CAMPBELL INDUSTRIAL PARK (CIP) GENERATING STATION COMMUNITY BENEFITS PROGRAM

2022 REEF FISHES MONITORING REPORT

Prepared For:

Hawaiian Electric Company, Inc. P. O. Box 2750 Honolulu, Hawai'i 96840-0001

Project Period: 1 January 2022 through 31 December 2022

Prepared By:

Ku'ulei Rodgers Ph.D. Sarah Severino M.S. Keoki and Yuko Stender 47-889 Kamehameha Highway Kāne'ohe, Hawai'i 96744

Final Report- Report No. 2022-1 February 2023

TABLE OF CONTENTS

	Page
TITLE PAGE	
TABLE OF CONTENTS LIST OF TABLES	
LIST OF FIGURES	
LIST OF FIELD PHOTOS	
PAGE	
EXECUTIVE SUMMARY	5
Key Points	6
INTRODUCTION	
Rationale and Historical Background for the Reef Fishes Monitoring Program	
Natural Events and Human Impacts to Hawaiian Coral Reefs	
Hawaiian Electric's Biological Communities Monitoring Program	
Historical Impacts (Storms, Hurricanes Iwa & Iniki)	
METHODOLOGY	
SURVEY STATIONS	
SURVEY METHODOLOGY	
Statistical Methods	
RESULTS AND DISCUSSION	
OVERALL	
KALAELOA (BARBER'S POINT, EAST)	
Kalaeloa East 1:	
Kalaeloa East 3:	
Kalaeloa East 4: KO 'OLINA	
Ko 'Olina 1:	
Ko 'Olina 2:	
KAHE	
Kahe 1D:	
Kahe 5B:	
Kahe 7B:	
Kahe 7E:	
NANAKULI NANA 1:	
NANA 1. NANA 2	
PIPELINE	
FOOD FISHES	
SUMMARY	60
LITERATURE CITED	61
CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring	2

LIST OF TABLES

Table 1. Waves influencing the Main Hawaiian Islands.	.26
Table 2. Location (latitude and longitude) of each transect.	
Table 3. Mean proportion of fish individuals and biomass contributing to each trophic	feeding
level	.36
Table 4. Resource food fish list.	58

LIST OF FIGURES

Figure 1. Primary forcing functions driving reef fish biomass, abundance, diversity, and coral
cover and richess in the main Hawaiian Islands
Figure 2. Map of station locations along the Westside of O'ahu, Hawai'i
Figure 3. Average fish biomass, abundance, and number of species per station grouping
Figure 4. Top ten fish species contributing to biomass and abundance
in 2021 and 2020
Figure 5. Mean abundance and biomass of each trophic level in 2022and 2021
Figure 6. Average fish biomass, abundance, and number of species
per transect in 2022 and 2021
Figure 7. Top ten fish contributing to mean abundance and biomass
at East transect grouping
Figure 8. Top ten fish contributing to mean abundance and biomass at
Ko'Olina transect grouping
Figure 9. Top ten fish contributing to mean abundance and biomass at
Kahe transect grouping
Figure 10. Top ten fish contributing to mean abundance and biomass at
Nanakuli transect grouping
Figure 11. Top ten fish contributing to mean abundance and biomass
at Pipe transect grouping
Figure 12. Percent abundance and biomass of food fishes

LIST OF FIELD PHOTOS

Field Picture 1. Endemic saddle wrasse at Pipe	7
Field Picture 2. Kahe Generating Station	
Field Picture 3. Diver conducting transect survey	11
Field Picture 4. Fish populations at Pipe	12
Field Picture 5. Endemic and indigenous fish	13
Field Picture 6. Hawaiian Chromis at Kahe 7B	14
Field Picture 7. Manybar Goatfish at Pipe	15
Field Picture 8. Invasive <i>Ta</i> 'ape at Pipe	17
Field Picture 9. Fish diversity at Kalaeloa	18
Field Picture 10. Coral structures at Kalaeloa	19
Field Picture 11. Bleached coral skeleton due to stress	23

Field Picture 12. Divers calibrating prior to surveys	
Field Picture 13. Crown of Thorns Seastar feeding on coral at Kahe	
Field Picture 14. Large Lobe coral at Kalaeloa	41
Field Picture 15. Spatial complexity at Kalaeloa	42
Field Picture 16. Spatial complexity at Ko 'Olina	44
Field Picture 17. Fishes at Ko 'Olina	45
Field Picture 18. Fishes at Kahe	47
Field Picture 19. Ledges and spatial complexity at Kahe	49
Field Picture 20. Coral at Nanakuli control (reference)	
Field Picture 21. Pipeline artificial substrate covered in coral	
Field Picture 22. Green turtle at Pipe	
Field Picture 23. Spatial complexity at Pipe	
Field Picture 24. Spatial complexity at Pipe	

LIST OF APPENDICES

Appendix A. Summary of fish censuses from 2021-2022	64-65
Appendix B. Results of fish censuses carried out each of the four 2022 surveys	66-106

EXECUTIVE SUMMARY

Hawaiian Electric Company, Inc.'s (Hawaiian Electric's) Campbell Industrial Park (CIP) Generating Station quarterly ecological monitoring was initiated to monitor changes in biological communities with the startup of the generating facility at CIP, Barbers Point in West O'ahu in 2010. Fourteen annual reports have been submitted between 2007 and 2021. The current 2022 report is the fifteenth in this series. The CIP Generating Station's wastewater is permitted to be discharged into two underground injection control (UIC) wells onsite; no effluent discharges to the ocean are permitted. The coral reef fish community monitoring continues as a commitment and benefit to the West O'ahu community. Sixteen permanently marked monitoring stations extend from Barbers Point in the southeast to Nanakuli in the northwest, a distance of 7.9 kilometers (4.9 miles). These monitoring stations are located in depths between 5 meters (m) (16.4 feet) and 12 m (39.4 feet). In 2019, the number of monitoring stations was reduced from 16 to 14 based on comparability of biomass (mean standing crop) of fishes, abundance (mean number of individual fish), mean number of fish species, similarity of habitat, and spatial proximity. In 2020, the number of monitoring stations was further reduced to 12, elimating stations Kahe 7C and 10C. The monitoring stations are located within four geographic groups (East, Ko'Olina, Kahe, and Nanakuli) within the nearshore and are analyzed to determine similarities based on historical data. The removal of four monitoring stations, East 2 and Kahe 7C, 7D, and 10C, are reflected in this report. Four monitoring events were conducted in 2022: May, June, August and October, with an average reported from the pooled surveys.

Hawaiian Electric has collected data on fish and benthic communities in the nearshore vicinity of the Kahe Generating Station (KGS) since the mid-1970's. This long-term dataset documented severe changes following storms and hurricanes not related to the operation of KGS. Eight of the KGS monitoring stations (Kahe group) overlap with stations from this CIP Generating Station monitoring to provide a robust record of trends and patterns in fish community factors and their environmental and meteorological influences.

Fish community composition and biomass remained similar from the 2021 to 2022 surveys. In both 2021 and 2022, the brown surgeonfish *ma* '*i*'*i*', contribute most heavily to the abundance. In 2022, the invasive *ta* '*ape* (*Lutjanus kasmira*, bluestripe snapper) dominated the biomass (16.9%). Other fishes contributing to the biomass in 2022 were *māi* '*i*'*i* (*Acanthurus nigrofuscus*, brown surgeonfish), and *hīnālea lauwili* (saddle wrasse, *Thalassoma duperrey*). This varies slightly from the common contributors of biomass in 2021: *ta* '*ape* (*L. kasmira*, bluestripe snapper), *na* '*ena*'*e* (*A. olivaceus*, orangeband surgeonfish), *humuhumu* '*el* '*ele* (*Melichthys niger*, black durgon), *mamo* (*A. vaigiensis*, Indo-Pacific sergeant), *maikoiko* (*Acanthurus leucopareius*, whitebar surgeonfish), and *ma*'*i*'*i*'*i* (*A. nigrofuscus*, brown surgeonfish). However, in 2021 no single species dominated the biomass. The total number of fish species recorded in 2022 (113 species) is similar to the number recorded in 2021 (101 species). Trophic regimes remain fairly constant throughout the two years, with herbivores and invertebrate feeders making up the majority of both mean abundance and mean biomass.

Similar to the past two annual reports, the Ko'Olina group exhibits a higher number of fish species, individuals and biomass as compared to the East (Kalaeloa), Kahe and Nanakuli group stations. The only significant difference observed between these four stations is Ko'Olina, having significantly greater herbivore biomass when compared to Kahe. The KGS discharge pipe (Pipe) station is significantly higher in fish biomass when compared to Nanakuli and Kahe, higher in fish abundance when compared to East, and higher in diversity of fishes as compared to the East and Nanakuli. Although not significant, the abundance, biomass, and diversity of fishes are much higher at the Pipe than at other groups, a statistical difference is not found between some groups due to high variability within the dataset. This high variability between fish surveys and years is due to low diversity, abundance and biomass of fishes within the East, Kahe and Nanakuli groups likely resulting from the poorly developed coral communities. The greater number of years surveyed, the lower the variability and increase in statistical power. This strengthens the confidence of results by providing additional data across years. Pipe was the only transect to experience a significant decrease in overall fish biomass from 2021 to 2022 surveys. It is important to note that the biomass in 2021 was significanly greater than in 2020, suggesting the increased biomass in 2021 may be an anomaly. The total number of individual fishes and number of species at Pipe transect did not differ between the 2022 and 2021 surveys. East 1 experienced a significant decline in fish abundance between 2022 and 2021 surveys, while other East transects observed no change. The number of species present along transects was siginficantly greater at Kahe 7B and Nanakuli 1, when compared to the previous year. Overall Nanakuli transects (control) saw no significant declines in biomass, abudance, or diversity of fishes in 2022.

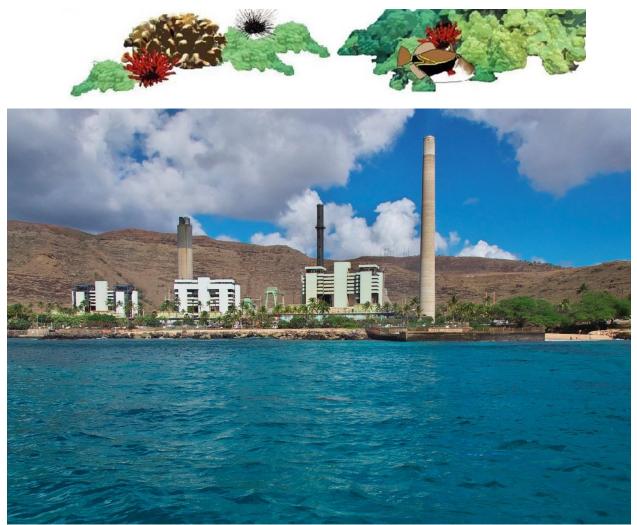
Fish populations are heavily influenced by spatial complexity. The topographic relief provided by the KGS Pipe provides protection from predators and habitat complexity that is known to be highly correlated with fish populations. In addition, numerous spinner dolphins, green turtles, and Hawaiian monk seals are observed throughout the surveys at the KGS Pipe. Periodic storms and hurricanes contribute to the lack of spatial relief through breakage and removal of coral colonies and shifting of sands. The poorly developed benthic communities at the Kahe stations are reflected in the lack of fishes as compared to more well-developed benthos as found at the Ko'Olina and Pipe stations. The 2022 surveys found no significant change in fish community factors which can be attributed to the operation of KGS or CIP Generating Station facilities.

Key Points

- The dominant species in individual number observed in 2022 were similar to those reported in 2020 and 2021: brown surgeonfish (*mā 'i'i'i*, *A. nigrofuscus*), blackfin chromis (*Chromis vanderbilti*) (small size, large schools), bluestripe snapper (*ta 'ape, L. kasmira*), and saddle wrasse (*hīnālea lauwili, T. duperrey*).
- Biomass is contributed mainly by the bluestripe snapper (*ta'ape*, *L. kasmira*, invasive), brown surgeonfish (*mā'i'i*, *A. nigrofuscus*), saddle wrasse (*hīnālea lauwili*, *T. duperrey*), and orangeband surgeonfish (*na'ena'e*, *A. olivaceus*).
- The number of species of fishes recorded in 2020 surveys (118 species) was similar to that of 2021 (101 species) and 2022 (113 species).

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

- A few significant shifts at the transect level were found between 2021 and 2022 surveys in trophic feeding guilds: Ko'Olina 1, Kahe 7B, Kahe 7E had significantly less herbivore biomass in 2022, when compared to 2021. Herbivores and invertebrate feeders consistently dominate. Herbivores experienced a shift in biomass from 49% dominance in 2021 to 41% dominance in 2022.
- The 2022 surveys found no significant change in fish communities that can be attributed to the Hawaiian Electric's KGS or CIP Generating Station facilities.



Field Photo 1. Species diversity is highest at the Pipe site in 2022, 113 different fish species were recorded at the 12 stations.

INTRODUCTION Rationale and Historical Background for the Reef Fishes Monitoring Program

The Hawaiian Electric Company, Inc. (Hawaiian Electric) Campbell Industrial Park (CIP) Generating Station began service in 2010 with a 120-megawatt (MW) combustion turbine and two auxiliary 2 MW diesel engine generators. In contrast to the nearby Kahe Generating Station (KGS), the CIP Generating Station does not discharge effluent into the ocean. Instead, the CIP Generating Station is permitted to discharge effluent (approximately 600 gallons per minute [gpm]) from the production of electricity into two permitted injection wells onsite. This eliminates or greatly reduces any deleterious impacts to the adjacent nearshore marine environment. The development of this electric generating facility initiated an environmental monitoring program with a focus on determining any temporal or spatial changes in fish communities. The spatial extent of the quarterly surveys range from Kalaeloa (Barbers Point) in the southeast direction to Nanakuli in the northwest, a distance of 4.9 miles (7.9 kilometers (km)). Eight of the monitoring stations along this coastline have been surveyed since 2008. The remaining stations were established in the 1970s for Hawaiian Electric's KGS monitoring program. These stations range in depth from 16.4 feet (ft.) (5 meters (m)) to 39.4 ft. (12 m). Prior to construction of the CIP Generating Station, baseline surveys were conducted in 2007, followed by continued monitoring during the construction phase in 2009 (Brock 2019). Quarterly monitoring continued once the plant was fully operational in 2010 and has been consecutively monitored thereafter (Brock 2019). This statistical record of long-term fish monitoring has increased in value with the onset of acute events including storms, hurricanes, temperature anomalies, flooding, and other stochastic events. This has allowed an understanding of fish community impact and subsequent recovery along this coastline. Reassessments of previous monitoring stations in the Kahe area have increased the value of this database due to comparable surveys conducted by Hawaiian Electric in this region in the 1970s and 1980s, providing over five decades of information on fish community structure. Fish assemblage factors including biomass, abundance, trophic levels, and species composition accurately assess populations and determine change across sites and across time. Surveys continue as a benefit to the community of the West side of O'ahu.

Field Photo 2. The Kahe Generating Station is located in a short valley between Kahe Point and Nānākuli on the Wai'anae coast of the Island of O'ahu, approximately 18 miles west of Honolulu (October 2022).

Accuracy in determining fish populations depend on the number and size of transects and whether transect locations are randomly selected, stratified random (e.g. following depth contours), or fixed (returning to the same location over time). Fixed transects may not be representative of the entire community of interest but allow for more accurate repeated measurements and over time increase in statistical power due to a larger sample size. Over time, they can be more characteristic and representative of actually changes. Spatial and temporal variability of fishes can be extremely high due to mobility and large home ranges for some fishes. Many fish species are cryptic, rare or transient. There are also diurnal/nocturnal and seasonal sources of variability. To quantify absolute values for fish populations, an extremely large sample size is required, especially for heterogeneous habitats, that are diverse in substrate types, otherwise relative values, that compare across sites, should be used to determine differences between sites. Surveys repeated consistently over time on a regular basis can also be used to accurately quantify absolute values of what fishes are occurring at a site. The statistical power to detect differences increases with additional surveys due to an increase in the sample size. As the power increases, the chances of detecting a change, if it exists, increases. More samples (more surveys) allow for both large and small changes (effect sizes), regardless of the variability in the data, due to an increase in information.

Numerous methods have been developed for sampling fishes. Method selection depends on the focus of the research and the spatial and temporal scales involved. Comparability of methodology is imperative when making comparisons between and within sites across surveys. Calibration between methodologies and surveyors is vital to assurance of evaluations. This validates that a change detected is not from using dissimilar methods or different divers. Quantitative measurable methodology is vital to any long-term monitoring program.

Qualitative (descriptive, non-numerical data) surveys by subject matter experts:

- •Are subject to significant surveyor differences;
- •Cannot be replicated by others or compared to other studies using quantitative methods;
- •Can obtain only certain information (e.g. species presence) and doesn't measure all variables;
- •Are effective for large-scale rapid assessment of an area or general conditions;
- •Are strongly biased; and
- •Result in highly variable observations.

Quantitative (numerical data) surveys:

- •Provide species abundance/biomass, most common species;
- •Compare to other sites to determine change (seasonality or environmental changes);
- •Provide a stable baseline;
- •Can verify statistical differences; and
- •Are archivable to review data or confirm species or repeat with new objective.

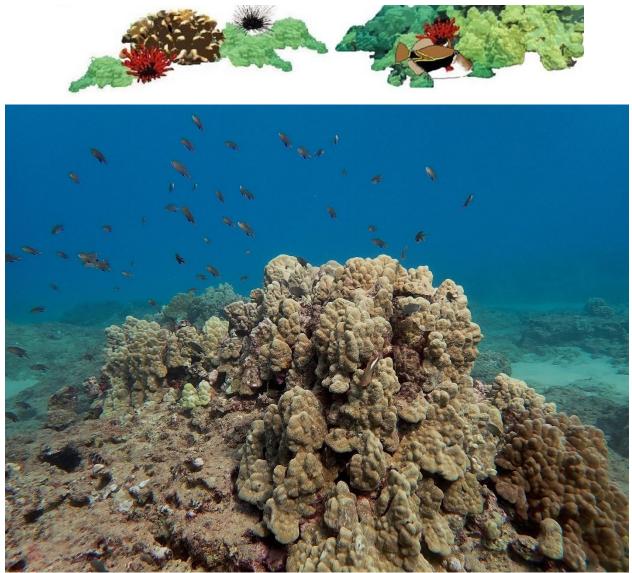
To avoid comparability issues with this dataset, the species abundance method (Brock 2019), adapted from the belt transect method (Brock 1954), has continued throughout this long-standing survey. This is commonly used among researchers and managers throughout the State. This includes a transect length of 164 x 13 ft. (50 m and width of 4 m) an area of 239 square yards (200 square meters $[m^2]$). This methodology records fish species and estimates length and number of individuals. From this data, fish community factors of abundance, biomass, trophic levels, endemism, diversity, evenness, and size class can be derived.

This species abundance method maximizes data and statistical comparability, allows for length to biomass conversions, and avoids limitations inherent in some other methods. This method includes two measures of abundance: numerical (number of fishes) and biomass (weight of fishes). These are both important population parameters that address different aspects of fish community structure. Unlike the belt transect method, species abundance estimates do not require additional survey time to allow for fish equilibrium to occur. The transect line is spooled out as the survey is conducted to avoid scaring away fishes.

Field Photo 3. Diver conducting fish transect survey at monitoring station East1 in Kalaeloa. Transect length of 164 ft. (50 m) by 13 ft. (4 m) covers an area of 239 yd² (200 m²). Column extends to the surface (October 2022).

Size structure of fish populations can be an informative means of characterizing fish communities both spatially and temporally. Variations in recruitment processes such as production, transport, settlement, and mortality, can be revealed in missing or reduced size classes. Lack of recruitment can limit population size. Variations in size categories can explain variation in site attached fishes. The condition of different size assemblages can provide clues to causal mechanisms and links to environmental factors. Certain anthropogenic impacts can be detected, including the most influential impact of overfishing, by quantifying absence or highly reduced abundance of food fishes in the larger size classes. Absence or overabundance in certain size groups can predict future trophic structure and species composition. Size classes can directly influence competition, predation, and shifts in community structure.

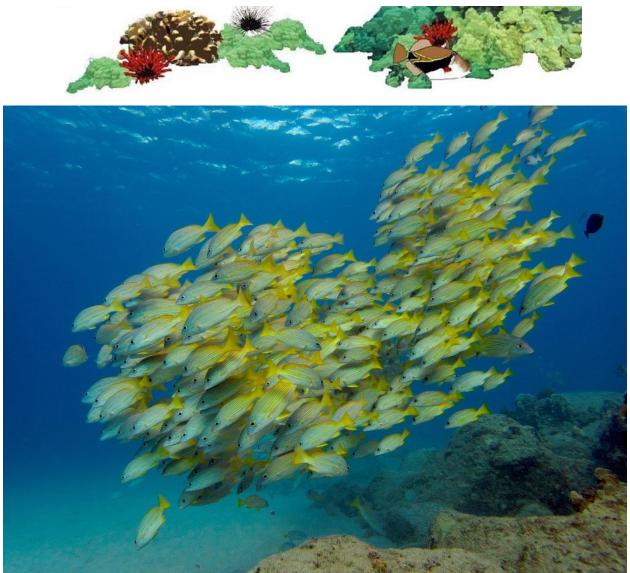
Field Photo 4. Healthy populations of fishes at the Pipe site (May 2022).


Trophic levels and endemism for fish species are also determined in these surveys. The trophic categories used by Brock (2019) were carnivores, herbivores, planktivores, omnivores, and corallivores. Trophic categories from 2019 forward are herbivores, invertebrate feeders, zooplanktivores, and piscivores. These categories are similar to the functional groups used by Brock (2019) but are now comparable on a Statewide spatial scale over a similar temporal scale. Fish assemblage organization including trophic structure is dependent more on local than regional conditions. Thus, these assemblages are more susceptible to local disturbances of fishing pressure, pollution, eutrophication or sedimentation, which can cause major shifts in trophic levels. Declines in apex predators (piscivores) are the most highly evident when comparing feeding guilds in the Main Hawaiian Islands (MHI) as compared with Papahānaumokuākea in the Northwestern Hawaiian Islands (NWHI). Large apex predators, primarily jacks and sharks, comprise over half of the total biomass in the NWHI (54%), while contributing only a small percentage (3%) in the MHI (Friedlander & DeMartini 2002). Both terrestrial and marine endemism in the Hawaiian Islands is high compared to the rest of the world, due to geographic isolation that restricts gene flow and favors speciation where species evolve over time. Of the 680 species of fishes in Hawai'i, 20% are endemic, found exclusively in Hawai'i. The overall marine environment has an average of 25% endemism with an endemism

rate of 20% for algae, fishes and mollusks and 40% for crustaceans. There are no endemic echinoderms and very low endemism of pelagics due to their mobility. Endemism is restricted to the species and subspecies level with no endemic families and only three endemic genera. There are no single island endemics and corals are depauperate (lacking in number of species), missing many of the genus found elsewhere in the Pacific. There are few endemic species in a genus, only one or two. In contrast, a terrestrial genus has approximately 100 endemics. Endemism is a biologically relevant attribute in examining fish assemblages. It relates to conservation of biodiversity, genetic connectivity and spatial patterns of recruitment. Historically, endemic comparisons have been based solely on presence/absence data due to lack of quantitative data. Yet, endemism evaluations are more statistically meaningful when incorporating numerical and biomass densities which allow for inclusion of spatial patterns (Friedlander & DeMartini 2004).

Field Photo 5. Many endemic and indigenous fish species can be found in the Hawaiian Islands. (Kahe 1, August 2022)

Field Photo 6. The Oval or Hawaiian Chromis is commonly found in aggregations where they feed on zooplankton. They are native to Hawai'i and found nowhere else in the world. Adults are bluish-grey in color while juveniles have bright yellow and blue dorsal stripes that gradually fade (Kahe 7B, August 2022).



Field Photo 7. *Parupeneus multifaciatus*, the manybar goatfish, *moano* at the Pipe site where they feed on small invertebrates (June 2022)

Introduced species have become common on reefs in the MHI. Most snappers occurring in Hawai'i have historically been highly prized food fishes. Pink snapper, Pristipomoides filamentosus ('opakapaka), Crimson jobfish, Etelis carbunculus (ehu), Ruby snapper Etelis coruscans (onaga), and Long-tailed Red snapper inhabit depths of over 60 m. The Division of Aquatic Resources originally known as the Hawai'i Fish and Game introduced three shallow water snappers from the South Pacific and Mexico in the mid-1950s and early 1960s in hopes of stimulating the commercial fisheries. These are among the 11 demersal species introduced within a 5-year period. Lutianus kasmira (ta'ape) the Blue-stripe snapper and L. fulvus (to'au) the Black-tail snapper have become widely established, while the third species, L. gibbus, the Humpback red snapper, is extremely rare. The more common of the non-native snappers, L. kasmira, (ta'ape) was introduced from the Marquesas in 1958, while L. fulvus (to'au) was imported two years earlier in 1956. Although only 3,200 L. kasmira (bluestripe snapper, ta 'ape) were released on the island of O'ahu, they have increased their range to include the entire Hawaiian archipelago. The peacock grouper Cephalopholis argus (roi) introduced by the state for commercial purposes in 1956 from Moorea, French Polynesia, originally had more popularity as a food fish than the introduced snappers. Its attractiveness as a food fish rapidly declined as cases of ciguatera poisoning increased. This opportunistic feeder is perceived by many local fishermen as unsafe to consume and in direct competition with them because it preys upon native fish species. Contrary to popular belief, Dierking et al. (2005) found that the majority of roi

(peacock grouper) are relatively safe to consume, with approximately 4% containing levels of toxin high enough to cause ciguatera poisoning. However, 20% of samples contained some level of ciguatoxin. Although a strong site specific correlation occurred with the highest percentage of toxic roi found on the island of Hawai'i, nearly all of the 28 locations tested on several islands contained fish that tested positive for ciguatoxins. Due to its carnivorous nature and presence of ciguatoxin, numerous efforts to cull this fish from the nearshore reefs have been initiated through community projects including "Kill Roi Day" on the island of Maui, "Roi Round-up" on the island of Hawai'i, and "Kaua'i no ka Roi" on the island of Kaua'i. None of these introduced species has been widely accepted as a food fish among the local population or become successful in the commercial fisheries and the ecological effects of these aliens have only recently been realized. Histological reports from Work et al. (2003) found that nearly half of the L. kasmira (ta 'ape) examined from O'ahu were infected with an apicomplexan protozoan. Furthermore, 26% were infected with an epitheliocystic-like organism with potential transmission to endemic reef fishes. In addition, L. kasmira (ta 'ape) from Hilo were found to host the nematode Spirocamallanus istiblenni (Font and Rigby 2000). Species of goatfish Mulloides flavolineatus (weke), Yellowstripe goatfish and Parupeneus porphyreus (kūmū), Whitesaddle goatfish, popular food fishes, may be displaced by L. kasmira (ta 'ape), Bluestripe snapper which has also expanded its range into deeper water where P. filamentosa ('opakapaka), Pink snapper reside. Friedlander and Parrish (1998) looked at patterns of habitat use to determine predation and resource competition between L. kasmira (ta 'ape), bluestripe snapper and several native species within Hanalei Bay, Kaua'i, but found no strong ecological relationships.

Field Photo 8. The Division of Aquatic Resources originally known as the Hawai'i Fish and Game introduced three shallow water snappers from the South Pacific and Mexico in the mid-1950s and early 1960s in hopes of stimulating the commercial fisheries. L. kasmira (*Ta'ape*) the Blue-stripe snapper (shown above) and L. fulvus (*to'au*) the Black-tail snapper have become invasive and widely established, while the third species, the Humpback red snapper, is extremely rare. Since its introduction to O'ahu from the Marquesas in 1958, this invasive species has increased their range to include the entire Hawaiian archipelago (August 2022, Pipe).

Diversity plays an important role in many ecological and conservation issues. Thus, it is included in this report. It can be a significant factor in assessing the efficacy of management efforts. Reductions in diversity can be indicative of fishing pressure since it can selectively remove specific species. Other anthropogenic impacts, such as eutrophication and sedimentation, can also result in phase shifts that impact fish diversity. Natural conditions can also determine diversity. Areas sheltered from high wave energy have previously been reported to maintain higher fish populations and exhibited greater species diversity in the Hawaiian Islands (Friedlander & Parrish 1998; Friedlander et al. 2003). This can be attributed to reduced habitat complexity in high-energy environments. Seasonal variability in wave impacts can structure the physiography of reefs, reducing habitat and spatial complexity for fishes through a dominance of encrusting morphologies of corals.

