

width and ending abruptly about 80 u,m anterior<br />

to cloaca. Annulations about 2 |xm apart. Esophagus<br />

160 (131-177), bulb length 45 (40-51),<br />

bulb width 43 (37-48). Nerve ring 116 (86-<br />

143), excretory pore 57 (40-74) from anterior,<br />

respectively. Tail 27 (23—34), reduced to a slim<br />

appendage inserted dorsally and directed<br />

obliquely to longitudinal axis <strong>of</strong> body. Spicule<br />

53 (45-57). Testis reflexed behind esophagus.<br />

Three pairs <strong>of</strong> caudal papillae: 1 pair ventral,<br />

precloacal; 1 pair sublateral, postcloacal; 1 pair<br />

on caudal appendage. Posterior cloacal lip thickened<br />

centrally.<br />

FEMALE (allotype and 9 paratypes; mean and<br />

range): Length 2,493 (1,820-3,250). Without<br />

lateral alae. Width at vulva 469 (306-714).<br />

Esophagus 298 (257-336), bulb length 85 (68-<br />

100), bulb width 92 (72-114). Nerve ring 206<br />

(125-239), excretory pore 718 (459-969), vulva<br />

1,207 (765-1,785) from anterior, respectively.<br />

Tail 91 (57—114). Amphidelphic; uteri divergent;<br />

anterior uterus directed anteriorly, posterior uterus<br />

directed posteriorly; ovaries reflexed, remaining<br />

below level <strong>of</strong> esophageal bulb; muscular<br />

ovijector, nonsalient vulva. Egg oval, in pr<strong>of</strong>ile<br />

slightly flattened on 1 side, 92 (77-100) by 42<br />

(34-48), thin-shelled, with subterminal operculum.<br />

Eggs in ovijector at pronucleus stage <strong>of</strong><br />

development.<br />

Taxonomic summary<br />

TYPE HOST: Onychodactylus japonicus<br />

(Houttuyn, 1782).<br />

TYPE LOCALITY: Hineomata, Fukushima Prefecture,<br />

Honshu Island, Japan, 37°01'N,<br />

139°23'E.<br />

SITE OF INFECTION: Small intestine.<br />

TYPE SPECIMENS: Holotype: male, U.S. National<br />

Parasite Collection, Beltsville, Maryland,<br />

USNPC 88238; allotype, female, USNPC<br />

88239; paratypes (9 males, 9 females), USNPC<br />

88240.<br />

ETYMOLOGY: <strong>The</strong> new species is named in<br />

reference to the country <strong>of</strong> origin.<br />

Discussion<br />

We consider the most significant character for<br />

separation <strong>of</strong> Parapharyngodon and <strong>The</strong>landros<br />

to be egg morphology. Based on egg morphology,<br />

as defined by Castano-Fernandez et al.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


182 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

E n<br />

o<br />

CM<br />

50pm<br />

40|jm<br />

O<br />

m<br />

Figures 1-6. Parapharyngodon japonicus sp. n. 1. Female, entire, lateral view. 2. Male, entire, lateral<br />

view. 3. Female, en face view. 4. Egg, pronuclear stage. 5. Male, posterior end, lateral view. 6. Male,<br />

posterior end, ventral view.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


Egg s<br />

83-95<br />

88-96<br />

75-90<br />

109-119<br />

90-99<br />

115<br />

84-108<br />

not<br />

90-110<br />

85-98<br />

78-87<br />

82-90<br />

80-85<br />

72-82<br />

110-129<br />

77-126<br />

78-82<br />

80-100<br />

91-92<br />

86-102<br />

80-91<br />

127-135<br />

88<br />

99<br />

Table 1.<br />

Current list and selected characters <strong>of</strong> species assigned to Parapharyngodon.<br />

Biogeographical realm<br />

Species <strong>of</strong> Parapharyngodon<br />

Spicule (u,m)<br />

Cloacal lip<br />

Ovary<br />

Australian Realm<br />

P. anomalus Hobbs, 1996<br />

P. fitzroyi Jones, 1 992<br />

P. kartana (Johnston and Mawson, 1941)<br />

Ethiopian Realm<br />

P. adramitana Adamson and Nasher, 1984<br />

P. bulbosus (Linstow, 1 899)<br />

P. rneridionalis (Chabaud and Brygoo, 1962)<br />

P. rotundatus (Malan, 1939)<br />

P. rousseti (Tcheprak<strong>of</strong>f, 1966)<br />

Nearctic Realm<br />

P californiensis (Read and Amrein, 1952)<br />

P. iguanae (Telford, 1965)<br />

Neotropical Realm<br />

P. alvarengai Freitas, 1957<br />

P. cubensis (Barus and Coy-Otero, 1969)<br />

P. garciae Schmidt and Whittaker, 1975<br />

P. largitor Alho and Oliveira-Rodrigues, 1963<br />

P. osteopili Adamson, 1981<br />

P. scleratus (Travassos, 1923)<br />

P. verrucosus Freitas and Dobbin, 1959<br />

Oriental Realm<br />

P. alrnoriensis (Karve, 1949)<br />

P. calotis (Johnson, 1966)<br />

P. kasauli (Chatterji, 1935)<br />

P. rnaplestonei Chatterji, 1933<br />

Palaearctic Realm<br />

P. dogieli Markov and Bogdanov, 1965<br />

P. echinatus (Rudolphi, 1819)<br />

P. lilfordi Castano-Fernandez, Zapatero-Ramos, Solera-Puertas,<br />

and Gonzalez-Santiago, 1987<br />

P. japonicus sp. n.<br />

P. micipsae (Seurat, 1917)<br />

P. pavlovskyi Markov, Ataev, and Bogdanov,<br />

1968<br />

P. psamrnodromi Roca and Lluch, 1986<br />

P. skrjabini Vakker, 1 969<br />

P. tyche Sulahian and Schacher, 1968<br />

63<br />

80-92<br />

55<br />

80-86<br />

51-63<br />

80<br />

96-140<br />

110<br />

53-76<br />

43<br />

80-100<br />

77<br />

30-45<br />

54-68<br />

53-61<br />

80-109<br />

55-63<br />

85-105<br />

31<br />

94-114<br />

76-90<br />

93-110<br />

74-112<br />

67-85<br />

45-57<br />

88<br />

74-87<br />

absent<br />

139-176<br />

100-110<br />

echinate<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

echinate<br />

smooth<br />

smooth<br />

smooth<br />

smooth<br />

echinate<br />

smooth<br />

smooth<br />

echinate<br />

smooth<br />

smooth<br />

smooth<br />

echinate<br />

echinate<br />

smooth<br />

smooth<br />

echinate<br />

echinate<br />

smooth<br />

smooth<br />

smooth<br />

prebulbar<br />

prebulbar<br />

not given<br />

prebulbar<br />

postbulbar<br />

postbulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

prebulbar<br />

postbulbar<br />

prebulbar<br />

not stated<br />

prebulbar<br />

prebulbar<br />

postbulbar<br />

prebulbar<br />

postbulbar<br />

prebulbar<br />

prebulbar<br />

77-100<br />

91<br />

91_100<br />

prebulbar<br />

prebulbar<br />

postbulbar<br />

88-104<br />

82-93<br />

90-100<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


184 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

(1987), the species harbored by Onychodactylus<br />

japonicus is assigned to the genus Parapharyngodon.<br />

<strong>The</strong> most recent list <strong>of</strong> species <strong>of</strong> Parapharyngodon<br />

is that <strong>of</strong> Baker (1987), in which 33<br />

species are listed. Parapharyngodon aegyptiacus<br />

Moravec, Barus, and Rysavy, 1987, has<br />

since been transferred to Skrjabinodon Inglis,<br />

1968, by Moravec and Barus (1990). Six species<br />

on Baker's list have eggs with terminal opercula;<br />

thus, based on the criteria <strong>of</strong> Castano-Fernandez<br />

et al. (1987), these species should be assigned<br />

to <strong>The</strong>landros, namely, T. awokoyai (Babero and<br />

Okpala, 1962) comb, n.; T. bicaudatus Read and<br />

Amrein, 1952; T. maculatus Caballero, 1968; T.<br />

pseudothaparius Lucker, 1951; T. senisfaciecaudus<br />

(Freitas, 1957) comb, n.; and T. xantusi<br />

Lucker, 1951. <strong>The</strong> egg morphology has not been<br />

described for 4 species from Baker's list, P. bulbosus<br />

(Linstow, 1899) Freitas, 1957; P. garciae<br />

Schmidt and Whittaker, 1975; P. kartana (Johnston<br />

and Mawson, 1941) Adamson, 1981; and<br />

P. mabouia (Rao and Hiregauder, 1962) Adamson,<br />

1981. We were able to examine a specimen<br />

<strong>of</strong> P. kartana (USNPC 88241), the eggs <strong>of</strong><br />

which had subterminal opercula. Specimens <strong>of</strong><br />

P. bulbosus, P. garciae, and P. mabouia were<br />

not available for examination. Until egg morphology<br />

is described, we will provisionally retain<br />

P. bulbosus and P. garciae; P. mabouia is<br />

inadequately described and is to be considered<br />

a species inquirendae. Five additional, recently<br />

described species should be added to Baker's<br />

list, namely P. psamrnodromi Roca and Lluch,<br />

1986; P. lilfordi, Castano-Fernandez, Zapatero-<br />

Ramos, Solera-Puertas, and Gonzalez-Santiago,<br />

1987; P. fitzroyi Jones, 1992; P. anomalus<br />

Hobbs, 1996; and P. japonicus sp. n. A revised<br />

list <strong>of</strong> Parapharyngodon is given in Table 1.<br />

In addition to the species in Table 1, 10 species<br />

assigned to Parapharyngodon are considered<br />

species inquirendae: females are unknown<br />

for P. szczerbaki Radchenko and Sharpilo, 1975;<br />

males are unknown for P. cincta (Linstow,<br />

1897) Freitas, 1957, P. megaloon (Linstow,<br />

1906) Adamson, 1981, and P. waltoni (Read and<br />

Amrein, 1952) Adamson, 1981; inadequately<br />

described are P. aspiculus, Khera, 1961, P. cameroni<br />

(Belle, 1957) Adamson, 1981, P. evaginatus<br />

Fotedar, 1974, P. fotedari Kalyankar and<br />

Palladwar, 1977, P. macrocerca Fotedar, 1974,<br />

and P. seurati (Sandground, 1936) Freitas, 1957.<br />

Species <strong>of</strong> Parapharyngodon are distinguished<br />

on the basis <strong>of</strong> the morphology <strong>of</strong> the<br />

anterior cloacal lip, the location <strong>of</strong> the ovary,<br />

and geographical distribution (Table 1). Of the<br />

30 species in Table 1, with the exception <strong>of</strong> P.<br />

anomalus, P. garciae, and P. japonicus, all are<br />

parasites <strong>of</strong> lizards. Of the 9 species reported<br />

from the Palaearctic Realm, Parapharyngodon<br />

japonicus is most similar to P. tyche in that the<br />

anterior cloacal lip is smooth, the ovary is postbulbar,<br />

and the eggs are thin-walled and oval in<br />

outline. <strong>The</strong>se 2 species differ in that the spicule<br />

<strong>of</strong> P. japonicus is half the length <strong>of</strong> that in P.<br />

tyche, and the lateral alae <strong>of</strong> P. japonicus end<br />

abruptly about 80 (Jim anterior to the cloaca,<br />

whereas in P. tyche, the lateral alae continue to<br />

the end <strong>of</strong> the body.<br />

Hasegawa (1988) reported an unidentified<br />

species <strong>of</strong> Parapharyngodon from the lizard<br />

Ateuchosaurus pellopleurus Hallowell, 1860<br />

from Okinawa, Japan. This species differs from<br />

P. japonicus in that its ovarian coils are prebulbar,<br />

the tail <strong>of</strong> the female is conical, and the egg<br />

has a pitted, thick wall and is somewhat triangular<br />

in outline.<br />

Acknowledgments<br />

We thank Tatsuo Ishihara (Hakone Woodland<br />

Museum, Hakone, Japan) for the samples <strong>of</strong> Onychodactylus<br />

japonicus, Peggy Firth for the illustrations<br />

constituting Figures 1—6, Hay Cheam<br />

and Cynthia Walser for assistance with dissections,<br />

and Serge Ferleger for Russian translation.<br />

Literature Cited<br />

Adamson, M. L. 1981. Parapharyngodon osteopili n.<br />

sp. (Pharyngodonidae: Oxyuroidea) and a revision<br />

<strong>of</strong> Parapharyngodon and <strong>The</strong>landros. Systematic<br />

Parasitology 3:105-117.<br />

, and A. K. Nasher. 1984. Pharyngodonids<br />

(Oxyuroidea; Nematoda) <strong>of</strong> Agama adramitana in<br />

Saudi Arabia with notes on Parapharyngodon.<br />

Canadian Journal <strong>of</strong> Zoology 62:2600-2609.<br />

Alho, J. R., and H. Oliveira-Rodrigues. 1963. Nova<br />

especie do genero Parapharyngodon Chatterji,<br />

1933 (Nematoda, Oxyuroidea). Atas da Sociedade<br />

de Biologia do Rio de Janeiro 7:10-12.<br />

Baker, M. R. 1987. Synopsis <strong>of</strong> the Nematoda parasitic<br />

in amphibians and reptiles. Memorial University<br />

<strong>of</strong> Newfoundland, Occasional Papers in<br />

Biology 11:1-325.<br />

Barus, V. 1973. Some remarks on the neotropical species<br />

<strong>of</strong> the genera Parapharyngodon and Batracholandros<br />

(Oxyuridae). Folia Parasitologica<br />

(Prague) 20:131-139.<br />

, and A. Coy-Otero. 1969. Nematodes del genero<br />

Parapharyngodon Chatterji, 1933 (Oxyuridae),<br />

en Cuba. Torreia 7:1-10.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


BURSEY AND GOLDBERG—PARAPHARYNGODON JAPONICUS SP. N. 185<br />

Baylis, H. A. 1936. Nematoda. I. Ascaridoidea and<br />

Strongyloidea. <strong>The</strong> Fauna <strong>of</strong> British India. Taylor<br />

and Francis, London. 408 pp.<br />

Castano-Fernandez, C., L. M. Zapatero-Ramos,<br />

and M. A. Solera-Puertas. 1987. Revision de los<br />

generos Parapharyngodon Chatterji, 1933 y <strong>The</strong>landros<br />

Wedl, 1862 (Oxyuroidea, Pharyngodonidae).<br />

Revista Iberica de Parasitologia 47:271-274.<br />

, , , and P. M. Gonzalez-Santiago.<br />

1987. Descripcion de Parapharyngodon lilfordi<br />

n. sp. (Oxyuroidea, Pharyngodonidae) en<br />

Podarcis lilfordi (Reptilia, Lacertidae) de las islas<br />

Baleares. Revista Iberica de Parasitologfa 47:275-<br />

281<br />

Chabaud, A. G. 1965. Ordre des Ascaridida. Pages<br />

932-1180 in P. P. Grasse, ed. Traite de Zoologie.<br />

Systematique des Nematodes. Masson et Cie.,<br />

Paris.<br />

, and E.-R. Brygoo. 1962. Nematodes parasites<br />

de Cameleons malgaches. Deuxieme note.<br />

Annales de Parasitologie Humaine et Comparee<br />

37:569-602.<br />

Chatterji, R. C. 1933. On a new nematode, Parapharyngodon<br />

maplestoni gen. nov., sp. nov., from<br />

a Burmese lizard. Annals <strong>of</strong> Tropical Medicine<br />

and Parasitology 27:131-134.<br />

. 1935. Nematodes from a common Indian lizard<br />

(Uromastix hardwicki) with remarks on Kalicephalus<br />

parvus Maplestone, 1932. Records <strong>of</strong> the<br />

Indian Museum 37:29-36.<br />

Freitas, J. F. T. 1957. Sobre os generos <strong>The</strong>landros<br />

Wedl, 1862 e Parapharyngodon Chatterji, 1933,<br />

com descrigao de Parapharyngodon alvarengai<br />

sp. n. (Nematoda, Oxyuroidea). Memorias do Instituto<br />

Oswaldo Cruz 55:21-45.<br />

, and J. E. Dobbin, Jr. 1959. Nova especie do<br />

genero Parapharyngodon Chatterji, 1933 (Nematoda,<br />

Oxyuroidea). Anais da Sociedade de Biologia<br />

de Pernambuco 16:23-33.<br />

Garcfa-Calvente, I. 1948. Revision del genero Pharyngodon<br />

y descripcion de nuevas especies. Revista<br />

Iberica de Parasitologfa 8:367-410.<br />

Hasegawa, H. 1988. Parapharyngodon sp. (Nematoda:<br />

Pharyngodonidae) collected from the lizard,<br />

Ateuchosaurus pellopleurus (Sauria: Scincidae),<br />

on Okinawajima Island, Japan. Akamata 5:11-14.<br />

(In Japanese.)<br />

Hobbs, R. P. 1996. Parapharyngodon anomalus sp.<br />

n. (Oxyuridae, Pharyngodonidae) from the Australian<br />

echidna Tackyglossus aculeatus, with notes<br />

on the <strong>The</strong>landroinae. Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 63:56-61.<br />

Johnson, S. 1966. A new oxyurid nematode <strong>of</strong> the<br />

genus <strong>The</strong>landros from Calotes versicolor (Daud.)<br />

from India, with a key to the Indian species <strong>of</strong> the<br />

genus from Calotes. Indian Journal <strong>of</strong> Helminthology<br />

18:123-127.<br />

Johnston, T. H., and P. M. Mawson. 1941. Some<br />

nematodes from Kangaroo Island, South Australia.<br />

Records <strong>of</strong> the South Australian Museum 7:<br />

145-148.<br />

Jones, H. I. 1992. Gastrointestinal nematodes in the<br />

lizard genera Tiliqua and Cyclodomorphus (Scincidae)<br />

in Western Austalia. Australian Journal <strong>of</strong><br />

Zoology 40:115-126.<br />

Karve, J. N. 1938. Some nematode parasites <strong>of</strong> lizards.<br />

Pages 251—258 in Livro Jubilar do Pr<strong>of</strong>.<br />

Lauro Travassos. Rio de Janeiro, Brazil.<br />

. 1949. Parasitic nematodes from an agamid lizard,<br />

Agama tuberculata Gray. Journal <strong>of</strong> the University<br />

<strong>of</strong> Bombay 18:1-16.<br />

Kuzmin, S. L. 1995. <strong>The</strong> clawed salamanders <strong>of</strong> Asia.<br />

Genus Onychodactylus. Biology, distribution and<br />

conservation. Westarp Wissenschaften, Magdeburg,<br />

Germany. 108 pp.<br />

Malan, J. R. 1939. Some helminths <strong>of</strong> South African<br />

lizards. Onderstepoort Journal <strong>of</strong> Veterinary Science<br />

and Animal Industry 12:21—74.<br />

Moravec, F., and V. Barus. 1990. Some nematode<br />

parasites from amphibians and reptiles from Zambia<br />

and Uganda. Acta Societatis Zoologicae Bohemoslovenicae<br />

54:177—192.<br />

, , and B. Rysavy. 1987. On parasitic<br />

nematodes <strong>of</strong> the families Heterakidae and Pharyngodonidae<br />

from reptiles in Egypt. Folia Parasitologica<br />

34:269-280.<br />

Ozaki, Y. 1948. A new trematode, Polystoma dendriticum<br />

from the urinary bladder <strong>of</strong> Onychodactylus<br />

japonicus in Shikoku. Biosphaera 2:33-37.<br />

Pearse, A. S. 1932. Parasites <strong>of</strong> Japanese salamanders.<br />

Ecology 13:135-152.<br />

Petter, A. J., and J. C. Quentin. 1976. CIH Keys to<br />

the Nematode Parasites <strong>of</strong> Vertebrates. No. 4.<br />

Keys to the Genera <strong>of</strong> the Oxyuroidea. Commonwealth<br />

Agricultural Bureaux, Farnham Royal,<br />

U.K. 30 pp.<br />

Read, C. P., and Y. U. Amrein. 1952. Some new<br />

oxyurid nematodes from southern California.<br />

Journal <strong>of</strong> Parasitology 38:379-384.<br />

Roca, V., and J. Lluch. 1986. Parapharyngodon<br />

psammodromi n. sp. (Nematoda: Pharyngodonidae),<br />

parasite de Psatnmodromus hispanicus Fitzinger,<br />

1826 (Reptilia: Lacertidae) en Valencia<br />

(Espafia). Rivista di Parassitologia 3:17-22.<br />

Schmidt, G. D., and F. H. Whittaker. 1975. Nematode<br />

parasites <strong>of</strong> Puerto Rican tree frogs, Eleutherodactylus<br />

spp: two new species and a proposal<br />

<strong>of</strong> Poekilostrongylus gen. nov. (Trichostrongylidae).<br />

Parasitology 70:287-294.<br />

Seurat, L. G. 1917. Sur les oxyures des sauriens du<br />

Nord-Africain. Archives de Zoologie Experimentale<br />

et Generale 56:401-444.<br />

Sharpilo, C. P. 1976. Parasitic Worms <strong>of</strong> the Reptilian<br />

Fauna <strong>of</strong> the USSR: Systematics, Chorology, Biology.<br />

Naukova Dumka, Moscow. 287 pp. (In<br />

Russian.)<br />

Skrjabin, K. I., N. P. Shikhobalova, and A. A. Mozgovoi.<br />

1951. Key to Parasitic Nematodes. Vol. 2.<br />

Oxyurata and Ascaridata. Izdatel'stvo Akademii<br />

Nauk S.S.S.R., Moscow. (English translation by<br />

Amerind Publishing Co. Pvt. Ltd., New Delhi, India,<br />

1982, 703 pp.)<br />

Sulahian, A., and J. F. Schacher. 1968. <strong>The</strong>landros<br />

(Parapharyngodon) tyche sp. n. (Nematoda: Oxyuroidea)<br />

and Abbreviata adonisi sp. n. (Nematoda:<br />

Physalopteroidea) from the lizard Agama<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


186 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

stellio in Lebanon. Journal <strong>of</strong> Helminthology 42: atoda) and Pseudopolystoma dendriticum (Mono-<br />

373-382. genea; Trematoda) from a salamander. Japanese<br />

Tcheprak<strong>of</strong>f, R. 1966. Description de <strong>The</strong>landros Journal <strong>of</strong> Parasitology 28:43-50.<br />

rousseti n. sp., parasite d'agame au Sahara. Bui- , K. Uchida, and A. Kamei. 1986. Studies on<br />

letin du Museum National d'Histoire Naturelle, the amphibian helminths in Japan. IX. A new di-<br />