Field Photo 9. Diversity of fishes is important to the health of coral reefs. Mixed schools of fishes at this site in Kalaeloa include racoon butterflyfishes, orangeband surgeonfishes, and a cleaner wrasse (East 3 Kalaeloa, October 2022).

This annual report (Rodgers et al. 2022 survey) includes a quantitative analyses of the fish populations along the Kalaeloa-Ko 'Olina-Kahe-Nanakuli nearshore corridor and a comparison with the previous annual surveys conducted.

Natural Events and Human Impacts to Hawaiian Coral Reefs

Climate change has increased ocean temperatures and changed the ocean chemistry. This is due to the anthropogenic input of emissions into the atmosphere. The oceans absorb much of the carbon dioxide (CO_2) emitted. These global impacts are the ones most critical to address. But the local impacts affecting the main Hawaiian Islands cannot be ignored. These problems that add to the decline of fisheries include invasive species, sedimentation, nutrification, pollution, fishing pressure and others.

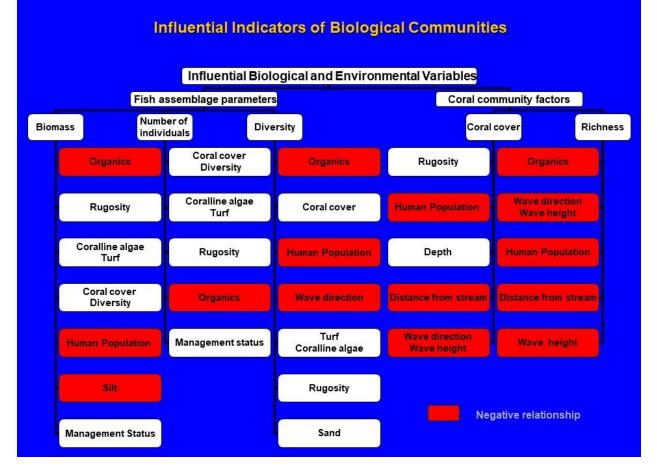
Both physical and biological processes control species distribution and abundance and other aspects of community structure. On a large scale, physical factors dominate, while at a local scale, biological interactions may control species composition. Physical processes include

environmental stress/disturbance, climate, wave exposure, transport processes (dispersal), depth, temperature, salinity, light and oxygen levels. Biological processes include predator/prey relationships, competition, reproduction, recruitment, consumer/resource interactions and food availability.

Field Photo 10. Corals provide fish communities shelter from predators and a source of food. The more complex the habitat, the greater the diversity and abundance of fishes as seen here at Kalaeloa East 5. Size and structure of holes in the reef are related to the size and abundance of the fishes (May 2022).

Fishing Pressure

An expansion of commercial and recreational fisheries with more effective and efficient methods and increased economic pressure have led to worldwide overfishing. Nearly 70% of fish stocks are considered to be below sustainable levels. Both pelagic and coastal fish abundance have experienced extensive declines on a global scale. Fishing pressure has also caused severe depletion of fish stocks on a local scale. Recent research provides overwhelming evidence of the impact of overfishing in the MHI (Friedlander et al. 2017). It is based on the largest database of its kind including data from over 25,000 surveys and assembled and analyzed by the Fisheries Ecology Research Laboratory. Among the local pressures impacting Hawai'i's reefs, overfishing is clearly the primary forcing function of fish declines. The link between food fish populations and human population is strongly evident while fishes not targeted for food show no connection with populated areas. Reefs off highly populated regions have only a small fraction of food fishes than at remote reefs in the MHI such as at Ni'ihau, Kaho'olawe, and N. Moloka'i.


Compared with Papahānaumokuākea in the NWHIs, the fish biomass is 10 times higher than off O'ahu. Total catch is considerably lower even with greater fishing effort. The shift is towards smaller, younger individuals and away from larger, piscivorous fishes. If fishes high on the trophic level are targeted, it is only sustainable under low fishing pressure. Many coastal fish populations have decreased to levels below the ability to replenish themselves (Friedlander and DeMartini, 2002). This report describes the fishing pressure at Kalaeloa, Ko 'Olina, Kahe, and the Kahe Pipeline by examining the ratio between food (resource) and non-food fishes non-resource).

The dynamic nature of coral reefs and associated fish populations keep the marine environment in a constant state of flux. Changes in species abundance, size structure, and trophic levels occur frequently, causing community shifts. These processes can be a result of long-term impacts or stochastic events. The likelihood of recovery is higher from an acute event than from a chronic event. Chronic cases have only shown recovery of reefs after other anthropogenic or natural stressors ceased and where the physical or biological environments have not been altered (Connell, 1997; Erftemeijer et al., 2012; Philipp and Fabricius, 2003).

Influential Factors Controlling Reef Communities

Stratification of coral reef organisms is controlled principally by depth, topographical complexity, and wave regimes. Accretion, growth, and community structure of most coral reefs in the Hawaiian Islands are primarily under the control of wave forces (Grigg, 1998). The dominant wave regimes show quite different patterns of wave height, wave periodicity, intensity and seasonality (Jokiel, 2006) and slight differences in exposure, and have a profound impact on reef coral development (Storlazzi et al., 2005). Large waves and strong currents in exposed areas flush contaminants from reefs. However, anthropogenic impacts can dominate in environments where wave forces are not the major controlling factor. To develop a measure of reef condition, Rodgers (2005) used 43 different factors to understand what the most important factors were that influence coral reef communities. Parametric (multiple regression) and nonparametric statistical analyses (principal components analysis, and non-metric multidimensional scaling) were used to determine which environmental factors were most important in structuring coral and fish assemblages. Coral reefs involve multifaceted interactions and each factor alone is a weak predictor of any of the response variables; however, in combination these factors explained a large percent of the variability. Both natural factors such as spatial complexity, waves, and depth and anthropogenic factors such as human population, silt and organics explained most of the variability in fishes and coral (Figure 1).

Figure 1. Primary forcing functions driving reef fish biomass, abundance and diversity and coral cover and richness in the main Hawaiian Islands. These top variables are most influential to fish and coral populations. Influential factors negatively correlated with fish or coral parameters are colored red. For example, the higher the organics or human population, the lower the fish and coral assemblages.

These influential factors can be less significant when stochastic events occur. Hurricanes have been documented as a major influence on coral reef communities (Heron et al., 2008). Hurricanes can have devastating effects (mechanical breakage, sedimentation, nutrification) but have also been documented to ameliorate coral bleaching (Manzello et al., 2007). Hurricanes absorb energy from the surface and reduce temperatures through evaporative cooling. They can cause upwelling by bringing deeper, cooler waters to shallower depths and a reduction in irradiance levels through cloud shading can decrease temperatures. However, in shallow waters, hurricanes can destroy corals through wave damage and cause mortality of recruits through sand scour. As the frequency and intensity of climate impacts accelerate, Hawai'i is experiencing more severe and intense storms, hurricanes, and flood events. For example, bleaching events were unknown to science until 1983. The first widespread coral bleaching event in the MHIs occurred in 1996 where although bleaching was extensive, mortality was low because temperatures quickly returned to normal. Then in 2004 and 2006 the corals in Papahānaumokuākea in the NWHI experienced major bleaching. Hawai'i then escaped the major

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

bleaching that was occurring in many regions worldwide that devastated many reefs for the next decade due to our geographic location and a downturn of temperature since 1998. It wasn't until 2014 and 2015 that Hawai'i experienced another widespread bleaching event where severe mortality occurred. The coral mortality was 50% on the Kona coast and nearly 35% statewide (Kramer et al. 2016). It had been predicted that a bleaching event would impact the Hawaiian Islands once every 25-30 years (Mora et al. 2014). More recent predictive modeling based on the National Oceanic and Atmospheric Administration (NOAA) Coral Watch data is forecasting 6year intervals between widespread bleaching events (Eakin et al. 2019). The International Panel on Climate Change, a group of renown scientists from over 40 countries recently announced their predictions based on tens of thousands of scientific papers. Their prediction states that if drastic changes are not made within 11 years, 99% of the world's coral reefs will be gone within a generation. Many fishes rely on coral reefs to survive. Coral reefs provide protection from predators and food for many species including obligate corallivores. The recovery process following these bleaching, hurricane, and flood events have been well documented. Successional patterns of recovery have been documented globally and in the Hawaiian Islands (Blumenstock et al. 1961, Ball et al. 1967, Perkins and Enos 1968, Stoddard 1969, Maragos et al. 1973, Grigg and Maragos 1974, Ogg and Koslow 1978, Woodley et al. 1981, Walsh 1983, Harmelin-Vivien and Laboute 1986, Done et al. 1991, Dollar and Tribble 1993, Skirving et al. 2019). The CIP and the Kahe Marine Monitoring Projects have provided the opportunity to follow coral recovery subsequent to Hurricanes Iwa and Iniki (Noda 1983, Brock 2019).

Field Photo 11. Bleached coral shows the white skeleton through the transparent tissues. A number of environmental stressors initiate bleaching. Continued stress will lead to death. Photo from Kāne'ohe Bay 2015 bleaching event used as example. Bleaching at West shore sites in 2022, was negligible.

Hawaiian Electric's Biological Communities Monitoring Program

The consistent and continued monitoring of benthic and fish communities provides a comprehensive record of spatial and temporal change during the construction of the Kahe Generating Station. Compliance with the National Pollutant Discharge Elimination System (NPDES) permit to allow thermally elevated seawater discharge for cooling purposes has been strictly adhered to throughout the period of construction and operation. Well-designed benthic and fish surveys within the zone of mixing, adjacent areas, and comparable reference sites allow for comparisons over space and time. The sample size, frequency of monitoring, and duration of surveys makes this program one of the longest and most valuable records in the Hawaiian Islands.

Fish populations are highly variable, requiring numerous transects to quantify absolute values of fish communities. A large sample size is necessary due to the high variability among fish assemblages. Many rare, cryptic or mobile species can be under reported and the power to accurately detect absolute fish abundances can be extremely low. Variation in numbers can be

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

attributed to differences in visibility and natural fluctuations that are typically observed in temporally spaced censuses of highly mobile reef organisms. Although fish populations vary considerably both spatially and temporally, statistical power increases over a time series as additional data are acquired, as with the CIP monitoring dataset. With five decades of survey data, the power to detect differences increased considerably. Data, surveyor, and methodological compatibility were maintained to assure statistical significance and quality assurance and control. In long-term monitoring programs such as this program, methodological consistency is crucial. Coral and fish survey procedures and data assessment have and continue to maintain this consistency annually using uniform methodology. The variation of long-term monitoring of fish surveys was determined through statistical analyses of prior surveys with current surveys between observers (Keoki and Yuko Stender/ Anita Tsang). In addition, a surveyor with similar expertise as the original surveyor was selected to continue fish community assessments. To interpret any environmental changes observed, it is vital to have qualified expertise in each area of the marine field. Low surveyor variation in this long-term monitoring record of nearly half a century is imperative to maintain, since annual variability can often obscure trends and patterns.

Historical Surveys to Date

KGS began operation in 1963. The later expansion of the KGS to include six generating units required an environmental impact statement (EIS) compiled by Sterns-Roger, Inc. in 1973. The EIS included prior baseline conditions from reports submitted by Marine Advisors (1964), B.K. Dynamics (1971), and URS Research Co. (1973). During the station expansion and relocation of the shoreline outfall to the present location offshore, numerous NPDES marine monitoring reports described the Kahe physical and biological environment (Coles and McCain, 1973; Coles and Fukuda, 1975, 1983, 1984; Environmental Department, 1976; McCain, 1977; Coles, 1979, 1980; Coles et al., 1981, 1982, 1985, 1986; Fukuda and Oda, 1987; Hawaiian Electric Environmental Department 1988-2019: 31 reports). Surveys detected a decline of 20% in the coral communities in proximity to the KGS outfall from 1973 to 1977 (Coles 1979). Once full KGS operations commenced, an increase in coral settlement and growth was reported in proximity to the outfall. This led to the assumption that the construction of the outfall and not the plant operations was responsible for the coral mortality. Fish censusing showed no change as a result of construction or plant operation except on peripheral reefs northeast of the KGS outfall where the abundance and number of species declined once the outfall was operating. The number of shoreline intertidal species increased where affected by the thermal outfall (Coles et al. 1985). Fish surveys conducted since the initial offshore outfall operation in 1976, show fish displacement near the outfall (Coles 1979). The fish population decrease from 1976-1978 was minimal relative to the change following the 1980 Kona storm. Coles et al. (1981) found much greater declines in coral cover, fish populations, and sand redistribution attributed to the 1980 storm than in the seven years previous.

With the addition of the KGS' Unit 6 in 1981, the water flow needed for cooling was increased by 33% above the flow rates for Units 1-5. The rate of flow was subsequently 846 million gallons per day (mgd). The benthic thermal impingement was twice the area, but mainly limited to sand areas offshore. Coral cover and fish populations both declined from previous surveys likely due to the loss of habitat from the 1980 storm (Coles et al. 1982.)

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

The CIP Generating Station began construction in 2009. Prior to construction, surveys had been conducted in 2007 and 2008 (Brock 2019). Twelve to fifteen stations were surveyed in 2007 and sixteen stations in 2008. The KGS discharge pipe station was added by the third survey and analyzed separately based on the unusual fauna. The high spatial complexity of the artificial structure provided habitat and protection for an extensive and well-developed fish community. During the construction phase in 2009, three fish surveys were completed at all sixteen stations. Operation of the new plant began in 2010. Unlike the KGS, the CIP Generating Station has no direct input into the ocean since it is located well inland. Details of quarterly surveying from 2010 through 2018 can be found in Brock (2019). Environmental and meteorological shifts have been apparent since 2014. The most widespread coral bleaching event occurred in the Hawaiian Archipelago in 2014 and 2015. Simultaneously in 2015, an unprecedented fifteen major storms were recorded. Loss of reef structure from coral mortality following severe bleaching events are strongly correlated to fish community factors (Friedlander et al. 1998). Loss of reef structure can have devastating impacts on fish assemblages.

The increase in ocean temperatures is directly related to the increase in carbon emissions. However, other large-scale weather patterns and global phenomena also affect ocean temperatures. The Pacific Decadal Oscillation (PDO) has been described as a long-lived El Niñolike pattern of Pacific climate variability characterized by widespread variations in Pacific Basin and North American climate. During the past century, two major PDO eras have persisted for 20 to 30 years. Cool PDO regimes prevailed from 1890-1924 and again from 1947-1976, while warm PDO regimes occurred from 1977 through the mid-1990s. A downturn of warm seawater temperature off Hawai'i in 1975 and 1998 was experienced as the PDO reversed. The PDO experienced a temporary reprieve of slight cooling due to a downturn of temperature since 1998 at the end of the last cycle of the PDO. Nevertheless, as the bleaching threshold was approached in 1996, there was a reversal of the warming trend that can be attributed to the PDO. Because of the uncertainty of how the PDO works, it is not possible to predict with certainty what will occur. A decline in warming of Hawaiian waters marked the beginning of a 20 to 30 year-long cool phase. This cooling phase which may be currently switching to a warming phase in Hawaiian waters, only served to moderate the local warming trend during the first part of the PDO cool cycle but will accelerate warming as the cycle reverses. Temperatures have been steadily increasing over the past several decades and models predict even more severe bleaching events that are projected to increase in frequency and intensity in the coming decade with concomitant decline in Hawaiian corals. Modeling for Hawai'i predicts a statewide bleaching event every six years. Thus far, widespread bleaching events have occurred in 1996, 2006, 2015/16, and 2019. The shorter El Nino/La Nina cycles may have an additive or synchronous effect on ocean temperatures as warm water from the western Pacific moves east. The warm water replaces the cold water, warming the air above it and increasing the amount of air rising in the Intertropical Convergence Zone, intensifying cloudiness and rainfall. These weather phenomena increase ocean temperatures and increase storm activity.

Historical Impacts (Storms, Hurricanes Iwa & Iniki)

The monitoring program at Kahe encompasses stochastic storm events (January 1980, October 1982, August 1992, October 2003) and two major hurricanes (Iwa 1982 and Iniki 1992). The major storm in 1980 had a large impact on the shallow benthic coral community due to wave energy of up to 6 m released at shallower depths. Coral cover declined by nearly 19% following this major storm event (Coles and Fukuda 1984). This was attributed to extensive sand scour and deposition resulting in a coral community compositional shift.

Hurricane Iwa, two years later in 1982, had the opposite effect where sand attenuation occurred revealing substrate previously buried by up to five feet of sand. This hurricane with maximum wave heights of 9 m (Noda 1983) destroyed offshore reefs deeper than 6 m, while sparing coral communities closer to shore (Coles et al. 1985). Subsequent surveys in 1983 validated the observations made shortly after the hurricane. Significant declines of coral, algae, and fishes occurred in regions where hurricane force waves were greatest (Coles et al. 1985). Coral cover offshore from the Kahe facility declined 5.4% in addition to the previous declines of 18.7% attributed to the 1980 storm.

The impact waves have on a reef depends on complex interactions between wave direction, topographical relief, and substrate bathymetry (Dollar and Tribble 1993; Storlazzi et al. 2002, 2005). A wave shadow is created in the lee of the islands, blocking waves that can ameliorate the influence of these waves on reefs (Storlazzi et al. 2005). For example, waves are lessened during north Pacific swells on the south shore of Moloka'i due to island blockage although refraction does occur on the extreme ends of the coast. In contrast, the west side of O'ahu, where Kahe is located, is vulnerable to waves and refraction from all directions because it does not fall under this wave shadow. Wave direction can be a strong influence on the level of impact occurring during a storm (Table 1).

		Typica	1		Extrem	e		
	Heig	ght	Period	He	ight	Period	Direc	ction
Wave Type	(m)	(ft)	(s)	(m)	(ft)	(s)	Mean	Range
				4.0-				
NE Trade wind waves	1.2-3.7	4-12	5-8	5.5	13-18	9-12	NE 45°	0-90°
				4.9-				
North Pacific swell	2.4-4.6	8-15	10-17	7.6	16-25	18-25	NW 315°	282-45°
				1.5-				
Southern swell	0.3-1.2	1-4	12-17	3.1	5-10	14-25	SSW 190°	236-147°
				1.8-				
Kona storm waves	0.9-1.5	3-5	8-10	3.1	6-10	11-14	SW 210°	258-247°

Table 1. Waves influencing the main Hawaiian Islands (Jokiel 2008).

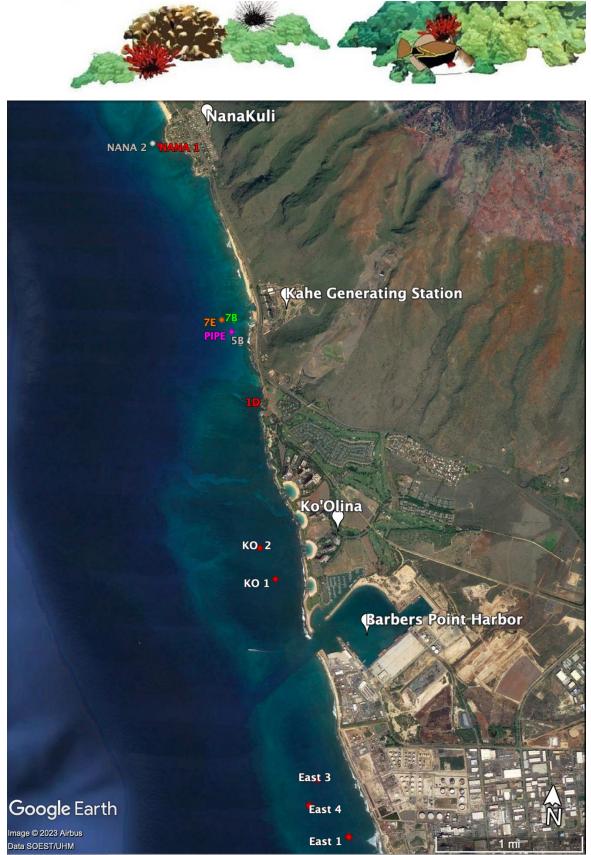
m=meters, ft=feet, s=seconds

Northeast Trade wind waves: Typical trade winds weaken at night and gradually increase throughout the morning with wind speeds at the maximum in the afternoon. This is related to an increase in wind-driven waves. Offshore waves break and dissipate along the north and east shores of all islands. Islands act as a barrier to surface winds but increase in velocity as they funnel through breaks between islands producing sizable wave chop in channels with distinct boundaries. The October 2003 storm was an extremely destructive northeast wave event due to wave heights well above normal. Damage at Pila'a on the north coast of Kaua'i resulted in a 43% reduction in coral cover with extensive fragmentation. Similar reductions were reported on the northeast facing shore of O'ahu at Wawamalu near Sandy Beach (Jokiel and Brown 2004). **North Pacific Swells** are generated in the North Pacific by winter storms. These can result in breaking inshore waves of over 15 m. This wave energy limits the coral development on north shores of islands where species of high skeletal strength and encrusting or lobate morphologies exist (Storlazzi et al. 2005, Rodgers et al. 2003).

Southern Swell is generated by winter storms in the Antarctic typically reaching the Hawaiian Islands a week following generation, during the Summer and early Fall. These storms weaken due to the spread of energy. This is the reason summer south swells do not typically reach the heights of winter north swells.

Kona Storm Waves can occur anytime of the year, but commonly develop from October through April. Waves are generated by southerly or southwesterly winds that precede cold north winds. Three-meter wave heights can be generated under extreme conditions. The Kona coast of the island of Hawai'i experienced 6 m waves that reduced coral cover from 46% to10% following a Kona storm in 1980 (Dollar and Tribble 1993).

Hurricane Waves are less frequent and highly unpredictable. To date hurricanes have followed trajectories that have led to direct reef impact on the islands of Kaua'i and O'ahu and less of an effect on the other islands (Schroeder 1998). Central Pacific hurricanes typically originate near Central America or southern Mexico. As they move towards Hawai'i over cooler water they lose energy or encounter atmospheric conditions unfavorable to further development. Hawai'i's hurricane season is from May through October. Hurricane Iniki (1992) generated powerful waves that fragmented and abraded corals on south Kaua'i. Terrestrial objects swept onto the reefs added to the damage. However, re-colonization and recovery of corals occurred rapidly and within a decade, many reefs had returned to their prior condition. Hurricane Iniki also had an impact in Kona, Hawai'i with declines in coral cover from 15% to 11% (Dollar and Tribble 1993) and Mamala Bay on O'ahu (Brock 1996) with loss of rugosity and shelter for fishes. Storms and hurricanes have been documented to negatively impact fish communities in west O'ahu (Brock CIP reports) and elsewhere in Hawai'i (Walsh 1983). The Kahe dataset is important in separating these stochastic events from other environmental and anthropogenic factors.



METHODOLOGY

Survey Stations

Eight stations were established in the 1970s prior to construction of the CIP Generating Station and an additional eight stations were added in 2008 prior to the preconstruction monitoring surveys. These stations were established to assess the fish communities in proximity to the CIP and Kahe Generating Stations at Kalaeloa and Kahe. Four stations are near the CIP Generating Station at 7-10 m depths and seven stations are adjacent to the Kahe Generating Station with one monitoring station along the KGS pipeline (5 m -12 m depths). Between these two sets, two stations are located northwest of the Ko 'Olina and Barber's Point Harbors between the 1st and 3rd Ko'Olina lagoons at 7 m and 9 m depths. A reference site outside the KGS zone of mixing was established at Nanakuli (Coles et al. 1985). These two monitoring stations act as a control to assess any changes in fish structure at the other stations.

Sixteen survey stations located along the west coast of O'ahu from Kalaeloa to Nanakuli have been surveyed quarterly since 2008 by a single surveyor. Subsequent to the departure of the original surveyor in 2019, survey stations were reduced to 14 with the removal of stations East 2 (2) and Kahe 7D (11) and to twelve stations in 2021 (removal of stations 7C and 10C) (Figure 2). This was based on an analysis of historical data to determine proximity and site similarities. Elimination criteria included close proximity and similar habitat to other stations, similar fish composition and comparability. Mean standing crop (biomass), mean number of fishes (abundance), and mean fish species within site groups show within group similarity for each of the four sets of groups (Ko'Olina, CIP, Nanakuli, and Kahe). These spatial similarities by location were the initial foundation for separation and removal of the stations.

Figure 2. Map showing the southwest coastline of O'ahu from Kalaeloa (Barbers Point) to Nanakuli Beach Park depicting locations of each of the twelve permanently marked stations monitored in this study.

Survey Methodology

Transect locations were originally stratified by location, proximity to the Kahe and CIP Generating Stations, and hard bottom habitat. The general station location is determined through Global Positioning System (GPS) navigation to within several meters. A marker float is deployed to account for drift during anchoring of the vessel. On the substrate, exact start location has been marked with either a cinder block, a prominent geologic feature, and/or surface triangulations. The bearing direction of the transect was predetermined and followed throughout the entire program.

A modified visual transect (line/belt/strip) (Brock 1954) (species abundance methodology) is employed to quantify fish communities. The fish surveyor spools out the 164 ft (50 m) transect line while recording, species, size (total length [TL] in centimeters [cm]) and the number of individual fishes to 7 ft. (2 m) on each side of the transect line 13 ft. (4 m total width). This eliminates changes in fish behavior and allows fishes to equilibrate from previous activity in contrast to laying a transect prior to the survey. All transects are parallel to shore with the exception of the Kahe discharge pipe that runs perpendicular to the shoreline and is only 34 ft. (10.5 m) in length. The surveyor records on a slate, equipped with underwater writing paper, fish species, size in cm, and number of individuals with the use of self-contained underwater breathing apparatus (SCUBA). All fishes within the linear 239 yards² (200 m²) transect from the benthos to the surface are recorded.

Field Photo 12. Divers are calibrated prior to surveys for quality assurance and quality control. (May 2022, Kahe 7B).

Biomass estimates are derived through total length estimated to the nearest cm in the field and converted to biomass estimates (tons/hectare) using length-weight fitting parameters. In estimating fish biomass from underwater length observations, most fitting parameters are obtained from the Hawai'i Cooperative Fishery Research Unit (HCFRU) consistent with previous analyses. Additionally, locally unavailable fitting parameters are obtained from Fishbase (www.fishbase.org) whose length-weight relationship is derived from over 1,000 references. Congeners of similar shape within certain genera are used in those rare cases lacking information. Conversions between recorded TL and other length types (e.g. fork length [FL]) contained in databases involve the use of linear regressions and ratios from Fishbase linking length types. The three commonly used measures of fishes are standard length (excludes the caudal fin), total length (from tip of snout to tail tip), and fork length (from tip of snout to deepest notch of the tailfin). A predictive linear regression of logM vs. logL is used in most cases to estimate the fitting parameters of the length-weight relationship. Visual length estimates are converted to weight using the formula $M = a \times L^b$ where M = mass in grams, L = standard length in millimeters (mm) and a and b are fitting parameters. Any anomalous values are detected by calculating a rough estimate for a given body type. The general trend for a 10 cm fish of the common fusiform shape should be approximately 10 g. Any gross deviations are replaced with values from the alternate source.

Trophic levels for fish species have historically been based on reports (Brock 2019). These trophic categories include: herbivores, planktivores, omnivores and carnivores. Herbivorous fishes diet consists primarily of algae, planktivores feed in the water column on detritus and zooplankton, omnivores are described as fishes feeding on a combination of algae and small benthic invertebrates and include corallivores that feed exclusively on corals, and carnivores that eat fish and invertebrates according to Brock (2019). Brock based these functional groups on Hiatt and Strasburg (1960), Hobson (1974), Brock et al. (1979) and Randall (2007). To update the trophic categories and for comparability with other sites throughout the State of Hawai'i, these categories have been adapted to reflect the trophic levels described in Friedlander et al. (2017). This data is a compilation of over 25 datasets containing greater than 25,000 surveys collected between 2000 and 2018. The Hawai'i Monitoring and Reporting Collaborative (HIMARC) is a consortium of managers and researchers throughout the Hawaiian Islands that collectively contribute monitoring and assessment data to the largest searchable database for fishes in Hawai'i. Trophic categories include herbivores, invertebrate feeders, zooplanktivores, and piscivores. These categories are similar to the functional groups used by Brock (2019).

Target fish species were selected to include popular food fishes to determine changes in fishing pressure. The genera selected were Acanthus, Aphareus, Cephalopholis, Caranx, Scarus, Chlorurus, Seriola, Sargocentron, Priacanthus, Kyphosus, Mullodicthys, Parupeneus and Decapterus.

Statistical Methods

Comparative analysis of mean number of fish species documented per transect, mean number of individual fish censused per transect, and mean estimated standing crop (g/m^2) were performed between 2021 and 2022 data to detect any significant differences which may have developed over the year, using an Independent-sample Mann-Whitney U test. The non-parametric Kruskal-

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

Wallis ANOVA with pairwise comparisons was utilized to detect significant difference between all transects and groupings surveyed in 2022. Transects were grouped according to geographic locations (Table 2) into 5 total groups: East group (East 1, East 3, East 4), Ko'Olina group (KO 1 and KO 2), Kahe group (1D, 5B, 7B, 7E), Nanakuli group (NANA 1 and NANA 2) and Pipe. These groupings differ from Brock (2019) to make groupings more consistent with location of transect. The 2018 data from Brock's appendix was re-grouped and descriptive statistics were performed with new group assignments to compare to recent data. Each transect was surveyed four times throughout the year. The four timepoints for the surveys were not found to be statistically different, and therefore time points were pooled within transects and groups for analyses.

Table 2. Latitude and longitude of twelve permanently marked fish monitoring stations surveyed quarterly in this study in 2022.

Station No.	Station Area Name	Grouping	Latitude	Longitude	Remarks
1	East 1	East	21°18.237' N	158°07.024'W	offshore CIP
3	East 3	East	21°18.558'N	158°07.239'W	offshore CIP
4	East 4	East	21 ° 18.406'N	158°07.285'W	offshore CIP
5	Ko'Olina 1	KoʻOlina	21°19.724'N	158°07.581'W	offshore Ko'Olina
6	KoʻOlina 2	Ko'Olina	21°19.904'N	158°07.693'W	offshore Ko'Olina
7	Station 1D	Kahe	21°20.763'N	158°07.773'W	Old Hawaiian Electric station
8	Station 5B	Kahe	21°21.145'N	158°07.819'W	Old Hawaiian Electric station
9	Station7B	Kahe	21°21.239'N	158°07.855'W	Old Hawaiian Electric station
12	Station 7E	Kahe	21°21.272'N	158°07.977'W	Old Hawaiian Electric station
14	Nanakuli Control 1	Nanakuli	21°22.329'N	158°08.440'W	Old Hawaiian Electric station
15	Nanakuli Control 2	Nanakuli	21°22.353'N	158°08.462'W	control station
16	Kahe Outfall	Pipe	21°21.193'N	158°07.869'W	north side of outfall

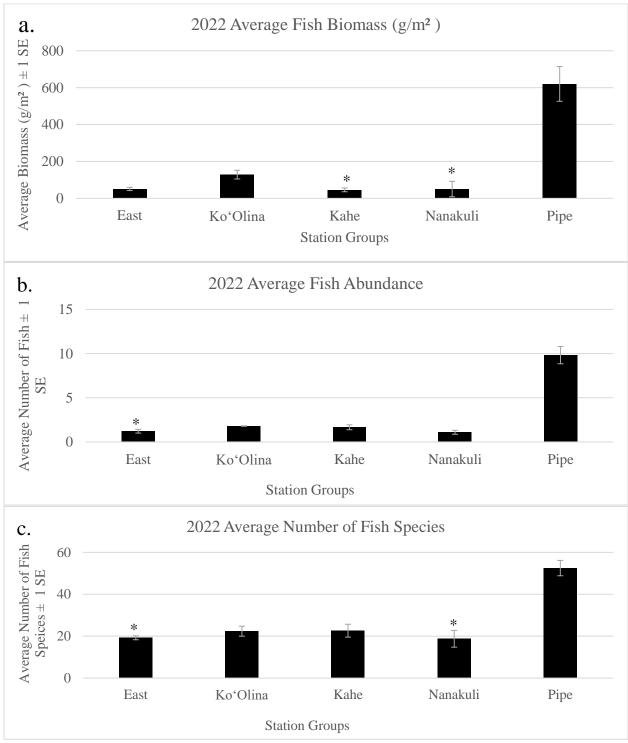
RESULTS AND DISCUSSION

The 2022 data are presented herein along with a comparative analysis to the 2021 data. The complete data set from the four 2022 surveys is given in Appendices A and B.

Transect surveys were performed on May 13, June 8, August 19, and October 31, 2022. The number of fish species, number of fish individuals, and biomass did not differ significantly between survey dates and therefore the four survey dates were pooled for analysis.

OVERALL

Utilizing data from all 60 surveys performed from 2007 to present (Appendix A, 2007-2018 performed by Brock, 2019-2022 by Rodgers), the number of fish species, the number of fish individuals and the biomass was compared between groups of transects: East (3 transects), Ko'Olina (2 transects), Kahe (4 transects), Nanakuli (2 transects), and Pipe (1 transect). The


CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

number of fish species present along transects was greatest at Pipe, followed by Kahe, Ko'Olina, East, and Nanakuli. The number of species of fishes (p = 0.006) and number of fish individuals (p = 0.003) was significantly higher at Pipe when compared to the East grouping. The number of species was also significantly greater at Pipe when compared to Nanakuli grouping (p = 0.009) (Figures 3 & 4, Table 3). The greatest number of fish individuals and biomass was observed at Pipe, followed by Ko'Olina, East, Nanakuli, and Kahe. The biomass at Pipe was significantly greater than both Nanakuli (p = 0.006) and Kahe (p = 0.005) groupings. In summary, Pipe transect had higher numbers of species, individual fishes, and biomass when compared to all other transects.

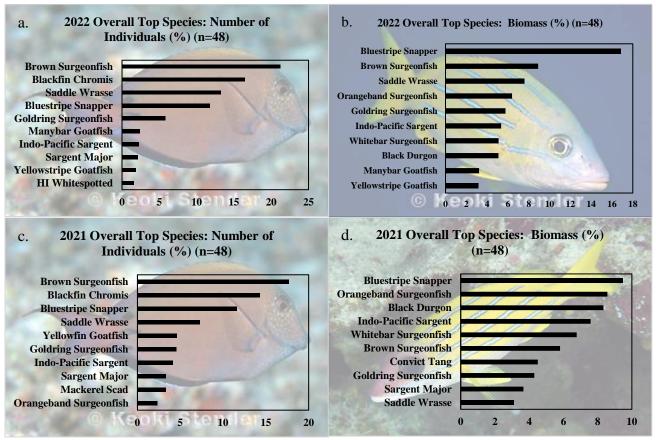

A total of 113 different fish species were recorded in 2022 surveys combining all 12 transects. The number of species present in 2021 surveys was 101. Similar to 2021, mā'i'i (21.2% individuals, 6.1% biomass, A. nigrofuscus, brown surgeonfish,) is the dominant fish recorded along transects for number (abundance) in 2022. In 2021 and 2020, mā'i'i (17.7% and 19.5% respectively, A. nigrofuscus, brown surgeonfish) was also the most abundant fish along transects. The biomass in 2022 was dominated by ta 'ape (16.9%, L. kasmira, bluestripe snapper), followed by mā'i'i (8.9%, A. nigrofuscus, brown surgeonfish) and hīnālea lauwili (7.6%, T. duperrey, saddle wrasse). The biomass in 2021 was a composition of many fish species with the two highest in biomass being ta 'ape (9.5%, L. kasmira, bluestripe snapper), and na 'ena 'e (8.6%, A. olivaceus, orangeband surgeonfish). In 2020, the biomass was dominated by mā'i'i (9.3%, A. nigrofuscus, brown surgeonfish), ta 'ape (9.2%, L. kasmira, bluestripe snapper), and na 'ena 'e (8.8%, A. olivaceus, orangeband surgeonfish). Although the most dominant fish contributing to biomass differ between years, main contributors remain the same, mā'i'i'i, ta'ape and na'ena'e. Since 2020, the majority of individual fishes along transects were herbivores (2022: 34% abundance, 41% biomass; 2021: 34% abundance, 49% biomass; 2020: 45% abundance, 60% biomass) or invertebrate feeders (2022: 38% abundance, 44% biomass; 2021: 38% abundance, 30% biomass; 2020: 38% abundance, 30% biomass). However, zooplanktivores (2022: 26% abundance, 14% biomass; 2021: 28% abundance, 20% biomass; 2020: 15% abundance, 8.7% biomass) and piscivores (2022: 1% abundance, 2% biomass; 2020-21: 1% abundance and biomass) were also present. The abundance and biomass of trophic guilds did not change on the group level, however some transect level changes were noticed between 2021 and 2022 surveys: significantly less herbivore biomass at Ko'Olina 2 (p = 0.029), Kahe 7B (p = 0.029), and Kahe 7E (p = 0.029) as well as less zooplanktivore biomass at East 1D (p = 0.029), Kahe 7E (p =(0.029), and Pipe (p = 0.029). To determine if there were any statistically significant differences among the mean number of fish species per geographic area, the mean number of individual fish per geographic area or the mean estimated biomass (g/m^2) per geographic area over time, transects were merged into geographic groups (East, Ko'Olina, Pipe, Kahe, Nanakuli) and pooled over survey dates at each geographic location (four surveys). The twelve sites (Figure 2) were assigned to five geographic locations: (1) East: East 1, East 3, East 4, (2) Ko'Olina : KO 1 and KO 2, (3) Kahe: 1D, 5B, 7B, 7E, (4) Nanakuli: NANA 1 and NANA 2, and (5) Pipe.

Figure 3. Average fish biomass (a), abundance (b) and number of species (c) per station grouping for 2022 surveys only. Standard error (SE) bars represent ± 1 SE. Asterisks (*) represent a significant difference from the Pipe transect.

Figure 4. Top ten fish species contributing to number of individual fishes and biomass (%) for survey year 2022 (a, b) and 2021 (c, d).

Table 3. (A) Mean proportion of fish individuals and (B) biomass contributing to each trophic feeding level in 2022. (C) Mean proportion of fish individuals and (D) biomass in each trophic level in 2021.

A. 2022 Trophic Levels: Nur	mber of Individ	uals (%)		
Transect Group	Herbivores	Invertebrate	Piscivores	Zooplanktivores
		Feeders		
East	42.5	30.7	2.8	24.0
KoʻOlina	58.4	33.9	1.3	6.4
Kahe	29.0	26.7	1.0	43.3
Nanakuli	41.4	26.1	1.7	30.8
Pipe	25.6	56.2	0.6	17.6
Total	34.2	38.2	1.2	26.4

B. 2022 Trophic Levels: Mean Biomass (%)

Transect Group	Herbivores	Invertebrate Feeders	Piscivores	Zooplanktivores
East	66.8	27.1	5.3	0.9
KoʻOlina	72.7	25.7	1.4	0.1
Kahe	51.5	42.0	1.4	5.1
Nanakuli	68.6	23.1	1.1	7.2
Pipe	15.8	62.3	0.7	21.2
Total	40.9	43.8	1.5	13.6

C. 2021 Trophic Levels: Number of Individuals (%)

Transect Group	Herbivores	Invertebrate Feeders	Piscivores	Zooplanktivores
East	40.2	20.0	0.9	38.9
Ko'Olina	65.1	30.7	0.8	3.4
Kahe	36.1	25.4	1.7	36.8
Nanakuli	66.7	18.6	1.6	13.2
Pipe	16.8	57.4	0.3	25.6
Total	33.9	37.5	0.9	27.7

D. 2021 Trophic Levels: Mean Biomass (%)

Transect Group	Herbivores	Invertebrate Feeders	Piscivores	Zooplanktivores
East	70.1	13.1	2.1	14.7
KoʻOlina	82.4	16.5	0.0	1.1
Kahe	49.3	25.8	2.0	22.8
Nanakuli	88.8	11.0	0.1	0.1
Pipe	18.0	50.1	0.4	31.4
Total	49.2	30.4	0.9	19.5

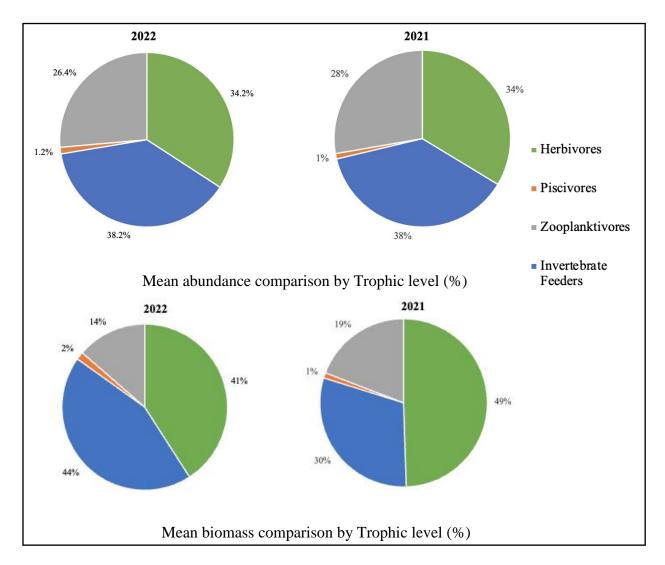
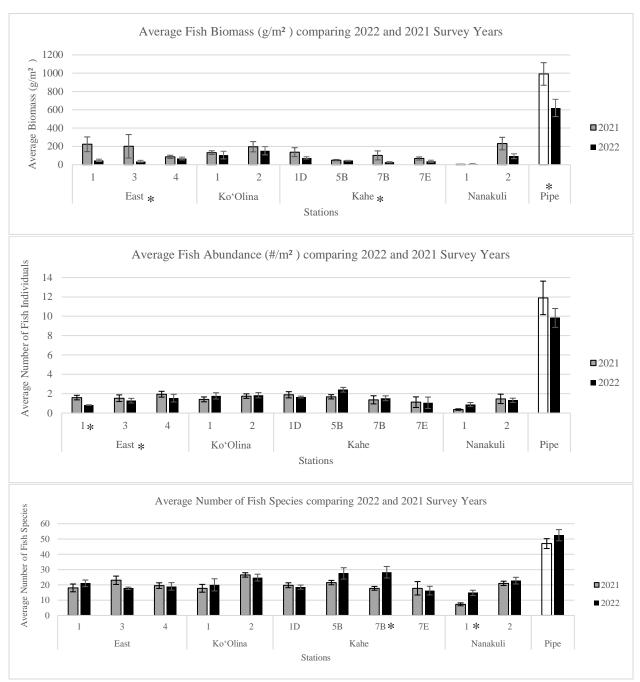
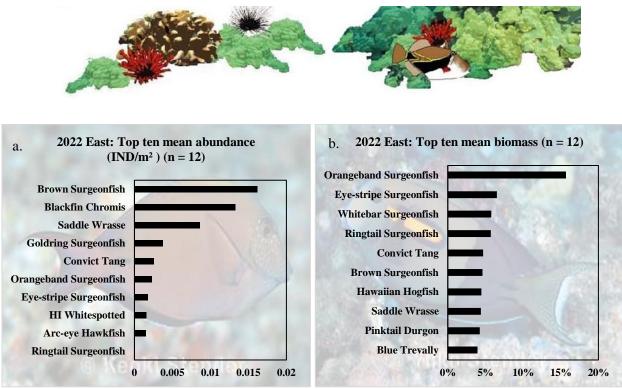


Figure 5. Mean abundance and biomass of each trophic level during 2022 and 2021surveys.



Field Photo 13. The Crown of Thorns Seastar feeding on a Cauliflower coral at Kahe 5B (May 2022).


KALAELOA (Barber's Point, EAST)

In 2020 through 2022, transects East 1, East, 3 and East 4 were surveyed within the East transect grouping. In 2022, East 4 transect had the highest estimated standing crop of all East transects with $67.9 \pm 14.9 \text{ g/m}^2$ (grams per square meter) (Figure 6). East 3 had the lowest biomass in 2022 (37.8 \pm 9.8 g/m²). East 1 had intermediate biomass with 47.6 \pm 12.6 g/m². East group had significantly less fish abundance ($p = 0.029, 2021 = 1.7 \pm 0.2$ individuals/m², $2022 = 1.2 \pm 0.02$ 8.8 g/m²) and number of fish species ($2021 = 20.2 \pm 1.4$, $2022 = 19.3 \pm 0.9$) present in 2022 when compared to 2021. At the group level, the number of individual fishes (p = 0.039) and biomass (p = 0.028) at East was significantly higher in 2021 when compared to 2022; there was no difference number of fish speices. Herbivore biomass was also significantly less at the group level in 2022, as compared to 2021 (p = 0.008). Consistent with 2020 and 2021 surveys, fish abundance at all East transects was dominated by *mā*'*i*'*i*'*i* (A. *nigrofuscus*, Brown surgeonfish) and the Blackfin Chromis (Chromis vanderbilti)(Figure 7). Similar to 2020, the biomass at East transects were dominated by na'ena'e (A. olivaceus, orange band surgeonfish) (Figure 7). This is dissimilar from 2021 surveys where the biomass was dominated by kala lolo (Naso brevirostris, Paletail Unicornfish) and māikoiko (Acanthurus leucopareius, whitebar surgeonfish).

Figure 6. Average fish biomass (a), fish abundance (b) and number of fish species (c) per transect comparing survey years 2022 and 2021. Standard error (SE) bars represent ± 1 SE. An asterisk (*) after the station name or grouping indicates a significant difference between the two survey years.

Figure 7. Top ten fishes contributing to mean abundance and biomass at East grouping in 2022. IND/m^2 =individuals per square meter, g/m^2 =grams per square meter.

Kalaeloa East 1: In 2022, East 1 transect had an average of 102.3 ± 4.2 fish individuals documented, encompassing a total of 34 species of fishes. Although the most abundant fishes changed throughout the survey period, surgeonfish appeared abundant at all four timepoints. In May, 100 fishes of 17 species were noted along transects. The biomass (32.3 g/m^2) was overwhelmingly dominated by *palani* (57.0%, *Acanthurus, dussumieri*, eye-stripe surgeonfish) followed by na'ena'e (19.3%, A. olivaceus, orange band surgeonfish) and manini (12.6%, Acanthurus triostegus, convict tang). For May's survey, 109 individuals of 20 species were noted. The pualu (29.3%, Acanthurus blochii, ringtail surgeonfish), omilu (15.1%, Caranx *melampygus*, bluefin trevally), and *mā*'i'i'i (13.5%, *A. nigrofuscus*, Brown surgeonfish) dominated the biomass (35.3 g/m²). August's survey had the highest species diversity, with 26 species ranging over 107 fishes. It also had the highest biomass (79.7 g/m^2) which was dominated by palani (19.8%) and pualu (13.4%). October's survey found 93 individuals of 21 species. Biomass (42.9 g/m²) was dominated by manini (22.9%), na'ena'e (10.2%), pualu (12.8%), and the butterflyfish, kīkākapu (11.3%, Chaetodon ornatissimus, ornate butterflyfish). A significant decrease (p = 0029) in fish abundance was noted between 2021 and 2022; no other differences in biomass or number of speices were observed.

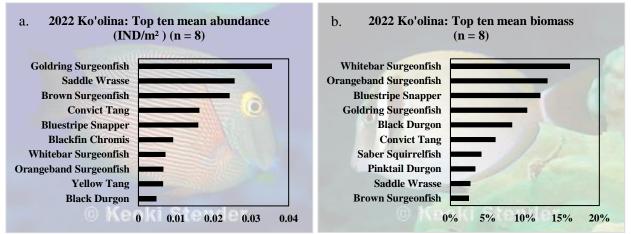
Kalaeloa East 3: The average number of fishes along transect East 3 was 159.8 ± 30.0 individuals of 31 fish species (Figure 6). Along East 3, $m\bar{a}$ '*i*'*i*' ($21.7 \pm 6.1\%$, *A. nigrofuscus*, brown surgeonfish) was one of the most consistantly abundant fishes for all survey timepoints (Appendix A). In May, the survey documented 84 fishes of 18 species. Despite having intermediate species diversity, this was the lowest number of fishes observed along the transect for all 2022 timepoints in the East group. Similarly, May's survey had the lowest biomass (14.2 g/m²), the three fishes responsible for the majority of the biomass during May's survey were the $m\bar{a}$ '*i*'*i*' (32.2%), $h\bar{n}n\bar{a}lea \ lauwili$ (21.2%, *T. duperrey*, saddle wrasse), and *uhu* (18.6%, *Scarus psittacus*, palenose parrotfish). Although June's survey had the highest abundance (199 fishes of

19 species), the biomass was the second highest of all timepoints (44.9 g/m²). The two fishes responsible for the majority of the biomass during June's survey were the same as May's: the $h\bar{n}a\bar{l}ea\ lauwili\ (28.6\%)\ and\ m\bar{a}'i'i'\ (28.1\%)$. In August, 170 individuals of 16 fish species were identified along transect East 3. Four fishes contributed the majority of the biomass (53.9 g/m²): $na'ena'e\ (25.9\%,\ A.\ olivaceus,\ orangeband\ surgeonfish),\ h\bar{n}a\bar{l}ea\ lauwili\ (19.5\%),\ kole\ (15.0\%,\ Ctenochaetus\ strigosus,\ goldring\ surgeonfish),\ and\ pualu\ (11.9\%,\ A.\ blochii,\ ringtail$ surgeonfish). The census in October had intermediate biomass (38.3 g/m²) and abundance (186 $individuals). During this survey, 18 fish species were observed; <math>m\bar{a}'i'i'i\ (17.7\%,\ A.\ nigrofuscus,\ brown\ surgeonfish),\ humuhumuhi 'ukole\ (17.6\%,\ Melichthys\ vidua,\ pinktail\ durgon),\ h\bar{n}a\bar{a}lea\$ $lauwili\ (17.3\%),\ and\ kole\ (14.6\%,\ Ctenochaetus\ strigosus,\ goldring\ surgeonfish)\ encompassed\ a\$ $large\ portion\ of\ the\ biomass.$ There were no significant differences in abundance, biomass or species diversity between dates.

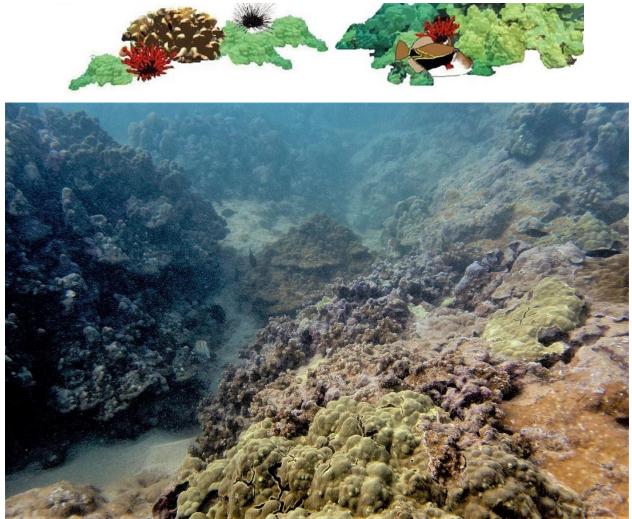
Field Photo 14. Large colonies of Lobe coral (Porites lobata) at Kalaeloa, Station East 3, June 2022.

Kalaeloa East 4: Despite fluctuations in the number of fish species (19 ± 2.4) , number of fish (192.5 ± 49.4) present along transects at each survey date, and biomass $(67.9 \pm 14.9 \text{ g/m}^2)$ of East 4, no significant differences were detected across the time points. In May, 159 individuals of 15 species were recorded along East 4 transects. May had the lowest species diversity of the

timepoints. The biomass (84.9 g/m²) was made up of primarily (61.5%) *na'ena'e* (*A. olivaceus*, orangeband surgeonfish) and *a'awa* (9.1%, *Bodianus albotaeniatus*, Hawaiian hogfish). June's census observed a biomass of 53.9 g/m² encompassing 18 species of fishes, with 275 individual fishes. The biomass was dominated by three fishes: *hīnālea lauwili* (30.6%, *Thalassoma duperrey*, saddle wrasse), *na'ena'e* (25.9%, *A. olivaceus*, orangeband surgeonfish), and *mā 'i'i'i* (23.4%, *A. nigrofuscus*, brown surgeonfish). August's surveys found the least abundance and biomass of all timepoints, while species richness remained consistent with the prior survey (38.9 g/m², 88 individuals, 18 species). The biomass was predominantly *na'ena'e* (35.8%, *A. olivaceus*, orangeband surgeonfish) and *umaumalei* (13.3%, *Naso lituratus*, orangespine unicornfish). October's census had the greatest biomass, number of individuals, and number of species of all timpoints (93.7 g/m², 248 individuals, 25 species). The biomass was dominated by *na'ena'e* (55.8%, *A. olivaceus*, orangeband surgeonfish) and *a'awa* (10.1%, *Bodianus albotaeniatus*, Hawaiian hogfish).



Field Photo 15. The spatial complexity at Kalaeloa, Station East 4 includes coral colonies, holes, crevices, overhangs, and caves that have been shown to harbor large fish populations.

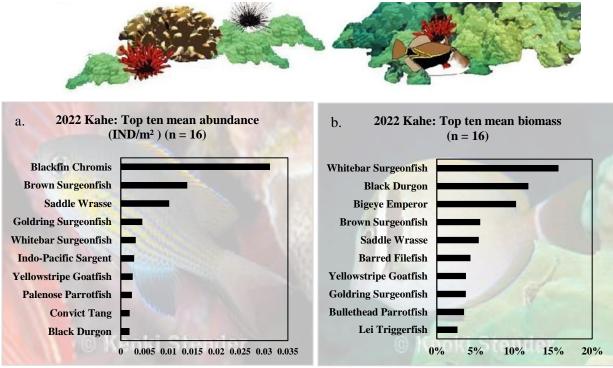

KO 'OLINA

The Ko'Olina group includes transects KO 1 and KO 2. Average biomass, number of individual fishes, and number of fish species for the Ko'Olina group were similiar in 2021 (164.1 ± 30.2 g/m², 218.5 ± 28.9 individuals, 22.1 ± 2.1 species) when compared to 2022 (128.6 ± 23.7 g/m², 225.6 ± 4.4 individuals, 22.4 ± 2.4 species)(Figure 6). In Ko'Olina group, the most abundant fishes were *kole* (*C. strigosus*, goldring surgeonfish), *hīnālea lauwili* (*Thalassoma duperrey*, saddle wrasse), and *mā 'i'i'i* (*A. nigrofuscus*, brown surgeonfish)(Figure 8). *Māikoiko* (*Acanthurus leucopareius*, whitebar surgeonfish), *na'ena'e* (*A. olivaceus*, orangeband surgeonfish), and the invasive *ta 'ape* (*L. kasmira*, bluestripe snapper) were responsible for much of the biomass (Figure 8).

Figure 8. Top ten fish contributing to mean abundance and biomass at Ko'Olina transect grouping in 2022.

Ko 'Olina 1: In 2022, KO 1 transect varied in fish biomass, abundance, and species riches over the four survey dates: May = 46.2 g/m², 194 individuals, 19 species; June= 68.0 g/m², 223 individuals, 15 species; August = 209.0 g/m², 318 individuals, 30 species; and October = 96.2 g/m², 150 individuals, 16 species. Similar to 2021, *kole* (May: 55.6%, June: 48.5%, August: 23.3%, October: 29.9%, *C. strigosus*, goldring surgeonfish) played a dominant role in each time point's biomass. The May census also found *hīnālea lauwili* (20.4%, *Thalassoma duperrey*, saddle wrasse) and *mā* '*i*'*i*' (11.9%, *A. nigrofuscus*, brown surgeonfish) to contribute a large portion of the biomass. During June, *hīnālea lauwili* (18.9%), *humumumu* '*el* '*ele* (12.9%, *Melichthys niger*, black durgon), and *mā* '*i*'*i*' (12.3%) also contributed to the biomass. During August's census, the invasive ta 'ape (27.9%, *L. kasmira*, bluestripe snapper) was the most dominate fish in relation to biomass, followed by *kole* (23.3%), and *humumumu* '*el* '*ele* (11.2%). October saw a shift in dominance of the biomass to *humumumu* '*el* '*ele* (30.8%), followed by *kole* (29.9%), and *hīnālea lauwili* (11.0%). No significant differences were noted between populations along transects between 2021 and 2022.

Field Photo 16. The spatial complexity at Ko 'Olina, Station 1 has habitat that fosters high fish and coral diversity (June 2022).