Paris 37:861-864.<br />

genetic trematode, Cephalouterina Icoi n. sp.,<br />

Telford, S. R., Jr. 1965. Some <strong>The</strong>landros (Nemato- from salamanders, Onychodactylus japonicus and<br />

da: Oxyuridae) from southern California lizards. the new host record <strong>of</strong> the digenetic trematode,<br />

Japanese Journal <strong>of</strong> Experimental Medicine 35: Mesocoelium brevicaeciim. Bulletin <strong>of</strong> the Azabu<br />

463-472. University <strong>of</strong> Veterinary Medicine 7:97=101.<br />

Uchida, A., and H. Itagaki. 1979. Studies on the am- Wilkie, J. S. 1930. Some parasitic nematodes from<br />

phibian helminths in Japan. VI. Pseudoxyascaris Japanese Amphibia. Annals and Magazine <strong>of</strong> Natjaponicus<br />

n. g. and n. sp. (Oxyascarididae; Nem- ural History, Series 10, 6:606-614.<br />

Report on the Brayton H. Ransom Memorial Trust Fund<br />

<strong>The</strong> Brayton H. Ransom Memorial Trust Fund was established in 1936 to "encourage and promote<br />

the study and advancement <strong>of</strong> the Science <strong>of</strong> Parasitology and related sciences." Income from<br />

the Trust currently provides token support <strong>of</strong> the Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

and limited support for publication <strong>of</strong> exceptionally meritorious manuscripts by authors<br />

lacking institutional or other backing. Donations or memorial contributions may be directed to the<br />

Secretary-Treasurer. Information about the Trust may be found in the following articles in the<br />

Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> (1936) 3:84-87; (1983) 50:200-204<br />

and (1993) 60:144-150.<br />

Financial Report for 1998<br />

Balance on hand, January 1, 1998 $22,203.00<br />

Receipts: $1,586.69<br />

Contributions from Members <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

1996 $247.00<br />

1997 $195.00<br />

Interest received in 1998 $1,144.69<br />

Disbursements ($500.00)<br />

Support <strong>of</strong> author's page charges ($200.00)<br />

Grant to the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> for 1998 ($50.00)<br />

Membership in the American Association for Zoological Nomenclature .. ($50.00)<br />

Expenses <strong>of</strong> WAAVP Workshop (1997) ($200.00)<br />

On hand, December 31, 1998 $23,289.69<br />

J. Ralph Lichtenfels<br />

Secretary-Treasurer<br />

USDA:ARS:BARC-East, No. 1180<br />

Beltsville, MD 20705-2350<br />

Trustees <strong>of</strong> the Brayton H. Ransom Memorial Trust Fund<br />

Harley G. Sheffield, President<br />

Robin N. Huettel<br />

J. Ralph Lichtenfels, Secretary-Treasurer Nancy D. Pacheco<br />

A. Morgan Golden<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 187-193<br />

Paraochoterenetta javanensis gen. et sp. n. (Filarioidea:<br />

Onchocercidae) from Rana cancrivora (Amphibia: Anura) in<br />

West Java, Indonesia<br />

PURNOMO AND MICHAEL J. BANGS1<br />

U.S. Naval Medical Research Unit No. 2, Box 3, APO AP 96520-8132, U.S.A.<br />

ABSTRACT: Paraochoterenella javanensis gen. et sp. n. (Filarioidea: Onchocercidae) is described from the mesentery<br />

<strong>of</strong> the frog Rana cancrivora Gravenhorst in West Java, Indonesia. Paraochoterenella javanensis presently<br />

represents the only species in this newly created genus. Three <strong>of</strong> 13 frogs contained mature male and female<br />

worms and micr<strong>of</strong>ilariae. Paraochoterenella is distinguished from the other 4 genera, Foleyellides Caballero,<br />

Ochoterenella Caballero, Madochotera Bain and Brunhes, and Paramadochotera Esslinger in the subfamily<br />

Waltonellinae Bain and Prod'hon by the presence <strong>of</strong> cuticularized parastomal structures in both sexes, a distinct<br />

cuticularized buccal capsule, the lack <strong>of</strong> both lateral and caudal alae, and the presence <strong>of</strong> scattered (nonoriented)<br />

minute bosses on the cuticle <strong>of</strong> the midbody region. <strong>The</strong> micr<strong>of</strong>ilariae are unsheathed and slightly narrowed at<br />

the caudal extremity, with a 10:1 length to width ratio. Paraochoterenella represents the second genus in the<br />

subfamily Waltonellinae present in southern Asia and the first report <strong>of</strong> a filarial species in the subfamily from<br />

an Indonesian amphibian. A revised key to the genera is presented in light <strong>of</strong> this new addition to the subfamily.<br />

KEY WORDS: Filarioidea, Onchocercidae, Waltonellinae, Paraochoterenella javanensis gen. et sp. n., taxonomic<br />

key, Rana cancrivora, Amphibia, Anura, Ranidae, morphology, Java, Indonesia.<br />

<strong>The</strong> majority <strong>of</strong> the species contained in the<br />

subfamily Waltonellinae Bain and Prod'hon,<br />

1974 (Filarioidea: Onchocercidae) have been described<br />

from the Western Hemisphere, particularly<br />

neotropical areas. Esslinger (1986a, b) provided<br />

redescriptions <strong>of</strong> type material <strong>of</strong> Ochoterenella<br />

Caballero, 1944, and Foleyellides Caballero,<br />

1935, and revisions <strong>of</strong> the 4 related genera in<br />

the subfamily. Species previously assigned to the<br />

genus Waltonella Schacher, 1975, were transferred<br />

into the genera Foleyellides and Ochoterenella,<br />

the name Waltonella was placed as a junior<br />

synonym <strong>of</strong> Foleyellides, and the subfamily<br />

designation Waltonellinae was retained (Esslinger,<br />

1986a, b). Members <strong>of</strong> this filarial assemblage<br />

have only been found in the body cavities<br />

<strong>of</strong> anuran amphibians, with the exception <strong>of</strong> 1<br />

subcutaneous parasite, Foleyellides confusa<br />

(Schmidt and Kuntz, 1969; see Anderson and<br />

Bain, 1976). <strong>The</strong> subfamily members are parasites<br />

<strong>of</strong> toads and frogs in the families Bufonidae,<br />

Leptodactylidae, Racophoridae, and Ranidae.<br />

Three <strong>of</strong> 13 frogs identified as Rana cancrivora<br />

Gravenhorst, 1829 (Anura: Ranidae), and<br />

collected from Bekasi, West Java, Indonesia,<br />

were examined and discovered to harbor adults<br />

and micr<strong>of</strong>ilariae <strong>of</strong> an Ochoterenella-like nem-<br />

1 Corresponding author. Address reprint requests to<br />

Publications Office, U.S. Naval Medical Research Unit<br />

No. 2, Box 3, Unit 8132, APO AP 96520-8132, U.S.A.<br />

atode. Micr<strong>of</strong>ilariae found in the blood and adult<br />

male and female worms removed from the mesentery<br />

belong to a previously unknown genus<br />

and species as described herein.<br />

Materials and Methods<br />

Live frogs were obtained from a local food dealer<br />

residing in Jakarta. All had been captured from the<br />

same locality along drainage ditches, approximately 5<br />

km east <strong>of</strong> the city <strong>of</strong> Jakarta proper. Live adult worms<br />

were removed from the mesentery, relaxed in 0.6%<br />

saline solution, fixed in hot 70% ethanol, and preserved<br />

in 70% ethanol/5% glycerine. All specimens<br />

were cleared and temporarily mounted and examined<br />

in lactophenol. Micr<strong>of</strong>ilariae were obtained from<br />

blood. Thick blood films were processed with Giemsa's<br />

stain diluted 1:15 with pH 7.2 sodium phosphate<br />

buffer for 15 min. Drawings and measurements were<br />

made with the aid <strong>of</strong> a camera lucida. All measurements<br />

are expressed as means followed by the range<br />

in parentheses and are given as length by width in<br />

micrometers (|xm) unless otherwise indicated.<br />

Results<br />

Paraochoterenella gen. n.<br />

DIAGNOSIS: Onchocercidae (Leiper, 1911)<br />

Chabaud and Anderson, 1959; Waltonellinae<br />

Bain and Prod'hon, 1974. Cephalic end with<br />

pair <strong>of</strong> lateral flap-like cuticularized parastomal<br />

structures. Cephalic plate with lateral axis slightly<br />

longer than dorsoventral axis; 4 pairs cephalic<br />

papillae, broad basally and tapered with nonarticulated<br />

distal portion. Distinct cuticularized<br />

187<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


188 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

buccal cavity. Lateral and caudal alae lacking.<br />

Esophagus divided into a short anterior muscular<br />

region and a long, wider posterior glandular portion<br />

(muscular to glandular ratio: 6.1). Vulva in<br />

posterior region <strong>of</strong> glandular portion <strong>of</strong> esophagus<br />

near esophageal-intestinal junction. Two<br />

pairs <strong>of</strong> preanal, 4 pairs <strong>of</strong> postanal papillae. Cuticular<br />

bosses minute (


PURNOMO AND EA.NGS—PARAOCHOTERENELLA JAVANENSIS GEN. ET SP. N. FROM RANA CANCRIVORA 189<br />

/ ^ ^ ^ 5<br />

Figures 1-7. Adults and micr<strong>of</strong>ilaria <strong>of</strong> Paraochoterenella javanensis gen. et sp. n. 1. Generalized en<br />

face view <strong>of</strong> female showing arrangement <strong>of</strong> 4 pairs <strong>of</strong> suhmedian papillae and 2 lateral amphids. 2.<br />

Transversely striated cuticle <strong>of</strong> female. 3. Anterior region <strong>of</strong> female, lateral view. 4. Caudal end <strong>of</strong> female,<br />

lateral view. 5. Micr<strong>of</strong>ilaria from blood. 6. Caudal end <strong>of</strong> male, lateral view showing left and right spicules,<br />

cloaca, and caudal papillae. 7. Caudal end <strong>of</strong> male, ventral view showing arrangement <strong>of</strong> caudal papillae.<br />

All scale bars in urn.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


190 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

8<br />

5O/u<br />

11<br />

14<br />

12 15<br />

13 16 17<br />

Figures 8-17. Paraochoterenella javanensis gen. et sp. n. 8. Cephalic extremity <strong>of</strong> female, dorsal view<br />

showing cuticularized buccal capsule. 9. Cephalic extremity <strong>of</strong> female, en face view showing arrangement<br />

<strong>of</strong> papillae, amphids, and parastomal structures. 10. Cephalic extremity <strong>of</strong> female, lateral view. 11, 12, 13.<br />

Minute bosses on female, lateral views <strong>of</strong> cervical region (11), midbody (12), and anal region (13). 14, 15,<br />

16. Minute bosses on male, lateral view, cervical region (14), midbody (15), and anal region (16). 17. Detail<br />

<strong>of</strong> area rugosa <strong>of</strong> male, ventral view. Scale bars = 50 urn (Figs. 8-10) and 200 u,m (Figs. 11-17).<br />

TYPE LOCALITY: Indonesia, West Java, Bekasi.<br />

SITE OF INFECTION: Mesentery.<br />

DATE OF COLLECTION: AUGUST 1990.<br />

DEPOSITED SPECIMENS: Holotype male,<br />

USNPC 82165; allotype female, USNPC 82166;<br />

paratypes, 2 females, USNPC 82167 in 70% ethanol/5%<br />

glycerine; 1 blood slide, Giemsastained<br />

micr<strong>of</strong>ilariae (syntypes), USNPC 82168,<br />

deposited in the U.S. National Parasite Collec-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


PURNOMO AND BANGS—PARAOCHOTERENELLA JAVANENSIS GEN. ET SP. N. FROM RANA CANCRIVORA 191<br />

tion (USNPC), Beltsville, Maryland. Preserved<br />

frog specimens have been retained at U.S. Naval<br />

Medical Research Unit-2 in 10% formalin.<br />

ETYMOLOGY: <strong>The</strong> specific epithet is derived<br />

from the type locality <strong>of</strong> the new species.<br />

Remarks and Discussion<br />

<strong>The</strong> finding <strong>of</strong> Paraochoterenella javanensis<br />

sp. n. from the mangrove frog, Rana cancrivora,<br />

in Bekasi, West Java, represents the first report<br />

<strong>of</strong> a filarial species in the subfamily Waltonellinae<br />

from an Indonesian amphibian. <strong>The</strong> subfamily<br />

members are parasites <strong>of</strong> toads and frogs<br />

in Bufonidae, Leptodactylidae, Racophoridae,<br />

and Ranidae. Of the Waltonellinae, only Foleyellides<br />

and Paraochoterenella have been definitively<br />

described from ranid frogs (Anderson and<br />

Bain, 1976). Geographically, Ochoterenella appears<br />

restricted to the Neotropical Region. Species<br />

<strong>of</strong> Foleyellides have been recorded predominantly<br />

in the Western Hemisphere, whereas species<br />

<strong>of</strong> both Madochotera Bain and Brunhes,<br />

1968, and Paramadochotera Esslinger, 1986,<br />

have been described only from Madagascar<br />

(Bain and Brunhes, 1968, Esslinger, 1986a).<br />

Based on described morphological measures<br />

and structures <strong>of</strong> adults and micr<strong>of</strong>ilariae, together<br />

with information on definitive hosts and<br />

geographic localities, the generic name Paraochoterenella<br />

is proposed to accommodate the<br />

new species, P. javanensis. <strong>The</strong> specific characters<br />

deemed important in distinguishing genera<br />

in the subfamily Waltonellinae, as revised by<br />

Esslinger (1986a, b), are the presence or absence<br />

<strong>of</strong> caudal alae and parastomal structures, the appearance<br />

and arrangement <strong>of</strong> the cuticular bosses,<br />

and the morphology <strong>of</strong> the micr<strong>of</strong>ilariae.<br />

Paraochoterenella gen. n. shares various characters<br />

with the other 4 genera, including paired<br />

cephalic papillae without articulated tips, cuticularized<br />

parastomal structures, the absence <strong>of</strong><br />

lateral and caudal alae, a distinct buccal formation,<br />

the vulva near the base <strong>of</strong> the glandular<br />

esophagus, a thin, elongated (left) spicule shaft,<br />

and being a parasite <strong>of</strong> an anuran (Anderson and<br />

Bain, 1976). <strong>The</strong> principal characters that separate<br />

Paraochoterenella from other genera are the<br />

unsheathed micr<strong>of</strong>ilaria and the appearance and<br />

arrangement <strong>of</strong> the cuticular bosses.<br />

Of the 4 previously recognized genera in the<br />

subfamily, Paraochoterenella appears most<br />

closely aligned with Ochoterenella. However,<br />

Esslinger (1986a, 1988) concluded that all Ochoterenella<br />

species are a morphologically uniform<br />

group, restricted to the Neotropical Region.<br />

With the exception <strong>of</strong> only 2 species, both recovered<br />

from leptodactylid frogs, all have been<br />

found only in the toad Bufo marinus Linnaeus,<br />

1758 (Esslinger, 1988). Before Esslinger's<br />

(1986a) detailed reassessment, only 3 species <strong>of</strong><br />

Ochoterenella Caballero, 1944 (Caballero, 1944;<br />

Johnston, 1967), in the subfamily (Bain and<br />

Prod'hon, 1974) had been assigned to the genus.<br />

Ochoterenella digiticauda Caballero, 1944, has<br />

been found in Mexico, Guatemala, and Paraguay<br />

(Lent et al., 1946; Yamaguti, 1961). Ochoterenella<br />

papuensis Johnston, 1967, found in the<br />

frog Platymantis ( — Cornufer} papuensis Meyer,<br />

1875 has been reported only from New Guinea<br />

(Johnston, 1967), whereas Ochoterenella guibei<br />

Bain and Prod'hon, 1974 from a racophorid<br />

frog, appears in Madagascar.<br />

Esslinger (1988) included 14 members in<br />

Ochoterenella, partially the result <strong>of</strong> a previous<br />

transfer <strong>of</strong> 8 species in the genus Waltonella to<br />

Ochoterenella (Esslinger, 1986a). Ochoterenella<br />

guibei from Madagascar was placed in a new<br />

genus Paramadochotera. Ochoterenella papuensis<br />

from New Guinea, as described by Johnston<br />

(1967), was considered incertae sedis and was<br />

removed from the genus until more material<br />

could be fully described (Esslinger, 1986a). An<br />

incompletely described Ochoterenella species<br />

from northern Viet Nam (Moravec and Sey,<br />

1985) is also considered incertae sedis for the<br />

present. Specific identification <strong>of</strong> the Viet Nam<br />

filariid was not possible because <strong>of</strong> the absence<br />

<strong>of</strong> males and the poor condition <strong>of</strong> the 5 female<br />

specimens. It is also noted that both Asian populations<br />

assigned to Ochoterenella lacked a distinct<br />

buccal cavity and the micr<strong>of</strong>ilariae were<br />

unsheathed, characters present in all known<br />

members <strong>of</strong> Ochoterenella (Esslinger, 1986a, b).<br />

However, because O. papuensis and the Viet<br />

Nam specimens represent the only purported<br />

members <strong>of</strong> the genus described from the Asian<br />

region, both are briefly mentioned in this discussion.<br />

Paraochoterenella javanensis can be distinguished<br />

from O. digiticauda (the type species),<br />

O. papuensis, and Ochoterenella from Viet Nam<br />

(VN) by the following characters: adult male<br />

and female worms are shorter in body length<br />

(except VN sp.), the longer (left) spicule is nearly<br />

4 times as long as the right (male not described<br />

for VN sp.), and the spicule ratio (3.7:<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


192 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

1) is greater (1.7:1 and 2:1, respectively). Unlike<br />

all recognized members <strong>of</strong> Ochoterenella, the<br />

micr<strong>of</strong>ilariae <strong>of</strong> P. javanensis are unsheathed in<br />

blood. On average, the micr<strong>of</strong>ilariae are shorter<br />

in length, but have a distinctly smaller length to<br />

width body ratio (10:1) compared to O. digiticauda<br />

and O. papuensis (—30:1) and Ochoterenella<br />

VN (—20:1). <strong>The</strong> tip <strong>of</strong> the micr<strong>of</strong>ilaria<br />

tail is slightly narrowed versus the rounded, usually<br />

bulbous appearance in O. digiticauda. <strong>The</strong><br />

VN micr<strong>of</strong>ilariae were described as unsheathed.<br />

In Ochoterenella, the appearance and length<br />

<strong>of</strong> individual bosses in both sexes are considered<br />

consistent within a species (Esslinger, 1986a).<br />

Depending on the site <strong>of</strong> measurement, the individual<br />

bosses <strong>of</strong> O. digiticauda ranged in<br />

mean size from 8.7 |xm at the midbody to 4 (xm<br />

at the midportion <strong>of</strong> the area rugosa (Esslinger,<br />

1986a). <strong>The</strong> scattered appearance <strong>of</strong> minute<br />

bosses on the cuticle, in the size range <strong>of</strong> 2—3<br />

(xm, clearly set P. javanensis apart from Ochoterenella<br />

species. Ochoterenella papuensis female<br />

worms apparently lack surface tubercles,<br />

and tubercles were not described for the VN<br />

specimen.<br />

<strong>The</strong> arrangement <strong>of</strong> male preanal and caudal<br />

papillae differs among the 4 descriptions. Paraochoterenella<br />

javanensis has 2 pairs <strong>of</strong> preanal<br />

and 4 pairs <strong>of</strong> postanal papillae, and O. digiticauda<br />

has 2 pairs <strong>of</strong> preanal and 3 pairs <strong>of</strong> postanal<br />

(Caballero, 1944) or 1 pair <strong>of</strong> preanal and<br />

3 pairs <strong>of</strong> postanal papillae as reported by Lent<br />

et al. (1946) and Esslinger (1986a). Paraochoterenella<br />

javanensis also lacks a median ventral<br />

preanal plaque. Ochoterenella papuensis has 2<br />

single preanal papillae in tandem, 2 adanal papillae,<br />

and 3 pairs <strong>of</strong> postanal papilla. Paraochoterenella<br />

javanensis has 4 pairs <strong>of</strong> anterior<br />

submedian papillae, 2 lateral cephalic amphids,<br />

and parastomal structures similar to those <strong>of</strong> O.<br />

digiticauda and the VN Ochoterenella sp. <strong>The</strong><br />

position <strong>of</strong> the vulva is very near the glandular<br />

esophagointestinal junction, similar to that in O.<br />

digiticauda. In O. papuensis, the vulva was indistinct,<br />

lying slightly behind the musculoglandular<br />

esophageal junction, whereas Ochoterenella<br />

(VN) had it positioned at about the midpoint<br />

<strong>of</strong> the glandular esophagus. Unlike all<br />

members <strong>of</strong> Ochoterenella, P. javanensis has a<br />

distinct cuticularized buccal capsule, presently<br />

found elsewhere only in the genus Paramadochotera.<br />

Paraochoterenella represents a second genus<br />

in the subfamily present in southern Asia. <strong>The</strong><br />

distribution and host range <strong>of</strong> this monotypic genus<br />

is not known. To date, only Foleyellides<br />

( = Waltonella) confusa from the Philippines and<br />

Foleyellides ( = Waltonelld) malayensis (Petit<br />

and Yen, 1979) from peninsular Malaysia have<br />

been described. It is possible that specimens described<br />

from Viet Nam and New Guinea may be<br />

members <strong>of</strong> Paraochoterenella, because their<br />

micr<strong>of</strong>ilariae also lacked a cuticular sheath;<br />

however, a decision regarding this possibility<br />

awaits full descriptions. <strong>The</strong> limited number <strong>of</strong><br />

species described outside the Western Hemisphere<br />

may be more reflective <strong>of</strong> the lower relative<br />

number <strong>of</strong> investigations on amphibians<br />

and their nematodes from other areas <strong>of</strong> the<br />

world (Esslinger, 1986b). Given the wide range<br />

and species diversity <strong>of</strong> anuran amphibian species<br />

present in the Asian Region, this would not<br />

seem unreasonable.<br />

Nothing is known <strong>of</strong> the biology or transmission<br />

<strong>of</strong> Paraochoterenella javanensis. Larval<br />

stages have only been described from a few species<br />

<strong>of</strong> Foleyellides ( = Waltonelld), based primarily<br />

on experimental infections (Bain and<br />

Chabaud, 1986). Larval stage development has<br />

been observed in adipose and muscle tissue <strong>of</strong><br />

mosquitoes. Likewise, the natural intermediate<br />

hosts <strong>of</strong> Waltonellinae are poorly known except<br />

for a few Foleyellides. Vectors are presumed to<br />

be blood-feeding dipterans, most likely various<br />

culicine mosquitoes (Diptera: Culicidae). In general,<br />

as more information becomes available on<br />

species morphology, biological variability, distribution,<br />

and natural host range <strong>of</strong> this group <strong>of</strong><br />

filariids, the diagnostic significance <strong>of</strong> certain<br />

characters used to separate genera and species<br />

will become better understood. A revised simplified<br />

key to the genera is presented in light <strong>of</strong><br />

this new addition to the subfamily.<br />

Key to the Genera <strong>of</strong> the Subfamily<br />

Waltonellinae<br />

la. Cuticularized parastomal structures present<br />

2<br />

Ib. Cuticularized parastomal structures absent<br />

Paramadochotera (Madagascar)<br />

2a. Lateral and caudal alae present 3<br />

2b. Lateral and caudal alae absent 4<br />

3a. Cuticle with transversely oriented ridges<br />

and bosses .. Madochotera (Madagascar)<br />

3b. Cuticle smooth, generally lacking bosses<br />

Foleyellides (worldwide)<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


PURNOMO AND BANGS—PARAOCHOTERENELLA JAVANENSIS GEN. ET SP. N. FROM RANA CANCRIVORA 193<br />

4a. Cuticle <strong>of</strong> midbody with annular bands<br />

<strong>of</strong> longitudinally oriented bosses; micr<strong>of</strong>ilaria<br />

sheathed with tip <strong>of</strong> tail<br />

rounded, <strong>of</strong>ten bulbous<br />

Ochoterenella (Neotropics)<br />

4b. Cuticle <strong>of</strong> midbody with scattered minute<br />

bosses; micr<strong>of</strong>ilaria unsheathed<br />

with tip <strong>of</strong> tail slightly narrowed<br />

Paraochoterenella (Indonesia)<br />

Acknowledgments<br />

<strong>The</strong> Naval Medical Research and Development<br />

Command, Navy Department, supported<br />

this study under Work Unit 3M161102BS13.<br />

AD410. <strong>The</strong> opinions and assertions contained<br />

herein are those <strong>of</strong> the authors and do not purport<br />

to reflect those <strong>of</strong> the U.S. Naval Service<br />

or the Indonesian Ministry <strong>of</strong> Health.<br />

Literature Cited<br />

Anderson, R. C., and O. Bain. 1976. Keys to the<br />

genera <strong>of</strong> the order Spirurida (No. 3), Part 3. Diplotriaenoidea,<br />