Ko 'Olina 2: KO 2 transect in May had the highest biomass (237.4 g/m^2) of all timepoints, and an intermediate number of fishes (220 individuals) and speices (25 species)(Appendix A). Although there were fewer fish, the fish present were large in size. The biomass was dominated by māikoiko (37.2%, Acanthurus leucopareius, whitebar surgeonfish), na'ena'e (22.0%, A. olivaceus, orangeband surgeonfish), and manini (12.4%, A. Triostegus, convict tang). The only difference between population parameters was a significant (p = 0.029) decline in the biomass of herbivores, this will continue to be watched in future years. June's survey had intermediate biomass (153.7 g/m²), number of fishes (248 individuals) and number of species (23 species). The biomass was dominated by three species of herbivorous fishes: na'ena'e (34.0%, A. olivaceus, orangeband surgeonfish), kole (19.7%, C. strigosus, goldring surgeonfish), and manini (12.8%, A. triostegus, convict tang). Although, the biomass was greatest during May, August's census had the highest number of fishes (297 individuals) and species richness (30 species of fishes). Two species of triggerfish, humuhumu 'ele 'ele (31.4%, M. niger, black durgon) and humuhumui 'ukole (10.9%, Melichthys vidua, pinktail durgon), were of the top three contributors to biomass (169.3 g/m²), along with *kole* (19.9%, *C. strigosus*, goldring surgeonfish). October's census had the lowest biomass (49.1 g/m²), number of individuals (155 fishes), and number of species (21 species) present along the transect. The top three contributors to biomass during October were kole (15.1%), hīnālea lauwili (12.7%, T. duperrey, saddle wrasse), and mā'i'i'i (11.4%, A. nigrofuscus, brown surgeonfish).

Field Photo 17. Ko 'Olina, Station 2 had the highest number of fishes in May 2022.

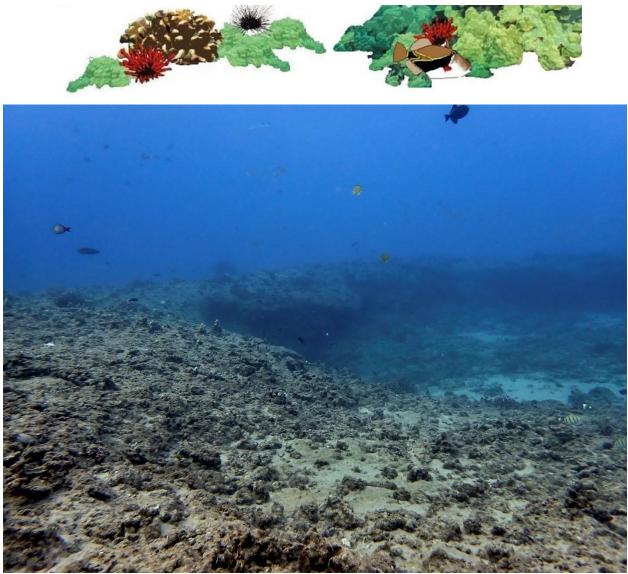
KAHE

The Kahe group encompasses four transects: 1D, 5B, 7B, and 7E. Based on comparability of biomass (mean standing crop) of fishes, abundance (mean number of individual fish), mean number of fish species, similarity of habitat, and spatial proximity, Kahe 7D transect was eliminated from surveys after 2018, and subsequently Kahe 7C and 10C were eliminated after the 2020 surveys, therefore they have been removed from group averages. At Kahe stations estimated biomass in 2022 was 46.0 \pm 10.1 g/m², while in 2021 estimated biomass was 89.1 \pm 18.2 g/m² (Figure 6). This was a significant decrease in fish biomass in 2022 when compared to 2021 (p = 0.032). Similarly, the biomass of herbivorous (p = 0.004) and zooplanktivorous (p = 0.004) 0.017) fishes decreased significantly between 2021 and 2022 surveys. The average abundance of fishes in 2021 (1.5 \pm 0.2) and 2022 (1.7 \pm 0.3) were not significantly different from one another. The average number of species was also similar for the two years (2021: 19.8 \pm 1.6, 2022: 22.6 \pm 3.1). In 2022 and 2021 blackfin chromis (C. vanderbilti) dominated the fish abundance. The biomass in 2022 was largely contributed to by *māikoiko* (A. leucopareius, whitebar surgeonfish) (Figure 9), which differed from 2021 where opelu (Decapterus macarellus, mackerel scad) was dominant. Both years second highest contributor to biomass was the humuhumu 'ele 'ele (M. niger, black durgon).

Figure 9. Top ten fish contributing to mean abundance and biomass at Kahe transect grouping in 2022 surveys.

Kahe 1D: Kahe station 1D had the highest average biomass in 2022 when compared to other Kahe transects (May: 78.0 g/m², 215 individuals, 16 species, June: 48.9 g/m², 223 individuals, 20 species, August: 100.8 g/m², 211 individuals, 21 species, October: 71.1 g/m², 176 individuals, 17 species. It was also highly variable in number of species and biomass between the four timepoints. In May, the biomass was dominated by four species: humuhumu 'ele 'ele (26.3%, M. niger, black durgon), hīnālea lauwili (20.7%, T. duperrey, saddle wrasse), kole (19.4%, C. strigosus, goldring surgeonfish), and mā'i'i' (16.5%, A. nigrofuscus, brown surgeonfish). Similarly, in June, hīnālea lauwili (27.7%, T. duperrey, saddle wrasse), kole (19.3%, C. strigosus, goldring surgeonfish), and $m\bar{a}$ 'i'i' (19.0%, A. nigrofuscus, brown surgeonfish) dominated the biomass. In August, mu (28.7%, Monotaxis grandoculis, bigeye emperor) was the most dominant fish species, followed by *hīnālea lauwili* (20.7%, *T. duperrey*, saddle wrasse), kole (14.9%, C. strigosus, goldring surgeonfish), and humuhumu 'ele 'ele (14.5%, M. niger, black durgon). In October, the biomass was dominated by four species: māikoiko (31.6%, A. leucopareius, whitebar surgeonfish), humuhumu 'ele 'ele (20.6%, M. niger, black durgon), hīnālea lauwili (13.7%, T. duperrey, saddle wrasse), and , mā 'i'i' (12.9%, A. nigrofuscus, brown surgeonfish). It is important to note that zooplantivorous biomass decreased significantly between 2021 and 2022 surveys (p = 0.029), and will continue to be monitored in future years. The fishes that contributed most to fish abundance were mā'i'i' (A. nigrofuscus, brown surgeonfish), blackfin chromis (C. vanderbilti), hīnālea lauwili (T. duperrey, saddle wrasse), and kole (C. strigosus, goldring surgeonfish).

Field Photo 18. Kahe 1D has the highest biomass in the Kahe group of transects (June 2022).


Kahe 5B: 5B transect remained realitively stable in regards to fish biomass throughout all four quarterly surveys: May: 53.7 g/m², 280 individuals, 32 species, June: 38.4 g/m², 238 individuals, 21 species, August: 41.2 g/m², 360 individuals, 34 species, October: 41.9 g/m², 325 individuals, 23 species. No significant difference between population parameters were detected between 2021 and 2022 surveys. In May, $m\bar{a}$ 'i'i' (24.1%, *A. nigrofuscus*, brown surgeonfish) and *weke* (18.9%, *Mulloidichthys flavolineatus*, yellowstripe goatfish) comprised the majority of the biomass. *Hīnālea lauwili* (41.3%, *T. duperrey*, saddle wrasse) and $m\bar{a}$ 'i'i' (33.7%, *A. nigrofuscus*, brown surgeonfish) were the top contributers to biomass in June, August (*hīnālea lauwili* (22.7%) and $m\bar{a}$ 'i'i' (22.5%)), and October (*hīnālea lauwili* (16.0%) and $m\bar{a}$ 'i'i' (53.9%)). In August, *uhu* (17.1%, *Chlorurus sordidus*, bullethead parrotfish) was also a large contributor to biomass. Similar to 2020 and 2021, in 2022, the three most abundant fishes along all survey dates were blackfin chromis (*C. vanderbilti*), $m\bar{a}$ 'i'i' (*A. nigrofuscus*, brown surgeonfish), and *hīnālea lauwili* (*T. duperrey*, saddle wrasse). Chromis are small schooling fishes that can contribute strongly to abundance (number of individuals) but make very little contribution to biomass.

Kahe 7B: In 2022, 7B transect saw the highest number of species present when compared to other transects, with the exception of Pipe station. This species richness was significantly (p = 0.029) greater when compared to 2021. Although species richness was high, the biomass of herbivores experienced a significant (p = 0.029) decline from 2021's survey. Biomass and abundance of fishes along 7B were intermediate to low compared to other transects throughout

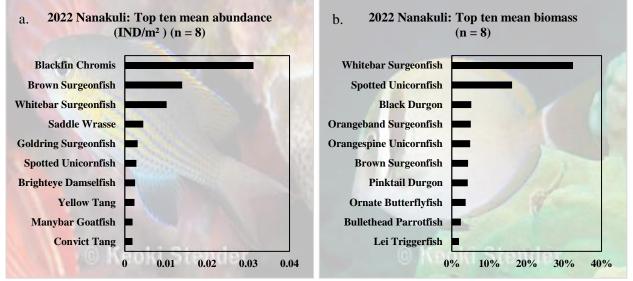
time: May: 18.3 g/m², 122 individuals, 26 species, June: 20.1 g/m², 174 individuals, 24 species, August: 31.0 g/m², 243 individuals, 25 species, October: 42.3 g/m², 224 individuals, 38 species. During the May survey, the biomass was dominated by *na 'ena 'e* (20.9%, *A. olivaceus*, orangeband surgeonfish) and '*ālo 'ilo 'i* (14.9%, *Dascyllus albisella*, Hawaiian dascyllus). In June, the key contributors to biomass were *mā 'i 'i 'i* (25.3%, *A. nigrofuscus*, brown surgeonfish), *humuhumulei* (18.8%, *Sufflamen bursa*, lei triggerfish), and *hīnālea lauwili* (12.0%, *T. duperrey*, saddle wrasse). The biomass in August was dominated by *humuhumulei* (19.3%, *Sufflamen bursa*, lei triggerfish), followed by *kihikihi* (11.4%, *Zanclus cornutus*, moorish idol) and *mā 'i 'i 'i* (11.3%, *A. nigrofuscus*, brown surgeonfish). October's survey biomass was dominated by four speices of fishes: *hīnālea lauwili* (15.8%, *T. duperrey*, saddle wrasse), *moano* (15.4%, *P. multifasciatus*, manybar goatfish), *humuhumulei* (11.9%, *S. bursa*, lei triggerfish), and *mā 'i 'i 'i* (10.4%, *A. nigrofuscus*, brown surgeonfish). The two most abundant fish species within all quarterly surveys at 7B in years 2019 through 2022, excluding the large school of *opelu* (*D. macarellus*, mackerel scad), were the blackfin chromis (*C. vanderbilti*) and *mā 'i'i'i* (*A. nigrofuscus*, brown surgeonfish).

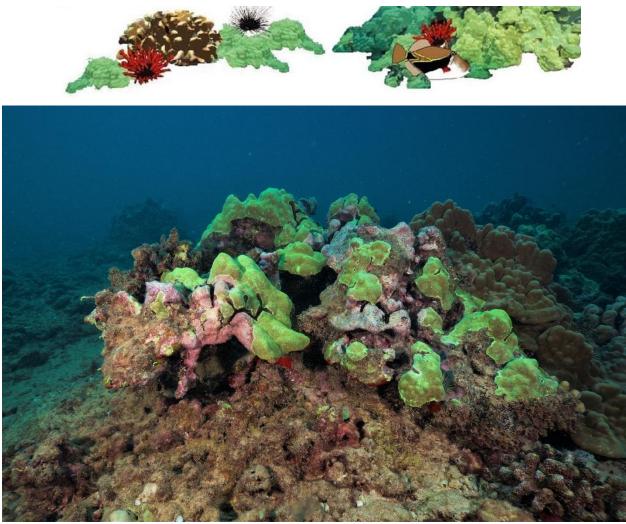
Kahe 7E: Kahe 7E was highly variable in the number of individuals throughout the four surveys, this trend was similar to 2020 and 2021's surveys. In 2022, Kahe 7E had the lowest fish abundance and species richness of all Kahe stations. Kahe 7E also had significantly less herbivore (p = 0.029) and zooplanktivore (p = 0.029) biomass when compared to 2021. June had the lowest biomass, total number of fishes, and species richness (22.9 g/m², 23 individuals, 10 species) present along transects when compared to other survey dates. The biomass was dominated by four species of fishes: manini (28.6%, A. triostegus, convict tang), na 'ena 'e (16.7%, A. olivaceus, orangeband surgeonfish) and humuhumulei (16.5%, S. bursa, lei triggerfish), and *umaumalei* (11.3%, *N. lituratus*, orangspine unicornfish). The biomass, number of fishes, and species richness in June was slightly higher than May (28.0 g/m², 89 individuals, 15 species). The biomass was dominated by three species of triggerfish: humuhumu 'ele 'ele (31.5%, M. niger, black durgon), humuhumulei (13.5%, S. bursa, lei triggerfish), and humuhumuuhi'ukole (12.1%, M. vidua, pinktail durgon). August's survey had the greatest number of individual fishes of all timepoints (32.4 g/m^2 , 317 individuals, 19 species). The majority of these fishes (77.3%) were the small schooling Blackfin Chromis (C. vanderbiliti). The biomass was dominated by five species of fish: humuhumulei (31.6%, S. bursa, lei triggerfish), na 'ena 'e (15.2%, A. olivaceus, orangeband surgeonfish), hīnālea lauwili (12.0%, T. duperrey, saddle wrasse), humuhumuuhi 'ukole (11.6%, M. vidua, pinktail durgon), and moano (10.6%, P. multifasciatus, manybar goatfish). The greatest biomass and species richness occurred in October's survey (66.9 g/m², 102 individuals, 21 species). The biomass was dominated by 10 individuals of humuhumu 'ele 'ele (38.8%, M. niger, black durgon). Similar to 2021's surveys, the Blackfin Chromis (C. vanderbiliti) was the overwhelmingly most abundance species along 7E transect.

Field Photo 19. Kahe 7E showing the ledges that provide hiding areas from predators (June 2022).

NANAKULI (Control Stations)

Two fish transects are included in the Nanakuli group: NANA 1 and NANA 2. These survey sites are the control stations for all other stations for this project. No significant differences were found in biomass, abundance, or number of species between 2021 and 2022. The biomass at Nanakuli stations in 2021 ($117.2 \pm 53.4 \text{ g/m}^2$) and 2022 ($50.4 \pm 41.7 \text{ g/m}^2$) were highly variable between timepoints. The average abundance of fishes ($2021: 0.9 \pm 0.3, 2022: 1.1 \pm 0.2$), and average number of species ($2021: 14.1 \pm 2.7, 2022: 18.8 \pm 4.0$) also remained similar (Figure 6). The most abundant fish along Nanakuli stations was the Blackfin Chromis (*C. vanderbiliti*) Similar to that of 2020 and 2021 surveys, the second most abundant fishes at Nanakuli group in 2022 were $m\bar{a}$ '*i*'*i*' (*A. nigrofuscus*, brown surgeonfish) and *māikoiko* (*A. leucopareius*, whitebar surgeonfish) (Figure 10), while *māikoiko* (*A. leucopareius*, whitebar surgeonfish) alone dominated the biomass (Figure 10).




Figure 10. Top ten fishes contributing to mean abundance and biomass at Nanakuli transect grouping in 2022 surveys.

NANA 1: Biomass and number of species was lowest at NANA 1 transect when compared to all other transects surveyed. Despite having the lowest species richness of all transects, the number of species was significantly (p = 0.029) greater than the previous year. During the May survey at NANA 1 (5.3 g/m², 154 individuals, 14 species), two species dominated the biomass: the wrasse $h\bar{n}a\bar{l}ea\ lauwili\ (26.9\%, T.\ duperrey,\ saddlewrasse),\ and\ the\ eel\ puhi\ o\ ni\ o\ (25.3\%,\ Gymnothorax\ meleagris,\ whitemouth\ moray).$ In June, biomass (8.7 g/m², 143 individuals, 19 species) was composed of $\bar{a}wela\ (18.3\%,\ Thalassoma\ trilobatum,\ Christmas\ wrasse),\ maiko\ (14.8\%,\ Acanthurus\ nigroris,\ bluelined\ surgeonfish),\ humuhumunukunukuapua'a\ (14.5\%,\ Rhinecanthus\ rectangulus,\ reef\ triggerfish),\ h\bar{n}a\bar{l}ea\ lau\ wili\ (12.6\%,\ T.\ duperrey,\ saddle\ wrasse),\ and\ manini\ (11.0\%,\ A.\ triostegus,\ convict\ tang).$ The $\bar{a}wela\ (50.8\%,\ T.\ trilobatum,\ Christmas\ wrasse)\ also\ dominated\ the\ biomass\ in\ August's\ survey\ (14.4\ g/m²,\ 74\ individuals,\ 14\ species),\ followed\ by\ moano\ (21.1\%,\ P.\ multifasciatus,\ manybar\ goatfish).$ October's survey was dominated by two species of\ triggerfish\ making\ up\ a\ total\ o\ 69\% of the biomass (6.0 g/m²,\ 66

individuals, 12 species). These triggerfish were *humuhumulei* (47.6%, *Sufflamen bursa*, lei triggerfish) and *humuhumunukunukuapua'a* (21.4%, *R. rectangulus*, reef triggerfish). Similar to 2021, the blackfin chromis (*C. vanderbilti*), *hīnālea lauwili* (*T. duperrey*, saddlewrasse), and bright-eye damselfish (*P. imparipennis*) were the most common fishes along transects for all timepoints in 2022.

NANA 2: Despite their geographic similarity, the Nana 2 transect is consistently greater in all fish community factors (May: 24.9 g/m², 107 individuals, 20 species, June: 100.1 g/m², 153 individuals, 19 species, August: 128.5 g/m², 178 individuals, 26 species, October: 114.9 g/m², 220 individuals, 26 species). NANA 2 transect did not differ in fish biomass, abundance or species diversity between survey years 2021 and 2022. The biomass in May was dominated by $m\bar{a}$ 'i'i' i (33.2%, *A. nigrofuscus*, brown surgeonfish) and *humuhumuhi'ukole* (13.6%, *M. vidua*, pinktail durgon). All other quarterly surveys were dominated by $m\bar{a}$ ikoiko (June: 35.0%, August: 52.5%, October: 36.2%, *A. leucopareius*, whitebar surgeonfish). In June, *umaumalei* (12.4%, *Naso lituratus*, orangespine unicornfish), $h\bar{n}\bar{n}\bar{a}lea \, lauwili$ (11.8%, *T. duperrey*, saddlewrasse), and *na'ena'e* (10.6%, *A. olivaceus*, orangeband surgeonfish) also significantly contributed to the biomass at NANA 2. Another large contributor to the biomass in October was *kala lolo*, (20.7%, *N. brevirostris*, spotted unicornfish). Similar to 2021's surveys, the most abundant fishes along all transects were $m\bar{a}$ 'i'i' (*A. nigrofuscus*, brown surgeonfish) and *māikoiko* (*A. leucopareius*, whitebar surgeonfish). Other significant contributors to fish abundance were *kole* (*C. strigosus*, goldring surgeonfish), *hīnālea lauwili*, and the blackfin chromis (*C. vanderbilti*).

Field Photo 20. The Nanakuli group serves as the reference site for the other monitoring stations. (Nanakuli 2, October 2022).

PIPELINE

The KGS Pipe station is the only transect in this study that is located on an artificial surface. The fish biomass, number of fish individuals and number of species present along the Pipe is consistently greater than the East, Ko'Olina, Kahe, and Nanakuli groups (Figure 6). The fish biomass in 2020 (362.0 \pm 10.4 g/m²) was significantly lower than the biomass in 2021 (991.8 \pm 123.5 g/m²) (p = 0.029) (Figure 6). Similarly, the fish biomass in 2022 (620.2 \pm 94.2 g/m²) was also significantly (p = 0.029) less than 2021. Therefore, it is likely that the biomass in 2021 may have been the anoamoly. The biomass of zooplanktivorous fishes was also significantly (p = 0.029) less in 2022 when compared to 2021. Fish abundance, although not statistically significant, was also greater in 2021 when compared to 2020 and 2022, and the species diversity along Pipe transect was similar between survey years (2022: 9.8 \pm 1.0 #/m², 51.3 \pm 2.1 fish species; 2021: 11.9 \pm 1.7 #/m², 47.0 \pm 3.2 fish species; 2020: 5.3 \pm 0.4 #/m², 51.3 \pm 2.1 fish individuals, and number of species present: May: 377.6 g/m², 1058 individuals, 44 species, June: 674.9 g/m², 1133 individuals, 52 species, August: 702.1 g/m², 1535 individuals, 55 species, and October: 726.4 g/m², 1187 individuals, 59 species.

During the May survey, the biomass was not dominated by a single species, but comprised of five top species, many of which were prominent along 2021's surveys: mamo (22.5%, A. vaigiensis, Indo-Pacific sergeant), mā'i'i'i (14.6%, A. nigrofuscus, brown surgeonfish), the invasive ta 'ape (14.4%, L. kasmira, bluestripe snapper), mamo (11.4%, Abudefduf abdominalis, sargent major), and hīnālea lauwili (11.1%, T. duperrey, saddlewrasse). In June, the biomass was dominated by the invasive ta 'ape (38.7%, L. kasmira, bluestripe snapper), weke (12.2%, Mulloidichthys flavolineatus, yellowstripe goatfish). Although August's survey had the second highest species richness, the biomass was primarily dominated by ta 'ape (Aug: 42.0%); all other contributors made up less than 10% individually of the biomass. October's survey had the highest species riches and biomass of all timepoints. The biomass was dominated by the invasive ta 'ape (28.7%, L. kasmira, bluestripe snapper), moano (16.0%, P. multifasciatus, manybar goatfish), and mamo (10.3%, A. vaigiensis, Indo-Pacific sergeant). Combining all four survey timepoints, the most abundant fish species in number and biomass at Pipe transect was the *ta'ape* (L. kasmira, bluestripe snapper, invasive) (Figure 11). This is similar to surveys in previous years. Large resident schools of ta 'ape, mā 'i'i', mamo, and weke are consistently found throughout surveys.

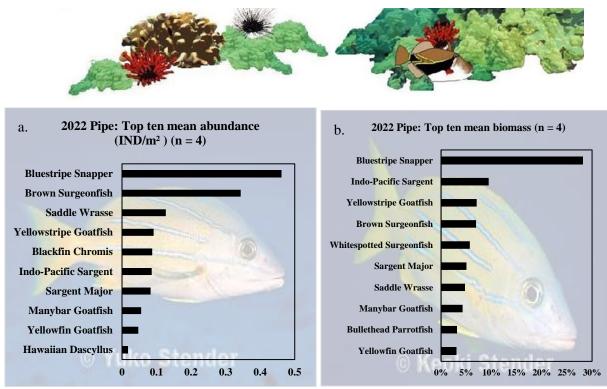
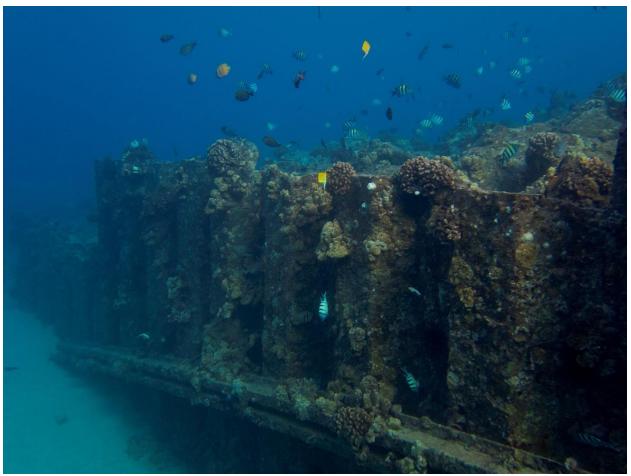
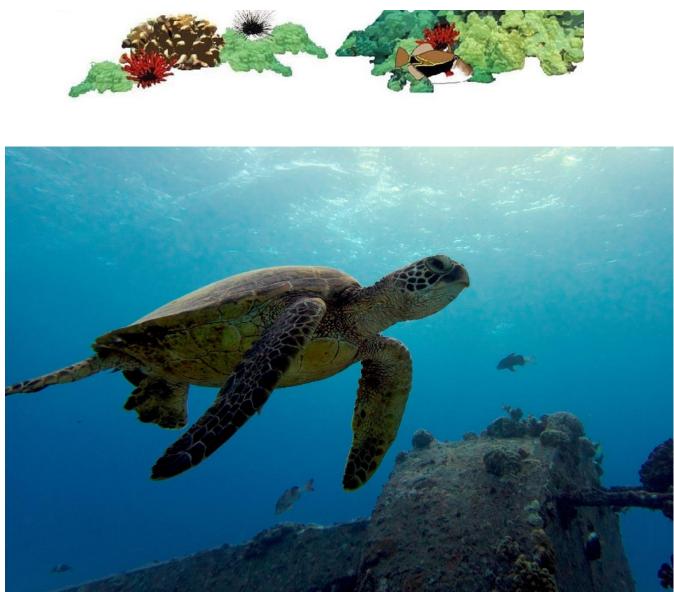




Figure 11. Top ten fishes contributing to mean abundance and biomass at the Pipe transect in 2022.

Field Photo 21. The Pipeline serves as an artificial reef that contains the highest abundance, biomass and species of fishes of all sites surveyed due to its high spatial complexity (October 2022).

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

Field Photo 22. Chelonia mydas, the Green turtle is listed as threatened under the Endangered Species Act and is found throughout the main Hawaiian Islands (Kahe Pipe, October 2022).

Field Photo 23. The structural formation at the Kahe Pipeline provides support for corals and maintains productive assemblages of various fishes (October 2022)

Field Photo 24. The structural relief and magnitude of cavities on the Kahe Pipe provides the shelter and food resources to support an unusually large and diverse number of fishes and coral species (October 2022).

FOOD FISHES

Twenty-one common species of targeted fishes (Table 4) for hook line and spearfishing as resources of food for the community were assessed for their change in number of fishes and biomass of fishes from 2018 (Brock's survey) through the present 2022 survey.

Scientific Name	Common Name	Hawaiian Name
Acanthurus blochii	Ringtail Surgeonfish	pualu
Acanthurus dussumieri	Eye-stripe Surgeonfish	palani
Acanthurus nigroris	Bluelined Surgeonfish	maiko
Acanthurus triostegus	Convict Tang	manini
Aprion virescens	Green Jobfish	uku
Calotomus carolinus	Stareye Parrotfish	
Caranx melampygus	Blue Trevally	omilu
Cephalopholis argus	Blue-spotted Grouper	
Kyphosus bigibbus	Brown Chub	nenue
Kyphosus cinerascens	Highfin Chub	nenue
Kyphosus species	Lowfin Chub	nenue
Lutjanus fulvus	Blacktail Snapper	to'au
Lutjanus kasmira	Bluestripe Snapper	ta'ape
Monotaxis grandoculis	Bigeye Emperor	ти
Mulloidichthys flavolineatus	Yellowstripe Goatfish	weke
Mulloidichthys vanicolensis	Yellowfin Goatfish	weke 'ula
Naso lituratus	Orangespine Unicornfish	umaumalei
Naso unicornis	Bluespine Unicornfish	kala
Parupeneus cyclostomus	Blue Goatfish	moano kea
Scarus psittacus	Palenose Parrotfish	uhu
Scarus rubroviolaceus	Redlip Parrotfish	pālukaluka

Table 4. Fishes considered food fishes in analyses.

In 2018, the percent abundance and biomass of food fishes compared to species of fishes not usually targeted as food was highest at Pipe, followed by East and Ko'Olina, Nanakuli, and Kahe (Figure 12). Throughout 2018 to 2021 survey years, the percentages of food fishes varied, with an overall trend of decreasing within East, Ko'Olina, Nanakuli, and Kahe, while increasing at Pipe. In 2022, all sites increased, not significantly, in biomass of food fish. Despite increases in biomass of food fish, the abundance of food fish remained relatively stable, suggesting there was a similar number of food fishes along transects that were larger in size, when compared to previous years. The increase in food fishes at Pipe, is likely the result of increases in the number of invasive ta 'ape (Lutjanus kasmira, bluestriped snapper) along the transect in more recent years. Some spikes in certain species can be linked to seasonal and annual variability determined by high recruitment. Abundance and biomass of fishes is extremely variable, and therefore, this project will continue to monitor the percentage of food fishes at each transect in future years to determine if there is a pattern of fishing pressure at any particular site. Overall, the only significant difference observed in the ratio of food fish to non-food fish was seen at East 1 transect (p = 0.029), with significantly great biomass of food fishes to non-food fishes ratio in 2022 surveys when compared to 2019 surveys. No significant shifts in food fish to non-food fish

rations were noted between surveys during 2022 and 2021. Continuous monitoring of the ratio over time will allow us to monitor for unsustainable fishing practices.

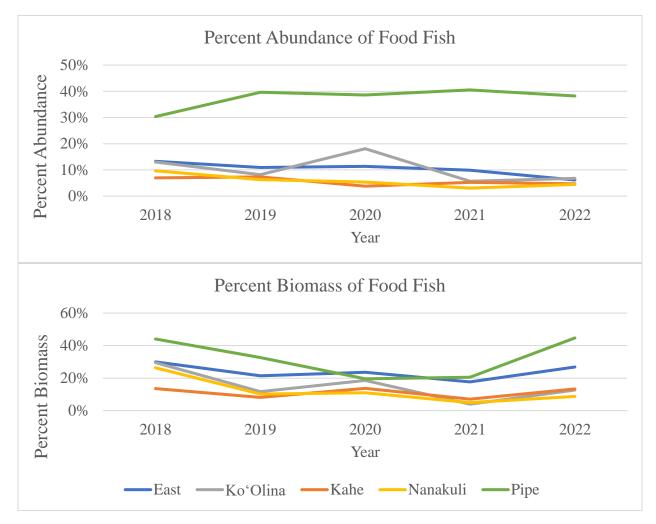


Figure 12. Percent abundance and biomass of food fishes from 2018 through 2022.

SUMMARY

Fish communities surveyed in 2022 remain similar to 2021. The total number of fish species recorded in 2022 surveys (113 species) was similar to that of 2021(101 species) and 2020 surveys (118 species). The dominant species observed in 2022 were similar to those reported in 2021 and 2020: mā'i'i' (A. nigrofuscus, brown surgeonfish), blackfin chromis (C. vanderbilti), hīnālea lauwili (T. duperrey, saddle wrasse), and the invasive ta 'ape (L. kasmira, bluestribe snapper). Biomass was dominated by the invasive *ta 'ape (L. kasmira*, bluestripe snapper), mā'i'i' (A. nigrofuscus, brown surgeonfish), hīnālea lauwili (T. duperrey, saddle wrasse), and na'ena'e (A. olivaceus, orangeband surgeonfish. In 2021, the biomass was largely made up of the humuhumuhi 'ukole (M. vidua, pinktail durgon), invasive ta 'ape (L. kasmira, bluestripe snapper), na 'ena 'e (A. olivaceus, orangeband surgeonfish), humuhumu 'ele 'ele (M. niger, black durgon), mamo (A. vaigiensis, Indo-Pacific sergeant), and māikoiko (A. leucopareius, whitebar surgeonfish. The only significant shifts in trophic feeding guilds between 2021 and 2020 surveys was at the Pipe transect where zooplanktivorous fishes increased significantly in biomass in 2021 surveys (p = 0.029), a subequent significant (p = 0.029) decrease in zooplanktivorous fishes at Pipe was observed in 2022. The significant decrease in biomass of herbivorous fishes were detected at Ko'Olina 2, Kahe 7B and Kahe 7E transects (p = 0.029), which likely corresponds to the overall decreases in biomass of herbivorous fishes from 49% (2021) dominance to 41% (2022). Of the twelve transects, only East 1 experienced a significant decline in fish individuals since 2021 (p = 0.039). Excluding Pipe, which has the highest fish abundance and biomass, East and Ko 'Olina groups have more developed fish communities than the other groups (Kahe and Nanakuli), although not statistically significant. At Ko'Olina, this can be attributed to high spatial relief associated with well-developed fish communities. East, Kahe, and Nanakuli naturally have flatter reef that make the environment less favorable to well-developed fish communities. The 2022 surveys found no significant changes in fish communities that can be attributed to the Hawaiian Electric's KGS or CIP Generating Station facilities.

LITERATURE CITED

- Ball, M., E. Shinn and K. Stockman. 1967. The geological effects of Hurricane Donna in south Florida. J. Geol. 75:583-597.
- Blumenstock, D., F. Fosberg and C. Johnson. 1961. The re-survey of typhoon effects on Jaluit Atoll in the Marshall Islands. Nature 189:618-620.
- Brock, V.E. 1954. A preliminary report on a method of estimating reef fish populations. J. Wildlife Mgmt. 18:297-308.
- Brock, R.E., C. Lewis and R.C. Wass. 1979. Stability and structure of a fish community on a coral patch reef in Hawaii. Mar. Biol. *54*:281-292.
- Brock, R.E. 1996. A study of the impact of Hurricane Iniki on coral communities at selected sites in Mamala Bay, O'ahu, Hawai'i. Project Report PR-96-09. Water Resources Research Center, University of Hawaii, Honolulu. vii+23p.
- Brock, R. E. 2019. CIP Generation Project 2018 Community Benefits Program Reef Fish Monitoring Project Year 11 Results. Year 2018 Report. EA. LLC Rep. No. 2019-02. PRIL 2019. Hawaiian Electric Co. Inc., Honolulu.
- Dollar SJ, Tribble GW 1993. Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs 12:223–233.
- Done, T., P. Dayton, A. Dayton and R. Steger. 1991. Regional and local variability in recovery of shallow coral communities: Moorea, French Polynesia and central Great Barrier Reef. Coral Reefs 9:183-192.
- Eakin CM, Sweatman HPA, Brainard RE. 2019. The 2014-2017 Global-scale Coral Bleaching Event: insights and impacts. Coral Reefs 38: 539-545.
- Friedlander A.M. and Parrish, J.D. 1998. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology 224:1-30.
- Friedlander A. M. and DeMartini, E. E. 2002. Contrasts in density, size, and biomass of reef fishes between the Northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Marine Ecological Progress Series 230:253-264.
- Friedlander A. M. and DeMartini, E. E. 2004. Spatial patterns of endemism in shallow water reef fish populations of the Northwestern Hawaiian Islands. Marine Ecological Progress Series 271:281-296.

- Friedlander, A., Brown, E. K, Jokiel, P. L., Smith, W. R., and Rodgers, K.S. 2003. Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 22: 291-305.
- Friedlander AM., Donovan MK, Stamoulis KS, Williams ID, Brown EK, Conklin EJ, DeMartini EE, Rodgers KS, Sparks RT, Walsh WJ. 2017. Human-induced gradients of reef fish declines in the Hawaiian Archipelago viewed through the lens of traditional management boundaries. Aquatic Conservation: Marine and Freshwater Ecosystems. DOI: 10.1002/aqc.2832.
- Grigg, R.W. and J.E. Maragos. 1974. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55:387-395.
- Grigg, R. W. 1998. Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17:263-272.

Harmelin-Vivien, M. and P. Laboute. 1986. Catastrophic impact of hurricanes on atoll outer reef slopes in the Tuamotu (French Polynesia). Coral Reefs 5:55-62.Heron S., Eakin CM, Morgan J., and Skirving WJ. 2008. Hurricanes and their Effects on Coral Reefs. https://www.researchgate.net/publication/266558093.

- Hiatt, R.W. and D.W. Strasburg. 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. *30*:65-127.
- Hobson, E.S. 1974. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish. Bull. 72:915-1031.
- Manzello DP, Brandt M, Smith TB, Lirman D, Hendee JC, Nemeth RS 2007. Hurricanes benefit bleached corals. Proceedings of the National Academy of Sciences 104:12035-12039.
- Maragos, J., G. Baines and P. Beveridge. 1973. Tropical cyclone Bebe creates a new land formation on Funafuti Atoll. Science 181:1161-1164.
- Mora C, Frazier AG, Tong EJ, Longman RJ, Kaiser LR, Dacks RS, Walton MM, Fernandez-Silva I, Stender YO, Anderson JM, Sanchez JJ, Ambrosino CM, Giuseffi LM, Giambelluca TW. 2014. Uncertainties in the timing of unprecedented climates. Nature 511:E5,E6.
- Noda, E.K. 1983. Affects of Hurricane Iwa, October 23, 1982 offshore of Kahe Point, Oahu. Unpublished report prepared for Research Corp. of the University of Hawaii.
- Ogg, J. and J. Koslow. 1978. The impact of typhoon Pamela 1976. on Guam's coral reefs and beaches. Pacif. Sci. 32:1056-118.

- Randall, J.E. 2007. Reef and shore fishes of the Hawaiian Islands. Sea Grant College Program, University of Hawai'i, Honolulu. xiv+546p.
- Rodgers, K.S., C. Newtson, and E.F. Cox. 2003. Mechanical Fracturing of Dominant Hawaiian Corals in Relation to Trampling. Environmental Management vol 31 pp 377-384.
- Rodgers, K. S. Evaluation of Nearshore Coral Reef Condition and Identification of Indicators in the Main Hawaiian Islands. 2005. PhD Dissertation. University of Hawai'i, Dept. of Geography. Honolulu, Hawai'i. Pp.203.
- Schroeder TA 1998. Hurricanes. In: Juvik S Juvick JO (eds) Atlas of Hawai'i , 3rd edition, University of Hawaii Press, Honolulu , HI, pp 74–75.
- Skirving WJ, Heron SF, Marsh BL, Liu G, Dela Cour JL, Geiger EF, and Eakin CM. 2019. The Relentless March of Mass Coral Bleaching: a global perspective of changing heat stress. Coral Reefs 38:547-557.

Stoddart, D. 1969. Post-hurricane changes on the British Honduras reefs and cays: re-survey of 1965. Atoll Res. Bull. 13:1-25.

Storlazzi CD, Field ME, Dykes JD, Jokiel PL, Brown E 2002. Wave control on reef morphology and coral distribution: Molokai , Hawaii. Proc 4th Int Symposium Waves, pp.784–793.

Storlazzi, C. D., M. E. Field, P. L. Jokiel, S. K. Rodgers, E. Brown and J. D. Dykes. 2005. A model for wave control on coral breakage and species distribution: Southern Molokai, Hawaii. Coral Reefs 24:43-55.

Walsh W.J. 1983. Stability of a coral reef fish community following a catastrophic storm. Coral Reefs. 2:49-63.

Woodley, J. et al. 1981. Hurricane Allen's impact on Jamaican coral reefs. Science 214:749-755.

APPENDICES

A. Summary of the fish censuses conducted at twelve locations on eight surveys over the 2021-2022 period. Previous survey data can be obtained from past reports (2007-2018 from Brock (2019) (2019-2020 Rodgers et.al.)

Appendix A (2021)

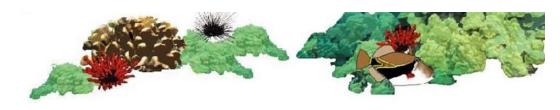
inppendix ii (20			No.	Biomass
Sample Date	Transect No.	No. Species	Individuals	(g/m2)
10-Jun-21	1	20	246.00	221.5
	3	30	318.00	576.4
	4	21	172.00	42.1
	5	21	240.00	170.5
	6	23	273.00	139.5
	7	21	338.00	141.2
	8	21	260.00	69.4
	9	14	68.00	36.2
	12	20	107.00	90.8
	14	6	48.00	0.3
	15	21	116.00	278.1
	16	54	2082.00	947.9
27-Jul-21	1	18	214.00	430.5
	3	17	142.00	47.5
	4	21	246.00	72.6
	5	12	122.00	112.2
	6	26	250.00	361.1
	7	15	155.00	65.0
	8	18	131.00	32.9
	9	19	97.00	40.0
	12	5	38.00	20.4
	14	7	21.00	3.8
	15	23	364.00	156.4
	16	39	1537.00	1345.8
9-Sep-21	1	11	113.00	38.7
	3	21	172.00	28.0
	4	14	207.00	113.8
	5	15	221.00	84.4
	6	30	210.00	114.6
	7	22	258.00	68.3
	8	25	227.00	45.3
	9	19	287.00	245.0
	12	25	68.00	64.0
	14	6	67.00	2.3
	15	17	111.00	88.6
	16	50	1148.00	898.2
22-Nov-21	1	23	226.00	202.1
	3	24	134.00	152.1
	4	22	347.00	114.0
	5	23	123.00	160.0
	6	27	141.00	170.4
	7	21	193.00	273.8
	8	22	221.00	51.9
	9	19	230.00	85.4
	12	21	340.00	96.1
	14	10	44.00	7.9
	15	23	141.00	399.8
	16	45	1183.00	775.1

Appendix A cont. (2022)								
Sample Date	Transect No.	No. Species	No. Individuals	Biomass				
•		-		(g/m^2)				
13-May-22	1	17	100.00	32.2				
-	3	18	84.00	14.2				
	4	15	159.00	84.9				
	5	19	194.00	46.2				
	6	25	220.00	237.4				
	7	16	215.00	77.9				
	8	32	280.00	53.7				
	9	26	122.00	18.3				
	12	10	23.00	22.8				
	14	14	154.00	5.3				
	15	20	107.00	24.8				
	16	44	1058.00	377.5				
8-Jun-22	1	20	109.00	35.4				
	3	19	199.00	44.8				
	4	18	275.00	53.8				
	5	15	223.00	67.9				
	6	23	248.00	153.6				
	7	20	223.00	48.8				
	8	21	238.00	38.3				
	9	24	174.00	20.0				
	12	15	89.00	27.9				
	14	19	143.00	8.6				
	15	19	153.00	100.1				
	16	52	1133.00	674.9				
19-Aug-22	1	26	107.00	79.6				
	3	16	170.00	53.8				
	4	18	88.00	38.9				
	5	30	318.00	209.0				
	6	30	297.00	169.2				
	7	21	211.00	100.8				
	8	34	360.00	41.1				
	9	25	243.00	30.9				
	12	19	317.00	32.4				
	14	14	74.00	14.4				
	15	26	178.00	128.5				
	16	55	1535.00	702.0				
31-Oct-22	1	21	93.00	42.9				
	3	18	186.00	38.3				
	4	25	248.00	93.7				
	5	16	150.00	96.2				
	6	21	155.00	49.1				
	7	17	176.00	71.0				
	8	23	325.00	41.8				
	9	38	224.00	42.3				
	12	21	102.00	66.9				
	14	12	66.00	6.0				
	15	26	220.00	114.9				
	16	59	1187.00	726.3				

B. Results of fish censuses carried out each of the four 2022 surveys. Trophic categories include Herbivore (H), Corallivore (C), Detritivore (D), Mixed (MI), Piscivore (P), Sessile Invertebrate feeder (SI) and Zooplanktivore (Z). Endemism categories include Endemic (E), Indigenous (I) and Introduced (X).


Date	Transect Name	Species	Number	Average Length (cm)	Biomass (g/m2)	Trophic	Endemism
5/13/22	PIPE	Acanthurus nigrofuscus	300	10	34.39	Н	Ι
5/13/22	PIPE	Abudefduf vaigiensis	85	13	53.16	Z	Ι
5/13/22	PIPE	Abudefduf abdominalis	85	13	26.87	Z	Е
5/13/22	PIPE	Dascyllus albisella	15	10	2.54	Z	Е
5/13/22	PIPE	Chromis vanderbilti	100	4	0.69	Z	Ι
5/13/22	PIPE	Parupeneus multifasciatus	3	15	0.80	MI	Ι
5/13/22	PIPE	Parupeneus multifasciatus	1	10	0.08	MI	Ι
5/13/22	PIPE	Chaetodon kleinii	4	10	0.54	Z	Ι
5/13/22	PIPE	Parupeneus pleurostigma	1	15	0.31	MI	Ι
5/13/22	PIPE	Forcipiger flavissimus	2	13	0.30	SI	Ι
5/13/22	PIPE	Sufflamen bursa	3	18	2.36	MI	Ι
5/13/22	PIPE	Myripristis berndti	1	15	0.36	Z	Ι
5/13/22	PIPE	Cantherhines sandwichiensis	1	13	0.28	Н	Е
5/13/22	PIPE	Stegastes fasciolatus	5	10	0.75	Н	Ι
5/13/22	PIPE	Gomphosus varius	4	13	0.52	MI	Ι
5/13/22	PIPE	Gomphosus varius	2	18	0.58	MI	Ι
5/13/22	PIPE	Gomphosus varius	2	10	0.13	MI	Ι
5/13/22	PIPE	Stethojulis balteata	3	13	0.64	MI	Е
5/13/22	PIPE	Stethojulis balteata	2	10	0.19	MI	Е
5/13/22	PIPE	Myripristis kuntee	2	13	0.47	Z	Ι
5/13/22	PIPE	Zanclus cornutus	4	18	3.54	SI	Ι
5/13/22	PIPE	Parupeneus bifasciatus	3	15	1.24	MI	Ι
5/13/22	PIPE	Parupeneus bifasciatus	1	10	0.12	MI	Ι
5/13/22	PIPE	Halichoeres ornatissimus	3	13	0.30	MI	Ι
5/13/22	PIPE	Chaetodon multicinctus	5	10	0.73	С	Е
5/13/22	PIPE	Thalassoma trilobatum	1	23	1.03	MI	Ι
5/13/22	PIPE	Thalassoma trilobatum	1	28	1.85	MI	Ι
5/13/22	PIPE	Aulostomus chinensis	1	46	0.90	Р	Ι
5/13/22	PIPE	Aulostomus chinensis	1	30	0.21	Р	Ι
5/13/22	PIPE	Zebrasoma veliferum	1	25	2.00	Н	Ι
5/13/22	PIPE	Pervagor aspricaudus	9	8	0.48	Н	Ι
5/13/22	PIPE	Pseudocheilinus tetrataenia	1	5	0.01	MI	Ι
5/13/22	PIPE	Labroides phthirophagus	2	8	0.03	Р	Е
		1 · · · · · · · · · · · · · · · · · · ·	_	-			

5/13/22	PIPE	Parupeneus multifasciatus	1	20	0.66	MI	Ι
5/13/22	PIPE	Canthigaster jactator	6	4	0.08	Н	Е
5/13/22	PIPE	Ctenochaetus strigosus	1	10	0.16	D	Ι
5/13/22	PIPE	Ctenochaetus strigosus	1	15	0.55	D	Ι
5/13/22	PIPE	Chromis agilis	1	8	0.06	Z	Ι
5/13/22	PIPE	Ostracion meleagris	1	3	0.00	SI	Ι
5/13/22	PIPE	Ostracion meleagris	1	8	0.08	SI	Ι
5/13/22	PIPE	Thalassoma lutenscens	2	13	3.83	MI	Ι
5/13/22	PIPE	Canthigaster amboinensis	1	5	0.05	Н	Ι
5/13/22	PIPE	Thalassoma duperrey	5	10	0.35	MI	Е
5/13/22	PIPE	Thalassoma duperrey	15	15	3.73	MI	Е
5/13/22	PIPE	Thalassoma duperrey	25	18	10.98	MI	Е
5/13/22	PIPE	Thalassoma duperrey	70	13	11.14	MI	Е
5/13/22	PIPE	Thalassoma purpureum	1	30	2.37	MI	Ι
5/13/22	PIPE	Thalassoma purpureum	2	18	0.91	MI	Ι
5/13/22	PIPE	Chromis hanui	1	5	0.01	Z	Е
5/13/22	PIPE	Lutjanus kasmira	200	13	34.02	MI	Х
5/13/22	PIPE	Mulloidichthys vanicolensis	50	18	23.02	MI	Ι
5/13/22	PIPE	Macropharyngodon geoffroyi	1	10	0.12	MI	Е
5/13/22	PIPE	Chlorurus sordidus	1	28	3.50	Н	Ι
5/13/22	PIPE	Plectroglyphidodon johnstonianus	3	5	0.05	С	Ι
5/13/22	PIPE	Plectroglyphidodon johnstonianus	4	8	0.30	С	Ι
5/13/22	PIPE	Paracirrhites arcatus	4	8	0.23	MI	I
5/13/22	PIPE	Paracirrhites arcatus	2	10	0.27	MI	I
5/13/22	PIPE	Thalassoma quinquevittatum	- 1	13	0.16	MI	I
5/13/22	PIPE	Thalassoma quinquevittatum	1	15	0.25	MI	I
5/13/22	PIPE	Cirrhitops fasciatus	1	8	0.05	MI	I
5/13/22	PIPE	Naso annulatus	2	30	4.47	Z	I
5/13/22	1D	Acanthurus nigrofuscus	70	10	8.02	н	I
5/13/22	1D	Thalassoma duperrey	40	10	2.81	MI	Е
5/13/22	1D	Thalassoma duperrey	10	15	2.49	MI	Е
5/13/22	1D	Thalassoma duperrey	30	13	4.77	MI	Е
5/13/22	1D	Ctenochaetus strigosus	25	10	3.90	D	Ι
5/13/22	1D	Ctenochaetus strigosus	10	15	5.52	D	Ι
5/13/22	1D	Ctenochaetus strigosus	1	5	0.02	D	I
5/13/22	1D	Forcipiger flavissimus	1	13	0.15	SI	Ι
5/13/22	1D	Melichthys niger	7	23	12.83	Н	Ι
5/13/22	1D	Canthigaster jactator	2	5	0.05	Н	Е
5/13/22	1D	Canthigaster jactator	2	3	0.01	Н	Е
5/13/22	1D	Sufflamen bursa	3	18	2.36	MI	Ι
5/13/22	1D	Acanthurus olivaceus	2	13	0.42	Н	Ι

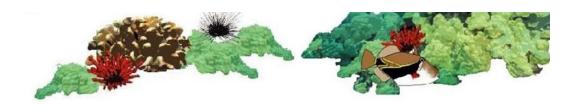

5/13/22	1D	Parupeneus multifasciatus	2	15	0.54	MI	Ι
5/13/22	1D	Parupeneus multifasciatus	1	8	0.04	MI	Ι
5/13/22	1D	Parupeneus cyclostomus	1	18	0.94	Р	Ι
5/13/22	1D	Parupeneus bifasciatus	1	10	0.12	MI	Ι
5/13/22	1D	Chlorurus sordidus	1	28	3.50	Н	Ι
5/13/22	1D	Chlorurus sordidus	1	15	0.43	Н	Ι
5/13/22	1D	Stegastes fasciolatus	1	8	0.08	Н	Ι
5/13/22	1D	Stethojulis balteata	2	8	0.09	MI	Е
5/13/22	1D	Acanthurus nigroris	1	13	0.24	Н	Ι
5/13/22	1D	Ostracion meleagris	1	5	0.02	SI	Ι
5/13/22	7E	Sufflamen bursa	3	18	2.36	MI	Ι
5/13/22	7E	Canthigaster jactator	1	5	0.02	Н	Е
5/13/22	7E	Acanthurus triostegus	10	15	4.10	Н	Ι
5/13/22	7E	Acanthurus olivaceus	2	23	2.39	Н	Ι
5/13/22	7E	Naso lituratus	2	20	1.62	Н	Ι
5/13/22	7E	Parupeneus multifasciatus	1	18	0.47	MI	Ι
5/13/22	7E	Cantherhines sandwichiensis	1	13	0.28	Н	Е
5/13/22	7E	Acanthurus nigroris	1	15	0.36	Н	Ι
5/13/22	7E	Melichthys vidua	1	18	1.12	Н	Ι
5/13/22	7E	Sufflamen fraenatus	1	23	1.58	MI	Ι
5/13/22	NANA1	Chromis vanderbilti	110	3	0.32	Z	Ι
5/13/22	NANA1	Canthigaster jactator	3	5	0.07	Н	Е
5/13/22	NANA1	Ctenochaetus strigosus	1	3	0.00	D	Ι
5/13/22	NANA1	Plectroglyphidodon imparipennis	7	3	0.03	MI	I
5/13/22	NANA1	Thalassoma duperrey	10	13	1.59	MI	Е
5/13/22	NANA1	Thalassoma duperrey	3	5	0.02	MI	Е
5/13/22	NANA1	Thalassoma duperrey	2	3	0.00	MI	Е
5/13/22	NANA1	Thalassoma trilobatum	1	10	0.09	MI	Ι
5/13/22	NANA1	Thalassoma trilobatum	1	13	0.19	MI	Ι
5/13/22	NANA1	Stegastes fasciolatus	1	3	0.00	Н	I
5/13/22	NANA1	Cirrhitops fasciatus	2	8	0.10	MI	Ι
5/13/22	NANA1	Stethojulis balteata	2	8	0.09	MI	Е
5/13/22	NANA1	Plagiotremus goslinei	4	5	0.01	Р	Е
5/13/22	NANA1	Plectroglyphidodon johnstonianus	2	3	0.01	С	I
5/13/22	NANA1	stethojulis balteata	2	8	0.09	MI	Е
5/13/22	NANA1	Cirripectes vanderbilti	1	5	0.01	Н	Е
5/13/22	NANA1	Acanthurus nigroris	1	5	0.02	Н	Ι
5/13/22	NANA1	Gymnothorax meleagris	1	51	0.70	Р	Ι
5/13/22	NANA2	Rhinecanthus rectangulus	1	18	0.79	MI	Ι
5/13/22	NANA2	Sufflamen bursa	1	18	0.79	MI	Ι
5/13/22	NANA2	Acanthurus nigrofuscus	45	10	5.16	Н	Ι
		- *					


5/13	/22	NANA2	Zebrasoma flavescens	1	8	0.12	Н	Ι
5/13	/22	NANA2	Zebrasoma flavescens	2	5	0.07	Н	Ι
5/13	/22	NANA2	Zebrasoma flavescens	2	15	1.12	Н	Ι
5/13	/22	NANA2	Gymnothorax meleagris	1	51	0.70	Р	Ι
5/13	/22	NANA2	Gomphosus varius	2	15	0.37	MI	Ι
5/13	/22	NANA2	Forcipiger flavissimus	1	13	0.15	SI	Ι
5/13	/22	NANA2	Melichthys vidua	1	23	2.11	Н	I
5/13	/22	NANA2	Canthigaster jactator	5	6	0.18	Н	Е
5/13	/22	NANA2	Plectroglyphidodon johnstonianus	3	5	0.05	С	Ι
5/13	/22	NANA2	Chromis vanderbilti	20	3	0.06	Z	Ι
5/13	/22	NANA2	Parupeneus cyclostomus	1	10	0.10	Р	I
5/13	/22	NANA2	Lutjanus fulvus	3	20	1.26	MI	Х
5/13	/22	NANA2	Paracirrhites forsteri	1	15	0.34	Р	I
5/13	/22	NANA2	Thalassoma duperrey	5	13	0.80	MI	Е
5/13	/22	NANA2	Thalassoma duperrey	5	10	0.35	MI	Е
5/13	/22	NANA2	Labroides phthirophagus	1	8	0.02	Р	Е
5/13	/22	NANA2	Chaetodon quadrimaculatus	1	10	0.17	С	Ι
5/13	/22	NANA2	Stethojulis balteata	1	10	0.09	MI	Е
5/13	/22	NANA2	Ctenochaetus strigosus	1	13	0.35	D	Ι
5/13	/22	NANA2	Ctenochaetus strigosus	1	10	0.16	D	Ι
5/13	/22	NANA2	Ctenochaetus strigosus	1	8	0.08	D	I
5/13	/22	NANA2	Monotaxis grandoculis	1	13	0.22	MI	Ι
5/13	/22	E1	Canthigaster jactator	2	3	0.01	Н	Е
5/13	/22	E1	Thalassoma duperrey	2	5	0.02	MI	Е
5/13	/22	E1	Thalassoma duperrey	4	10	0.28	MI	Е
5/13	/22	E1	Plectroglyphidodon imparipennis	4	3	0.01	MI	Ι
5/13	/22	E1	Plectroglyphidodon	3	5	0.05	С	
5/13	/22	EI E1	johnstonianus Acanthurus dussumieri	8	25	6.16	н	I I
5/13		EI E1	Acanthurus dussumieri	8	30	5.32	Н	I
5/13		E1 E1	Acanthurus olivaceus	4 5	20	3.90	Н	I
5/13		E1	Paracirrhites forsteri	1	10	0.10	P	I
5/13	/22	E1	Lutjanus fulvus	1	18	0.31	MI	X
5/13	/22	E1	Acanthurus triostegus	5	15	2.05	Н	I
5/13	/22	E1	Acanthurus triostegus	2	13	0.50	Н	I
5/13	/22	E1	Parupeneus multifasciatus	1	18	0.47	MI	I
5/13	/22	E1	Acanthurus nigrofuscus	20	0	0.00	Н	I
5/13	/22	E1	Acanthurus nigrofuscus	5	8	0.30	Н	I
5/13	/22	E1	Acanthurus nigroris	1	8	0.06	н	I
5/13	/22	E1	Chromis vanderbilti	25	3	0.07	Z	I
5/13	/22	E1	Rhinecanthus rectangulus	1	15	0.47	MI	I
					-			