Aproctoidea and Filarioidea. Pages<br />

59-116 in R. C. Anderson, A. G. Chabaud, and<br />

S. Willmont, eds. CIH Keys to the Nematode Parasites<br />

<strong>of</strong> Vertebrates. Commonwealth Agricultural<br />

Bureaux, Farnham Royal, Buckinghamshire, U.K.<br />

Bain, O., and J. Brunhes. 1968. Un nouveau genre<br />

de filaire, parasite de grenouilles malgaches. Bulletin<br />

du Museum National d'Histoire Naturelle,<br />

Paris, 2nd ser. 40:797-801.<br />

, and A. G. Chabaud. 1986. Atlas des larves<br />

infestantes de filaires. Tropical Medicine and Parasitology<br />

37:301-340.<br />

, and J. Prod'hon. 1974. Homogeneite des filaires<br />

de batraciens des genres Waltonella, Ochoterenella<br />

et Madochotera; creation de Waltonellinae<br />

n. subfam. Annales de Parasitologie Humaine<br />

et Comparee 49:721—739.<br />

Caballero, E. C. 1944. Estudios helmintologicos de la<br />

region oncocercosa de Mexico y de la Repiiblica<br />

de Guatemala. Nematoda: Primeira parte. Filarioidea.<br />

I. Anales del Institute de Biologia, Universidad<br />

de Mexico 15:87-108.<br />

Esslinger, J. H. 1986a. Redescription <strong>of</strong> Ochoterenella<br />

digiticauda Caballero, 1944 (Nematoda: Filarioidea)<br />

from the toad, Bufo marinus, with a redefinition<br />

<strong>of</strong> the genus Ochoterenella Caballero,<br />

1944. Proceedings <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong> 53:210-217.<br />

. 1986b. Redescription <strong>of</strong> Foleyellides striatus<br />

(Ochoterena and Caballero, 1932) (Nematoda: Filarioidea)<br />

from a Mexican frog, Rana montezumae,<br />

with reinstatement <strong>of</strong> the genus Foleyellides<br />

Caballero, 1935. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 53:218-223.<br />

. 1988. Ochoterenella figueroai sp. n. and O.<br />

lamothei sp. n. (Nematoda: Filarioidea) from the<br />

toad Bufo marinus. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 55:146-154.<br />

Johnston, M. R. L. 1967. Icosiella papuensis n. sp.<br />

and Ochoterenella papuensis n. sp. (Nematoda:<br />

Filarioidea), from a New Guinea frog, Cornufer<br />

papuensis. Journal <strong>of</strong> Helminthology 41:45-54.<br />

Lent, H., J. F. Teixeira de Freitas, and M. C. Proenca.<br />

1946. Alguns helmintos de batraquios colecionados<br />

no Paraguai. Memorias do Institute Oswaldo<br />

Cruz 44:195-214.<br />

Moravec, F., and O. Sey. 1985. Some nematode parasites<br />

<strong>of</strong> frogs (Rana spp.) from North Viet Nam.<br />

Parasitologia Hungarica 18:63-77.<br />

Petit, G., and P. Yen. 1979. Waltonella malayensis n.<br />

sp., une nouvelle filaire de batracien, en Malaisie.<br />

Bulletin du Museum National d'Histoire Naturelle,<br />

Paris 1, Sect. A 1:213-218.<br />

Schmidt, G. D., and R. E. Kuntz. 1969. Nematode<br />

parasites <strong>of</strong> Oceania. VI. Foleyella confusa sp. n.,<br />

Icosiella hoogstraali sp. n. (Filarioidae), and other<br />

species from Philippine amphibians. Parasitology<br />

59:885-889.<br />

Yamaguti, S. 1961. Systema Helminthum. Vol. 3. <strong>The</strong><br />

Nematodes <strong>of</strong> Vertebrates. Parts I and II. Interscience<br />

Publishers, Inc., New York. 1261 pp.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 194-197<br />

Research Note<br />

New Records, Hosts, and SEM Observations <strong>of</strong> Cercaria owreae<br />

(Hutton, 1954) from the Mexican Caribbean Sea<br />

DEL CARMEN GOMEZ DEL PRAoo-RosAS,1'4 JOSE N. ALVAREZ-CADENA,2 LOURDES<br />

SEGURA-PUERTAS,2 AND RAFAEL LAMOTHE-ARGUMEDO3<br />

1 Universidad Autonoma de Baja California Sur, Departamento de Biologia Marina, Apartado Postal 19-B,<br />

C.P. 23080, La Paz, Baja California Sur, Mexico (e-mail: mcgomez@calafia.uabcs.mx)<br />

2 Universidad Nacional Autonoma de Mexico, Institute de Ciencias del Mar y Limnologia, Estacion Puerto<br />

Morelos, Apartado Postal 1152, C.P. 77501, Canctin, Quintana Roo, Mexico, and<br />

3 Universidad Nacional Autonoma de Mexico, Institute de Biologia, Apartado Postal 70-153, C.P. 04510,<br />

Mexico, D.F., Mexico.<br />

ABSTRACT: Digenetic trematode larvae identified as<br />

Cercaria owreae (Hutton) were recorded in the coela<br />

<strong>of</strong> the following chaetognath species: Flaccisagitta enflata<br />

(Grassi), Serratosagitta serratodentata (Krohn),<br />

Ferosagitta hispida (Conant), and Sagitta helenae Ritter-Zahony.<br />

<strong>The</strong> hosts and parasites were collected during<br />

4 oceanographic cruises in February, March, May,<br />

and August 1991. <strong>The</strong> low prevalence <strong>of</strong> infection (average<br />

0.11%) was comparable with previous records.<br />

<strong>The</strong> intensity was restricted to 1 parasite. Ferosagitta<br />

hispida and Sagitta helenae are recorded for the first<br />

time as hosts <strong>of</strong> Cercaria owreae, and the Mexican<br />

Caribbean Sea is reported as a new locality for the<br />

geographical distribution <strong>of</strong> this parasite.<br />

KEY WORDS: Cercaria owreae, SEM, scanning<br />

electron microscopy, chaetognaths, new records, Caribbean<br />

Sea, Mexico.<br />

Cercaria owreae (Hutton, 1954) has been reported<br />

parasitizing species <strong>of</strong> Sagitta in the Atlantic<br />

Ocean and the Caribbean Sea (Hutton,<br />

1952, 1954; Suarez-Caabro, 1955; Dawes, 1958,<br />

1959). However, parasites <strong>of</strong> holoplanktonic organisms<br />

such as chaetognaths have not been<br />

studied in the vicinity <strong>of</strong> the Mexican Caribbean<br />

Sea. <strong>The</strong> main possible reasons for this lack <strong>of</strong><br />

information are that the larval parasites have<br />

been mistaken for food remains or the holoplanktonic<br />

organisms are seldom investigated as<br />

hosts; thus, their importance as intermediate<br />

hosts has been underestimated and frequently<br />

overlooked.<br />

<strong>The</strong> purpose <strong>of</strong> this study is to describe larvae<br />

<strong>of</strong> the digenetic trematode Cercaria owreae with<br />

the aid <strong>of</strong> scanning electron microscopy (SEM),<br />

to determine the prevalence and mean intensity<br />

<strong>of</strong> parasitism in chaetognaths, and to report the<br />

Corresponding author.<br />

chaetognaths Ferosagitta hispida and Sagitta<br />

helenae as new hosts and the Mexican Caribbean<br />

Sea as a new locality record.<br />

Zooplankton samples were collected during<br />

scientific cruises <strong>of</strong> the Mexican Navy (Secretaria<br />

de Marina) during February, March, May,<br />

and August 1991 (cruises I to IV) in the Mexican<br />

Caribbean Sea (Fig. 1). <strong>The</strong> material was<br />

intended for studies <strong>of</strong> the composition, abundance,<br />

and species distribution <strong>of</strong> the major zooplankton<br />

groups, and it was during its analysis<br />

that trematode larval parasites were observed in<br />

the coela <strong>of</strong> some chaetognaths.<br />

Sampling was carried out from 50 m to the<br />

surface in oblique tows with a square-mouth<br />

standard net 0.45 m per side (330 fjim mesh).<br />

Zooplankton material was fixed in 4% buffered<br />

(lithium carbonate) formalin. All chaetognaths<br />

were sorted from approximately 22 samples<br />

from each cruise. Prevalence and mean intensity<br />

were calculated according to Margolis et al.<br />

(1982). Parasitized chaetognaths were stained<br />

with Hams' hematoxylin and acetic carmine,<br />

cleared with methyl salicylate, and mounted on<br />

permanent slides in synthetic resin. Some chaetognaths<br />

were dissected and parasites were extracted<br />

for SEM. Twenty-two specimens were<br />

mounted on permanent slides and examined using<br />

a compound microscope, and 2 specimens<br />

were observed and photographed using SEM<br />

techniques. Measurements (mm) <strong>of</strong> 5 parasites<br />

are given as the range and mean (in parentheses).<br />

Specimens <strong>of</strong> the parasites are deposited in<br />

the Coleccion Nacional de Helmintos (CNHE),<br />

Institute de Biologia, Universidad Nacional Autonoma<br />

de Mexico, Mexico City, under the catalogue<br />

number 3185 for parasites <strong>of</strong> Flaccisa-<br />

194<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 195<br />

Table 1. Prevalence and intensity <strong>of</strong> Cercaria<br />

owreae infecting chaetognaths from the Mexican<br />

Caribbean Sea.<br />

Chaetognath species<br />

analyzed<br />

Cercaria owreae*<br />

N P %P<br />

I<br />

Flaccisagitta enflata<br />

Serratosagitta serratodentata<br />

Ferosagitta hispida<br />

Sagitta helenae<br />

14,583<br />

3,638<br />

1,015<br />

288<br />

18<br />

1<br />

1<br />

2<br />

0.12<br />

0.05<br />

0.09<br />

0.69<br />

I<br />

1<br />

1<br />

1<br />

* N, total number <strong>of</strong> chaetognaths analyzed; P, total number<br />

<strong>of</strong> chaetognaths parasitized; %P, percentage <strong>of</strong> chaetognaths<br />

infected; I, intensity <strong>of</strong> parasitism.<br />

Figure 1. Study area with the locations <strong>of</strong> the<br />

stations sampled in February, March, May, and<br />

August 1991. Geographical positions <strong>of</strong> the stations<br />

were similar for the 4 cruises.<br />

gitta enflata and number 3186 for parasites <strong>of</strong><br />

Serratosagitta serratodentata. Specimens from<br />

the other 2 species were used for the SEM and<br />

are deposited in the SEM laboratory <strong>of</strong> the In-<br />

stituto de Ciencias del Mar y Limnologia, Universidad<br />

Nacional Autonoma de Mexico, Mexico<br />

City.<br />

A total <strong>of</strong> 19,524 chaetognaths (prevalence<br />

0.11%) belonging to 4 species were analyzed:<br />

Flaccisagitta enflata (Grassi, 1881), Serratosagitta<br />

serratodentata (Krohn, 1853), Ferosagitta<br />

hispida (Conant, 1891), and Sagitta helenae Ritter-Zahony,<br />

1911, had 1 trematode larva per host<br />

(Table 1). Ferosagitta hispida and S. helenae are<br />

reported as hosts for the first time, and the Mexican<br />

Caribbean Sea is reported as a new locality.<br />

Cercaria owreae has an oval to pyriform<br />

body 0.166-0.575 (0.333) long and 0.087-0.235<br />

(0.154) wide and 2 posterior cylindrical appendages<br />

0.066-0.131 (0.107) long (Fig. 2). <strong>The</strong> tegument<br />

has deep circular furrows and dermal pa-<br />

Figure 2. Cercaria owreae: ventral view (SEM) <strong>of</strong> entire specimen; 1 appendage is missing. Scale 50 p,<br />

Figure 3. Cercaria owreae: oral and ventral suckers (SEM) showing dermal papillae. Scale 50 u.m.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


196 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

pillae in the anteroventral and anterodorsal body<br />

regions extending to the acetabulum. <strong>The</strong> oral<br />

sucker, 0.041-0.079 (0.060) long and 0.041-0.1<br />

(0.065) wide, has a subterminal mouth and is<br />

strongly muscular, with 11 papillae encircling it<br />

and another 5 distributed irregularly (Fig. 2).<br />

<strong>The</strong> acetabulum, 0.045-0.108 (0.104) length and<br />

0.045-0.133 (0.090) width, in a preequatorial<br />

position, also has 13 papillae encircling it and 5<br />

to 6 papillae nearby (Fig. 3). <strong>The</strong> average ratio<br />

<strong>of</strong> the diameters <strong>of</strong> the oral and ventral suckers<br />

is 1:1.7, and there is a slit-like opening anterior<br />

to the acetabulum. <strong>The</strong> muscular pharynx, which<br />

is round to oval, leads to a short esophagus and<br />

thence to a cecal bifurcation. <strong>The</strong> esophageal or<br />

cecal diverticula were not observed. <strong>The</strong> intestinal<br />

cecum is unbranched and passes into the 2<br />

appendages. No vitelline glands or gonads were<br />

observed. <strong>The</strong> excretory vesicle is Y-shaped and<br />

does not enter the posterior appendages. Its lateral<br />

excreting tubules join together dorsally to<br />

the pharynx. <strong>The</strong> excretory pore is terminal.<br />

Dermal papillae in the oral and ventral suckers<br />

are reported here for the first time; papillae<br />

in the anterodorsal and anteroventral body regions<br />

were reported in the family Accacoeliidae<br />

by Odhner (1911). Subcuticular tissues from the<br />

deep fold facing the acetabulum, which are<br />

"thickenings producing small papillae," were<br />

reported by Dawes (1959), but the papillae encircling<br />

the suckers have not been reported.<br />

Cercaria owreae has been previously reported<br />

in the Florida Current, parasitizing the chaetognaths<br />

Flaccisagitta enflata, Flaccisagitta hexaptera<br />

(d'Orbigny, 1836) and Flaccisagitta lyra<br />

(Krohn, 1853) (see Hutton, 1952, 1954) in the<br />

Caribbean Sea between Jamaica and Cuba<br />

(Dawes, 1958, 1959) and in Cuban waters in the<br />

north (Suarez-Caabro, 1955). It parasitizes Zonosagitta<br />

pulchra (Doncaster, 1902) northwest<br />

<strong>of</strong> Madagascar; Serratosagitta serratodentata<br />

var. atlantica and Sagitta bipunctata Quoy and<br />

Gaimard, 1828, in Mauritania; F. hexaptera in<br />

Cabo Frio and west <strong>of</strong> Mossamedes in Angola;<br />

and F. enflata <strong>of</strong>f Gabon, Mauritania, and Liberia<br />

(Furnestin and Rebecq, 1966).<br />

Prevalence and mean intensity values <strong>of</strong> infection<br />

in the present study were low, comparable<br />

to those obtained by Hutton (1954) and<br />

Furnestin and Rebecq (1966), even though the<br />

host species are different. To date, 7% is the<br />

highest prevalence reported (Dawes, 1959).<br />

<strong>The</strong> parasites reported here are the smallest<br />

reported until now (0.166-0.575). <strong>The</strong> largest<br />

(0.245-2.200) were those reported by Furnestin<br />

and Rebecq (1966). <strong>The</strong>se authors reported<br />

length variability between posterior appendages<br />

and body length. <strong>The</strong>y noted that the perforating<br />

trematode larvae emerging from the first intermediate<br />

host (a benthic coastal mollusk) were<br />

small parasites with similarly small appendages<br />

and that both the body <strong>of</strong> the larva and the appendages<br />

would not grow proportionately.<br />

Cercaria owreae has been found in the tropical-subtropical<br />

zones (Furnestin and Rebecq,<br />

1966) <strong>of</strong>f the coast <strong>of</strong> Miami, Florida, in the<br />

Caribbean Sea, and in the east and northwest <strong>of</strong><br />

Africa. However, this distribution does not<br />

match that <strong>of</strong> the chaetognath species; for example,<br />

Flaccisagita enflata is distributed worldwide<br />

(Alvarino, 1964, 1965). No one has recorded<br />

a holoplanktonic intermediate host; thus,<br />

it seems more plausible that the Cercaria<br />

owreae distribution recorded until now has been<br />

determined by the initial intermediate host, the<br />

benthic mollusk (Furnestin and Rebecq, 1966).<br />

According to Dawes (1959), Cercaria owreae<br />

should be placed within the genus Accacladocoelium<br />

Odhner, 1928. <strong>The</strong> length <strong>of</strong> the ceca<br />

going into the posterior appendages suggests<br />

that they could correspond to the anal openings<br />

ending in the excretory vesicle walls in the case<br />

<strong>of</strong> the adult; this feature is present in several<br />

families, but it has also been observed in 7 genera<br />

<strong>of</strong> the family Accacoeliidae. Additionally,<br />

the presence <strong>of</strong> 6 diverticula in the anterior region<br />

<strong>of</strong> the intestinal ceca on each side resembles<br />

the situation in 1 <strong>of</strong> the genera <strong>of</strong> the family.<br />

Dawes (1959) mentioned that Accacladocoeliurn<br />

petasiporum Odhner, 1928 does not belong<br />

to this trematode larval stage because this species<br />

has a conspicuous acetabulum, which does<br />

not correspond with Cercaria owreae. <strong>The</strong> other<br />

3 species, Accacladocoelium nigr<strong>of</strong>lavum (Rudolphi,<br />

1819), Accacladocoelium macrocotyle<br />

(Diesing, 1858) sensu Monticelli, 1893, and Accacladocoelium<br />

alveolatum Robinson, 1943, remain<br />

to be studied. It is worth mentioning that<br />

these 3 species have been reported as parasites<br />

<strong>of</strong> the sunfish Mola mola (Linnaeus, 1758),<br />

which could indicate that Cercaria owreae may<br />

parasitize this fish species.<br />

Whatever the course <strong>of</strong> discussions in relation<br />

to the taxonomic position <strong>of</strong> this trematode, the<br />

presence <strong>of</strong> papillae circling both the oral and<br />

ventral suckers in Cercaria owreae is a distinc-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 197<br />

live feature not reported previously in any species<br />

<strong>of</strong> Accacladocoelium. This feature raises the<br />

possibility <strong>of</strong> an undescribed species within the<br />

genus.<br />

We thank Yolanda Hornelas <strong>of</strong> the Institute<br />

de Ciencias del Mar y Limnologfa, UNAM, for<br />

helping with the SEM photomicrographs. Rebeca<br />

Gasca and Eduardo Suarez-Morales, <strong>of</strong> El<br />

Colegio de la Frontera Sur-Unidad Chetumal<br />

kindly supplied the biological material.<br />

Literature Cited<br />

Alvarino, A. 1964. Bathymetric distribution <strong>of</strong> chaetognaths.<br />

Pacific Science 18:64-82.<br />

. 1965. Chaetognaths. in Harold Barnes, ed.<br />

Annual Review <strong>of</strong> Oceanography and Marine Biology.<br />

3:115-195.<br />

Dawes, B. 1958. Sagitta as a host <strong>of</strong> larval trematodcs,<br />

including a new and unique type <strong>of</strong> cercaria. Nature<br />

182:960-961.<br />

. 1959. On Cercaria owreae (Hutton, 1954)<br />

from Sagitta hexaptera (d'Orbigny) in the Caribbean<br />

plankton. Journal <strong>of</strong> Helminthology 33:209-<br />

222.<br />

Furnestin, M. L., and J. Rebecq. 1966. Sur 1'ubiquite<br />

de Cercaria owreae (R. F. Hutton, 1954). Annales<br />

de Parasitologie 41:61-70.<br />

Hutton, R. F. 1952. Schistosome cercariae as the<br />

probable cause <strong>of</strong> seabather's eruption. Bulletin <strong>of</strong><br />