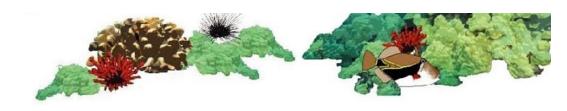
5/13/22	E1	Halichoeres ornatissimus	1	8	0.04	MI	Ι
5/13/22	E1	Labroides phthirophagus	2	8	0.03	Р	Е
5/13/22	E1	Labroides phthirophagus	1	3	0.00	Р	Е
5/13/22	E1	Plagiotremus goslinei	2	5	0.00	Р	Е
5/13/22	E3	Bodianus bilunulatus	1	15	0.32	MI	Ι
5/13/22	E3	Canthigaster jactator	1	5	0.02	Н	Е
5/13/22	E3	Thalassoma duperrey	5	13	0.80	MI	Е
5/13/22	E3	Thalassoma duperrey	1	8	0.03	MI	Е
5/13/22	E3	Thalassoma duperrey	15	10	1.05	MI	Е
5/13/22	E3	Acanthurus nigrofuscus	25	10	2.87	Н	Ι
5/13/22	E3	Ctenochaetus strigosus	3	10	0.47	D	Ι
5/13/22	E3	Acanthurus nigroris	1	8	0.06	Н	Ι
5/13/22	E3	Plectroglyphidodon johnstonianus	4	5	0.07	С	I
5/13/22	E3	Plectroglyphidodon johnstonianus	1	0	0.08	С	I
5/13/22	E3	Jonnstonianus Chromis vanderbilti	1	8	0.08	Z	I
5/13/22	E3						
5/13/22		Halichoeres ornatissimus	2	10	0.12	MI	I
5/13/22	E3	Parupeneus bifasciatus	1	10	0.12	MI	I
5/13/22	E3	Gomphosus varius	1	10	0.07	MI	I
5/13/22	E3 E3	Stethojulis balteata	1	8	0.05	MI	E
5/13/22		Paracirrhites arcatus	2	8	0.12	MI	I
5/13/22	E3	Stegastes fasciolatus	1	8	0.08	H	I
5/13/22	E3	Sufflamen bursa	1	18	0.79	MI	I
5/13/22	E3	Scarus rubroviolaceus	1	10	0.15	H	I
5/13/22	E3	Macropharyngodon geoffroyi	1	10	0.12	MI	E
5/13/22	E3	Scarus psittacus	1	23	1.65	H	I
5/13/22	E4	Acanthurus olivaceus	15	28	32.67	H	I
5/13/22	E4	Bodianus bilunulatus	1	36	4.84	MI	I
5/13/22	E4	Acanthurus nigrofuscus Plectroglyphidodon	35	10	4.01	Н	Ι
	E4	johnstonianus	2	5	0.04	С	Ι
5/13/22	E4	Paracirrhites arcatus	4	8	0.23	MI	Ι
5/13/22	E4	Canthigaster jactator	6	5	0.14	Н	Е
5/13/22	E4	Synodus binotatus	1	8	0.02	Р	Ι
5/13/22	E4	Synodus binotatus	1	13	0.09	Р	Ι
5/13/22	E4	Stethojulis balteata	1	10	0.09	MI	Е
5/13/22	E4	Chromis vanderbilti	50	4	0.34	Z	Ι
5/13/22	E4	Halichoeres ornatissimus	2	10	0.12	MI	Ι
5/13/22	E4	Thalassoma duperrey	15	8	0.52	MI	Е
5/13/22	E4	Thalassoma duperrey	5	13	0.80	MI	Е
5/13/22	E4	Thalassoma duperrey	15	10	1.05	MI	Е
5/13/22	E4	Parupeneus multifasciatus	1	13	0.17	MI	Ι

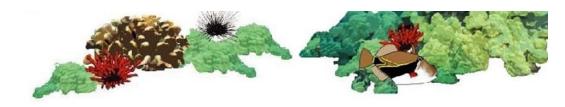
5/13/22 E4 Acanthurus nigroris 1 8 0.06 H 5/13/22 E4 Coris gainard 1 30 2.36 MI 5/13/22 E4 Melichubys vidua 2 23 4.22 H 5/13/22 E4 Melichubys vidua 2 23 4.22 H 5/13/22 K01 Chaceadam multicitents 4 10 0.09 C 5/13/22 K01 Cheerochactus strigosus 35 10 5.46 D 5/13/22 K01 Crenochactus strigosus 30 13 10.61 D 5/13/22 K01 Crenochactus strigosus 30 10 3.44 H 5/13/22 K01 Thalassoma duperrey 20 13 3.18 MI 5/13/22 K01 Thalassoma duperrey 35 10 2.46 MI 5/13/22 K01 Carthigaster jactator 1 15 0.02 H 5/13/22 K01 Carthigaster jactator 1 15 0.02 H								
13 1 2.0 1.1 3.0 3.1.6 MI 51322 E4 Coris gainard 1 3.0 3.6 MI 51322 E4 Melichthys vidut 2 2.3 4.2.2 H 51322 K01 Chaerodon multicinenas 4 10 0.5.9 C 5/1322 K01 Cherochaetus strigosus 3.5 10 5.4.6 D 5/1322 K01 Crenochaetus strigosus 3.0 1.3 10.6.6 D 5/1322 K01 Chenochaetus strigosus 3.0 10 3.4.4 H 5/1322 K01 Chenochaetus strigosus 3.0 10 3.4.4 H 5/1322 K01 Thalassoma diperrey 3.5 10 2.4.6 MI 5/1322 K01 Conthigaster jactaor 5 3.0.03 H 5/1322 K01 Conthigaster jactaor 1 5 0.0.2 H 5/1322 K01 Conthigaster jactaor 1 18 0.79 MI 5/1322	5/13/22	E4	Acanthurus nigroris	1	8	0.06	Н	Ι
5/13/22 E4 Melichtys vida 2 23 4.22 H 5/13/22 KO1 Chaendon multicinctus 4 10 0.59 C 5/13/22 KO1 Chaendon multicinctus 5 5 0.09 C 5/13/22 KO1 Crenochaetus strigosus 35 10 5.46 D 5/13/22 KO1 Crenochaetus strigosus 30 13 10.61 D 5/13/22 KO1 Crenochaetus strigosus 30 13 3.08 H 5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Thalassoma duperrey 35 10 2.46 MI 5/13/22 KO1 Cambingaster jactator 5 3 0.03 H 5/13/22 KO1 Cambingaster jactator 1 5 0.02 H 5/13/22 KO1 Cambingaster jactator 1 13 0.03 Z 5/13/22 KO1 Chronis vandrehilti 10 3 0.03 P	5/13/22	E4	Coris gaimard	1	25	1.30	MI	Ι
5/13/22 KO1 Chaeradon multicincitus 4 10 0.59 C 5/13/22 KO1 Cheeradon multicincitus 4 10 0.59 C 5/13/22 KO1 Crenochaetus strigosus 35 10 5.46 D 5/13/22 KO1 Crenochaetus strigosus 30 13 10.61 D 5/13/22 KO1 Stegastes fasciolatus 1 8 0.08 H 5/13/22 KO1 Acamhurus nigrefucus 30 10 3.44 H 5/13/22 KO1 Acamhurus nigrefucus 30 10 3.44 H 5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Canthigaster jactator 5 3 0.03 H 5/13/22 KO1 Canthigaster jactator 1 5 0.02 H 5/13/22 KO1 Canthigaster jactator 1 13 0.39 C 5/13/22 KO1 Chronis vanderbilti 10 3 0.03 F	5/13/22	E4	Coris gaimard	1	30	2.36	MI	Ι
Koli Plectrophyliodom 10 0.5.5 C 5/13/22 KOI Chenochaetus strigosus 35 10 5.46 D 5/13/22 KOI Crenochaetus strigosus 30 13 10.61 D 5/13/22 KOI Stegastes fasciolatus 1 8 0.08 H 5/13/22 KOI Acanthurus nigrofuscus 30 10 3.44 H 5/13/22 KOI Thalassoma duperrey 20 13 3.18 MI 5/13/22 KOI Thalassoma duperrey 35 10 2.46 MI 5/13/22 KOI Cambigaster jactator 1 5 0.02 H 5/13/22 KOI Cambigaster jactator 1 5 0.02 H 5/13/22 KOI Chromis vanderbiti 10 3 0.03 Z 5/13/22 KOI Chromis varias 1 13 0.39 C 5/13/22 KOI Chaetodo	5/13/22	E4	Melichthys vidua	2	23	4.22	Н	Ι
51.522 KO1 johnstorianus 5 5 0.09 C 5113/22 KO1 Ctenochaettis strigosus 35 10 5.46 D 513/22 KO1 Ctenochaettis strigosus 30 13 10.04 D 5/13/22 KO1 Acomburus igreficicus 30 10 3.44 H 5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Thalassoma duperrey 35 10 2.46 MI 5/13/22 KO1 Canthigaster jactutor 5 3 0.03 H 5/13/22 KO1 Canthigaster jactutor 5 0.02 H 5/13/22 KO1 Canthigaster jactutor 1 5 0.02 H 5/13/22 KO1 Chronis vanderbili 10 3 0.03 Z 5/13/22 KO1 Stethojulis balteata 2 10 0.19 MI 5/13/22 KO	5/13/22	KO1		4	10	0.59	С	Е
5/13/22 KO1 Clenochaetus strigosus 30 13 10.61 D 5/13/22 KO1 Stegastes fasciolatus 1 8 0.08 H 5/13/22 KO1 Stegastes fasciolatus 30 10 3.44 H 5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Thalassoma duperrey 35 10 2.46 MI 5/13/22 KO1 Thalassoma duperrey 1 15 0.25 MI 5/13/22 KO1 Canthigaster jactator 5 3 0.03 H 5/13/22 KO1 Canthigaster jactator 1 5 0.02 H 5/13/22 KO1 Canthigaster jactator 1 1 0 0.03 Z 5/13/22 KO1 Labroides phthitipitagus 2 8 0.03 P 5/13/22 KO1 Suffamen bursa 1 18 0.79 MI 5/13/22 KO1 Cheetodon quadrimaculatus 1 15 0.27	5/13/22	KO1	0.11	5	5	0.09	С	Ι
No.1 Clementation strigonis 3.0 1.5 1.0.0 D 5/13/22 KO1 Stegastes fasciolatus 1 8 0.08 H 5/13/22 KO1 Acanthrus nigrofuscus 30 10 3.44 H 5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Thalassoma duperrey 35 10 2.46 MI 5/13/22 KO1 Canthigaster jactator 5 3 0.03 H 5/13/22 KO1 Canthigaster jactator 1 5 0.02 H 5/13/22 KO1 Canthigaster jactator 1 5 0.03 Z 5/13/22 KO1 Chromis vanderbilti 10 3 0.03 Z 5/13/22 KO1 Suffamen bursa 1 18 0.79 MI 5/13/22 KO1 Chaetodon quadrimaculatus 1 15 0.18 MI 5/13/22 <td< td=""><td>5/13/22</td><td>KO1</td><td>Ctenochaetus strigosus</td><td>35</td><td>10</td><td>5.46</td><td>D</td><td>Ι</td></td<>	5/13/22	KO1	Ctenochaetus strigosus	35	10	5.46	D	Ι
5/13/22 KO1 Acanthurus nigrofuscus 30 10 3.44 H 5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Thalassoma duperrey 35 10 2.46 MI 5/13/22 KO1 Thalassoma duperrey 35 3 0.03 H 5/13/22 KO1 Canthigaster jactator 5 3 0.03 H 5/13/22 KO1 Canthigaster jactator 1 5 0.02 H 5/13/22 KO1 Canthigaster jactator 1 3 0.03 Z 5/13/22 KO1 Chromis vanderbilti 10 3 0.03 P 5/13/22 KO1 Labroides pithirophagas 2 8 0.01 H 5/13/22 KO1 Stethojulis balteata 2 10 0.19 MI 5/13/22 KO1 Chateodon quadrimaculatus 1 13 0.39 C 5/13/22 KO1 Latjanus fulvus 1 15 0.18 MI	5/13/22	KO1	Ctenochaetus strigosus	30	13	10.61	D	Ι
5/13/22 KO1 Thalassoma duperrey 20 13 3.18 MI 5/13/22 KO1 Thalassoma duperrey 35 10 2.46 MI 5/13/22 KO1 Thalassoma duperrey 1 15 0.25 MI 5/13/22 KO1 Canthigaster jactator 5 3 0.03 H 5/13/22 KO1 Canthigaster jactator 1 5 0.02 H 5/13/22 KO1 Canthigaster jactator 1 3 0.03 Z 5/13/22 KO1 Labroides phthirophagus 2 8 0.03 P 5/13/22 KO1 Stehojulis balteata 2 10 0.19 MI 5/13/22 KO1 Stehojulis balteata 2 5 0.01 H 5/13/22 KO1 Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 KO1 Laujanus fulvus 1 15 0.18 MI 5/13/22 KO1 Laujanus fulvus 1 15 0.18 MI <tr< td=""><td>5/13/22</td><td>KO1</td><td>Stegastes fasciolatus</td><td>1</td><td>8</td><td>0.08</td><td>Н</td><td>Ι</td></tr<>	5/13/22	KO1	Stegastes fasciolatus	1	8	0.08	Н	Ι
S1322 KOI Thalassoma duperrey 35 10 2.46 MI 5/1322 KOI Thalassoma duperrey 1 15 0.25 MI 5/1322 KOI Canthigaster jactator 5 3 0.03 H 5/1322 KOI Canthigaster jactator 1 5 0.02 H 5/1322 KOI Canthigaster jactator 1 5 0.03 P 5/1322 KOI Chronis vanderbilti 10 3 0.03 Z 5/1322 KOI Labroides phthirophagus 2 8 0.03 P 5/1322 KOI Cirripectes vanderbilti 2 5 0.01 H 5/1322 KOI Chaetodon quadrimaculatus 1 18 0.79 MI 5/1322 KOI Chaetodon quadrimaculatus 1 15 0.18 MI 5/1322 KOI Lutjamus fulvus 1 15 0.18 MI 5/1322 <td>5/13/22</td> <td>KO1</td> <td>Acanthurus nigrofuscus</td> <td>30</td> <td>10</td> <td>3.44</td> <td>Н</td> <td>Ι</td>	5/13/22	KO1	Acanthurus nigrofuscus	30	10	3.44	Н	Ι
Sci13/22 KOI Thalassoma duperrey I IS 0 2.40 MI 5/13/22 KOI Canthigaster jactator 5 3 0.03 H 5/13/22 KOI Canthigaster jactator 1 5 0.02 H 5/13/22 KOI Canthigaster jactator 1 5 0.03 Z 5/13/22 KOI Chronis vanderbilti 10 3 0.03 Z 5/13/22 KOI Labroides phthirophagus 2 8 0.03 P 5/13/22 KOI Stethojulis balteata 2 10 0.19 MI 5/13/22 KOI Chronis vanderbilti 2 5 0.01 H 5/13/22 KOI Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 KOI Chaetodon quadrimaculatus 1 15 0.18 MI 5/13/22 KOI Chaetodon situres 1 15 0.18 MI	5/13/22	KO1	Thalassoma duperrey	20	13	3.18	MI	Е
K01 Transional adapting 1 15 0.2.5 MI 5/13/22 K01 Canthigaster jactator 5 3 0.03 H 5/13/22 K01 Canthigaster jactator 1 5 0.02 H 5/13/22 K01 Chromis vanderbilti 10 3 0.03 Z 5/13/22 K01 Labroides phthirophagus 2 8 0.03 P 5/13/22 K01 Steholjulis balteata 2 10 0.19 MI 5/13/22 K01 Chriptextes vanderbilti 2 5 0.01 H 5/13/22 K01 Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 K01 Chaetodon quadrimaculatus 1 15 0.18 MI 5/13/22 K01 Chaetodon quadrimaculatus 1 15 0.18 MI 5/13/22 K01 Chaetodon quadrimaculatus 1 15 0.18 MI 5/13/22	5/13/22	KO1	Thalassoma duperrey	35	10	2.46	MI	Е
S1322 K01 Canthigaster jactator J S 0.02 H 5/1322 K01 Canthigaster jactator 1 5 0.02 H 5/1322 K01 Chromis vanderbilti 10 3 0.03 Z 5/1322 K01 Labroides phthirophagus 2 8 0.03 P 5/1322 K01 Stethojulis balteata 2 10 0.19 MI 5/1322 K01 Cirripectes vanderbilti 2 5 0.01 H 5/1322 K01 Sufflamen bursa 1 18 0.79 MI 5/1322 K01 Chaetodon quadrimaculatus 1 13 0.39 C 5/1322 K01 Latjanus fulvus 1 15 0.18 MI 5/1322 K01 Parupeneus multifasciatus 4 13 0.69 MI 5/1322 K01 Paracirrhites arcatus 1 8 0.06 MI 5/1322	5/13/22	KO1	Thalassoma duperrey	1	15	0.25	MI	Е
KO1 Chromis vanderbilti 10 3 0.02 11 5/13/22 KO1 <i>Labroides phhirophagus</i> 2 8 0.03 Z 5/13/22 KO1 <i>Labroides phhirophagus</i> 2 8 0.03 P 5/13/22 KO1 Stethojulis balteata 2 10 0.19 MI 5/13/22 KO1 <i>Cirripectes vanderbilti</i> 2 5 0.01 H 5/13/22 KO1 <i>Sufflamen bursa</i> 1 18 0.79 MI 5/13/22 KO1 <i>Chaetodon quadrimaculatus</i> 1 13 0.39 C 5/13/22 KO1 <i>Luijanus fulvus</i> 1 15 0.18 MI 5/13/22 KO1 <i>Luijanus fulvus</i> 1 15 0.05 H 5/13/22 KO1 <i>Parupeneus multifasciatus</i> 1 8 0.06 MI 5/13/22 KO1 <i>Canthigaster amboinensis</i> 1 8 0.06 MI 5/13/22 <td>5/13/22</td> <td>KO1</td> <td>Canthigaster jactator</td> <td>5</td> <td>3</td> <td>0.03</td> <td>Н</td> <td>Е</td>	5/13/22	KO1	Canthigaster jactator	5	3	0.03	Н	Е
KO1 Chromis valuerbilit 10 3 0.03 Z 5/13/22 KO1 Labroides phthirophagus 2 8 0.03 P 5/13/22 KO1 Stethojulis balteata 2 10 0.19 MI 5/13/22 KO1 Cirripectes vanderbilit 2 5 0.01 H 5/13/22 KO1 Sufflamen bursa 1 18 0.79 MI 5/13/22 KO1 Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 KO1 Lutjanus fulvus 1 15 0.18 MI 5/13/22 KO1 Lutjanus fulvus 1 15 0.18 MI 5/13/22 KO1 Canthigaster amboinensis 1 3 0.00 MI 5/13/22 KO1 Paracirrhites arcatus 1 8 0.06 MI 5/13/22 KO2 inparipernis 1 3 0.00 MI 5/13/22 KO2	5/13/22	KO1	Canthigaster jactator	1	5	0.02	Н	Е
Koli Labrolaes philmologiagis 2 6 0.05 1 5/13/22 KO1 Stethojulis balteata 2 10 0.19 MI 5/13/22 KO1 Cirripectes vanderbilti 2 5 0.01 H 5/13/22 KO1 Sufflamen bursa 1 18 0.79 MI 5/13/22 KO1 Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 KO1 Chaetodon quadrimaculatus 1 15 0.18 MI 5/13/22 KO1 Lutjanus fulvus 1 15 0.18 MI 5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO2 Plectroglyphidodon 1 3 0.00 MI 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22	5/13/22	KO1	Chromis vanderbilti	10	3	0.03	Z	Ι
Koli Stellingular staticata 2 10 0.19 MI 5/13/22 Koli Cirripectes vanderbilti 2 5 0.01 H 5/13/22 Koli Sufflamen bursa 1 18 0.79 MI 5/13/22 Koli Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 Koli Gomphosus varius 1 13 0.49 MI 5/13/22 Koli Lutianus fulvus 1 15 0.18 MI 5/13/22 Koli Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 Koli Canthigaster amboinensis 1 5 0.05 H 5/13/22 Kol Parucirrhites arcatus 1 8 0.06 MI 5/13/22 Ko2 imparipennis 1 3 0.00 MI 5/13/22 Ko2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 Ko2 Chaetodon ephippium 1 20 1.04 MI	5/13/22	KO1	Labroides phthirophagus	2	8	0.03	Р	Е
S13/22 KO1 Sufflamen bursa 1 18 0.79 MI 5/13/22 KO1 Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 KO1 Gomphosus varius 1 13 0.39 C 5/13/22 KO1 Gomphosus varius 1 13 0.39 C 5/13/22 KO1 Lutjanus fulvus 1 15 0.18 MI 5/13/22 KO1 Lutjanus fulvus 1 15 0.27 MI 5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO1 Paracirrhites arcatus 1 3 0.00 MI 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI	5/13/22	KO1	Stethojulis balteata	2	10	0.19	MI	Е
Singlamen barsa 1 13 0.79 Mi 5/13/22 KO1 Chaetodon quadrimaculatus 1 13 0.39 C 5/13/22 KO1 Gomphosus varius 1 13 0.39 C 5/13/22 KO1 Gomphosus varius 1 15 0.18 MI 5/13/22 KO1 Lutjanus fulvus 1 15 0.18 MI 5/13/22 KO1 Thalassoma ballieui 1 15 0.27 MI 5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO1 Paracirrhites arcatus 1 8 0.06 MI 5/13/22 KO2 iophrstonianus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 10 2.29 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaeto	5/13/22	KO1	Cirripectes vanderbilti	2	5	0.01	Н	Е
5/13/22 KO1 Gomphosus varius 1 13 6.35 C 5/13/22 KO1 Gomphosus varius 1 15 0.18 MI 5/13/22 KO1 Lutjanus fulvus 1 15 0.18 MI 5/13/22 KO1 Thalassoma ballieui 1 15 0.27 MI 5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Paracirrhites arcatus 1 8 0.06 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI <tr< td=""><td>5/13/22</td><td>KO1</td><td>Sufflamen bursa</td><td>1</td><td>18</td><td>0.79</td><td>MI</td><td>Ι</td></tr<>	5/13/22	KO1	Sufflamen bursa	1	18	0.79	MI	Ι
5/13/22 KO1 Lutjanus fulvus 1 <td>5/13/22</td> <td>KO1</td> <td>Chaetodon quadrimaculatus</td> <td>1</td> <td>13</td> <td>0.39</td> <td>С</td> <td>Ι</td>	5/13/22	KO1	Chaetodon quadrimaculatus	1	13	0.39	С	Ι
5/13/22 KO1 Thalassoma ballieui 1 15 0.18 MI 5/13/22 KO1 Thalassoma ballieui 1 15 0.27 MI 5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO1 Paracirrhites arcatus 1 8 0.06 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 johnstonianus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H <td>5/13/22</td> <td>KO1</td> <td>Gomphosus varius</td> <td>1</td> <td>8</td> <td>0.04</td> <td>MI</td> <td>Ι</td>	5/13/22	KO1	Gomphosus varius	1	8	0.04	MI	Ι
5/13/22 KO1 Parupeneus multifasciatus 4 13 0.69 MI 5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO1 Canthigaster amboinensis 1 5 0.06 MI 5/13/22 KO1 Paracirrhites arcatus 1 8 0.06 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 johnstonianus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H	5/13/22	KO1	Lutjanus fulvus	1	15	0.18	MI	Х
5/13/22 KO1 Canthigaster amboinensis 1 5 0.05 H 5/13/22 KO1 Paracirrhites arcatus 1 8 0.06 MI 5/13/22 KO1 Paracirrhites arcatus 1 8 0.00 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 imparipennis 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI	5/13/22	KO1	Thalassoma ballieui	1	15	0.27	MI	Е
5/13/22 KO1 Paracirrhites arcatus 1 8 0.05 H 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 Acanthurus nigrofuscus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Ctenochaetus strigosus 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI	5/13/22	KO1	Parupeneus multifasciatus	4	13	0.69	MI	Ι
5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 johnstonianus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI <t< td=""><td>5/13/22</td><td>KO1</td><td>Canthigaster amboinensis</td><td>1</td><td>5</td><td>0.05</td><td>Н</td><td>Ι</td></t<>	5/13/22	KO1	Canthigaster amboinensis	1	5	0.05	Н	Ι
5/13/22 KO2 imparipennis 1 3 0.00 MI 5/13/22 KO2 johnstonianus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI	5/13/22	KO1	Paracirrhites arcatus	1	8	0.06	MI	Ι
5/13/22 KO2 ipinstonianus 4 5 0.07 C 5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C	5/13/22	KO2		1	3	0.00	MI	Ι
5/13/22 KO2 Acanthurus nigrofuscus 1 8 0.06 H 5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C	5/13/22	KO2	Plectroglyphidodon	4	5		C	т
5/13/22 KO2 Acanthurus nigrofuscus 20 10 2.29 H 5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C	5/13/22		•				-	I
5/13/22 KO2 Chaetodon ephippium 1 20 1.04 MI 5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C		1102						I
5/13/22 KO2 Ctenochaetus strigosus 15 15 8.29 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C		ROZ	0 9					I
5/13/22 KO2 Ctenochaetus strigosus 15 13 5.30 D 5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C		ROZ						I
5/13/22 KO2 Acanthurus leucopareius 10 23 21.61 H 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C		ROZ	, and the second s					I
KO2 Intraminus cuceparcias IO 25 21.01 II 5/13/22 KO2 Thalassoma duperrey 15 10 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C		ROZ	-					I
5/13/22 KO2 Thalassoma duperrey 15 16 1.05 MI 5/13/22 KO2 Thalassoma duperrey 15 13 2.39 MI 5/13/22 KO2 Thalassoma duperrey 15 8 0.52 MI 5/13/22 KO2 Chaetodon unimaculatus 2 13 0.74 C		ROZ	-					I
5/13/22KO2Thalassonia duperrey1516152.55MI5/13/22KO2Chaetodon unimaculatus2130.74C		R02	* *					E
5/13/22KO2Chaetodon unimaculatus1566.32MI5/13/22KO2Chaetodon unimaculatus2130.74C		ROZ						E
		ROZ						E
\mathbf{K}_{02} Chaetoaon multicinctus 4 10 0.59 C		ROZ						I
	2/10/22	KU2	Cnaetoaon multicinctus	4	10	0.59	U	Е

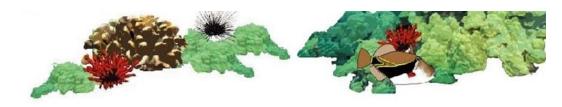
5/13/22	KO2	Melichthys niger	5	23	9.16	Н	Ι
5/13/22	KO2	Cephalopholis argus	1	33	3.14	Р	Х
5/13/22	KO2	Labroides phthirophagus	1	8	0.02	Р	Е
5/13/22	KO2	Naso lituratus	1	18	0.58	Н	Ι
5/13/22	KO2	Canthigaster jactator	3	5	0.07	Н	Е
5/13/22	KO2	Canthigaster jactator	1	3	0.01	Н	Е
5/13/22	KO2	Sufflamen bursa	1	18	0.79	MI	Ι
5/13/22	KO2	Acanthurus leucopareius	12	25	33.53	Н	Ι
5/13/22	KO2	Thalassoma lutenscens	1	13	1.91	MI	Ι
5/13/22	KO2	Acanthurus triostegus	45	15	18.44	Н	Ι
5/13/22	KO2	Gomphosus varius	2	10	0.13	MI	Ι
5/13/22	KO2	Zebrasoma flavescens	1	13	0.39	Н	Ι
5/13/22	KO2	Zebrasoma flavescens	2	10	0.41	Н	Ι
5/13/22	KO2	Zebrasoma flavescens	1	5	0.04	Н	Ι
5/13/22	KO2	Zebrasoma flavescens	2	8	0.23	Н	Ι
5/13/22	KO2	Acanthurus nigricans	2	15	0.65	Н	Ι
5/13/22	KO2	Chaetodon ornatissimus	2	20	3.03	С	Ι
5/13/22	KO2	Scarus rubroviolaceus	1	33	5.20	Н	Ι
5/13/22	KO2	Scarus rubroviolaceus	1	28	3.19	Н	Ι
5/13/22	KO2	Acanthurus olivaceus	15	28	32.67	Н	Ι
5/13/22	KO2	Stegastes fasciolatus	1	8	0.08	Н	Ι
5/13/22	KO2	Ostracion meleagris	1	8	0.08	SI	Ι
5/13/22	5B	Acanthurus nigrofuscus	60	10	6.88	Н	Ι
5/13/22	5B	Acanthurus nigrofuscus	20	8	1.21	Н	Ι
5/13/22	5B	Sufflamen bursa	2	18	1.57	MI	Ι
5/13/22	5B	Chaetodon multicinctus	1	8	0.07	С	Е
5/13/22	5B	Chlorurus sordidus	1	20	1.13	Н	Ι
5/13/22	5B	Thalassoma duperrey	15	10	1.05	MI	Е
5/13/22	5B	Thalassoma duperrey	5	13	0.80	MI	Е
5/13/22	5B	Thalassoma duperrey	2	15	0.50	MI	Е
5/13/22	5B	Gomphosus varius	2	18	0.58	MI	Ι
5/13/22	5B	Gomphosus varius	2	13	0.26	MI	Ι
5/13/22	5B	Gomphosus varius	1	15	0.18	MI	Ι
5/13/22	5B	Canthigaster jactator	3	5	0.07	Н	Е
5/13/22	5B	Canthigaster jactator	2	3	0.01	Н	Е
5/13/22	5B	Thalassoma lutenscens	1	13	1.91	MI	Ι
5/13/22	5B	Pervagor aspricaudus	3	8	0.16	Н	Ι
5/13/22	5B	Parupeneus bifasciatus	1	15	0.41	MI	Ι
5/13/22	5B	Coris venusta	1	13	0.16	MI	Е
5/13/22	5B	Paracirrhites arcatus	3	5	0.03	MI	Ι
5/13/22	5B	Fistularia commersonii	1	38	0.14	Р	Ι