Marine Science <strong>of</strong> the Gulf and Caribbean 2:346-<br />

359.<br />

. 1954. Metacercaria owreae n. sp. an unusual<br />

trematode larvae from the Florida Current. Chaetognaths.<br />

Bulletin <strong>of</strong> Marine Science <strong>of</strong> the Gulf<br />

and Caribbean 4:104-109.<br />

Odhner, T. 1911. Zum natiirlichen System dcr digenen<br />

Trematoden. Zoologischer Anzeiger 4:513—<br />

531.<br />

Margolis, L., G. W. Esch, J. C. Holmes, A. M. Kuris,<br />

and G. A. Schad. 1982. <strong>The</strong> use <strong>of</strong> ecological<br />

terms in parasitology. Journal <strong>of</strong> Parasitology 68:<br />

131-133.<br />

Suarez-Caabro, J. A. 1955. Quetognatos de los mares<br />

Cubanos. Memorias de la Sociedad Cubana de<br />

Historia Natural 22:125-180.<br />

J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 197-201<br />

Research Note<br />

New Host and Locality Records for Three Species <strong>of</strong> Glypthelmins<br />

(Digenea: Macroderoididae) in Anurans <strong>of</strong> Mexico<br />

U. RAZO-MENDIVIL,' J. P. LACLETTE,2 AND G. PEREZ-PONCE DE LEON1-3<br />

1 Laboratorio de Helmintologla, Institute de Biologfa, Universidad Nacional Autonoma de Mexico, Ap. Postal<br />

70-153, C.P. 04510, Mexico D.F., Mexico (e-mail: ppdleon@servidor.unam.mx), and<br />

2 Departamento de Inmunologia, Institute de Investigaciones Biomedicas, Universidad Nacional Autonoma de<br />

Mexico, Ap. Postal 70228, C.P. 04510, Mexico D.F., Mexico<br />

ABSTRACT: During an inventory <strong>of</strong> the helminth parasites<br />

<strong>of</strong> amphibians from several localities in Mexico,<br />

trematode parasites <strong>of</strong> the genus Glypthelmins from 5<br />

species <strong>of</strong> frogs were studied. Three species <strong>of</strong> Glypthelmins<br />

were collected from Rana montezumae, Rana<br />

dunni, Rana neovolcanica, Rana megapoda, and Rana<br />

vaillanti. New host and locality records for Glypthelmins<br />

quieta and Glypthelmins californiensis in anurans<br />

from Mexico are established, and we report Glvpthelmins<br />

facioi for the first time from R. vaillanti from Los<br />

Tuxtlas, Veracruz <strong>State</strong>. Diagnostic characters for each<br />

parasite species and sister-group relationships are presented.<br />

KEY WORDS: Digenea, Macroderoididae, Glypthelmins<br />

spp., anurans, systematics, frogs, Rana spp.,<br />

Mexico.<br />

' Corresponding author.<br />

<strong>The</strong> genus Glypthelmins was established by<br />

Stafford (1905) to include Distomum quietum<br />

Stafford, 1900, parasitic in Rana catesbeiana<br />

Shaw, 1802, Rana virescens Kalm, 1878, and<br />

Hyla pickeringll Holb, 1890, all from Canada.<br />

At the present time there is controversy about<br />

the species comprising the genus Glypthelmins,<br />

primarily because the original description <strong>of</strong> the<br />

type species <strong>of</strong> Glypthelmins was incomplete.<br />

This, and some degree <strong>of</strong> intraspecific morphological<br />

variability among some members <strong>of</strong> the<br />

genus, have led to taxonomic uncertainty concerning<br />

the species. This confusion has resulted<br />

in investigators creating nonphylogenetic<br />

groups, and some species that should be included<br />

in Glypthelmins were assigned to other gen-<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


198 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 1. Prevalence and mean abundance <strong>of</strong> 3 species <strong>of</strong> Glypthelmins in 5 species <strong>of</strong> frogs from Mexico.<br />

Glypthelmins<br />

califomiensis<br />

Host<br />

Local ity*<br />

Aft<br />

quieta<br />

facioi<br />

Rana montezumae<br />

Rana dunni<br />

Rana megapoda<br />

Rana neovolcanica<br />

Rana vaillanti<br />

CLE<br />

LZA<br />

LPA<br />

LCU<br />

MCO<br />

LAE<br />

89<br />

73<br />

18<br />

46<br />

34<br />

34<br />

330±/23.6§ (3.7)||<br />

273/46.6 (3.7)<br />

4/22.2 (1)<br />

—<br />

—<br />

—<br />

1034/39.3 (11.6)<br />

39/15 (3.5)<br />

180/50 (20)<br />

6/8.7 (0.13)<br />

231/31.7 (5.6)<br />

—<br />

—<br />

—<br />

—<br />

31/41.2 (0.91)<br />

:i: CLE = Cienaga de Lerma; LZA = Lago de Zacapu; LPA = Lago de Patzcuaro; LCU = Lago de Cuitzeo; MCO<br />

Manantiales de Cointzio; LAE = Laguna Escondida.<br />

t N = sample size.<br />

:|: Number <strong>of</strong> worms collected.<br />

§ Prevalence <strong>of</strong> infection (expressed as %).<br />

|| Mean abundance <strong>of</strong> infection (mean no. <strong>of</strong> worms per host examined).<br />

era such as Margeana Cort, 1919, Microderma<br />

Mehra, 1931, Choledocystus Pereira and Cuocolo,<br />

1941, Rauschiella Babero, 1951, Reynoldstrema<br />

Cheng, 1959, and Repandum Byrd and<br />

Maples, 1963 (Miller, 1930; Caballero, 1938;<br />

Cheng, 1959; Byrd and Maples, 1963). In Mexico,<br />

at least 4 species <strong>of</strong> the genus have been<br />

reported from frogs and toads: Glypthelmins califomiensis<br />

(Cort, 1919) Miller, 1930, Glypthelmins<br />

quieta (Stafford, 1900) Stafford, 1905,<br />

Glypthelmins intermedia (Caballero, Bravo, and<br />

Zerecero, 1944) Yamaguti, 1958 (=Choledocystus<br />

intermedia), and Glypthelmins tineri (Babero,<br />

1951) Brooks, 1977 (=Rauschiella tineri)<br />

(see Lamothe-Argumedo et al., 1997; Brooks,<br />

1977). As part <strong>of</strong> an ongoing inventory <strong>of</strong> the<br />

helminth parasites <strong>of</strong> amphibians from different<br />

localities in Mexico, we establish herein new<br />

host and locality records for 3 species <strong>of</strong> Glypthelmins.<br />

During this study, we examined the<br />

species <strong>of</strong> Glypthelmins deposited at the Coleccion<br />

Nacional de Helmintos (CNHE) and produced<br />

a revised list <strong>of</strong> hosts and species in Mexico.<br />

Between 1996 and 1997, individuals <strong>of</strong> 18<br />

species <strong>of</strong> frogs and toads were collected from<br />

9 localities in Mexico. Only at 5 <strong>of</strong> these localities<br />

(Cienaga de Lerma, Estado de Mexico<br />

[CLE], 19°17'N, 99°30'W; Lago de Patzcuaro,<br />

Michoacan [LPA], 19°30'N, 101°36'W; Lago de<br />

Zacapu, Michoacan [LZA], 19°49'N, 101°47'W;<br />

Manantiales de Cointzio, Michoacan [MCO],<br />

19°35'N, 101°14'W; and Laguna Escondida, Los<br />

Tuxtlas, Veracruz [LAE], 20°37'N, 98°12'W),<br />

and only in 5 <strong>of</strong> the 18 species <strong>of</strong> frogs and<br />

toads studied were several specimens <strong>of</strong> Glypthelmins<br />

recovered from the intestines <strong>of</strong> their<br />

hosts. Anurans were captured by hand, and in<br />


RESEARCH NOTES 199<br />

and an I- or Y-shaped excretory vesicle. Glypthelmins<br />

quieta is characterized by having 2<br />

groups <strong>of</strong> prominent peripharyngeal glands on<br />

each side <strong>of</strong> the pharynx extending to the cecal<br />

bifurcation, with gland ducts opening at the posterior<br />

border <strong>of</strong> the oral sucker. Vitelline follicles<br />

extend from the posterior border <strong>of</strong> the pharynx<br />

and occasionally from the midlevel <strong>of</strong> the esophagus,<br />

reaching far beyond the posterior border<br />

<strong>of</strong> the testes. In addition, G. quieta possesses<br />

cecal, intracecal, and extracecal uterine loops.<br />

<strong>The</strong> original description <strong>of</strong> G. californiensis<br />

by Cort (1919), based on live specimens, indicated<br />

the absence <strong>of</strong> peripharyngeal glands. We<br />

have studied specimens identified as G. californiensis<br />

from CNHE (nos. 3280-3284) and from<br />

the personal collection <strong>of</strong> Dr. Daniel Brooks<br />

from Rana aurora Baird and Girard, 1852, from<br />

British Columbia, Canada. <strong>The</strong>se specimens<br />

possess reduced peripharyngeal glands that surround<br />

the pharynx both ventrally and dorsally.<br />

Because the location <strong>of</strong> the holotype <strong>of</strong> this species<br />

is not known, we are unable to confirm this<br />

characteristic until a neotype is assigned and<br />

studied. However, our observations agree with<br />

those made by O'Grady (1987) who described<br />

G. californiensis from British Columbia, naming<br />

these glands as medial glands. Glypthelmins californiensis<br />

has vitelline follicles that extend anteriorly<br />

to the level <strong>of</strong> the posterior border <strong>of</strong> the<br />

pharynx and occasionally to the posterior border<br />

<strong>of</strong> the oral sucker with follicles confluent dorsally<br />

at the cecal bifurcation. <strong>The</strong> vitellaria extend<br />

to the posterior border <strong>of</strong> the testes. Uterine<br />

loops are completely intracecal. In contrast, G.<br />

facioi is characterized by lacking peripharyngeal<br />

glands, vitelline follicles extending anteriad<br />

from the cecal bifurcation just beyond the posterior<br />

border <strong>of</strong> the left testis, by having oblique<br />

rather than symmetric testes, cecal and intracecal<br />

uterine loops, and by having tegumentary spines<br />

that extend only along the anterior % <strong>of</strong> the<br />

body.<br />

<strong>The</strong>se 3 species <strong>of</strong> Glypthelmins constitute a<br />

monophyletic clade, according to the phylogenetic<br />

hypothesis proposed by Brooks (1977) and<br />

Brooks and McLennan (1993). Glypthelmins facioi<br />

is the sister species <strong>of</strong> the species pair G.<br />

quieta + G. californiensis. Glypthelmins facioi<br />

was originally described from R. pipiens Schreber,<br />

1782, from Costa Rica by Brenes et al.<br />

(1959), and later redescribed by Sullivan (1976).<br />

Herein, we report G. facioi for the first time<br />

from Mexico, thus establishing a new host and<br />

locality record. Based on previous geographical<br />

records, this species is apparently restricted to<br />

the neotropics. Glypthelmins quieta, the type<br />

species <strong>of</strong> the genus, is widely distributed in<br />

North America, including the eastern U.S.A.,<br />

Canada, and Central Mexico, parasitizing at<br />

least 21 species <strong>of</strong> anurans in 5 genera (Acris<br />

Dumeril and Bibron, 1841, Bufo Laurenti, 1768,<br />

Hyla Laurenti, 1768, Pseudacris Fitzinger, 1843,<br />

and Rana Linnaeus, 1758). In Mexico, this species<br />

was previously recorded from R. montezumae<br />

from Xochimilco and Texcoco lakes, both<br />

in the vicinity <strong>of</strong> Mexico City (Lamothe-Argumedo<br />

et al., 1997). In this report we add 4 new<br />

locality records (CLE, LPA, LZA, MCO), and 3<br />

host records, all belonging to the R. pipiens<br />

complex (leopard frogs) including R. dunni, R.<br />

neovolcanica, and R. megapoda.<br />

Glypthelmins californiensis also occurs in the<br />

Nearctic Region but has a different geographic<br />

distribution than the type species; it occurs in<br />

North America, but is known only from 6 species<br />

<strong>of</strong> Rana and 1 species <strong>of</strong> Hyla. Its range<br />

extends through the western U.S.A. and Canada,<br />

converging with G. quieta in frogs from the central<br />

region <strong>of</strong> Mexico in localities <strong>of</strong> the Transverse<br />

Neovolcanic Axis, at the boundary between<br />

the Nearctic and Neotropical biogeographic<br />

zones. Previously, this species was reported<br />

in Mexico from R. montezumae and R.<br />

pipiens from Mexico City and Lerma (Caballero,<br />

1942; Caballero and Sokol<strong>of</strong>f, 1934; Leon-<br />

Regagnon, 1992) and from R. dunni from Lake<br />

Patzcuaro (Pulido, 1994). Herein, we establish<br />

Lake Zacapu as a new locality record for G. californiensis.<br />

Guillen (1992) recorded G. californiensis<br />

as a parasite <strong>of</strong> Rana berlandieri Baird,<br />

1854, and R. vaillanti from Los Tuxtlas, Veracruz<br />

<strong>State</strong>. We examined specimens deposited at<br />

the CNHE (no. 1514, 5 specimens). Based on<br />

our diagnoses <strong>of</strong> the 3 species, we believe these<br />

were misidentified because in them the vitellaria<br />

extend anteriorly to the level <strong>of</strong> cecal bifurcation,<br />

and posteriorly they extend to the posterior<br />

border <strong>of</strong> the testes. <strong>The</strong> specimens do have<br />

oblique testes, and the uterine loops are intraand<br />

extracecal. In our opinion, they are G. facioi.<br />

As can be generally expected, the close phylogenetic<br />

relationship between G. quieta and G.<br />

californiensis (see Brooks, 1977; Brooks and<br />

McLennan, 1993) determines some degree <strong>of</strong><br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


200 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Table 2. Species <strong>of</strong> Glypthelmins recorded from anurans from Mexico.<br />

Species<br />

Host<br />

Locality<br />

Reference<br />

Glypthelmins califomiensis*<br />

Glypthelmins facial*<br />

Glypthelmins intermedia']"^<br />

Glypthelmins quieta*<br />

Glypthelmins tineri*<br />

* Intestine.<br />

t Liver.<br />

$ Gall bladder.<br />

§ Bile ducts.<br />

|| Locality not determined.<br />

Rana montezumae,<br />

Rana pipiens<br />

R. montezumae, R.<br />

pipiens<br />

Rana dunni<br />

Rana vaillanti, Rana<br />

berlandieri<br />

Bufo marinus<br />

R. dunni<br />

Rana megupoda<br />

Rana neovolcanica<br />

R. montezumae<br />

"Green frog"<br />

Mexico, Distrito Federal<br />

Xochimilco, Distrito Federal<br />

Cienaga de Lerma, Estado de Mexico<br />

Lago de Patzcuaro, Michoacan<br />

Lago de Zacapu, Michoacan<br />

Laguna Escondida, "Los Tuxtlas",<br />

Veracruz<br />

Rio Huixtla, Chiapas<br />

Tuxtepec, Oaxaca<br />

Lago de Patzcuaro and Lago de Zacapu,<br />

Michoacan<br />

Lago de Cuitzeo, Michoacan<br />

Manantiales de Cointzio, Michoacan<br />

Cienaga de Lerma, Estado de Mexico<br />

San Pedro Tlaltizapan, Estado de<br />

Mexico<br />

Xochimilco, Distrito Federal and Texcoco,<br />

Estado de Mexico<br />

Mexico||<br />

Caballero and Sokol<strong>of</strong>f ( 1 934)<br />

Caballero (1942)<br />

Pulido (1994)<br />

This work<br />

This work; Guillen (1992)<br />

Caballero et al. (1944)<br />

Bravo (1948)<br />

This work<br />

This work<br />

This work<br />

This work<br />

Leon-Regagnon ( 1 992)<br />

Lamothe-Argumedo et al.<br />

(1997)<br />

Babero ( 1 95 1 )<br />

morphological similarity. Detailed examination<br />

<strong>of</strong> diagnostic characters allowed us to review the<br />

taxonomic status <strong>of</strong> species <strong>of</strong> Glypthelmins deposited<br />

at the CNHE. We examined specimens<br />

from the following lots: lot no. 1561 representing<br />

10 specimens from R. dunni from Lake Patzcuaro,<br />

identified by Pulido (1994) and labeled as<br />

G. calif orniensis (1 individual is actually G.<br />

quieta); lot no. 1461, represented by 8 specimens<br />

from R. montezumae identified by Leon-<br />

Regagnon (1992) from Lerma, and labeled as G.<br />

californiensis, are G. quieta; lot no. 1181, 17<br />

specimens from R. montezumae from Lerma,<br />

collected and identified by Caballero (1942); and<br />

lot no. 2495, represented by 8 specimens from<br />

R. montezumae from Lake Xochimilco, identified<br />

by Dr. Eduardo Caballero, were correctly<br />

identified as G. californiensis; lots no. 1562 (3<br />

specimens) and 1563 (4 specimens), from R.<br />

montezumae from Lake Xochimilco and Lake<br />

Texcoco, respectively, were correctly identified<br />

as G. quieta.<br />

In Table 2, we present an updated and revised<br />

list <strong>of</strong> species <strong>of</strong> Glypthelmins in anurans from<br />

Mexico. Adding previous records to the results,<br />

we conclude the genus Glypthelmins is currently<br />

represented in Mexico by 5 species (G. quieta,<br />

G. calif orniensis, G. facioi, G. intermedia, and<br />

G. tineri) from at least 7 species <strong>of</strong> Rana and 1<br />

species <strong>of</strong> Bufo. <strong>The</strong> most common <strong>of</strong> these are<br />

G. californiensis and G. quieta, both found in<br />

different species <strong>of</strong> frogs in localities <strong>of</strong> the<br />

Mesa Central <strong>of</strong> Mexico. Whether or not these<br />

are all the species <strong>of</strong> Glypthelmins that occur in<br />

anurans from Mexico will be determined once<br />

further research on the helminth fauna <strong>of</strong> different<br />

species <strong>of</strong> amphibians in the country is finished.<br />

<strong>The</strong> species composition <strong>of</strong> the genus Glypthelmins,<br />

as well as its taxonomic position and<br />

relationships to other closely related genera, are<br />

still uncertain. Yamaguti (1971) recognized 23<br />

valid species; Brooks (1977) in his phylogenetic<br />

analysis <strong>of</strong> species <strong>of</strong> Glypthelmins, considered<br />

19 species to be valid. Prudhoe and Bray (1982)<br />

proposed that some species, allocated originally<br />

to other genera, should be transferred to Glypthelmins,<br />

and then included 27 species in the genus.<br />

A complete revision <strong>of</strong> the genus is necessary<br />

to clarify the taxonomic composition <strong>of</strong><br />

this group <strong>of</strong> parasites as well as to update the<br />

phylogenetic hypotheses <strong>of</strong> Brooks (1977) and<br />

Brooks and McLennan (1993). We are currently<br />

obtaining DNA sequences <strong>of</strong> 18S ribosomal<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


201<br />

genes as an additional source <strong>of</strong> characters. Preliminary<br />

results show an agreement <strong>of</strong> sistergroup<br />

relationships among the 3 species discussed<br />

here.<br />

We thank Luis Garcia, Agustm Jimenez, Berenit<br />

Mendoza, and Angelica Sanchez for their<br />

help collecting specimens, and Dr. Virginia Leon<br />

(CNHE) and Dr. Scott L. Gardner (HWML) for<br />

critical reviews <strong>of</strong> the manuscript. <strong>The</strong> critical<br />

reviews and comments made by 2 anonymous<br />

reviewers are appreciated. We gratefully acknowledge<br />

Dr. Daniel Brooks (University <strong>of</strong> Toronto)<br />

for the loan <strong>of</strong> specimens <strong>of</strong> Glypthelmins<br />

from his personal collection. This study was<br />

funded by the Program PAPIIT-UNAM nos.<br />

IN201396 and IN219198, and CONACYT 2676<br />

PN to G.P.P.L., and CONACYT LOO42-M9607<br />

and PAPIIT-UNAM IN-207195 to J.P.L.<br />

Literature Cited<br />

Babero, B. B. 1951. Rauschiella tineri n. g., n. sp. a<br />

trematode (Plagiorchiinae) from a frog. Journal <strong>of</strong><br />

Parasitology 37:560-562.<br />

Bravo, H. M. 1948. Descripcion de dos especies de<br />

trematodos parasites de Bufo marinus L. procedentes<br />

de Tuxtepec, Oaxaca. Anales del Institute<br />

de Biologfa, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 19:153-161.<br />

Brenes, M. R., G. S. Arroyo, O. Jimenez-Quiroz,<br />

and E. Delgado-Flores. 1959. Algunos trematodos<br />

de Rana pipiens. Descripcion de Glypthelmins<br />

facioi n. sp. Revista de Biologfa Tropical 72:191-<br />

197.<br />

Brooks, R. D. 1977. Evolutionary history <strong>of</strong> some plagiorchioid<br />

trematodes <strong>of</strong> anurans. Systematic Zoology<br />

26:277-289.<br />

, and D. McLennan. 1993. Parascript: Parasites<br />

and the Language <strong>of</strong> Evolution. Smithsonian<br />

Institution Press, <strong>Washington</strong>, D.C. 429 pp.<br />

Byrd, E. E., and W. P. Maples. 1963. <strong>The</strong> glypthelminths<br />

(Trematoda: Digenea), with a redescription<br />

<strong>of</strong> one species and the erection <strong>of</strong> a new genus.<br />

Zeitschrift fur Parasitenkunde 22:521-536.<br />

Caballero, C. E. 1938. Contribucion al conocimiento<br />

de la helmint<strong>of</strong>auna de Mexico. Tesis Doctoral,<br />

Facultad de Filos<strong>of</strong>fa y Estudios Superiores, Universidad<br />

Nacional Autonoma de Mexico. 149 pp.<br />

. 1942. Trematodos de las ranas de la Cienaga<br />

de Lerma, Estado de Mexico. III. Redescripcion<br />

de una forma norteamericana de Haematotoechus<br />

y algunas consideraciones sobre Glypthelmins californiensis<br />

(Cort, 1919). Anales del Institute de<br />

Biologfa, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 13:71—79.<br />

, M. H. Bravo, and C. Zerecero. 1944. Estudios<br />

helmintologicos de la region oncocercosa de<br />

Mexico y de la Republica de Guatemala. Trematoda<br />

I. Anales del Instituto de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie Zoologia<br />

15:59-72.<br />

, and D. Sokol<strong>of</strong>f. 1934. Tercera contribucion<br />

al conocimiento de la parasitologfa de Rana montezumae.<br />

Anales del Instituto de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie Zoologia<br />