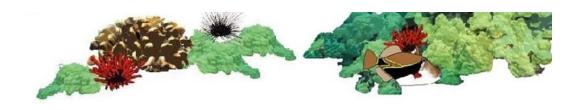

5/13/22	5B	Scarus psittacus	1	13	0.25	Н	Ι
5/13/22	5B	Mulloidichthys flavolineatus	15	18	6.33	MI	Ι
5/13/22	5B	Abudefduf vaigiensis	5	13	3.13	Z	Ι
5/13/22	5B	Chaetodon multicinctus	2	10	0.29	С	Е
5/13/22	5B	Canthigaster amboinensis	1	5	0.05	Н	Ι
5/13/22	5B	Abudefduf abdominalis	5	13	1.58	Z	Е
5/13/22	5B	Plectroglyphidodon imparipennis	5	3	0.02	MI	Ι
5/13/22	5B	Naso lituratus	1	13	0.21	Н	Ι
5/13/22	5B	Naso lituratus	1	10	0.09	Н	I
5/13/22	5B	Cantherhines sandwichiensis	1	10	0.14	Н	Е
5/13/22	5B	Cantherhines sandwichiensis	1	13	0.28	Н	Е
5/13/22	5B	Ostracion meleagris	1	8	0.08	SI	Ι
5/13/22	5B	Rhinecanthus rectangulus	2	18	1.57	MI	Ι
5/13/22	5B	Chromis vanderbilti	90	4	0.62	Z	Ι
5/13/22	5B	Acanthurus olivaceus	2	18	1.13	Н	Ι
5/13/22	5B	Acanthurus olivaceus	2	15	0.65	Н	Ι
5/13/22	5B	Cirrhitops fasciatus	1	8	0.05	MI	Ι
5/13/22	5B	Parupeneus multifasciatus	2	13	0.34	MI	Ι
5/13/22	5B	Parupeneus multifasciatus	1	10	0.08	MI	Ι
5/13/22	5B	Plectroglyphidodon johnstonianus	4	5	0.07	С	I
5/13/22	5B	Dascyllus albisella	1	10	0.17	Z	Е
5/13/22	5B	Halichoeres ornatissimus	3	8	0.12	MI	Ι
5/13/22	5B	Chaetodon quadrimaculatus	1	8	0.08	С	I
5/13/22	5B	Chaetodon quadrimaculatus	2	10	0.34	С	Ι
5/13/22	5B	Plectroglyphidodon johnstonianus	2	8	0.15	С	Ι
5/13/22	5B	Paracirrhites forsteri	1	10	0.10	Р	Ι
5/13/22	5B	Paracirrhites forsteri	1	15	0.34	Р	Ι
5/13/22	7B	Chromis vanderbilti	70	4	0.48	Z	Ι
5/13/22	7B	Dascyllus albisella	10	10	1.70	Z	Е
5/13/22	7B	Dascyllus albisella	1	3	0.00	Z	Е
5/13/22	7B	Acanthurus nigrofuscus	5	10	0.57	Н	Ι
5/13/22	7B	Aulostomus chinensis	1	23	0.08	Р	Ι
5/13/22	7B	Abudefduf abdominalis	2	13	0.63	Z	Е
5/13/22	7B	Halichoeres ornatissimus	1	10	0.06	MI	Ι
5/13/22	7B	Halichoeres ornatissimus	1	8	0.04	MI	Ι
5/13/22	7B	Lutjanus kasmira	1	13	0.17	MI	Х
5/13/22	7B	Mulloidichthys flavolineatus	1	18	0.42	MI	Ι
5/13/22	7B	Canthigaster jactator	2	5	0.05	Н	Е
5/13/22	7B	Gymnothorax meleagris	1	36	0.23	Р	Ι
5/13/22	7B	Acanthurus olivaceus	2	23	2.39	Н	Ι

5/13/22	7B	Calotomus carolinus	1	18	0.55	Н	Ι
5/13/22	7B	Gomphosus varius	2	15	0.37	MI	Ι
5/13/22	7B	Ctenochaetus strigosus	2	3	0.01	D	Ι
5/13/22	7B	Zebrasoma flavescens	1	5	0.04	Н	Ι
5/13/22	7B	Plectroglyphidodon imparipennis	1	3	0.00	MI	Ι
5/13/22	7B	Cirrhitops fasciatus	1	8	0.05	MI	Ι
5/13/22	7B	Cantherhines sandwichiensis	1	13	0.28	Н	Е
5/13/22	7B	Labroides phthirophagus	1	5	0.00	Р	Е
5/13/22	7B	Naso lituratus	1	18	0.58	Н	Ι
5/13/22	7B	Melichthys vidua	1	18	1.12	Н	Ι
5/13/22	7B	Acanthurus nigroris	2	13	0.48	Н	Ι
5/13/22	7B	Acanthurus nigroris	1	3	0.00	Н	Ι
5/13/22	7B	Parupeneus multifasciatus	1	13	0.17	MI	Ι
5/13/22	7B	Parupeneus multifasciatus	1	15	0.27	MI	Ι
5/13/22	7B	Thalassoma duperrey	1	13	0.16	MI	Е
5/13/22	7B	Thalassoma duperrey	1	15	0.25	MI	Е
5/13/22	7B	Thalassoma duperrey	1	5	0.01	MI	Е
5/13/22	7B	Plectroglyphidodon johnstonianus	3	5	0.05	С	Ι
5/13/22	7B	Monotaxis grandoculis	1	13	0.22	MI	Ι
6/8/22	E1	Canthigaster jactator	3	3	0.02	Н	Е
6/8/22	E1	Canthigaster jactator	2	5	0.05	Н	Е
6/8/22	E1	Caranx melampygus	3	23	3.34	Р	Ι
6/8/22	E1	Parupeneus multifasciatus	1	18	0.47	MI	Ι
6/8/22	E1	Plectroglyphidodon johnstonianus	1	5	0.02	С	Ι
6/8/22	E1	Plectroglyphidodon imparipennis	4	3	0.01	MI	Ι
6/8/22	E1	Acanthurus nigrofuscus	4	8	0.01	Н	I
6/8/22	E1	Acanthurus nigrofuscus	25	10	2.87	Н	I
6/8/22	E1	Acanthurus blochii	6	28	6.49	н	I
6/8/22	E1	Chaetodon lunula	1	20	0.81	SI	I
6/8/22	E1	Acanthurus dussumieri	1	28	1.08	Н	I
6/8/22	E1	Plagiotremus goslinei	2	5	0.00	Р	E
6/8/22	E1	Lutjanus fulvus	2	20	0.84	MI	X
6/8/22	E1	Labroides phthirophagus	5	8	0.08	Р	E
6/8/22	E1	Labroides phthirophagus	1	3	0.00	Р	E
6/8/22	E1	Naso annulatus	1	25	1.33	Z	I
6/8/22	E1	Halichoeres ornatissimus	1	8	0.04	MI	I
6/8/22	E1	Halichoeres ornatissimus	3	1	0.00	MI	I
6/8/22	E1	Thalassoma duperrey	10	10	0.70	MI	E
6/8/22	E1	Thalassoma duperrey	2	13	0.32	MI	E
6/8/22	E1	Thalassoma duperrey	- 1	15	0.25	MI	E
			-				-


6/8/22	E1	Chromis vanderbilti	25	3	0.07	Z	Ι
6/8/22	E1	Acanthurus triostegus	3	15	1.23	Н	Ι
6/8/22	E1	Acanthurus triostegus	1	3	0.00	Н	Ι
6/8/22	E1	Naso lituratus	1	23	1.25	Н	Ι
6/8/22	E1	Rhinecanthus rectangulus	1	18	0.79	MI	Ι
6/8/22	E1	Coris flavovittata	1	3	0.00	MI	Е
6/8/22	E3	Plectroglyphidodon johnstonianus	5	5	0.09	С	I
6/8/22	E3	Plectroglyphidodon johnstonianus	2	8	0.15	С	I
6/8/22	E3	Paracirrhites arcatus	3	8	0.15	MI	I
6/8/22	E3	Acanthurus nigrofuscus	45	8 10	5.16	Н	I
6/8/22	E3	Acanthurus nigrofuscus	45	8	2.73	Н	I
6/8/22	E3	Thalassoma duperrey	35	13	5.57	MI	E
6/8/22	E3	Thalassoma duperrey	35	10	2.46	MI	E
6/8/22	E3	Sufflamen bursa	1	18	0.79	MI	I
6/8/22	E3	Chaetodon ornatissimus	2	18	2.19	C	I
6/8/22	E3	Canthigaster jactator	2 3	5	0.07	Н	E
6/8/22	E3	Stegastes fasciolatus	2	8	0.07	Н	I
6/8/22	E3	Melichthys vidua	2	8 23	2.11	Н	I
6/8/22	E3	Chaetodon multicinctus	2	10	0.29	С	I E
6/8/22	E3	Stethojulis balteata	4	10	0.29	MI	E
6/8/22	E3	Bodianus bilunulatus	4	28	2.22	MI	I
6/8/22	E3			28 8			
6/8/22	E3	Ctenochaetus strigosus	6		0.47 0.16	D D	I I
6/8/22		Ctenochaetus strigosus	1	10			
6/8/22	E3	Macropharyngodon geoffroyi	1	8	0.06	MI	E
6/8/22	E3	Parupeneus bifasciatus	1	10	0.12	MI	I
6/8/22	E3	Canthigaster amboinensis	1	8	0.14	H	I
6/8/22	E3	Halichoeres ornatissimus	1	13	0.10	MI	I
6/8/22	E3	Gymnothorax meleagris	1	75	2.44	Р	I
6/8/22	E3	Pseudocheilinus octotaenia	1	10	0.09	MI	I
6/8/22	E4	Stethojulis balteata	2	10	0.19	MI	E
6/8/22	E4	Melichthys vidua	1	23	2.11	Н	I
6/8/22	E4	Chaetodon multicinctus	1	8	0.07	C	E
6/8/22	E4	Rhinecanthus rectangulus	1	18	0.79	MI	I
6/8/22	E4	Pseudocheilinus tetrataenia	1	5	0.01	MI	I
6/8/22	E4	Chromis vanderbilti Plectroglyphidodon	60	3	0.18	Z	Ι
	E4	imparipennis	1	3	0.00	MI	Ι
6/8/22	E4	Canthigaster jactator	6	5	0.14	Н	Е
6/8/22	E4	Ctenochaetus strigosus	1	10	0.16	D	Ι
6/8/22	E4	Ctenochaetus strigosus	2	5	0.04	D	Ι
6/8/22	E4	Acanthurus nigrofuscus	45	10	5.16	Н	Ι


6/8/22	E4	Acanthurus nigrofuscus	45	8	2.73	Н	Ι
6/8/22	E4	Gomphosus varius	1	15	0.18	MI	Ι
6/8/22	E4	Acanthurus olivaceus	4	28	8.71	Н	Ι
6/8/22	E4	Halichoeres ornatissimus	2	10	0.12	MI	Ι
6/8/22	E4	Paracirrhites arcatus	5	8	0.29	MI	Ι
6/8/22	E4	Melichthys niger	1	23	1.83	Н	Ι
6/8/22	E4	Plectroglyphidodon johnstonianus	3	5	0.05	С	Ι
6/8/22	E4	Parupeneus multifasciatus	2	15	0.54	MI	I
6/8/22	E4	Parupeneus multifasciatus	1	10	0.08	MI	I
6/8/22	E4	Thalassoma duperrey	45	13	7.16	MI	Е
6/8/22	E4	Thalassoma duperrey	45	10	3.16	MI	Е
6/8/22	KO1	Ctenochaetus strigosus	35	13	12.37	D	Ι
6/8/22	KO1	Ctenochaetus strigosus	35	10	5.46	D	Ι
6/8/22	KO1	Ctenochaetus strigosus	5	15	2.76	D	Ι
6/8/22	KO1	Thalassoma duperrey	35	13	5.57	MI	Е
6/8/22	KO1	Thalassoma duperrey	35	10	2.46	MI	Е
6/8/22	KO1	Thalassoma duperrey	1	5	0.01	MI	Е
6/8/22	KO1	Chaetodon multicinctus	4	10	0.59	С	Е
6/8/22	KO1	Melichthys niger	3	23	5.50	Н	Ι
6/8/22	KO1	Pseudocheilinus tetrataenia	1	3	0.00	MI	Ι
6/8/22	KO1	Acanthurus nigrofuscus	35	10	4.01	Н	Ι
6/8/22	KO1	Acanthurus nigrofuscus	20	8	1.21	Н	Ι
6/8/22	KO1	Thalassoma ballieui	1	20	0.66	MI	Е
6/8/22	KO1	Cirrhitops fasciatus	1	8	0.05	MI	Ι
6/8/22	KO1	Chaetodon quadrimaculatus	2	13	0.77	С	Ι
6/8/22	KO1	Plectroglyphidodon johnstonianus	4	5	0.07	С	Ι
6/8/22	KO1	Chaetodon unimaculatus	2	13	0.74	C	Ι
6/8/22	KO1	Stegastes fasciolatus	1	8	0.08	Н	Ι
6/8/22	KO1	Canthigaster jactator	1	5	0.02	Н	Е
6/8/22	KO1	Gomphosus varius	1	13	0.13	MI	I
6/8/22	KO1	Zebrasoma flavescens	1	5	0.04	Н	Ι
6/8/22	KO2	Sufflamen bursa	5	18	3.93	MI	Ι
6/8/22	KO2	Chromis vanderbilti	5	3	0.01	Z	Ι
6/8/22	KO2	Thalassoma duperrey	15	13	2.39	MI	Е
6/8/22	KO2	Thalassoma duperrey	25	10	1.75	MI	Е
6/8/22	KO2	Thalassoma duperrey	2	15	0.50	MI	Е
6/8/22	KO2	Acanthurus nigrofuscus	55	10	6.30	Н	Ι
6/8/22	KO2	Plectroglyphidodon imparipennis	2	3	0.01	MI	Ι
6/8/22		Plectroglyphidodon					
6/8/22	KO2	johnstonianus Rammonous kifassiatus	4	5	0.07	C	I
0, 0, 22	KO2	Parupeneus bifasciatus	1	18	0.72	MI	Ι


6/8/22	KO2	Chaetodon multicinctus	5	10	0.73	С	Е
6/8/22	KO2	Stegastes fasciolatus	2	8	0.15	Н	Ι
6/8/22	KO2	Ctenochaetus strigosus	15	15	8.29	D	Ι
6/8/22	KO2	Ctenochaetus strigosus	25	13	8.84	D	Ι
6/8/22	KO2	Ctenochaetus strigosus	3	8	0.23	D	Ι
6/8/22	KO2	Ctenochaetus strigosus	1	5	0.02	D	Ι
6/8/22	KO2	Ctenochaetus strigosus	10	10	1.56	D	Ι
6/8/22	KO2	Paracirrhites forsteri	1	10	0.10	Р	Ι
6/8/22	KO2	Labroides phthirophagus	2	8	0.03	Р	Е
6/8/22	KO2	Forcipiger flavissimus	2	15	0.47	SI	Ι
6/8/22	KO2	Zebrasoma flavescens	2	13	0.78	Н	Ι
6/8/22	KO2	Zebrasoma flavescens	2	5	0.07	Н	Ι
6/8/22	KO2	Zebrasoma flavescens	1	8	0.12	Н	Ι
6/8/22	KO2	Canthigaster jactator	2	5	0.05	Н	Е
6/8/22	KO2	Canthigaster jactator	3	3	0.02	Н	Е
6/8/22	KO2	Cantherhines sandwichiensis	1	13	0.28	Н	Е
6/8/22	KO2	Scarus psittacus	1	23	1.65	Н	Ι
6/8/22	KO2	Parupeneus multifasciatus	1	13	0.17	MI	Ι
6/8/22	KO2	Melichthys niger	3	23	5.50	Н	Ι
6/8/22	KO2	Acanthurus olivaceus	15	28	32.67	Н	Ι
6/8/22	KO2	Acanthurus nigroris	6	20	4.96	Н	Ι
6/8/22	KO2	Acanthurus triostegus	30	15	12.29	Н	Ι
6/8/22	KO2	Chaetodon ornatissimus	1	20	1.51	С	Ι
6/8/22	5B	Acanthurus nigrofuscus	60	10	6.88	Н	Ι
6/8/22	5B	Acanthurus nigrofuscus	20	8	1.21	Н	Ι
6/8/22	5B	Forcipiger flavissimus	1	15	0.23	SI	Ι
6/8/22	5B	Exallias brevis	1	10	0.09	С	Ι
6/8/22	5B	Chaetodon multicinctus	3	10	0.44	С	Е
6/8/22	5B	Gomphosus varius	1	10	0.07	MI	Ι
6/8/22	5B	Thalassoma duperrey	30	13	4.77	MI	Е
6/8/22	5B	Thalassoma duperrey	15	15	3.73	MI	Е
6/8/22	5B	Thalassoma duperrey	20	10	1.40	MI	Е
6/8/22	5B	Rhinecanthus rectangulus	1	18	0.79	MI	Ι
6/8/22	5B	Chromis vanderbilti	55	3	0.16	Z	Ι
6/8/22	5B	Plectroglyphidodon imparipennis	4	3	0.01	MI	Ι
6/8/22	5B	Plectroglyphidodon imparipennis	2	5	0.04	MI	Ι
6/8/22	5B 5B	Acanthurus nigroris	1	8	0.04	Н	I
6/8/22	5В	Sufflamen bursa	3	8 18	2.36	п MI	I
6/8/22	5B 5B	Stegastes fasciolatus	2	8	0.15	Н	I
6/8/22	5B 5B	Gomphosus varius	1	13	0.13	MI	I
6/8/22	5В	Paracirrhites arcatus	4	8	0.13	MI	I
	50	i aracirrines arcaus	4	0	0.23	1911	1

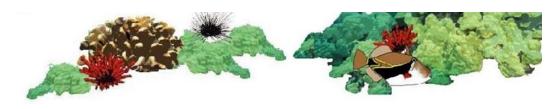

6/8/22	5B	Plectroglyphidodon johnstonianus	4	8	0.30	С	Ι
6/8/22	5B	Canthigaster jactator	2	3	0.01	Н	Е
6/8/22	5B	Canthigaster jactator	1	5	0.02	Н	Е
6/8/22	5B	Cirrhitops fasciatus	2	8	0.10	MI	Ι
6/8/22	5B	Parupeneus multifasciatus	1	15	0.27	MI	Ι
6/8/22	5B	Dascyllus albisella	1	10	0.17	Z	Е
6/8/22	5B	Paracirrhites forsteri	1	13	0.22	Р	Ι
6/8/22	5B	Pervagor aspricaudus	1	8	0.05	Н	Ι
6/8/22	5B	Ostracion meleagris	1	8	0.08	SI	Ι
6/8/22	1D	Acanthurus nigrofuscus	40	10	4.59	Н	Ι
6/8/22	1D	Acanthurus nigrofuscus	20	8	1.21	Н	Ι
6/8/22	1D	Stethojulis balteata	3	10	0.28	MI	Е
6/8/22	1D	Thalassoma duperrey	20	13	3.18	MI	Е
6/8/22	1D	Thalassoma duperrey	40	10	2.81	MI	Е
6/8/22	1D	Thalassoma duperrey	10	15	2.49	MI	Е
6/8/22	1D	Canthigaster jactator	1	5	0.02	Н	Е
6/8/22	1D	Pervagor aspricaudus	2	8	0.11	Н	Ι
6/8/22	1D	Thalassoma ballieui	1	18	0.47	MI	Е
6/8/22	1D	Canthigaster amboinensis	1	5	0.05	Н	Ι
6/8/22	1D	Plectroglyphidodon johnstonianus	2	8	0.15	С	Ι
6/8/22	1D	Ctenochaetus strigosus	15	10	2.34	D	Ι
6/8/22	1D	Ctenochaetus strigosus	10	13	3.54	D	Ι
6/8/22	1D	Ctenochaetus strigosus	1	5	0.02	D	I
6/8/22	1D	Stegastes fasciolatus	4	8	0.30	Н	Ι
6/8/22	1D	Gomphosus varius	1	10	0.07	MI	Ι
6/8/22	1D	Gomphosus varius	1	15	0.18	MI	Ι
6/8/22	1D	Parupeneus multifasciatus	2	18	0.95	MI	Ι
6/8/22	1D	Parupeneus multifasciatus	3	15	0.80	MI	Ι
6/8/22	1D	Parupeneus multifasciatus	1	13	0.17	MI	Ι
6/8/22	1D	Plectroglyphidodon imparipennis	1	3	0.00	MI	Ι
6/8/22	1D	Coris gaimard	1	18	0.44	MI	Ι
6/8/22	1D	Scarus psittacus	25	10	2.62	н	Ι
6/8/22	1D	Acanthurus olivaceus	5	15	1.62	н	I
6/8/22	1D	Acanthurus olivaceus	3	10	0.28	Н	Ι
6/8/22	1D	Acanthurus nigroris	3	10	0.34	Н	Ι
6/8/22	1D	Acanthurus triostegus	5	10	0.51	Н	Ι
6/8/22	1D	Paracirrhites forsteri	1	13	0.22	Р	Ι
6/8/22	1D	Sufflamen bursa	1	18	0.79	MI	Ι
6/8/22	PIPE	Chaetodon multicinctus	10	10	1.46	С	Е
6/8/22	PIPE	Parupeneus pleurostigma	2	15	0.62	MI	Ι

6/8/22	PIPE	Parupeneus pleurostigma	1	13	0.21	MI	Ι
6/8/22	PIPE	Dascyllus albisella	11	10	1.87	Ζ	Е
6/8/22	PIPE	Chlorurus sordidus	10	25	23.91	Н	Ι
6/8/22	PIPE	Chlorurus sordidus	1	30	4.40	Н	Ι
6/8/22	PIPE	Gomphosus varius	1	18	0.29	MI	Ι
6/8/22	PIPE	Gomphosus varius	5	13	0.64	MI	Ι
6/8/22	PIPE	Coris gaimard	1	25	1.30	MI	Ι
6/8/22	PIPE	Coris gaimard	1	30	2.36	MI	Ι
6/8/22	PIPE	Thalassoma purpureum	1	23	1.00	MI	Ι
6/8/22	PIPE	Thalassoma purpureum	1	25	1.31	MI	Ι
6/8/22	PIPE	Thalassoma purpureum	1	30	2.37	MI	Ι
6/8/22	PIPE	Sufflamen bursa	4	18	3.14	MI	Ι
6/8/22	PIPE	Cantherhines sandwichiensis	1	10	0.14	Н	Е
6/8/22	PIPE	Forcipiger flavissimus	4	15	0.94	SI	Ι
6/8/22	PIPE	Chaetodon fremblii	2	13	0.56	SI	Е
6/8/22	PIPE	Stegastes fasciolatus	3	8	0.23	Н	Ι
6/8/22	PIPE	Plectroglyphidodon johnstonianus	2	8	0.15	С	I
6/8/22	PIPE	Halichoeres ornatissimus	1	13	0.10	MI	I
6/8/22	PIPE	Aulostomus chinensis	2	30	0.41	Р	Ι
6/8/22	PIPE	Aulostomus chinensis	2	25	0.22	Р	Ι
6/8/22	PIPE	Cantherhines dumerilii	1	20	0.84	С	Ι
6/8/22	PIPE	Parupeneus multifasciatus	4	15	1.07	MI	Ι
6/8/22	PIPE	Melichthys niger	1	23	1.83	Н	Ι
6/8/22	PIPE	Exallias brevis	1	10	0.09	С	Ι
6/8/22	PIPE	Thalassoma trilobatum	2	23	2.06	MI	Ι
6/8/22	PIPE	Canthigaster jactator	3	5	0.07	н	Е
6/8/22	PIPE	Stethojulis balteata	2	10	0.19	MI	Е
6/8/22	PIPE	Stethojulis balteata	1	13	0.21	MI	Е
6/8/22	PIPE	Pervagor aspricaudus	5	10	0.50	Н	Ι
6/8/22	PIPE	Heteropriacanthus cruentatus	1	18	0.51	Z	Ι
6/8/22	PIPE	Lutjanus kasmira	300	18	163.07	MI	Х
6/8/22	PIPE	Chaetodon quadrimaculatus	2	13	0.77	С	Ι
6/8/22	PIPE	Gymnothorax meleagris	1	51	0.70	Р	Ι
6/8/22	PIPE	Naso annulatus	3	30	6.71	Z	Ι
6/8/22	PIPE	Parupeneus bifasciatus	1	20	1.00	MI	Ι
6/8/22	PIPE	Parupeneus bifasciatus	1	18	0.72	MI	Ι
6/8/22	PIPE	Parupeneus bifasciatus	1	15	0.41	MI	Ι
6/8/22	PIPE	Monotaxis grandoculis	8	23	11.06	MI	Ι
6/8/22	PIPE	Mulloidichthys vanicolensis	15	18	6.91	MI	Ι
6/8/22	PIPE	Mulloidichthys flavolineatus	90	20	51.52	MI	Ι
6/8/22	PIPE	Chromis vanderbilti	50	3	0.15	Z	Ι