5:337-340.<br />

Cheng, T. C. 1959. Studies on the trematode family<br />

Brachycoeliidae, II. Revision <strong>of</strong> the genera Glypthelmins<br />

(Stafford, 1900) Stafford, 1905, and Margeana<br />

Cort, 1919; and the description <strong>of</strong> Reynoldstrema<br />

n. g. (Glypthelminae, n. subfam.). American<br />

Midland Naturalist 61:68-88.<br />

Cort, W. W. 1919. A new distome from Rana aurora.<br />

University <strong>of</strong> California Publications in Zoology<br />

8:283-298.<br />

Guillen, H. S. 1992. Comunidades de helmintos de<br />

algunos anuros de "Los Tuxtlas", Veracruz. Master's<br />

<strong>The</strong>sis, Facultad de Ciencias, Universidad<br />

Nacional Autonoma de Mexico. 90 pp.<br />

Lamothe-Argumedo, R., L. Garcia-Prieto, D. Osorio-Sarabia,<br />

and G. Perez-Ponce de Leon. 1997.<br />

Catalogo de la Coleccion Nacional de Helmintos.<br />

Instituto de Biologfa, Universidad Nacional Autonoma<br />

de Mexico, CONABIO, Mexico. 211 pp.<br />

Leon-Regagnon, V. 1992. Fauna helmintologica de<br />

algunos vertebrados acuaticos de la Cienaga de<br />

Lerma, Estado de Mexico. Anales del Instituto de<br />

Biologfa, Universidad Nacional Autonoma de<br />

Mexico, Serie Zoologia 63:151-153.<br />

Miller, E. L. 1930. Studies on Glypthelmins quieta<br />

Stafford. Journal <strong>of</strong> Parasitology 16:237-243.<br />

O'Grady, R. T. 1987. Phylogenetic systematics and<br />

the evolutionary history <strong>of</strong> some intestinal flatworm<br />

parasites (Trematoda: Digenea: Plagiorchioidea)<br />

<strong>of</strong> anurans. Ph.D. <strong>The</strong>sis, University <strong>of</strong><br />

British Columbia, Vancouver, B.C., Canada. 210<br />

pp.<br />

Prudhoe, S., and R. A. Bray. 1982. Platyhehninth<br />

parasites <strong>of</strong> the Amphibia. Oxford University<br />

Press, Great Britain. 217 pp.<br />

Pulido, F. G. 1994. Helmintos de Rana dunni, especie<br />

endemica del Lago de Patzcuaro, Michoacan,<br />

Mexico. Anales del Instituto de Biologfa, Universidad<br />

Nacional Autonoma de Mexico, Serie Zoologfa<br />

65:205-207.<br />

Stafford, J. 1905. Trematodes from Canadian vertebrates.<br />

Zoologischer Anzeiger 28:681-694.<br />

Sullivan, J. J. 1976. <strong>The</strong> trematode genus Glypthelmins<br />

Stafford, 1905 (Plagiorchioidea: Macrodcroididae)<br />

with a redescription <strong>of</strong> G. facioi from<br />

Costa Rican frogs. Proceedings <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 43:116-125.<br />

Yamaguti, S. 1971. Synopsis <strong>of</strong> Digenetic Trematodes<br />

<strong>of</strong> Vertebrates I. Keigaku Publishing Co., Tokyo,<br />

Japan. 1,074 pp.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 202-205<br />

Research Note<br />

Radiographic Imaging <strong>of</strong> the Rat Tapeworm, Hymenolepis diminuta<br />

KIMBERLY M. DEINES, DENNIS J. RICHARDSON,' GERALD CONLOGUE, RONALD G. BECKETT,<br />

AND DAN M. HOLIDAY<br />

<strong>The</strong> Bioanthropology Research Institute at Quinnipiac <strong>College</strong>, Quinnipiac <strong>College</strong>, 275 Mount Carmel<br />

Avenue, Hamden, Connecticut 06518, U.S.A.<br />

ABSTRACT: <strong>The</strong> model <strong>of</strong> Hymenolepis diminuta Rudolphi<br />

in laboratory rats was used to investigate potential<br />

applications <strong>of</strong> radiographic imaging in the diagnosis<br />

and/or study <strong>of</strong> tapeworm infections. Radiographic<br />

imaging successfully demonstrated the presence<br />

<strong>of</strong> H. diminuta in the rat intestine in the presence<br />

<strong>of</strong> a water-soluble iodinated radiographic contrast medium,<br />

Gastrografin®. Even single worms and small<br />

segments <strong>of</strong> proglottids could be detected. Optimal imaging<br />

was achieved with an exposure factor <strong>of</strong> 3.75<br />

mAs at 54 kVp with mammography film. Visualization<br />

was improved by fasting the rat host to effect the elimination<br />

<strong>of</strong> food and fecal shadows. Elaboration <strong>of</strong> this<br />

methodology may prove useful in basic research and<br />

the incidental diagnosis <strong>of</strong> human tapeworm infection<br />

by permitting rapid diagnosis <strong>of</strong> prepatent infection,<br />

thereby providing a useful tool in efficacy testing <strong>of</strong><br />

anthelmintics when assessing prepatent success and<br />

temporal aspects <strong>of</strong> drug activity.<br />

KEY WORDS: radiographic imaging, tapeworm, Cestoda,<br />

Hymenolepis diminuta, laboratory rat, diagnosis,<br />

Gastrografin, x-ray.<br />

Hymenolepis diminuta Rudolphi, 1819, is a<br />

cosmopolitan tapeworm <strong>of</strong> rats that occasionally<br />

infects humans. A closely related species, Hymenolepis<br />

nana Siebold, 1852 (syn. Vampirolepis<br />

nana (Siebold, 1852) Spassky, 1954), is one<br />

<strong>of</strong> the world's most common tapeworms and is<br />

especially prevalent among children, with prevalences<br />

<strong>of</strong> up to 97.3% having been reported<br />

among humans (Roberts and Janovy, 1996). Although<br />

light infections <strong>of</strong> H. nana are asymptomatic,<br />

heavy infections may be characterized<br />

by abdominal pain, diarrhea, headache, dizziness,<br />

anorexia, and various other nonspecific<br />

symptoms characteristic <strong>of</strong> intestinal cestodiasis<br />

(Markell et al., 1999). Sehr (1974) indicated that<br />

roentgenological recognition <strong>of</strong> Hymenolepis<br />

spp. in humans is relatively difficult and that radiographic<br />

findings are mostly negative or that<br />

1 Corresponding author<br />

(e-mail: richardson@quinnipiac.edu).<br />

202<br />

only nonpathognomonic changes can be seen in<br />

the mucosal pattern <strong>of</strong> the intestine. Gold and<br />

Meyers (1977) reported the radiographic diagnosis<br />

<strong>of</strong> a human infection with the beef tapeworm,<br />

Taenia saginata Goeze, 1782, in the<br />

small intestine <strong>of</strong> a 34 year old male patient.<br />

Following a barium enema, "small bowel examination<br />

clearly outlined an intraluminal, essentially<br />

continuous linear filling defect in the<br />

distal jejunum and ileum extending into the<br />

proximal descending colon" (Gold and Meyers<br />

1977, p. 493). In this instance, the worm extended<br />

into the proximal descending colon. It<br />

was concluded that tapeworm infection may be<br />

initially recognized on barium enema study. Unfortunately,<br />

barium enema studies would seldom<br />

be expected to be <strong>of</strong> great value in diagnosis<br />

because tapeworms are normally restricted to the<br />

small intestine. Aside from this information, little<br />

is known about radiographic imaging <strong>of</strong> tapeworm<br />

infections and, specifically, infection with<br />

Hymenolepis spp., although infections with other<br />

helminth species such as Schistosoma haematobium<br />

(Bilharz, 1852) Weinland, 1858, Ancylostoma<br />

duodenale (Dubini, 1843) Creplin,<br />

1845, and Ascaris lumbricoides Linnaeus, 1758,<br />

are sometimes diagnosed in the course <strong>of</strong> routine<br />

radiographic examination (Reeder and Palmer,<br />

1989). We utilized the laboratory model <strong>of</strong> Hymenolepis<br />

diminuta in rats to investigate potential<br />

applications <strong>of</strong> radiographic imaging in the<br />

diagnosis and/or study <strong>of</strong> Hymenolepis spp. <strong>The</strong><br />

goals <strong>of</strong> this study were to determine whether<br />

infection <strong>of</strong> H. diminuta in rats can be diagnosed<br />

using radiography, to determine the optimal<br />

methodology for visualization <strong>of</strong> worms, and to<br />

determine what information can be obtained<br />

from radiographs <strong>of</strong> infected animals.<br />

Laboratory infection <strong>of</strong> rats was accomplished<br />

by feeding 3 female Wistar rats 10, 10, and 30<br />

cysticercoids, respectively, <strong>of</strong> H. diminuta taken<br />

from our laboratory colony <strong>of</strong> the grain beetle,<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 203<br />

Tenebrio molitar Linnaeus, 1758. Radiographic<br />

studies were conducted at 21 days postinfection.<br />

Baseline methodologies were established using<br />

an uninfected control rat. Each rat was lightly<br />

anesthetized with the inhalation anesthesia Halothane®<br />

(Halocarbon Laboratories, River Edge,<br />

New Jersey), and a 1.5 cc bolus <strong>of</strong> a water-soluble<br />

iodinated radiographic contrast medium,<br />

diatrizoate meglumine sodium solution (Gastrografin®;<br />

Squibb Diagnostics, Princeton, New<br />

Jersey), was administered through a 6 French<br />

teflon catheter inserted into the rat's stomach. X-<br />

rays were taken at various exposure factors and<br />

with various films to determine the optimal radiographic<br />

technique. Optimal imaging was<br />

achieved with an exposure factor <strong>of</strong> 3.75 mAs<br />

at 54 kVp with Kodak Min-R® single-emulsion<br />

mammography film. <strong>The</strong> rat was placed in a<br />

posterior-anterior or dorsal-ventral position and<br />

x-rays were taken at 5-min intervals to establish<br />

the length <strong>of</strong> time required for the contrast medium<br />

to reach the ileocecal junction. By 30 min,<br />

Gastrografin had filled the entire small intestine.<br />

Food material and fecal shadows were evident<br />

in the control rat. Next, Gastrografin was administered<br />

to Rat I, which had been fed 10 cysticercoids.<br />

At 30 min, posterior-anterior and lateral<br />

x-rays were taken. Based on the lateral projections,<br />

worms were evident in the anterior portion<br />

<strong>of</strong> the small intestine (Fig. 1). Rat I was<br />

killed in a carbon dioxide chamber, and the entire<br />

gastrointestinal tract, excluding the esophagus,<br />

was removed, coiled onto a mammography<br />

cassette, and x-rayed. From the x-ray, predictions<br />

were made concerning the position and relative<br />

abundance <strong>of</strong> worms. <strong>The</strong> intestine was<br />

then longitudinally dissected and the locations <strong>of</strong><br />

the 10 adult tapeworms were noted and compared<br />

to the predictions. It was concluded that<br />

even in the presence <strong>of</strong> food in the intestine,<br />

infection can be diagnosed and inference made<br />

regarding the location and relative abundance <strong>of</strong><br />

worms.<br />

Twenty-four hours after administration <strong>of</strong><br />

Gastrografin to another infected rat, x-rays were<br />

taken to determine whether the contrast medium<br />

was taken up by or had adhered to the worms,<br />

thereby creating an outline <strong>of</strong> the worms in the<br />

alimentary canal, as may be the case with A.<br />

lumbricoides (Reeder and Palmer, 1989). Worms<br />

could not be visualized in x-rays <strong>of</strong> the small<br />

intestine when Gastrografin was lacking, suggesting<br />

that worms do not absorb the contrast<br />

medium. This is consistent with the observations<br />

<strong>of</strong> Gold and Meyers (1977) regarding human infection<br />

with T. saginata in association with a<br />

barium enema.<br />

To determine whether fasting would improve<br />

the conditions for visualization <strong>of</strong> worms, rats<br />

were not fed for 24 hr prior to the administration<br />

<strong>of</strong> Gastrografin and radiographic examination<br />

using the methodologies outlined above. After<br />

fasting, the control rat exhibited gas bubbles, but<br />

food and fecal shadows were lacking. Radiologic<br />

examination <strong>of</strong> Rat II, which had been fed 10<br />

cysticercoids, revealed that visualization <strong>of</strong><br />

worms was improved by fasting because <strong>of</strong> the<br />

elimination <strong>of</strong> food and fecal shadows. <strong>The</strong> posterior-anterior<br />

projection <strong>of</strong> Rat II is shown in<br />

Figure 2. Interestingly, x-rays suggested that<br />

worms were present in the cecum. Postmortem<br />

examination confirmed this x-ray finding. <strong>The</strong><br />

rat was killed and the intestine was removed and<br />

coiled onto a mammography cassette. Based on<br />

the x-ray (Fig. 3), predictions were made concerning<br />

the position and relative abundance <strong>of</strong><br />

worms. <strong>The</strong> intestine was longitudinally dissected<br />

and the numbers and locations <strong>of</strong> worms were<br />

confirmed. <strong>The</strong> procedure was repeated with Rat<br />

III, which had been fed 30 cysticercoids. Even<br />

small sections <strong>of</strong> proglottids could be detected<br />

in the large intestine.<br />

We have shown that radiographic imaging can<br />

successfully demonstrate the presence <strong>of</strong> H.<br />

diminuta in the rat intestine. It is possible that<br />

these findings can be extended to human infections<br />

<strong>of</strong> H. nana. If so, this could be useful in<br />

the incidental diagnosis <strong>of</strong> human infection in<br />

the course <strong>of</strong> routine radiographic imaging. This<br />

could be especially valuable in areas <strong>of</strong> high parasite<br />

prevalence, such as Moscow, where prevalences<br />

as high as 97.3% have been reported<br />

(Karnaukov and Laskovenko, 1984; see Roberts<br />

and Janovy, 1996). Because <strong>of</strong> the size differences<br />

<strong>of</strong> the hosts and the worms, more information<br />

concerning the radiographic imaging <strong>of</strong><br />

Hymenolepis spp. in humans is warranted to better<br />

define the radiographic presentation <strong>of</strong> human<br />

infection and the utility <strong>of</strong> this methodology<br />

in diagnosis.<br />

In addition to potential human clinical applications,<br />

this technique provides rapid diagnosis<br />

<strong>of</strong> prepatent infection without having to kill the<br />

animal. This may prove useful in studying the<br />

basic biology <strong>of</strong> H. diminuta, which exhibits<br />

complex emigrations and migrations within the<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


204 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Figures 1-3. Radiographic imaging <strong>of</strong> Hymenolepis diminuta. Scale is actual size. 1. Lateral projection<br />

<strong>of</strong> Rat I showing infection <strong>of</strong> Hymenolepis diminuta. Arrows indicate aggregation <strong>of</strong> worms in the small<br />

intestine. 2. Posterior-anterior projection <strong>of</strong> Rat II showing infection <strong>of</strong> Hymenolepis diminuta. Arrows<br />

indicate worms in cecum. 3. Radiograph <strong>of</strong> intestine removed from Rat II, showing infection <strong>of</strong> Hymenolepis<br />

diminuta. Arrows indicate worms in a substantial portion <strong>of</strong> the small intestine.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 205<br />

rat intestine (Mettrick and Podesta, 1974). This<br />

may also be a useful tool in efficacy testing <strong>of</strong><br />

anthelmintics when assessing prepatent success<br />

and temporal aspects <strong>of</strong> drug activity.<br />

Literature Cited<br />

Gold, B. M., and M. A. Meyers. 1977. Radiologic<br />

manifestations <strong>of</strong> Taenia saginata infestation.<br />

American Journal <strong>of</strong> Roentgenology 128:493-<br />

494.<br />

Karnaukov, V. K., and A. I. Laskovenko. 1984.<br />

Clinical picture and treatment <strong>of</strong> rare human helminthiasis<br />

(Hymenolepis diminuta and Dipylidium<br />

caninum). Meditsinskaya Parazitologiya i Parasitarnye<br />

Bolezni 4:77-79.<br />

Markell, E. K., D. T. John, and W. A. Krotoski.<br />

1999. Markell and Voge's Medical Parasitology,<br />

8th ed. W. B. Saunders Co., Philadelphia, Pennsylvania.<br />

501 pp.<br />

Mettrick, D. F., and R. B. Podesta. 1974. Ecological<br />

and physiological aspects <strong>of</strong> helminth—host interactions<br />

in the mammalian gastrointestinal canal.<br />

Advances in Parasitology 12:183-278.<br />

Reeder, M. M., and P. E. S. Palmer. 1989. Infections<br />

and infestations. Pages 1475-1542 in A. R. Margulis<br />

and H. J. Burhenne, eds. Alimentary Tract<br />

Radiology, 4th ed. C. V. Mosby, St. Louis, Missouri.<br />

Roberts, L. S., and J. Janovy, Jr. 1996. Gerald D.<br />

Schmidt and Larry S. Roberts' Foundations <strong>of</strong><br />

Parasitology, 5th ed. Wm. C. Brown Publishers,<br />

Dubuque, Iowa. 659 pp.<br />

Sehr, M. A. 1974. <strong>The</strong> radiology <strong>of</strong> parasitic diseases.<br />

Acta Universitatis Carolinae Medica, Monographia<br />

LXIII, Universita Karlova, Praha (Charles<br />

University, Prague). 119 pp.<br />

J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 205-208<br />

Research Note<br />

Helminths <strong>of</strong> Two Lizards, Barisia imbricata and Gerrhonotus<br />

ophiurus (Sauria: Anguidae), from Mexico<br />

STEPHEN R. GOLDBERG,1-4 CHARLES R. BuRSEY,2 AND JOSE L. CAMARiLLO-RANGEL3<br />

1 Department <strong>of</strong> Biology, Whittier <strong>College</strong>, Whittier, California 90608, U.S.A. (e-mail:<br />

sgoldberg@whittier.edu),<br />

2 Department <strong>of</strong> Biology, Pennsylvania <strong>State</strong> University, Shenango Campus, Sharon, Pennsylvania 16146,<br />

U.S.A. (e-mail: cxbl3@psuvm.psu.edu), and<br />

' Laboratorio y Coleccion de Herpetologfa, Conservacion y Mejoramiento del Ambiente, Escuela Nacional de<br />

Estudios Pr<strong>of</strong>esionales Iztacala, Universidad Nacional Autonoma de Mexico, A.P. 314, Tlalnepantla, Estado de<br />

Mexico, Mexico (e-mail: herpetol@servidor.unam.mx)<br />

ABSTRACT: <strong>The</strong> gastrointestinal tracts <strong>of</strong> 37 Barisia<br />

imbricata (Wiegmann) and 54 Gerrhonotus ophiurus<br />

Cope from Mexico were examined for helminths. <strong>The</strong><br />

helminth fauna <strong>of</strong> B. imbricata consisted <strong>of</strong> 4 species<br />

<strong>of</strong> nematodes: Cosrnocercoides variabilis (Harwood),<br />

Oswaldocruzia pipicns Walton, Physaloptera retusa<br />

Rudolphi, and Raillietnema brachyspiculatum Bursey,<br />

Goldberg, Salgado-Maldonado, and Mendez-de la<br />

Cruz. Gerrhonotus ophiurus harbored 1 trematode species,<br />

Brachycoelium salamandrae (Frolich), and 2<br />

nematode species, Cosrnocercoides variabilis and Physaloptera<br />

retusa. All represent new host records. With<br />

the exception <strong>of</strong> R. brachyspiculatum, all these helminths<br />

are generalists, which are widely distributed in<br />

other amphibian and reptile hosts.<br />

KEY WORDS: lizards, Sauria, Barisia imbricata,<br />

Gerrhonotus ophiurus, Anguidae, Trematoda, Brachy-<br />

4 Corresponding author.<br />

coelium salamandrae, Nematoda, Cosmocercoides<br />

variabilis, Oswaldocruzia pipiens, Physaloptera retusa,<br />

Raillietnema brachyspiculatum, Mexico.<br />

Barisia imbricata (Wiegmann, 1828) occurs<br />

in highland pine forests throughout Mexico west<br />

<strong>of</strong> the Isthmus <strong>of</strong> Tehuantepec (Good, 1988).<br />

Gerrhonotus ophiurus Cope, 1866, occurs in the<br />

Mexican states <strong>of</strong> Hidalgo, Puebla, San Luis Potosi,<br />

and Veracruz (Good, 1994). <strong>The</strong>re are, to<br />

our knowledge, no reports <strong>of</strong> helminths from<br />

these species. We report here the helminths from<br />

populations <strong>of</strong> B. imbricata and G. ophiurus.<br />

Thirty-seven B. imbricata deposited in the<br />

herpetology collection (ENEPI) <strong>of</strong> the Escuela<br />

Nacional de Estudios Pr<strong>of</strong>esionales Iztacala,<br />

Universidad Nacional Autonoma de Mexico<br />

(UNAM) were examined: 23 from Estado de<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


206 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Mexico, snout-vent length (SVL) =104 mm ±<br />

14.8 SD, range = 68-124 mm, ENEPI numbers<br />

11, 12, 393, 616, 699, 730, 3873, 3874 (collected<br />

1984-1985) and 4939, 5436, 5587-5591,<br />

6333-6340 (collected 1990-1991); 14 from Hidalgo,<br />

SVL = 89 mm ± 20.5 SD, range = 61-<br />

123 mm, ENEPI numbers 4321, 4834-4836,<br />

5841-5850 (collected 1990-1991). Fifty-four G.<br />

ophiurus, SVL = 112 mm ± 12 SD, range =<br />

80-136 mm, were collected near San Antonio<br />

Ixtatetla, Municipio de Huayacocotla, Veracruz,<br />

(20°43'N, 98°22'W) during 1991, ENEPI numbers<br />

6252-6262, 6264-6295, 6297-6303, 6305,<br />

6306, 6308, 6309.<br />

<strong>The</strong> abdominal cavities were opened and the<br />

gastrointestinal tracts were excised by cutting<br />

across the esophagus and rectum. <strong>The</strong> digestive<br />

tracts were each slit longitudinally and examined<br />

under a dissecting microscope. Each helminth<br />

was removed to a drop <strong>of</strong> undiluted glycerol on<br />

a glass slide for study; trematodes were regressively<br />

stained with hematoxylin and mounted in<br />

Canada balsam.<br />

Because a statistically significant difference<br />

was found for the SVL between the Estado de<br />

Mexico and Hidalgo populations <strong>of</strong> B. imbricata<br />

(Kruskal-Wallis test = 4.87, 1 df, P < 0.05) and<br />

because <strong>of</strong> community similarity differences<br />

(Jaccard's coefficient, 0.75; Morisita's index,<br />

0.73), data for the 2 populations were not combined.<br />

<strong>The</strong> helminth fauna <strong>of</strong> the Estado de<br />

Mexico population <strong>of</strong> B. imbricata consisted <strong>of</strong><br />

3 species <strong>of</strong> nematodes: Cosmocercoides variabilis<br />

(Harwood, 1930), Oswaldocruzia pipiens<br />

Walton, 1929, and Raillietnema brachyspiculatum<br />

Bursey, Goldberg, Salgado-Maldonado, and<br />

Mendez-de la Cruz, 1998. <strong>The</strong> helminth fauna<br />

<strong>of</strong> the Hidalgo population <strong>of</strong> B. imbricata consisted<br />

<strong>of</strong> 4 species <strong>of</strong> nematodes: C. variabilis,<br />

O. pipiens, Physaloptera retusa Rudolphi, 1819,<br />

and R. brachyspiculatum. Helminths <strong>of</strong> G.<br />

ophiurus consisted <strong>of</strong> 1 species <strong>of</strong> trematode,<br />

Brachycoelium salamandrae (Frolich, 1789),<br />

and 2 species <strong>of</strong> nematodes, C. variabilis and P.<br />

retusa, all representing new host and locality records.<br />

Terminology is in accordance with Bush<br />

et al. (1997). Representative specimens were<br />

placed in vials <strong>of</strong> 70% ethanol and deposited in<br />

the U.S. National Parasite Collection, Beltsville,<br />

Maryland (USNPC): Barisia imbricata: Cosmocercoides<br />

variabilis, USNPC 88291; Oswaldocruzia<br />

pipiens, USNPC 99292; Physaloptera<br />

retusa, USNPC 88293; Raillietnema brachyspiculatum,<br />

USNPC 88294. Gerrhonotus ophiurus:<br />

Brachycoelium salamandrae, USNPC 87245;<br />

Cosmocercoides variabilis, USNPC 87246; Physaloptera<br />

retusa, USNPC 87247. Helminths<br />

from Barisia imbricata were also deposited in<br />

the Coleccion Nacional de Helmintos (CNHE),<br />

Instituto de Biologia de la Universidad Nacional<br />

Autonoma de Mexico, Mexico, Distrito Federal,<br />

Mexico: Cosmocercoides variabilis, CNHE<br />

3384; Oswaldocruzia pipiens, CNHE 3387; Physaloptera<br />

retusa, CNHE 3385; Raillietnema brachyspiculatum,<br />

CNHE 3386.<br />

<strong>The</strong> number <strong>of</strong> infected lizards, number <strong>of</strong><br />

helminths, prevalence, mean intensity ± SD, and<br />

range and mean abundance ± SD are presented<br />

in Table 1. Both lizard species harbored C. variabilis<br />

and P. retusa. Brachycoelium salamandrae<br />

was found only in G. ophiurus; O. pipiens<br />

and R. brachyspiculatum were found only in B.<br />

imbricata.<br />

Brachycoelium salamandrae, the only trematode<br />

species found in this study, was found in<br />

the small intestines <strong>of</strong> 2 G. ophiurus. <strong>The</strong>re has<br />

been controversy surrounding the assignment <strong>of</strong><br />

species to the genus Brachycoelium. Rankin<br />

(1938) reduced all the American species to synonymy<br />

with B. salamandrae, a European species<br />

and the type species <strong>of</strong> the genus. However,<br />

Parker (1941) and Cheng (1958) did not accept<br />

the synonymy and recognized 7 and 10 species<br />

<strong>of</strong> the genus, respectively. Later Cheng and<br />

Chase (1960) and Couch (1966) described additional<br />

species, bringing to 13 the number <strong>of</strong><br />

species assigned to the genus. Prudhoe and Bray<br />

(1982) favored a monospecific genus. Regardless<br />

<strong>of</strong> confusion in the taxonomy, the specimens<br />

collected in this study most closely resemble<br />

B. salamandrae as described by Cheng<br />

(1958), in that they were elongate distomes, approximately<br />

3 mm in length, more than twice<br />

the length <strong>of</strong> any other species assigned to the<br />

genus, and the vitellaria extended beyond the<br />

ceca and did not join on the midline. <strong>The</strong> North<br />

American host list for B. salamandrae includes<br />

salamanders, anurans, lizards, and snakes (see<br />

Prudhoe and Bray, 1982). Gerrhonotus ophiurus<br />

is added to this host list.<br />

As in the case <strong>of</strong> the identity <strong>of</strong> species <strong>of</strong><br />

Brachyocoelium, some uncertainty also exists<br />

for North American species <strong>of</strong> Cosmocercoides.<br />

Cosmocercoides variabilis, originally described<br />

as Oxysomatium variabilis by Harwood (1930)<br />

from Bufo valliceps Wiegmann, 1833, collected<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


RESEARCH NOTES 207<br />

Table 1. Helminths from the anguid lizards, Barisia imbricata and Gerrhonotus ophiurus, from Mexico.<br />

Lizard species<br />

Helminth species<br />

Number<br />

<strong>of</strong> Number Prevainfected<br />

<strong>of</strong> lence<br />

lizards helminths (%)<br />

Mean intensity ± SD<br />

(range)<br />

Mean abundance<br />

± SD<br />

Barisia imbricata (Estado de Mexico, TV = 23)<br />

Nematoda<br />

Cosmocercoides variabilis 3 4 13 1.3 ± 0.6 (1—2)<br />

Oswaldocruzia pipiens 3 6 13 2.0 ± 1.7 (1-4)<br />

Raillietnema brachyspiculaturn 1 83 4 83<br />

Barisia imbricata (Hidalgo, N = 14)<br />

Nematoda<br />

Cosmocercoides variabilis 2 6 1 5 3.0 ± 2.8 (1-5)<br />

Oswaldocruzia pipiens 11 86 79 7.8 ±6.1 (1-15)<br />

Physaloptera retusa 6 18 43 3.0 ± 3.2 (1-8)<br />

Raillietnema brachyspiculatum 1 93 7 93<br />

Gerrhonotus ophiurus (Veracruz, /V = 54)<br />

Trematoda<br />

Brachycoelium salamandrae 2 5 4 2.5 ± 2.1 (1-4)<br />

Nematoda<br />

Cosmocercoides variabilis 17 21 31 1.2 ± 0.6 (1—3)<br />

Physaloptera retusa 10 65 19 6.7 ± 12.0 (1-40)<br />

0.4 ± 1.3<br />

6.1 ± 6.3<br />

1.2 ± 2.5<br />

6.6 ± 24.9<br />

0.4 ± 0.7<br />

1.2 ± 5.6<br />

at Houston, Texas, was considered a synonym<br />

<strong>of</strong> the molluscan parasite Cosmocercoides dukae<br />

(Roll, 1928) by Ogren (1953), who presumed<br />

that amphibians acquired C. dukae infections by<br />

ingesting infected mollusks. Cosmocercoides<br />

dukae was first described by Holl (1928) from<br />

the salamander Notophthalmus viridescens (Rafinesque,<br />

1820) from North Carolina. Wilkie<br />

(1930) established the genus Cosmocercoides,<br />

and Travassos (1931) included both C. dukae<br />

and C. variabilis in his monograph on the Cosmocercidae.<br />

Vanderburgh and Anderson (1987)<br />

demonstrated that these 2 species <strong>of</strong> Cosmocercoides<br />

are distinct. <strong>The</strong> major difference in the<br />

2 species is the number <strong>of</strong> rosette papillae <strong>of</strong> the<br />

male: C. dukae with 12 pairs and C. variabilis<br />

with 14-20. Specimens collected in our study<br />

had 16-18 papillae. <strong>The</strong> host list includes salamanders,<br />

anurans, lizards, snakes, and turtles<br />

(see Baker, 1987). Barisia imbricata and G.<br />

ophiurus are added to this list.<br />

All North American specimens <strong>of</strong> the genus<br />

Oswaldocruzia have been referred to O. pipiens<br />

by Baker (1987). This species is widely distributed<br />

in North America and has been reported<br />

from anurans, salamanders, lizards, and tortoises<br />

(see Baker, 1987). Barisia imbricata is added to<br />

this host list.<br />

Physaloptera retusa is a common parasite <strong>of</strong><br />

North American lizards (see Baker, 1987). Both<br />

Barisia imbricata and G. ophiurus are added to<br />

this host list.<br />

Raillietnema brachyspiculatum was recently<br />

described from the xantusiid lizard, Lepidophyma<br />

tuxtlae Werler and Shannon, 1957, from Veracruz,<br />

Mexico, by Bursey et al. (1998). Barisia<br />

imbricata is a new host record, and the states <strong>of</strong><br />

Hidalgo and Mexico are new locality records for<br />

this nematode.<br />

<strong>The</strong> results reported here support previous<br />

studies on North American anguids (see Goldberg<br />

et al., 1999), which have shown that lizards<br />

<strong>of</strong> this family appear to harbor depauperate communities<br />

comprised <strong>of</strong> generalist helminths. As<br />

can be seen by the host lists above, with the<br />

exception <strong>of</strong> the recently described R. brachyspiculatum<br />

(for which there is insufficient information<br />

to categorize), the helminth species harbored<br />

by B. imbricata and G. ophiurus are generalists.<br />

Although host lists can easily be constructed<br />

and host distributions mapped, parasite<br />

distribution patterns are more difficult to evaluate.<br />

Reasons for varying infection rates among<br />

host populations are not understood; for example,<br />

there is a significant difference between the<br />

Estado de Mexico and Hidalgo populations <strong>of</strong><br />

B. imbricata for O. pipiens (chi-square = 15.8,<br />

1 df, P < 0.001). Additional work will be required<br />

to understand the factors influencing<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


208 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

prevalence patterns <strong>of</strong> helminths in anguid lizards.<br />

Literature Cited<br />

Baker, M. R. 1987. Synopsis <strong>of</strong> the Nematoda parasitic<br />

in amphibians and reptiles. Memorial University<br />

<strong>of</strong> Newfoundland, Occasional Papers in<br />

Biology 11:1-325.<br />

Bursey, C. R., S. R. Goldberg, G. Salgado-Maldonado,<br />

and F. R. Mendez-De La Cruz. 1998. Raillietnema<br />

brachyspiculatum sp. n.(Nematoda: Cosmocercidae)<br />

from Lepidophyma tuxtlae (Sauria:<br />

Xantusiidae) from Mexico. Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> 65:164-168.<br />

Bush, A. O., K. D. Lafferty, J. M. Lotz, and A. W.<br />

Shostak. 1997. Parasitology meets ecology on its<br />

own terms: Margolis et al. revisited. Journal <strong>of</strong><br />

Parasitology 83:575-583.<br />

Cheng, T. C. 1958. Studies on the trematode family<br />

Dicrocoeliidae. I. <strong>The</strong> genera Brachycoelium (Dujardin,<br />

1845) and Leptophallus Luhe, 1909, (Brachycoeliinae).<br />

American Midland Naturalist 59:<br />

67-81.<br />

, and R. S. Chase, Jr. 1960. Brachycoelium<br />

stablefordi, a new parasite <strong>of</strong> salamanders; and a<br />

case <strong>of</strong> abnormal polylobation <strong>of</strong> the testes <strong>of</strong><br />

Brachycoelium storeriae Harwood, 1932 (Trematoda:<br />

Brachycoeliidae). Transactions <strong>of</strong> the American<br />

Microscopical <strong>Society</strong> 80:33-38.<br />

Couch, J. A. 1966. Brachycoelium ambystomae sp. n.<br />

(Trematoda: Brachycoeliidae) from Ambystoma<br />

opacum. Journal <strong>of</strong> Parasitology 52:46-49.<br />

Goldberg, S. R., C. R. Bursey, and H. Cheam. 1999.<br />

Helminths <strong>of</strong> the Madrean alligator lizard, Elgaria<br />

kingii (Sauria: Anguidae) from Arizona. Great Basin<br />

Naturalist 59:198-200.<br />

Good, D. A. 1988. Phylogenetic relationships among<br />

gerrhonotine lizards. An analysis <strong>of</strong> external morphology.<br />

University <strong>of</strong> California Publications in<br />

Zoology 121:1-139.<br />

. 1994. Species limits in the genus Gerrhonotus<br />

(Squamata: Anguidae). Herpetological Monographs<br />

8:180-202.<br />

Harwood, P. D. 1930. A new species <strong>of</strong> Oxysomatium<br />

(Nematoda) with some remarks on the genera Oxysomatium<br />

and Aplectana, and observations on<br />

the life history. Journal <strong>of</strong> Parasitology 17:61-73.<br />

Holl, F. J. 1928. Two new nematode parasites. Journal<br />

<strong>of</strong> the Elisha Mitchell Scientific <strong>Society</strong> 43:184-<br />

186.<br />

Ogren, R. E. 1953. A contribution to the life cycle <strong>of</strong><br />

Cosmocercoides in snails (Nematoda: Cosmocercidae).<br />

Transactions <strong>of</strong> the American Microscopical<br />

<strong>Society</strong> 72:87-91.<br />

Parker, M. V. 1941. <strong>The</strong> trematode parasites from a<br />

collection <strong>of</strong> amphibians and reptiles. Journal <strong>of</strong><br />

the Tennessee Academy <strong>of</strong> Science 16:27-45.<br />

Prudhoe, S. P., and R. A. Bray. 1982. Platyhelminth<br />

Parasites <strong>of</strong> the Amphibia. British Museum (Natural<br />

History), Oxford University Press, Oxford,<br />

U.K. 217 pp. + 4 micr<strong>of</strong>iches.<br />

Rankin, J. S., Jr. 1938. Studies on the trematode genus<br />

Brachycoelium Duj. I. Variation in specific<br />

characters with reference to the validity <strong>of</strong> the described<br />

species. Transactions <strong>of</strong> the American Microscopical<br />

<strong>Society</strong> 57:358—375.<br />

Travassos, L. 1931. Pesquizas helminthologicas realizadas<br />

em Hamburgo. IX. Ensaio monographico<br />

da familia Cosmocercidae Trav., 1925 (Nematoda).<br />

Memorias do Institute Oswaldo Cruz 25:237-<br />

298.<br />

Vanderburgh, D. J., and R. C. Anderson. 1987. <strong>The</strong><br />

relationship between nematodes <strong>of</strong> the genus Cosmocercoides<br />

Wilkie, 1930 (Nematoda: Cosmocercoidea)<br />

in toads (Bufo amcricanux) and slugs<br />

(Deroceras laevae). Canadian Journal <strong>of</strong> Zoology<br />

65:1650-1661.<br />

Wilkie, J. S. 1930. Some parasitic nematodes from<br />

. Japanese Amphibia. Annals and Magazine <strong>of</strong> Natural<br />

History, Series 10, 6:606-614.<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 209-210<br />

Anniversary Award<br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong><br />

SHERMAN S. HENDRIX<br />

J. Ralph Lichtenfels, right, presents<br />

the 1998 Anniversary Award to Sherman S. Hendrix<br />

Ladies and Gentlemen, in 1989 my longtime friend, Sherm Hendrix, presented the Anniversary<br />

Award to me after I completed a term as Editor <strong>of</strong> our journal. Nine years later, it is my pleasure<br />

to switch roles and (in your behalf) honor Sherm as he completes his term as Editor.<br />

Sherm was born June 1, 1939 in Bridgeport, Connecticut and grew up in Connecticut near Long<br />

Island Sound, where he developed an interest in biology and the marine environment. He received<br />

a B.A., with Departmental Honors, in Biology from Gettysburg <strong>College</strong> in 1961.<br />

Shortly after graduating from Gettysburg, Sherm married his college sweetheart, Carol Seibel.<br />

Carol and Sherm have raised 2 children, Mark, an Assistant Pr<strong>of</strong>essor <strong>of</strong> Geology at the University<br />

<strong>of</strong> Montana, and Robin, a teacher who has taken time <strong>of</strong>f to raise 2 children, Anna (5) and Rachel<br />

(2). Carol is an ordained Lutheran pastor, currently serving as Assistant to the Bishop for Congregational<br />

Care.<br />

Sherm was introduced to Parasitology at Florida <strong>State</strong> University, in courses taught by Rhodes<br />

"Buck" Holliman and Robert B. Short. Sherm received an M.S. degree from Florida <strong>State</strong> University<br />

in 1964 working under Bob Short. His thesis was titled, "Aspidogastrids from Northeastern<br />

Gulf <strong>of</strong> Mexico river drainages". While at Florida <strong>State</strong> University, he was a member <strong>of</strong> a 61-day<br />

Antarctic Scientific Cruise in 1964, on the Pacific side, out <strong>of</strong> Valparaiso.<br />

Later that year, he returned to his alma mater, Gettysburg <strong>College</strong>, as Instructor in Biology.<br />

While continuing his teaching career at Gettysburg, Sherm decided to pursue a Ph.D. at the<br />

University <strong>of</strong> Maryland and became a Graduate Teaching Assistant there in 1969, working under<br />

the guidance <strong>of</strong> Leo Jachowski. His doctoral dissertation, entitled, "<strong>The</strong> biology, ecology and taxonomy<br />

<strong>of</strong> Plagioporus hypentelii, a parasite <strong>of</strong> the hog sucker in the Monocacy River basin <strong>of</strong><br />

Maryland and Pennsylvania", and his Ph.D. degree, were completed in 1972. He was an NIH<br />

Interamerican Fellow in Tropical Medicine at Louisiana <strong>State</strong> University in 1973 while on sabbatical<br />

from Gettysburg. By this time, Sherm had already been promoted to Assistant Pr<strong>of</strong>essor at Gettysburg<br />

(in 1970). He became Associate Pr<strong>of</strong>essor in 1977, and Pr<strong>of</strong>essor in 1990, serving several<br />

terms as Chairman, Department <strong>of</strong> Biology, including a current term as Chair, begun in 1997.<br />

Sherm has developed and managed an almost idyllic career that is a balanced blend <strong>of</strong> teaching,<br />

209<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


210 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

research, administration and service. Now you know why he is always pleasant and looks so young!<br />

He has taught a range <strong>of</strong> courses from Introductory Biology to Electron Microscopy, including such<br />

interesting titles as Parasitology, Biostatistics, Virology, Biological Control, and Microtechniques<br />

and Histochemistry. I encourage you to visit Sherm's excellent homepage (www.gettysburg.edu/<br />

—shendrix) to learn more about his courses. He has also developed a homepage for HelmSoc<br />

(www.gettysburg.edu/~shendrix/helmsoc).<br />

His research has centered on the morphology, systematics and zoogeography <strong>of</strong> Monogenea and<br />

Trematoda <strong>of</strong> fish and molluscans. In 1987, an NSF Grant provided an opportunity for more research<br />

support (specifically, an illustrator) which resulted in several important papers on Monogenea <strong>of</strong><br />

fishes, including a landmark, 107-page key and monograph, "Marine Flora and Fauna <strong>of</strong> the Eastern<br />

United <strong>State</strong>s. Platyhelrninths: Monogenea." (NOAA Technical Report NMFS 121 <strong>of</strong> the Fisheries<br />

Bulletin). More recently he has traveled to Africa to study parasites <strong>of</strong> fish in Lake Malawi. A fullyear<br />

Sabbatical in 1994-1995 provided the time to initiate the Lake Malawi research with collaborator<br />

Jay Stauffer <strong>of</strong> Penn <strong>State</strong>.<br />

<strong>The</strong> service activities <strong>of</strong> a college Pr<strong>of</strong>essor are many and varied, and Sherm has been recognized<br />

for outstanding service at Gettysburg <strong>College</strong> with the Alpha Phi Omega Service Award in 1979,<br />

and the <strong>The</strong>ta Chi Fraternity Chapter Service Award in 1987. Among his scientific societies, Sherm<br />

has been most active in the Pennsylvania Academy <strong>of</strong> Science and the <strong>Helminthological</strong> <strong>Society</strong><br />

<strong>of</strong> <strong>Washington</strong>. He served as President <strong>of</strong> the Academy (1990—1992) and received its 1998 Lifetime<br />

Achievement Award.<br />

Pr<strong>of</strong>essor Sherman S. Hendrix has brought honor and credit to the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong><br />

<strong>Washington</strong> in every leadership role possible. He was Corresponding Secretary Treasurer (1979-<br />

1982), President (1984), and Editor (1993-1998). In recognition <strong>of</strong> this outstanding, dedicated<br />

service the <strong>Society</strong> bestows its highest honor, <strong>The</strong> Anniversary Award, on Pr<strong>of</strong>essor Sherman S.<br />

Hendrix.<br />

J. Ralph Lichtenfels<br />

November 18, 1998<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

66(2), 1999 pp. 211-212<br />

MINUTES<br />

Six Hundred Sixty-First Through<br />

Six Hundred and Sixty-Fifth Meeting<br />

661st Meeting: Walter Reed Army Institute <strong>of</strong><br />

Research, <strong>Washington</strong>, DC, 14 October, 1998.<br />

<strong>The</strong> President opened the meeting and announced<br />

a slate <strong>of</strong> nominations for society <strong>of</strong>ficer<br />

positions: Eric P. Hoberg for President, Ronald<br />

Neafie for Vice President, Pat Carney for<br />

Recording Secretary, Nancy Pacheco for Corresponding<br />

Secretary-Treasurer, and Willis A.<br />

Reid, Jr. and Janet W. Reid for Editors. He also<br />

discussed the rationale for changing the name <strong>of</strong><br />

the journal and suggestions that had been made<br />

for changing the format <strong>of</strong> meetings. <strong>The</strong> meeting<br />

was then turned over to Dr. Joan Jackson<br />

who introduced the speakers: Dr. Naomi Aronson<br />

spoke on "Clinical aspects <strong>of</strong> leishmaniasis";<br />

Dr. Ed Rowton presented his paper on<br />

"<strong>The</strong> vector in leishmaniasis", and Dr. Jackson<br />

provided an overview <strong>of</strong> her studies on "Drug<br />

research in leishmaniasis."<br />

662'"' Meeting: Sabang Indonesian Restaurant,<br />

Wheaton, MD, 18 November 1998. <strong>The</strong> Anniversary<br />

Dinner Meeting and Program were presided<br />

over by the President, Dr. Eric Hoberg.<br />

<strong>The</strong> membership in attendance approved the<br />

slate <strong>of</strong> <strong>of</strong>ficers for 1999. Dr. J. Ralph Lichtenfels<br />

introduced the recipient <strong>of</strong> the Anniversary<br />

Award, Dr. Sherman S. Hendrix, Gettysburg<br />

<strong>College</strong>. In his acceptance comments, Dr. Hendrix<br />

reviewed his teaching and research career<br />

at Gettysburg <strong>College</strong> and shared highlights <strong>of</strong><br />

field expeditions in search <strong>of</strong> marine parasites.<br />

663rd Meeting: Armed Forces Institute <strong>of</strong> Pathology,<br />

<strong>Washington</strong>, DC, January 18, 1999.<br />

<strong>The</strong> President welcomed members and visitors.<br />

He advised the membership that the Executive<br />

Committee had voted unanimously for changing<br />

the name <strong>of</strong> the Journal <strong>of</strong> the <strong>Helminthological</strong><br />

<strong>Society</strong> <strong>of</strong> <strong>Washington</strong> to Comparative Parasitology<br />

at their September, 1998 meeting, and<br />

that an amendment to the Constitution <strong>of</strong> the <strong>Society</strong><br />

was prepared and presented in writing to<br />

the general membership at the Anniversary<br />

Meeting in November, 1998. A motion to<br />

change the name <strong>of</strong> the journal to "Comparative<br />

Parasitology" was passed unanimously by the<br />

general membership. <strong>The</strong> membership was provided<br />

with a draft <strong>of</strong> the <strong>Society</strong>'s "Mission and<br />

Vision" statements for review and comment.<br />

<strong>The</strong> meeting was then turned over to Vice President<br />

Ronald Neafie who introduced the speakers.<br />

Drs. Dennis Richardson and Richard Clopton<br />

jointly discussed "<strong>The</strong> counterpoint hypothesis:<br />

opposing forces in natural selection in parasite<br />

evolution." Dr. Mary Klassen's paper was<br />

entitled "Imitators <strong>of</strong> infectious diseases" in<br />

which she illustrated a series <strong>of</strong> artifacts that can<br />

be confused with agents <strong>of</strong> infectious diseases.<br />

Dr. Peter McEvoy gave a "case presentation"<br />

on nodular cutaneous microsporidiosis in a patient<br />

with AIDS.<br />

664"' Meeting: Uniformed Services University<br />

<strong>of</strong> the Health Sciences, Bethesda, MD, March<br />

10, 1999. <strong>The</strong> President opened the general<br />

meeting and welcomed members and their<br />

guests. <strong>The</strong> President then discussed the rationale<br />

for developing clear Mission and Vision<br />

statements and his intent to have them in place<br />

when the name <strong>of</strong> the Journal changes in January<br />

2000. <strong>The</strong> meeting was turned over to Dr.<br />

John Cross who introduced the speakers. Dr.<br />

Richard Andre provided an overview <strong>of</strong> "Applications<br />

<strong>of</strong> geographic information systems<br />

(GIS) for malaria control in Belize." Dr. Allen<br />

Richards reviewed research he had conducted on<br />

"Tumor necrosis factor (TNF) and associated<br />

cytokines in the host's response to malaria." Dr.<br />

Cross presented the final paper on his ongoing<br />

studies <strong>of</strong> "Cyclosporosis in Nepal."<br />

665th Meeting: University <strong>of</strong> Pennsylvania, New<br />

Bolton Center, Kennett Square, PA, May 8,<br />

1999. <strong>The</strong> President opened the general meeting<br />

and welcomed members and guests. <strong>The</strong> President<br />

then turned the meeting over to Dr. Jay Farrell.<br />

Dr. Farrell welcomed members and guests<br />

on behalf <strong>of</strong> the University <strong>of</strong> Pennsylvania and<br />

the New Jersey <strong>Society</strong> for Parasitology and introduced<br />

each <strong>of</strong> the speakers. Dr. Phillip Lo-<br />

Verde presented a paper on "Sex in schisto-<br />

211<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


212 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

somes: a novel interplay." His presentation was<br />

followed by Dr. Phillip Cooper who discussed<br />

"<strong>The</strong> modulation <strong>of</strong> allergic inflammation by<br />

helminth infections." <strong>The</strong> final speaker was Dr.<br />

Joseph Urban who described the role <strong>of</strong> "Counter-regulatory<br />

properties <strong>of</strong> IL4/IL-13 and IFNgamma<br />

in controlling resistance to gastrointestinal<br />

nematodes." Following the meeting a wine<br />

and cheese reception was held in the Allam<br />

House with support from Pfizer Animal Health<br />

and the Laboratory <strong>of</strong> Parasitology, University<br />

<strong>of</strong> Pennsylvania.<br />

Respectfully submitted,<br />

W. Patrick Carney<br />

Recording Secretary<br />

J. Helminthol. Soc. Wash.<br />

662, 1999 pp. 212<br />

AUTHOR INDEX FOR VOLUME 66<br />

Aguirre-Macedo, L., 146<br />

Akahane, H., 41<br />

Alvarez-Cadena, J. N., 194<br />

Amin, O., 47, 123<br />

Bangs, M. J., 187<br />

Barnes, D. K., 70<br />

Bauer, A. M., 78<br />

Beck, C. A., 67<br />

Beckett, R. G., 202<br />

Blaney, L. M., 70<br />

Brugni, N. L., 92<br />

Bursey, C. R., 37, 78, 89, 175, 180,<br />

205<br />

Caillot, C., 95<br />

Camarillo-Rangel, J. L., 205<br />

Camp, J. W., 70<br />

Canaris, A. G., 123<br />

Cezar, A. D., 14, 81<br />

Cezar, G., 133<br />

Cheam, H., 78<br />

Ching, H. L., 25<br />

Conlogue, G., 202<br />

Deines, K. M., 202<br />

Dronen, N. O., 21<br />

Dvojnos, G. M., 56<br />

Endo, B. Y., 155<br />

Faliex, E., 95<br />

Fiorillo, R. A., 101<br />

Font, W. F, 101<br />

Forrester, D. J., 1, 7<br />

Garcia-Prieto, L., 41<br />

Gillilland, M. G., Ill, 73<br />

Goldberg, S. R., 37, 78, 89, 175,<br />

180, 205<br />

Gomez del Prado-Rosas, M. C.,<br />

194<br />

Hendrix, S. S., 47<br />

Hernandez, S., 89<br />

Holiday, D. M., 202<br />

Kamiya, M., 28<br />

Kharchenko, V. A., 56<br />

Kinsella, J. M., 1,7, 123<br />

Koga, M., 41<br />

Korting, W., 146<br />

Kritsky, D. C., 138<br />

Kuchta, R., 146<br />

Kulo, S.-D., 138<br />

Laclette, J. P., 197<br />

Lamothe-Argumedo, R., 41, 194<br />

Lichtenfels, J. R., 56<br />

Luque, J. L., 14, 81<br />

Machado, P. M., 133<br />

Madhavi, R., 25<br />

Marchand, B., 95<br />

Martinez-Cruz, J. M., 41<br />

Matsuo, K., 28<br />

Mignucci-Giannoni, A. A., 67<br />

Montoya-Ospina, R. A., 67<br />

Morand, S., 95<br />

Muller-Graf, C. M., 95<br />

Muzzall, P. M., 73, 115<br />

Ogata, K., 41<br />

Oku, Y., 28<br />

Osorio-Saraiba, D., 41<br />

Perez-Ponce de Leon, G., 197<br />

Pilitt, P. A., 56<br />

Purnomo, 187<br />

Razo-Mendivil, U., 197<br />

Rego, A. A., 133<br />

Richardson, D. J., 202<br />

Rossi, P. R., 33<br />

Salgado-Maldonado, G., 146<br />

Scholz, T., 146<br />

Segura-Puertas, L., 194<br />

Sepulveda, M. S., 7<br />

Smales, L. R., 33<br />

Spalding, M. G., 7<br />

Tehrany, M. R., 21<br />

Turner, H. M., 86<br />

Vargas-Vazquez, J., 146<br />

Vidal-Martinez, V, 146<br />

Viozzi, G. P., 92<br />

Walker, D. J., 82<br />

Wardle, W. J., 21<br />

Wergin, W.. P., 155<br />

Williams, E. H., Jr., 67<br />

Wittrock, D. D., 82<br />

Wolter, J., 146<br />

Yabsley, M. J., Ill<br />

Ganzorig, S., 28<br />

Noblet, G. P., Ill<br />

Zunke, U., 155<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


J. Helminthol. Soc. Wash.<br />

662, 1999 pp. 213-216<br />

KEYWORD AND SUBJECT INDEX FOR VOLUME 66<br />

Abbreviate! sp., 89, 175<br />

Abundance, 1, 7, 14, 28, 70, 73, 78,<br />

89, 92, 101, 115,175, 197,<br />

Acanthocephala, 7, 47, 70, 95, 101,<br />

111, 123<br />

Acanthocephalus dims, 70<br />

Acanthogyrus (Acanthosentis) tilapiae,<br />

47<br />

Acanthogyrus (Acanthosentis)<br />

malawiensis sp. n., 47<br />

Acanthostomidae, 146<br />

Acuaria rnultispinosa, 7<br />

Africa, 123, 138<br />

Alaeuris geochelone sp. n., 28<br />

Allodiscocotylidae, 81<br />

Alloglossoides caridicola, 86<br />

Amauroronis phoenicums, 123<br />

Amphibia, 73, 180, 187, 197<br />

Amphimenis arcticus, 1<br />

Anatomy, 155<br />

Andracantha gravida, 1<br />

Anguidae, 205<br />

Anguilla anguilla, 95<br />

Anguillicola crassus, 95<br />

Anniversary Award, 209<br />

Anura, 187, 197<br />

Anuretes anurus, 14<br />

Apharyngostrigea pipientis, 7<br />

Apophallus brevis, 1<br />

Arborophilia crudigularis, 123<br />

Ardca albus, 1<br />

Argentina, 92<br />

Arhymorhynchus pumilirostris, 1<br />

Ariidae, 146<br />

Ariopsis assimilis, 146<br />

Ariopsis seemani, 146<br />

Aristochromis christyi, 47<br />

Arius fe Us, 146<br />

Arius guatemalensis, 146<br />

Arkansas, U.S.A., 86<br />

Armadoskrjabini rostellata, 1<br />

Arthrocephalus lotoris, 111<br />

Ascocotyle gemina, 1<br />

Ascocotyle mcintoshi, 7<br />

Ascocotyle temiicollis, 1<br />

Ascocotyle (Phagicola) diminuta, 1<br />

Ascocotyle (Phagicola) nana, 1, 7<br />

Atlantic spadefish, 14<br />

Auchenoglanis occidentalis, 138<br />

Australia, 33, 89, 123, 175<br />

Austrobilharzia terrigalensis, 1<br />

Aves, 1, 7, 123<br />

Avioserpens galliardi, 7<br />

Bagridae, 47, 138<br />

Bagrobdella, 138<br />

Bagrobdella aiichenoglanii, 138<br />

Bagrus meridionalis, 47<br />

Bandicoot, 33<br />

Barbulostomum cupuloris, 101<br />

Barisia imbricata, 205<br />

Barnacle, 67<br />

Bathyclarias nyasensis, 47<br />

Birds, 1, 7, 123<br />

Blacksmith plover, 123<br />

Bolbogonotylus corkumi, 82<br />

Bolbophorus confusus, 21<br />

Borneo, 123<br />

Bothriocephalus claviceps, 95<br />

Brachycoelium salamandrae, 205<br />

Brazil, 14, 81, 133<br />

Brown pelican, 21<br />

Bursacetabulus macrobursus sp. n.,<br />

21<br />

Bursacetabulus pelecanus sp. n., 21<br />

Caecidotea spp., 70<br />

Calidris ferruginea, 123<br />

Caligus minimus, 96<br />

Caligus mutabilis, 14<br />

Caligus haemulonis, 14<br />

Carnallanus oxycephalus, 101<br />

Capillaria herodiae, 7<br />

Capillaria mergi, 1<br />

Carangidae, 81<br />

Caribbean Sea, 67, 194<br />

Catfish, 138, 146<br />

Centrarchidae, 101<br />

Centrorhynchus conspectus, 111<br />

Cercaria owreae, 194<br />

Cestoda, 7, 73, 78, 95, 123, 133,<br />

175, 202<br />

Chaetognath, 194<br />

Chaetopterus faber, 14<br />

Chandler'onema longigutterata, 7<br />

Charadriiformes, 123<br />

Charadrius alexandrinus, 123<br />

Charadrius rnarginatus, 123<br />

Charadrius pallidus, 123<br />

Charadrius pccuarius, 123<br />

Charadrius ruficapillus, 123<br />

Charadrius tricollaris, 123<br />

Chelonibia manati, 67<br />

Chetumal, Mexico, 146<br />

Chicken, 92<br />

Chiorchis fabaceus, 67<br />

Chrysichthys nigrodigitatus, 138<br />

Cichla monoculus, 133<br />

Cichlidae, 47, 133<br />

Clarias rnossambicus, 47<br />

Clariidae, 47<br />

Clinostomum sp., 73<br />

Clinostomum attenuatum, 7<br />

213<br />

Clinostomum complanatum, 7<br />

Coastal zone, 14<br />

Cochleotrerna cochleotrema, 67<br />

Collared bush-robin, 123<br />

Colombia, 146<br />

Colorado, U.S.A., 123<br />

Columnar cells, 155<br />

Commensals, 67<br />

Common loon, 1<br />

Component community, 101<br />

Community structure, 14, 101<br />

Contracaecum multipapillatum, 7<br />

Contracaecum sp., 1, 115<br />

Cook Islands, 37<br />

Copepoda, 14, 95<br />

Copidochrornis cf. thinos, 47<br />

Corallobothriinae, 133<br />

Coronocyclus coronatus, 56<br />

Coronocyclus sagittatus, 56<br />

Corsica, 95<br />

Cosmocephalus obvelatus, 1, 7<br />

Cosmocercoides dukae, 73<br />

Cosmocercoides variabilis, 205<br />

Cotylurus erraticus, 1<br />

Cotylurus platycephalus, 1<br />

Crayfish, 86<br />

Crepidostomum cornutum, 101<br />

Crustacea, 14, 70, 86, 95<br />

Cryptogonimidae, 82<br />

Cryptogonimus chyli, 82<br />

Ctenopharynx (Otopharynx) pictus,<br />

47<br />

Ctenotus leonhardii, 86<br />

Ctenotus quattuordecimlineatus, 89<br />

Cucullanus sp., 95<br />

Curlew sandpiper, 123<br />

Cyathostoma phenisci, 1<br />

Cyathostominea, 56<br />

Cyclustera ibisae, 1, 7<br />

Cyprinidae, 47<br />

Cyst, 73, 78, 82, 95<br />

Dactylogyridae, 138<br />

Dasyuridae, 33<br />

Day gecko, 78<br />

Deformities, 73<br />

Dendritobilharzia pulverulenta, 1<br />

Dendrouterina ardeae, 7<br />

Denmark, 56<br />

Deropristis inflata, 95<br />

Desmidocercella numidica, 7<br />

Desportesius invaginatus, 7<br />

Desportesius larvae, 7<br />

Desportesius trianuchae, 7<br />

Diagnosis, 202<br />

Diagnostic parasitology course, 40<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


214 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Diasiella diasi, 7<br />

Dicentrarchus labrax, 95<br />

Dichelyne cotylophora, 115<br />

Didymozoidae, 25<br />

Digenea, 14, 25, 67, 70, 95, 146,<br />

197<br />

Dimidiochrornis kiwinge, 47<br />

Dioctophymatoidea, 92<br />

Diplectanum aequens, 95<br />

Diplostomidae, 21<br />

Diplostominae, 21<br />

Diplostomum gavium, 1<br />

Diplostomurn immer, 1<br />

Diplostomum ardeae, 1<br />

Diplostomum sp., 70<br />

Distribution, 86<br />

Dog, 41<br />

Dormitator latifrons, 146<br />

Echeneis neucratoides, 67<br />

Echinochasmus skrjabini, 1<br />

Echinochasmus dietzevi, 7<br />

Echinonematinae, 33<br />

Ectoparasites, 95<br />

Editors' Acknowledgments, 110<br />

Eggshell surface, 47<br />

Egret, 7<br />

Egypt, 56<br />

Electron microscopy, 28, 41, 82,<br />

133, 155, 194<br />

Eleotridae, 146<br />

Emended diagnosis, 138<br />

Endoparasites, 95<br />

Ephippidae, 1<br />

Equus caballus, 56<br />

Ergasilus lizae, 95<br />

Ergasilus gibbus, 95<br />

Erschoviorchis lintoni, 1<br />

Estado de Mexico, Mexico, 197,<br />

205<br />

Estuary, 101<br />

Etheostoma flabellare, 82<br />

European eel, 95<br />

Eustrongylides sp., 70, 93<br />

Eustrongylides tubifex, 1,115<br />

Eustrongylides ignotus, 1<br />

Euthynnus affinis, 25<br />

Experimental infection, 41, 92, 202<br />

Fantail darter, 83<br />

Female reproductive system, 155<br />

Ferosagitta hispida, 194<br />

Fibricola sp., 73<br />

Fibrocyte, 83<br />

Filarioidea, 187<br />

Fishes, 14, 25, 47, 70, 81, 82, 92,<br />

95, 101, 115, 133, 138, 146<br />

Flaccisagitta enflata, 194<br />

Flathead gray mullet, 95<br />

Florida, U.S.A., 1, 7, 146<br />

Formosan hill partridge, 123<br />

France, 95<br />

French Polynesia, 37<br />

Frog, 73, 187, 197<br />

Froglets, 73<br />

Galaxias maculatus, 92<br />

Galaxiidae, 92<br />

Galeichthys (=Ariopsis) seemani,<br />

146<br />

Galveston, Texas, 21<br />

Gastrografin, 202<br />

Gavia immer, 1<br />

Gecko, 37, 78, 175<br />

Gehyra oceanica, 33<br />

Gekkonidae, 37, 78, 175<br />

Genarchella sp., 101<br />

Genychromis mento, 47<br />

Geochelone elegans, 25<br />

Gerrhonotus ophiurus, 205<br />

Glossocercus caribaensis, 7<br />

Glycocalyx, 83<br />

Glypthelmins californiensis, 197<br />

Glypthelmins facioi, 197<br />

Glypthelmins quieta, 197<br />

Gnathostoma, 41<br />

Gnathostoma cf. binucleatum, 41<br />

Gnathostoma procyonis, 111<br />

Gnathostomiasis, 41<br />

Gobiidae, 70<br />

Gobiomorus maculatus, 146<br />

Golden plover, 123<br />

Gorgodera amplicava, 73<br />

Great Lakes (Laurentian), 70, 115<br />

Great egret, 7<br />

Gulf <strong>of</strong> Mexico, 21<br />

Haplosplanchnus pachysornus, 95<br />

Haplosporus sp., 95<br />

Hawaii, 123<br />

Helminths, 1, 7, 67, 70, 73, 78,<br />

101, 111, 123, 133, 138, 146,<br />

155, 175, 180, 187, 194, 197,<br />

202, 205<br />

Heterocheilus tunicatus, 67<br />

Hidalgo, Mexico, 205<br />

Himantopus himantopus, 123<br />

Himasthia alincia, 1<br />

Histochemistry, 82<br />

Holopterus arrnatus, 123<br />

Horse, 56<br />

Hymenolepis diminuta, 202<br />

Hypnobiidae, 180<br />

Ignavia venusta, 7<br />

Illinois, U.S.A., 70<br />

Indian star tortoise, 25<br />

Indiana, U.S.A., 70, 115<br />

Indonesia, 25, 123, 187<br />

Infracommunity, 101<br />

Inglechina virginiae, sp. n., 33<br />

Intensity, 1, 7, 14, 28, 70, 73, 78,<br />

89, 92, 95, 205, 111, 115, 146,<br />

194<br />

Introduced species, 70<br />

Isoodon macrourus, 33<br />

Isopoda, 70, 95<br />

Israel, 123<br />

Jalisco, Mexico, 146<br />

Japan, 28, 56, 180<br />

Japanese clawed salamander, 180<br />

Java, 187<br />

Kansas, U.S.A., 123<br />

Kentish plover, 123<br />

Kittlitz' plover, 123<br />

Labeo cylindricus, 47<br />

Labeotropheus fullerborni, 47<br />

Labidochromis vellicans, 47<br />

Laboratory rat, 202<br />

Labratrema minimus, 96<br />

Lake Huron, 115<br />

Lake Malawi, 47<br />

Lake Maurepas, 101<br />

Lake Michigan, 70, 115<br />

Lake Nyasa, 47<br />

Lake Ponchartrain, 101<br />

Larva, 194<br />

Laurentian Great Lakes, 115<br />

Lecithocladium chaetodipteri, 14<br />

Lepomis miniatus, 101<br />

Leptorhynchoides thecatus, 101<br />

Lernanthropus kroyeri, 95<br />

Lernanthropus pupa, 14<br />

Lesion nematode, 155<br />

Lichnochromis acuticeps, 47<br />

Ligophorus rnugilinus, 95<br />

Ligophorus chabaudi, 95<br />

Lizard, 205<br />

Lobatocystis euthynni sp. n., 25<br />

Loon, 1<br />

Louisiana, U.S.A., 86, 101<br />

Mackerel tuna, 25<br />

Macracanthorhynchus ingens, 111<br />

Macroderoididae, 86, 197<br />

Malawi, 47<br />

Mammalia, 67, 111, 202<br />

Manatee, 67<br />

Mangrove frog, 187<br />

Marine fish, 14<br />

Maritrema sp., 1<br />

Maritrema sp. near eroliae, 1<br />

Marsupialia, 33<br />

Masked lapwing, 123<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


INDEX 215<br />

Mastacembelidae, 52<br />

Mastacembelus shiranus, 52<br />

Maxvachonia brygooi, 175<br />

Maxvachonia chabaudi, 89<br />

Maxvachonia dimorpha, 78<br />

Meeting Minutes, 211<br />

Meeting Schedule, 174<br />

Mehdiella microstoma, 28<br />

Melanochromis cf. melanopterus,<br />

47<br />

Melanochromis heterochromis, 47<br />

Melanochromis auratus, 47<br />

Melanosis, 92<br />

Membership application, 99<br />

Mesocestoides sp., 73<br />

Mesorchis denticulatus, 1, 7<br />

Mesostephanus appendiculatoides, 1<br />

Message from the editors, 20<br />

Metacamopia oligoplites, 81<br />

Metacamopiella euzeti, 81<br />

Metacercaria, 73, 82, 146<br />

Metamicrocotyla cephalus, 95<br />

Metriaclima zebra, 47<br />

Metriaclima zebra "redtop", 47<br />

Mexico, 47, 146, 194, 197, 205<br />

Michigan, U.S.A., 73, 115<br />

Michoacan, Mexico, 197<br />

Microcotyle mugilis, 95<br />

Micropai-yphium facetum, 1, 7<br />

Microphallus spp., 1<br />

Microphallus forresteri, 1<br />

Microphallus nicolli, 1<br />

Microsomacanthus pseudorostellatus,<br />

1<br />

Mississippi, U.S.A., 86<br />

Mitochondria, 83<br />

Molineus barbatus, 111<br />

Mollusca, 70<br />

Mongolia, 56<br />

Monogenea, 14, 81, 95<br />

Monogenoidea, 138<br />

Moorea, 37<br />

Morphology, 47, 56, 187, 194<br />

Morphometry, 56<br />

Mugil cephalus, 95<br />

Multitestis (Multitestis) inconstant, 14<br />

Multitestis (Multitestoides) brasiliensis,<br />

14<br />

Myxosporidia, 95<br />

Myxozoa, 95<br />

Namibia, 78<br />

Nebraska, U.S.A., 123<br />

Nematoda, 7, 28, 33, 37, 56, 67,<br />

70,73,89,93,95, 101, 111, 115,<br />

155, 175, 205<br />

Neoechinorhynchus agilis, 95<br />

Neoechinorhynchus cylindratus, 101<br />

Neogobius melanostornus, 70<br />

Neovalipera parvispinae, 1<br />

Nephrurus laevissirnus, 175<br />

Nephrurus levis, 175<br />

Nephrurus vertebralis, 175<br />

Nerocila orbignyi, 95<br />

New books available, 55<br />

New combination(s), 180<br />

New genus, 21, 187<br />

New geographical record(s), 1, 7,<br />

14, 21, 28, 47, 56, 67, 70, 73, 78,<br />

83, 86,89,92,95, 111, 123, 133,<br />

138, 146, 194, 197, 205<br />

New Hampshire, U.S.A., 123<br />

New host record(s), 7, 21, 28, 47,<br />

78, 89, 175, 194, 197, 205<br />

New species, 21, 25, 28, 33, 37, 47,<br />

175, 180, 187<br />

New synonym, 81, 146<br />

New York, U.S.A., 123<br />

Nipergasilus bora, 95<br />

Northern Territory, Australia, 33,<br />

175<br />

Northern leopard frog, 73<br />

Northern brown bandicoot, 33<br />

Obituary notice, Richard M. Sayer, 24<br />

Oceanic gecko, 37<br />

Odhneria odhneri, 1<br />

Oligoplites palometa, 81<br />

Onchocercidae, 187<br />

Onychodactylus japonicus, 180<br />

Oochoristica piankai, 175<br />

Oochoristica truncata, 78<br />

Oocyte development, 155<br />

Oregon, U.S.A., 123<br />

Oreochromis sp., 47<br />

Oswaldocruzia pipiens, 205<br />

Oswaldocruzia priceae, 73<br />

Oxyuroidea, 37<br />

Pacific islands, 37<br />

Panama, 56, 146<br />

Paracuaria adunca, 1<br />

Parana River, Brazil, 133<br />

Parancylodiscoides sp., 14<br />

Parapharyngodon japonicus sp.<br />

n., 180<br />

Parapharyngodon kartana, 89<br />

Parapharyngodon rotundatus, 78<br />

Paraochoterenella javanensis gen.<br />

et sp. n., 187<br />

Parasite ecology, 14<br />

Parorchis acanthus, 1<br />

Parvatrerna sp., 1<br />

Patagonia, 92<br />

Pathology, 92, 115<br />

Pelaezia sp., 146<br />

Pelecanidae, 21<br />

Pelecanus occidentalis, 21<br />

Pelecanus erythrorhynchos, 41<br />

Pelican, 21, 41<br />

Pentastomida, 175<br />

Peramelidae, 33<br />

Perca flavescens, 115<br />

Percidae, 115<br />

Perciformes, 70, 146<br />

Petrotilapia genalutea, 47<br />

Phagicola longa, 1<br />

Pharyngodon oceanicus sp. n., 37<br />

Pharyngodon tiliquae, 175<br />

Pharyngodonidae, 28, 37, 78, 89,<br />

175, 180<br />

Philometra cylindracea, 115<br />

Pholeter ante routerus, 7<br />

Physaloptera rara, 111<br />

Physaloptera retusa, 205<br />

Physaloptera sp., 175<br />

Physalopteroides filicauda, 89, 175<br />

Physalopteroides impar, 78<br />

Physocephalus sp., 78<br />

Pisces, 14, 25, 47, 70, 81, 82, 92,<br />

95, 101, 115, 133, 138, 146<br />

Placidochromis johnstoni, 47<br />

Placidochromis johnstoni "gold", 47<br />

Plagiorchidae, 73<br />

Plagiorhynchus s. lat., s. str., 123<br />

Plagiorhynchus (Plagiorhynchus)<br />

charadrii, 123<br />

Plagiorhynchus (Plagiorhynchus)<br />

paulus, 123<br />

Plagiorhynchus (Plagiorhynchus)<br />

sp., 123<br />

Plagiorhynchus (Prosthorhynchus),<br />

123<br />

Plagiorhynchus (Prosthorhynchus)<br />

bullocki, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

cylindraceus, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

golvani, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

gracilis, 123<br />

Plagiorhynchus (Prosthorhynchus)<br />

malayensis, 123<br />

Plerocercoid, 7<br />

Plotnikovia fodiens, 1<br />

Pluvialis dominica, 123<br />

Polymorphus brevis, 1, 7<br />

Posthodiplostomum boydae, 1<br />

Posthodiplostomum opisthosicya, 7<br />

Posthodiplostomum minimum, 1, 7<br />

Posthodiplostomum macrocotyle, 7<br />

Posthodiplostomum sp., 1, 7<br />

Pratylenchidae, 155<br />

Pratylenchus penetrans, 155<br />

Prevalence, 7, 14, 28, 47, 70, 73,<br />

86, 89, 92, 95, 101, 111, 115,<br />

175, 194, 197, 205<br />

Procarnbarus acutus, 86<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


216 JOURNAL OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON, 66(2), JULY 1999<br />

Procyon lotor, 111<br />

Prosogonotrema bilabiatum, 14<br />

Prosthogonimus ovatus, 1<br />

Prosthorhynchus, 123<br />

Proteocephalidae, 133<br />

Protoancylodiscoides, 138<br />

Protoancylodiscoides chrysichthes,<br />

138<br />

Protomelas annectens, 47<br />

Protomelas cf. taeniolatus, 47<br />

Pseudacanthostomum floridensis,<br />

146<br />

Pseudacanthostomum panamense,<br />

146<br />

Pseudacanthostomum sp., 146<br />

Pseudocaligus apodus, 95<br />

Pseudodactylogyrus anguillae, 95<br />

Pseudotropheus tropheops "broadmouth",<br />

47<br />

Pseudotropheus tropheops "orange<br />

chest", 47<br />

Pseudotropheus elongatus "aggressive",<br />

47<br />

Puerto Rico, 67<br />

Quadrigyridae, 47<br />

Quintana Roo, Mexico, 146<br />

Raccoon, 111<br />

Radiographic imaging, 202<br />

Raillietnema brachyspiculatum, 205<br />

Raillietnema sp., 73<br />

Raillietiella scincoides, 175<br />

Rana berlandieri, 197<br />

Rana cancrivora, 187<br />

Rana dunni, 197<br />

Rana megapoda, 197<br />

Rana montezumae, 197<br />

Rana neovolcanica, 197<br />

Rana pipiens, 73<br />

Rana vaillanti, 197<br />

Ranidae, 73, 187, 197<br />

Rarotonga, 37<br />

Rat, 202<br />

Rat tapeworm, 202<br />

Red cheeked dunnart, 33<br />

Redworm, 115<br />

Remora, 67<br />

Renicola pollaris, 1<br />

Renicola sp., 7<br />

Report <strong>of</strong> the Brayton H. Ransom<br />

Memorial Trust Fund, 186<br />

Reptilia, 28, 37, 78, 89, 175, 205<br />

Rhabdias ranae, 73<br />

Rhoptropus afer, 78<br />

Rhoptropus barnardi, 78<br />

Ribeiroia ondatrae, 1, 7<br />

Rio de Janeiro, Brazil, 14, 81<br />

Round goby, 70<br />

Russia, 56<br />

Saginaw Bay, U.S.A., 115<br />

Sagitta helenae, 194<br />

Salamander, 180<br />

Sauria, 37, 78, 89, 175, 205<br />

Scanning electron microscopy, 41,<br />

28, 133, 194<br />

Sciadiocara rugosa, 1<br />

Sciadocephalus megalodiscus, 133<br />

Scincidae, 89<br />

Sculpins, 70<br />

Sea bass, 95<br />

Seasonal dynamics, 101<br />

SEM, 41, 28, 133, 194<br />

Serranicotyle labracis, 95<br />

Serratosagitta serratodentata, 194<br />

Seuratidae, 33<br />

Shore birds, 123<br />

Siluriformes, 138, 146<br />

Sirenia, 67<br />

Skinks, 89<br />

Skrjabinodon piankai sp. n., 175<br />

Sminthopsis virginiae, 33<br />

Smooth knobtail gecko, 175<br />

<strong>Society</strong> Islands, 37<br />

South Africa, 123<br />

South Carolina, U.S.A., Ill<br />

Southwellina hispida, 1<br />

Spauligodon petersi, 78<br />

Spermatheca, 155<br />

Spinifex knobtail gecko, 175<br />

Spinitectus carolini, 101<br />

Spiroxys sp., 73<br />

Splendid<strong>of</strong>ilaria fallisensis, 1<br />

Spotted sunfish, 101<br />

Sprostoniella sp., 14<br />

<strong>State</strong> <strong>of</strong> Parana, Brazil, 133<br />

<strong>State</strong> <strong>of</strong> Rio de Janeiro, Brazil, 14<br />

Stegophorus diomedeae, 1<br />

Stictodora lariformicola, I<br />

Stigornatochromis woodi, 47<br />

Stilt, 123<br />

Storr's knobtail gecko, 175<br />

Streptocara formosus, 1<br />

Streptocara crassicauda longispiculatus,<br />

1<br />

Strigeidae, 73<br />

Subgenus, 123<br />

Sulawesi Island, Indonesia, 25<br />

Survey, 1, 7, 14, 21, 28, 47, 67, 70,<br />

73, 78, 86, 89, 95, 205<br />

Tachygonetria conica nicollei, 28<br />

Tachygonetria dentata quentini, 28<br />

Tachygonetria macrolaimus dessetae,<br />

28<br />

Taeniolethrinops praeorbitalis, 47<br />

Tahiti, 37<br />

Taiwan, 123<br />

Tanaisia fedtschenkoi, 1<br />

Tapeworm, 202<br />

Tarsiger johnstoniae, 123<br />

Tasmania, 123<br />

Taxonomic description, 25, 28, 33,<br />

37, 47, 123, 133, 138, 146, 175,<br />

180, 187<br />

Taxonomic key, 123, 187<br />

Teleostei, 14, 81, 133<br />

TEM, 82, 155<br />

Tenebrio molitar, 202<br />

Testudinidae, 28<br />

Tetrabothrius macrocephalus, 1<br />

Tetrameres microspinosa, 7<br />

Tetrameres sp., 7<br />

Texas, U.S.A., 21, 86<br />

<strong>The</strong>landros awakoyai comb, n.,<br />

180<br />

<strong>The</strong>landros senisfaciecaudus comb.<br />

n., 180<br />

Thubunaea fitzsimonsi, 78<br />

Timoniella praeteritum, 95<br />

Togo, 138<br />

Tortoise, 28<br />

Trachinotus carolinus, 81<br />

Transmission electron microscopy,<br />

82, 155<br />

Trematocranus placodon, 47<br />

Trematoda, 7, 73, 82, 86, 101, 194,<br />

205<br />

Trichechus manatus, 67<br />

Triple-banded plover, 123<br />

Tuna, 25<br />

Tucunare, 133<br />

Tyrannochromis nigriventer, 47<br />

Tyrannochromis macrostoma, 47<br />

Ultrastructure, 28, 41, 82, 133, 155,<br />

194<br />

U.S.A., 1, 7, 21, 67, 70, 73, 82, 86,<br />

101, 111, 115<br />

Vanellus miles, 123<br />

Varied thrush, 123<br />

Veracruz, Mexico, 197, 205<br />

Waltonellinae, 187<br />

Wanaristrongylus ctenoti, 89, 175<br />

<strong>Washington</strong> state, U.S.A., 123<br />

Western Australia, 33, 89, 175<br />

Whitefin remora, 67<br />

White-fronted sand plover, 123<br />

Wisconsin, U.S.A., 82<br />

X-ray, 202<br />

Yellow perch, 115<br />

Zebra mussels, 70<br />

Zoonoses, 111<br />

Zoothera naevius, 123<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


APPLICATION FOR MEMBERSHIP<br />

in the<br />

HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

(Please Type or Print Legibly)<br />

Name:<br />

Mailing Address:<br />

Present Position and Name <strong>of</strong> Institution:<br />

Phone:<br />

FAX:<br />

E-Mail:<br />

Highest Degree Earned and the Year Received:<br />

Are You a Student? If so, for what degree and where?<br />

Fields <strong>of</strong> Interest:<br />

If you are experienced in your field, would you consent to be a reviewer for manuscripts<br />

submitted for publication in the Journal! If so, what specific subject area(s) do you feel<br />

most qualified to review?<br />

Signature <strong>of</strong> Applicant<br />

Date<br />

Signature <strong>of</strong> Sponsor (a member)<br />

Date<br />

Mail the completed application along with a check or money order (in U.S. currency) for<br />

the first year's dues (US$25 for domestic active members and US$28 for foreign active<br />

members) to the Corresponding Secretary-Treasurer, Nancy D. Pacheco, 9708 DePaul<br />

Drive, Bethesda, Maryland, U.S.A. 20817<br />

217<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


HELMINTHOLOGICAL SOCIETY OF WASHINGTON<br />

MISSION & VISION STATEMENTS<br />

May 7, 1999.<br />

THE MISSION<br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>, the prototype scientific organization for parasitological<br />

research in North America was founded in 1910 by a devoted group <strong>of</strong> parasitologists in<br />

<strong>Washington</strong>, D.C. Forging a niche in national and international parasitology over the past century,<br />

the <strong>Society</strong> focuses on comparative research, emphasizing taxonomy, systematics, ecology, biogeography<br />

and faunal survey and inventory within a morphological and molecular foundation. Interdisciplinary<br />

and crosscutting, comparative parasitology links contemporary biodiversity studies with<br />

historical approaches to biogeography, ecology and coevolution within a cohesive framework.<br />

Through its 5 meetings in the <strong>Washington</strong> area annually, and via the peer reviewed Comparative<br />

Parasitology (continuing the Journal <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> in its 67th<br />

Volume), the <strong>Society</strong> actively supports and builds recognition for modern parasitological research.<br />

Taxonomic diversity represented in the pages <strong>of</strong> the <strong>Society</strong>'s journal treats the rich helminth faunas<br />

in terrestrial and aquatic plants, invertebrates and vertebrates, as well as parasitic protozoa and<br />

arthropods. Parasitology, among the most integrative <strong>of</strong> the biological sciences, provides data critical<br />

to elucidation <strong>of</strong> general patterns <strong>of</strong> global biodiversity.<br />

THE VISION<br />

<strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> celebrates a century <strong>of</strong> tradition and excellence<br />

in global parasitology, solving challenges and responding to opportunities for the future <strong>of</strong> society<br />

and the environment.<br />

Members <strong>of</strong> the <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong> contribute to understanding and protecting<br />

human health, agriculture and the biosphere through comparative research emphasizing taxonomy,<br />

systematics, ecology, biogeography and biodiversity assessment <strong>of</strong> all parasites. <strong>The</strong> <strong>Society</strong><br />

projects the exceptional relevance <strong>of</strong> its programs to broader research and education in global<br />

biodiversity and conservation biology through the activities <strong>of</strong> its members and its journal, Comparative<br />

Parasitology.<br />

218<br />

Copyright © 2011, <strong>The</strong> <strong>Helminthological</strong> <strong>Society</strong> <strong>of</strong> <strong>Washington</strong>


*Edna M. Buhrer<br />

*Mildred A. Doss<br />

* Allen Mclntosh<br />

*Jesse R. Christie<br />

* Gilbert F Otto<br />

*George R. LaRue<br />

*William W. Cort<br />

*Gerard Dikmans<br />

*Benjamin Schwartz<br />

*Willard H. Wright<br />

*Aurel O. Foster<br />

*Carlton M, Herman<br />

*May Belle Chitwood<br />

*Elvio H. Sadun<br />

E. J. Lawson Soulsby<br />

David R. Lincicome<br />

Margaret A. Stirewalt<br />

*Leo A. Jachowski, Jr.<br />

*Horace W. Stunkard<br />

*Kenneth C- Kates<br />

ANNIVERSARY AWARD RECIPIENTS<br />

1960<br />

1961<br />

1-962<br />

1964<br />

1965<br />

1966<br />

1966<br />

1967<br />

1969<br />

,1969<br />

1970<br />

1971<br />

1972<br />

1973<br />

1974<br />

1975<br />

1975<br />

1976<br />

1977<br />

1978<br />

* Everett E. Wehr<br />

*O~. Wilford Olsen<br />

*Frank D. Enzie<br />

Lloyd-E. Rozeboom<br />

*Leon Jacobs<br />

Harley G. Sheffield<br />

A. Morgan Golden<br />

Louis S. Diamond<br />

Everett L. Schiller<br />

Milford N. Lunde<br />

J. Ralph Lichtenfels<br />

A. James Haley<br />

Francis G. Tromba<br />

Thomas K. Sawyer<br />

Ralph P. Eckerlin<br />

Willis A. Reid, Jr.<br />

Gerhard A. Schad<br />

Franklin A". Neva<br />

Burton Y. Endo<br />

Sherman S. Hendrix<br />

1979<br />

1980<br />

-1981<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

J998<br />

* George R. LaRue<br />

*Vladimir S. Ershov<br />

*Norman R. StolJ<br />

"Horace W. Stunkard<br />

* Justus' F Mueller<br />

John FA. Sprent<br />

Bernard Bezubik<br />

Hugh M. Gordon /<br />

1959<br />

1962<br />

1976<br />

1977<br />

-1978<br />

1979<br />

1980<br />

1981<br />

!E..'I. Lawson Soulsby<br />

Roy C. Anderson<br />

Louis Euzet<br />

John C. flolmes<br />

•Purnomo<br />

'Naftale Katz - -<br />

^Robert Traub<br />

Alan F. Bird ~"<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

T995<br />

1997<br />

*W. E, Chambers<br />

*Nathan A. Gobb<br />

*Howard Crawley<br />

*Winthrop D. Foster<br />

CHARTER MEMBERS 1910<br />

*Philip E. Garrison<br />

.^Joseph Goldberger<br />

*Henry W. Graybill<br />

*Maurice C. Hall<br />

*Albert Hassall<br />

*George F Leonard<br />

*Charles A. Pfender<br />

^Brayton H. Ransom<br />

*Charles W. Stiles<br />

*Maurice C. Hall<br />

\t Hassall<br />

*Charles W. Stiles<br />

*Paul Bartsch<br />

*Henry E. Ewjng<br />

*William W. Cort<br />

*perard Dikmans -<br />

*Jesse R. Christie<br />

*Gotthold Steiner<br />

*Emmett W. Price<br />

*Elois


JULY 1999<br />

CONTENTS<br />

(Continued from Front Cover)<br />

BURSEY, C. R., AND S. R. GOLDBERG. Skrjabinodon piankai sp. n. (Nematoda: Pharyngodonidae) and<br />

Other Helminths <strong>of</strong> Geckos (Sauria: Gekkonidae: Nephrurus spp.) from Australia >. -__ 175<br />

BURSEY, C. R., AND S. R. GOLDBERG. Pampharyngodon japonicus sp. n. (Nematoda: Pharyngodoni-<br />

-dae) from the Japanese Clawed Salamander, Onychodactylus japonicus (Caudata: Hynobiidae),<br />

from Japan /——; ..- . i II -. -— ..„ '. . 180<br />

PURNOMO, AND M. J. BANGS. Paraochoterenella javanensis gen. et sp. n. (Filarioidea: Onchocercidae)<br />

from Rana cancrivora (Amphibia: Anura) in West Java, Indonesia .„ r . 187<br />

: - RESEARCH NOTES<br />

GOMEZ DEL PRADO-ROSAS, M. DEL C:, J. N. ALVAREZ-CADENA, L. SEGURA-PUERTAS, AND R. LAMOTHE-<br />

ARGUMEDO. New Records, Hosts, and SEM Observations <strong>of</strong> Cercaria owreae (Hutton, 1954)<br />

from the Mexican Caribbean Sea ^_ ... . 194<br />

RAZO-MENDIVIL, U., J. P. LACLETTE, AND G. PEREZ-PONCE DE LEON. New Host and Locality Records<br />

for Three Species <strong>of</strong> Glypthelmins (Digenea: Macroderoididae) in Anurans <strong>of</strong> Mexico : „_ 197<br />

DEINES, K. M.,'D. J. RICHARDSON, G. CONLOGUE, R. G. BECKETT, AND D. M. HOLIDAY. Radiographic<br />

Imaging <strong>of</strong> the Rat Tapeworm, Hymenolepis diminuta ^ „_ 202<br />

GOLDBERG, S. R., C. R. BURSEY, AND J/L. CAMARILLO-RANGEL. Helminths <strong>of</strong> Two Lizards, Barisia<br />

imbricata and Gerrhonotus ophiurus (Saurja: Anguidae), from Mexico 205<br />

ANNOUNCEMENTS<br />

EDITORS' ACKNOWLEDGMENTS -__.__ ~~-l ^.— IL— , '. . . 110<br />

ANNOUNCEMENT OF JOURNAL NAME CHANGE __. : . "~ ._„: 122<br />

OBITUARY NOTICE ; i___^_ , : . •, r 137<br />

MEETING SCHEDULE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!