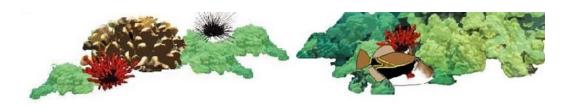
6/8/22	PIPE	Macropharyngodon geoffroyi	1	10	0.12	MI	Е
6/8/22	PIPE	Chaetodon kleinii	3	13	0.87	Z	Ι
6/8/22	PIPE	Chaetodon ornatissimus	1	20	1.51	С	Ι
6/8/22	PIPE	Zanclus cornutus	4	15	2.10	SI	Ι
6/8/22	PIPE	Zanclus cornutus	1	13	0.35	SI	Ι
6/8/22	PIPE	Paracirrhites forsteri	3	13	0.66	Р	Ι
6/8/22	PIPE	Chaetodon miliaris	1	13	0.30	Z	Е
6/8/22	PIPE	Myripristis kuntee	1	13	0.24	Z	Ι
6/8/22	PIPE	Chaetodon lunula	2	18	1.18	SI	Ι
6/8/22	PIPE	Paracirrhites arcatus	3	8	0.17	MI	Ι
6/8/22	PIPE	Thalassoma quinquevittatum	3	8	0.10	MI	Ι
6/8/22	PIPE	Calotomus carolinus	1	30	2.95	Н	Ι
6/8/22	PIPE	Cephalopholis argus	1	28	1.91	Р	Х
6/8/22	PIPE	Scarus rubroviolaceus	1	30	3.91	Н	Ι
6/8/22	PIPE	Labroides phthirophagus	2	8	0.03	Р	Е
6/8/22	PIPE	Acanthurus xanthopterus	5	28	6.23	Н	Ι
6/8/22	PIPE	Abudefduf abdominalis	50	13	15.81	Z	Е
6/8/22	PIPE	Abudefduf vaigiensis	50	13	31.27	Z	Ι
6/8/22	PIPE	Acanthurus nigrofuscus	350	10	40.12	Н	Ι
6/8/22	PIPE	Thalassoma duperrey	40	15	9.95	MI	Е
6/8/22	PIPE	Thalassoma duperrey	50	13	7.95	MI	Е
6/8/22	7B	Chromis vanderbilti	90	3	0.26	Z	Ι
6/8/22	7B	Plectroglyphidodon johnstonianus	1	3	0.00	С	Ι
6/8/22	7B	Plectroglyphidodon johnstonianus	1	5	0.02	С	Ι
6/8/22	7B	Gymnothorax meleagris	1	25	0.02	P	I
6/8/22	7B	Forcipiger flavissimus	1	10	0.06	SI	I
6/8/22	7B	Mulloidichthys vanicolensis	1	13	0.16	MI	I
6/8/22	7B	Myripristis kuntee	2	10	0.22	Z	I
6/8/22	7B	Canthigaster jactator	1	3	0.01	н	E
6/8/22	7B	Zebrasoma flavescens	1	3	0.01	Н	Ι
6/8/22	7B	Zebrasoma flavescens	1	8	0.12	Н	Ι
6/8/22	7B	<i>Cirrhitops fasciatus</i>	1	8	0.05	MI	Ι
6/8/22	7B	Pervagor aspricaudus	1	8	0.05	Н	Ι
6/8/22	7B	Acanthurus nigrofuscus	25	10	2.87	Н	Ι
6/8/22	7B	Acanthurus nigrofuscus	5	8	0.30	Н	Ι
6/8/22	7B	Dascyllus albisella	1	3	0.00	Z	Е
6/8/22	7B	Dascyllus albisella	6	10	1.02	Z	Е
6/8/22	7B	Halichoeres ornatissimus	1	10	0.06	MI	Ι
6/8/22	7B	Aulostomus chinensis	1	18	0.04	Р	Ι
6/8/22	7B	Aulostomus chinensis	1	28	0.16	Р	Ι
6/8/22	7B	Parupeneus multifasciatus	1	18	0.47	MI	Ι

6/8/22	7B	Parupeneus multifasciatus	1	8	0.04	MI	Ι
6/8/22	7B	Parupeneus multifasciatus	1	15	0.27	MI	Ι
6/8/22	7B	Parupeneus multifasciatus	1	13	0.17	MI	Ι
6/8/22	7B	Labroides phthirophagus	1	5	0.00	Р	Е
6/8/22	7B	Plectroglyphidodon imparipennis	2	3	0.01	MI	I
6/8/22	7B	Ctenochaetus strigosus	2	3	0.01	D	Ι
6/8/22	7B	Ctenochaetus strigosus	1	5	0.02	D	Ι
6/8/22	7B	Stethojulis balteata	5	13	1.06	MI	Е
6/8/22	7B	Thalassoma duperrey	5	13	0.80	MI	Е
6/8/22	7B	Thalassoma duperrey	3	10	0.21	MI	Е
6/8/22	7B	Thalassoma duperrey	2	15	0.50	MI	Е
6/8/22	7B	Scarus psittacus	1	13	0.25	Н	Ι
6/8/22	7B	Coris gaimard	1	20	0.62	MI	Ι
6/8/22	7B	Sufflamen bursa	3	18	2.36	MI	Ι
6/8/22	7B	Chaetodon kleinii	2	10	0.27	Z	Ι
6/8/22	7E	Acanthurus olivaceus	2	20	1.56	Н	Ι
6/8/22	7E	Canthigaster jactator	4	5	0.09	Н	Е
6/8/22	7E	Sufflamen bursa	3	18	2.36	MI	Ι
6/8/22	7E	Plectroglyphidodon johnstonianus	3	5	0.05	С	Ι
6/8/22	7E	Paracirrhites arcatus	5	8	0.29	MI	Ι
6/8/22	7E	Parupeneus multifasciatus	1	13	0.17	MI	Ι
6/8/22	7E	Parupeneus multifasciatus	2	10	0.15	MI	Ι
6/8/22	7E	Chaetodon auriga	2	18	1.77	SI	Ι
6/8/22	7E	Thalassoma duperrey	1	5	0.01	MI	Е
6/8/22	7E	Naso unicornis	1	25	1.59	Н	Ι
6/8/22	7E	Chromis vanderbilti	55	3	0.16	Z	Ι
6/8/22	7E	Melichthys vidua	1	23	2.11	Н	Ι
6/8/22	7E	Pseudojuloides cerasinus	4	5	0.03	MI	Ι
6/8/22	7E	Melichthys niger	3	23	5.50	Н	Ι
6/8/22	7E	Sufflamen fraenatus	1	23	1.58	MI	Ι
6/8/22	7E	Cirrhitops fasciatus	1	8	0.05	MI	Ι
6/8/22	NANA1	Chromis vanderbilti	80	3	0.23	Z	Ι
6/8/22	NANA1	Paracirrhites arcatus	3	8	0.17	MI	Ι
6/8/22	NANA1	Stethojulis balteata	3	8	0.14	MI	Е
6/8/22	NANA1	Cirrhitops fasciatus	1	8	0.05	MI	Ι
6/8/22	NANA1	Thalassoma duperrey	5	8	0.17	MI	Е
6/8/22	NANA1	Thalassoma duperrey	5	10	0.35	MI	Е
6/8/22	NANA1	Thalassoma duperrey	1	13	0.16	MI	Е
6/8/22	NANA1	Plectroglyphidodon imparipennis	15	3	0.05	MI	Ι
6/8/22	NANA1	Macropharyngodon geoffroyi	1	5	0.02	MI	Е

6/8/22	NANA1	Stegastes fasciolatus	1	5	0.02	Н	Ι
6/8/22	NANA1	Plagiotremus goslinei	2	5	0.00	Р	Е
6/8/22	NANA1	Parupeneus multifasciatus	1	8	0.04	MI	Ι
6/8/22	NANA1	Parupeneus multifasciatus	1	13	0.17	MI	Ι
6/8/22	NANA1	Halichoeres ornatissimus	1	8	0.04	MI	Ι
6/8/22	NANA1	Canthigaster jactator	4	5	0.09	Н	Е
6/8/22	NANA1	Acanthurus triostegus	1	3	0.00	Н	Ι
6/8/22	NANA1	Acanthurus triostegus	2	13	0.50	Н	Ι
6/8/22	NANA1	Cirripectes vanderbilti	1	5	0.01	Н	Е
6/8/22	NANA1	Acanthurus olivaceus	1	15	0.32	Н	Ι
6/8/22	NANA1	Acanthurus olivaceus	1	13	0.21	Н	Ι
6/8/22	NANA1	Acanthurus nigroris	7	10	0.80	Н	Ι
6/8/22	NANA1	Rhinecanthus rectangulus	1	18	0.79	MI	Ι
6/8/22	NANA1	Acanthurus triostegus	2	8	0.09	Н	Ι
6/8/22	NANA1	Thalassoma trilobatum	2	18	1.00	MI	Ι
6/8/22	NANA1	Plectroglyphidodon johnstonianus	1	3	0.00	С	Ι
6/8/22	NANA2	Sufflamen bursa	2	18	1.57	MI	Ι
6/8/22	NANA2	Canthigaster jactator	4	5	0.09	Н	Е
6/8/22	NANA2	Plectroglyphidodon johnstonianus	1	5	0.02	С	Ι
6/8/22	NANA2	Cirripectes vanderbilti	1	5	0.01	Н	Е
6/8/22	NANA2	Thalassoma duperrey	10	15	2.49	MI	Е
6/8/22	NANA2	Thalassoma duperrey	30	13	4.77	MI	Е
6/8/22	NANA2	Zebrasoma flavescens	1	18	0.88	Н	Ι
6/8/22	NANA2	Acanthurus nigrofuscus	20	8	1.21	Н	Ι
6/8/22	NANA2	Acanthurus nigrofuscus	40	10	4.59	Н	Ι
6/8/22	NANA2	Ctenochaetus strigosus	5	5	0.09	D	Ι
6/8/22	NANA2	Ctenochaetus strigosus	5	10	0.78	D	Ι
6/8/22	NANA2	Gomphosus varius	2	15	0.37	MI	Ι
6/8/22	NANA2	Monotaxis grandoculis	4	15	1.39	MI	Ι
6/8/22	NANA2	Stegastes fasciolatus	1	8	0.08	Н	Ι
6/8/22	NANA2	Naso lituratus	2	18	1.17	Н	Ι
6/8/22	NANA2	Naso lituratus	4	25	6.45	Н	Ι
6/8/22	NANA2	Acanthurus leucopareius	10	23	21.61	Н	Ι
6/8/22	NANA2	Acanthurus olivaceus	3	28	6.53	Н	Ι
6/8/22	NANA2	Acanthurus dussumieri	1	20	0.39	Н	Ι
6/8/22	NANA2	Lutjanus fulvus	1	18	0.31	MI	Х
6/8/22	NANA2	Labroides phthirophagus	1	8	0.02	Р	Е
6/8/22	NANA2	Chlorurus sordidus	2	20	2.26	Н	Ι
6/8/22	NANA2	Melichthys niger	3	23	5.50	Н	Ι
8/19/22	E 1	Paracirrhites arcatus	3	8	0.17	MI	Ι
8/19/22	E1	Sufflamen fraenatus	1	25	2.01	MI	Ι


8/19/22	E1	Rhinecanthus rectangulus	2	18	1.57	MI	Ι
8/19/22	E1	Plectroglyphidodon imparipennis	3	3	0.01	MI	Ι
8/19/22	E1	Chromis vanderbilti	20	3	0.06	Z	Ι
8/19/22	E1	Caranx melampygus	2	28	4.01	Р	Ι
8/19/22	E1	Acanthurus dussumieri	8	28	8.66	Н	Ι
8/19/22	E1	Acanthurus dussumieri	3	20	1.18	Н	Ι
8/19/22	E1	Acanthurus triostegus	10	15	4.10	Н	Ι
8/19/22	E1	Naso lituratus	1	23	1.25	Н	Ι
8/19/22	E1	Cantherhines dumerilii	1	23	1.33	С	Ι
8/19/22	E1	Chaetodon ornatissimus	2	20	3.03	С	Ι
8/19/22	E1	Plectroglyphidodon johnstonianus	1	8	0.08	С	Ι
8/19/22	E1	Chaetodon auriga	1	20	1.23	SI	Ι
8/19/22	E1	Chaetodon quadrimaculatus	2	13	0.77	С	Ι
8/19/22	E1	Chaetodon lunula	1	20	0.81	SI	Ι
8/19/22	E1	Acanthurus olivaceus	2	25	3.08	Н	Ι
8/19/22	E1	Canthigaster jactator	5	5	0.11	Н	Е
8/19/22	E1	Acanthurus blochii	5	30	6.66	Н	Ι
8/19/22	E1	Acanthurus leucopareius	2	23	4.32	Н	Ι
8/19/22	E1	Lutjanus fulvus	1	20	0.42	MI	Х
8/19/22	E1	Acanthurus nigrofuscus	20	10	2.29	Н	Ι
8/19/22	E1	Scarus rubroviolaceus	1	51	19.03	Н	Ι
8/19/22	E1	Thalassoma duperrey	4	10	0.28	MI	Е
8/19/22	E1	Thalassoma duperrey	2	13	0.32	MI	Е
8/19/22	E1	Stethojulis balteata	1	10	0.09	MI	Е
8/19/22	E1	Labroides phthirophagus	1	8	0.02	Р	Е
8/19/22	E1	Halichoeres ornatissimus	1	10	0.06	MI	Ι
8/19/22	E1	Halichoeres ornatissimus	1	3	0.01	MI	Ι
8/19/22	E3	Canthigaster jactator	8	5	0.18	Н	Е
8/19/22	E3	Chaetodon multicinctus	2	10	0.29	С	Е
8/19/22	E3	Stethojulis balteata	1	10	0.09	MI	Е
8/19/22	E3	Sufflamen bursa	2	18	1.57	MI	Ι
8/19/22	E3	Thalassoma duperrey	2	15	0.50	MI	Е
8/19/22	E3	Thalassoma duperrey	30	10	2.11	MI	Е
8/19/22	E3	Thalassoma duperrey	25	13	3.98	MI	Е
8/19/22	E3	Plectroglyphidodon imparipennis	1	5	0.02	MI	Ι
8/19/22	E3	Parupeneus multifasciatus	2	13	0.34	MI	Ι
8/19/22	E3	Plectroglyphidodon johnstonianus	7	8	0.53	С	Ι
8/19/22	E3	Acanthurus nigrofuscus	10	8	0.61	н	I
8/19/22	E3	Acanthurus nigrofuscus	20	10	2.29	Н	I
8/19/22	E3	Acanthurus nigrofuscus	1	5	0.02	Н	I
	-		-	-			•

8/19/22	E3	Ctenochaetus strigosus	25	8	1.94	D	Ι
8/19/22	E3	Ctenochaetus strigosus	20	10	3.12	D	Ι
8/19/22	E3	Halichoeres ornatissimus	2	10	0.12	MI	Ι
8/19/22	E3	Acanthurus blochii	3	30	3.99	Н	Ι
8/19/22	E3	Stegastes fasciolatus	2	8	0.15	Н	Ι
8/19/22	E3	Chaetodon ornatissimus	2	20	3.03	С	Ι
8/19/22	E3	Pseudocheilinus octotaenia	1	10	0.09	MI	Ι
8/19/22	E3	Acanthurus olivaceus	4	28	8.71	Н	Ι
8/19/22	E4	Plectroglyphidodon imparipennis	2	5	0.04	MI	Ι
8/19/22	E4	Melichthys vidua	1	23	2.11	Н	Ι
8/19/22	E4	Plectroglyphidodon johnstonianus	4	8	0.30	С	Ι
8/19/22	E4	Rhinecanthus rectangulus	3	18	2.36	MI	I
8/19/22	E4	Pseudocheilinus tetrataenia	3	5	0.03	MI	I
8/19/22	E4	Zebrasoma flavescens	2	18	1.76	Н	I
8/19/22	E4	Zebrasoma flavescens	1	5	0.04	Н	I
8/19/22	E4	Acanthurus nigrofuscus	5	10	0.57	Н	I
8/19/22	E4	Acanthurus nigrofuscus	5	8	0.30	Н	I
8/19/22	E4	Chromis vanderbilti	40	3	0.12	Z	I
8/19/22	E4	Naso lituratus	2	25	3.23	Н	I
8/19/22	E4	Paracirrhites arcatus	5	8	0.29	MI	I
8/19/22	E4	Acanthurus olivaceus	4	28	8.71	Н	I
8/19/22	E4	Acanthurus nigroris	1	10	0.11	Н	I
8/19/22	E4	Sufflamen fraenatus	1	23	1.58	MI	I
8/19/22	E4	Thalassoma duperrey	2	15	0.50	MI	E
8/19/22	E4	Thalassoma duperrey	2	10	0.14	MI	E
8/19/22	E4	Melichthys niger	1	23	1.83	Н	I
8/19/22	E4	Canthigaster jactator	1	3	0.01	Н	E
8/19/22	E4	Canthigaster jactator	1	5	0.02	Н	E
8/19/22	E4	Parupeneus multifasciatus	1	13	0.17	MI	I
8/19/22	E4	Stethojulis balteata	1	10	0.09	MI	E
8/19/22	1D	Melichthys niger	5	23	9.16	Н	Ι
8/19/22	1D	Acanthurus triostegus	10	13	2.50	Н	Ι
8/19/22	1D	Acanthurus triostegus	1	10	0.10	Н	Ι
8/19/22	1D	Acanthurus nigroris	1	13	0.24	Н	I
8/19/22	1D	Acanthurus nigroris	2	18	1.22	Н	Ι
8/19/22	1D	Thalassoma duperrey	30	15	7.46	MI	Е
8/19/22	1D	Thalassoma duperrey	35	13	5.57	MI	Е
8/19/22	1D	Monotaxis grandoculis	10	25	18.10	MI	I
8/19/22	1D	Parupeneus bifasciatus	1	13	0.26	MI	I
8/19/22	1D	Stegastes fasciolatus	2	8	0.15	Н	I
8/19/22	1D	Acanthurus nigrofuscus	40	10	4.59	Н	I
			~				


8/19/22	1D	Parupeneus multifasciatus	3	13	0.51	MI	Ι
8/19/22	1D	Parupeneus multifasciatus	1	10	0.08	MI	Ι
8/19/22	1D	Gomphosus varius	2	10	0.13	MI	Ι
8/19/22	1D	Gomphosus varius	1	8	0.04	MI	Ι
8/19/22	1D	Abudefduf vaigiensis	13	5	0.67	Z	Ι
8/19/22	1D	Chaetodon quadrimaculatus	3	13	1.16	С	Ι
8/19/22	1D	Canthigaster jactator	5	5	0.11	Н	Е
8/19/22	1D	Ctenochaetus strigosus	15	10	2.34	D	Ι
8/19/22	1D	Ctenochaetus strigosus	20	13	7.07	D	Ι
8/19/22	1D	Plectroglyphidodon imparipennis	1	3	0.00	MI	Ι
8/19/22	1D	Paracirrhites forsteri	1	13	0.22	Р	Ι
8/19/22	1D	Stethojulis balteata	2	10	0.19	MI	Е
8/19/22	1D	Cirripectes vanderbilti	1	8	0.02	Н	Е
8/19/22	1D	Plectroglyphidodon johnstonianus	1	5	0.02	С	I
8/19/22	1D 1D	Abudefduf abdominalis	1	13	0.32	z	I E
8/19/22	1D 1D	Acanthurus olivaceus	4	13	0.32	н	I
8/19/22	5B	Acanthurus nigrofuscus	50	10	5.73	н	I
8/19/22	5B	Acanthurus nigrofuscus	1	8	0.06	н	I
8/19/22	5B	Chlorurus sordidus	1	30	4.40	н	I
8/19/22	5B 5B	Coris venusta	1	13	0.16	MI	I E
8/19/22	5B 5B	Labroides phthirophagus	1	8	0.02	Р	E
8/19/22	5B 5B	Chromis vanderbilti	180	3	0.53	Z	I
8/19/22	5B 5B	Thalassoma duperrey	25	10	1.75	MI	I E
8/19/22	5B 5B	Thalassoma duperrey	10	10	2.49	MI	E
8/19/22	5B 5B	Thalassoma duperrey	10	13	1.59	MI	E
8/19/22	5B 5B	Cantherhines sandwichiensis	10	13	0.28	Н	E
8/19/22	5B 5B	Pervagor aspricaudus	2	8	0.28	н	I
8/19/22	5B	Parupeneus multifasciatus	2	13	0.34	MI	I
8/19/22	5B	Parupeneus multifasciatus	2	15	0.54	MI	I
8/19/22	5B	Naso lituratus	1	13	0.21	Н	I
8/19/22	5B 5B	Chaetodon multicinctus	2	10	0.21	C	E
8/19/22	5B	Naso unicornis	1	13	0.25	н	I
8/19/22	5B 5B	Cirrhitops fasciatus	1	8	0.05	MI	I
8/19/22	5B	Abudefduf abdominalis	1	13	0.32	Z	E
8/19/22	5B 5B	Paracirrhites arcatus	3	8	0.32	MI	I
8/19/22	5B	Rhinecanthus rectangulus	3	18	2.36	MI	I
8/19/22	5B 5B	Zanclus cornutus	1	18	0.88	SI	I
8/19/22	5B 5B	Acanthurus nigroris	1	10	0.88	H	I
8/19/22	5B 5B	Sufflamen bursa	1	10	0.79	п MI	I
8/19/22		Plectroglyphidodon					
	5B	johnstonianus	7	5	0.12	С	Ι

8/19/22	5B	Plectroglyphidodon johnstonianus	5	8	0.38	С	Ι
8/19/22	5B	Plectroglyphidodon imparipennis	10	3	0.04	MI	Ι
8/19/22	5B	Plectroglyphidodon imparipennis	10	5	0.18	MI	I
8/19/22	5B	Canthigaster amboinensis	1	5	0.05	Н	I
8/19/22	5B	Canthigaster amboinensis	1	8	0.14	Н	Ι
8/19/22	5B	Canthigaster amboinensis	1	10	0.23	Н	Ι
8/19/22	5B	Stethojulis balteata	1	8	0.05	MI	Е
8/19/22	5B	Paracirrhites forsteri	1	10	0.10	Р	Ι
8/19/22	5B	Stegastes fasciolatus	1	5	0.02	Н	Ι
8/19/22	5B	Aulostomus chinensis	1	15	0.02	Р	Ι
8/19/22	5B	Cirripectes vanderbilti	1	8	0.02	Н	Е
8/19/22	5B	Canthigaster jactator	6	5	0.14	Н	Е
8/19/22	5B	Halichoeres ornatissimus	1	13	0.10	MI	Ι
8/19/22	5B	Halichoeres ornatissimus	3	8	0.12	MI	Ι
8/19/22	5B	Exallias brevis	1	10	0.09	С	Ι
8/19/22	5B	Parupeneus pleurostigma	1	13	0.21	MI	Ι
8/19/22	5B	Ostracion meleagris	1	8	0.08	SI	Ι
8/19/22	5B	Ostracion meleagris	2	5	0.03	SI	Ι
8/19/22	5B	Synodus binotatus	1	10	0.04	Р	Ι
8/19/22	5B	Scarus psittacus	3	8	0.15	Н	Ι
8/19/22	PIPE	Acanthurus nigrofuscus	350	10	40.12	Н	Ι
8/19/22	PIPE	Zebrasoma flavescens	2	10	0.41	Н	Ι
8/19/22	PIPE	Thalassoma duperrey	10	10	0.70	MI	Е
8/19/22	PIPE	Thalassoma duperrey	40	13	6.36	MI	Е
8/19/22	PIPE	Thalassoma duperrey	60	15	14.92	MI	Е
8/19/22	PIPE	Scarus psittacus	1	10	0.10	Н	Ι
8/19/22	PIPE	Dascyllus albisella	15	10	2.54	Ζ	E
8/19/22	PIPE	Thalassoma trilobatum	4	20	2.73	MI	Ι
8/19/22	PIPE	Thalassoma trilobatum	2	25	2.64	MI	Ι
8/19/22	PIPE	Chromis agilis	1	8	0.06	Ζ	Ι
8/19/22	PIPE	Melichthys vidua	1	23	2.11	Н	Ι
8/19/22	PIPE	Coris gaimard	1	30	2.36	MI	Ι
8/19/22	PIPE	Acanthurus guttatus	12	23	25.93	Н	Ι
8/19/22	PIPE	Aulostomus chinensis	1	36	0.39	Р	Ι
8/19/22	PIPE	Chromis vanderbilti	60	3	0.18	Ζ	Ι
8/19/22	PIPE	Cephalopholis argus	1	28	1.91	Р	Х
8/19/22	PIPE	Gomphosus varius	8	10	0.54	MI	Ι
8/19/22	PIPE	Gomphosus varius	3	15	0.55	MI	Ι
8/19/22	PIPE	Pervagor aspricaudus	5	8	0.27	Н	Ι
8/19/22	PIPE	Lutjanus kasmira	650	15	184.28	MI	Х

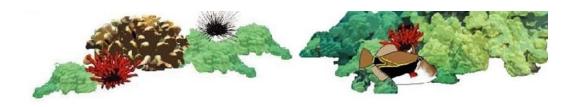
8/19/22	PIPE	Parupeneus multifasciatus	5	13	0.86	MI	Ι
8/19/22	PIPE	Parupeneus multifasciatus	5	15	1.34	MI	Ι
8/19/22	PIPE	Parupeneus bifasciatus	1	15	0.41	MI	Ι
8/19/22	PIPE	Parupeneus bifasciatus	4	13	1.06	MI	Ι
8/19/22	PIPE	Ctenochaetus strigosus	3	10	0.47	D	Ι
8/19/22	PIPE	Ctenochaetus strigosus	1	15	0.55	D	Ι
8/19/22	PIPE	Plectroglyphidodon johnstonianus	7	8	0.53	С	Ι
8/19/22	PIPE	Plectroglyphidodon johnstonianus	3	5	0.05	С	Ι
8/19/22		Forcipiger flavissimus	3	13	0.45	SI	I
8/19/22		Chaetodon quadrimaculatus	1	13	0.39	C	I
8/19/22		Cirrhitops fasciatus	1	10	0.11	MI	I
8/19/22		Stegastes fasciolatus	4	8	0.30	Н	I
8/19/22		Parupeneus pleurostigma	6	13	1.24	MI	I
8/19/22		Chaetodon fremblii	1	13	0.28	SI	E
8/19/22		Chaetodon miliaris	1	13	0.20	Z	E
8/19/22		Stethojulis balteata	2	10	0.19	MI	E
8/19/22		Stethojulis balteata	2	10	0.43	MI	E
8/19/22		Abudefduf vaigiensis	65	13	40.65	Z	I
8/19/22		Naso annulatus	3	33	8.79	Z	I
8/19/22		Naso annulatus	1	38	4.37	Z	I
8/19/22		Canthigaster amboinensis	1	8	0.14	H	I
8/19/22		Abudefduf abdominalis	55	15	25.26	Z	E
8/19/22		Naso brevirostris	1	33	4.09	Z	I
8/19/22		Melichthys niger	4	23	7.33	H	I
8/19/22		Canthigaster jactator	16	5	0.36	Н	E
8/19/22		Thalassoma purpureum	2	28	3.79	MI	I
8/19/22		Thalassoma purpureum	2	23	2.01	MI	I
8/19/22		Chaetodon lunula	1	18	0.59	SI	I
8/19/22		Naso hexacanthus	1	15	0.40	Z	I
8/19/22		Chaetodon multicinctus	8	10	1.17	C	E
8/19/22		Chaetodon kleinii	4	10	0.54	Z	I
8/19/22		Chromis ovalis	10	13	2.08	Z	Ē
8/19/22		Chaetodon ornatissimus	2	20	3.03	C	I
8/19/22		Halichoeres ornatissimus	1	13	0.10	MI	I
8/19/22		Halichoeres ornatissimus	1	10	0.06	MI	I
8/19/22		Cirrhitus pinnulatus	1	13	0.29	MI	I
8/19/22		Cirrhitus pinnulatus	1	15	0.45	MI	I
8/19/22		Ostracion meleagris	1	5	0.02	SI	I
8/19/22		Thalassoma quinquevittatum	1	10	0.07	MI	I
8/19/22		Thalassoma quinquevittatum	3	13	0.48	MI	I
8/19/22		Thalassoma quinquevittatum	1	15	0.25	MI	I
			±		0.20		

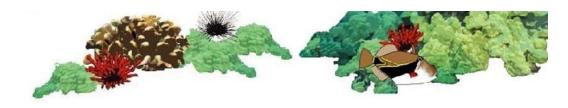
8/19/22	PIPE	Chlorurus sordidus	2	30	8.81	Н	Ι
8/19/22	PIPE	Chlorurus sordidus	1	25	2.39	Н	Ι
8/19/22	PIPE	Paracirrhites arcatus	5	8	0.29	MI	Ι
8/19/22	PIPE	Acanthurus leucopareius	1	20	1.41	Н	Ι
8/19/22	PIPE	Sufflamen bursa	4	18	3.14	MI	Ι
8/19/22	PIPE	Zanclus cornutus	6	18	5.31	SI	Ι
8/19/22	PIPE	Exallias brevis	1	10	0.09	С	Ι
8/19/22	PIPE	Mulloidichthys vanicolensis	25	15	6.42	MI	Ι
8/19/22	PIPE	Mulloidichthys vanicolensis	10	20	6.45	MI	Ι
8/19/22	PIPE	Mulloidichthys flavolineatus	15	5	0.16	MI	Ι
8/19/22	PIPE	Synodus dermatogenys	2	15	0.30	Р	Ι
8/19/22	KO1	Acanthurus nigrofuscus	7	8	0.42	Н	Ι
8/19/22	KO1	Acanthurus nigrofuscus	26	10	2.98	Н	Ι
8/19/22	KO1	Acanthurus nigrofuscus	6	12	1.16	Н	Ι
8/19/22	KO1	Acanthurus nigrofuscus	3	7	0.12	Н	Ι
8/19/22	KO1	Ctenochaetus strigosus	58	12	15.97	D	Ι
8/19/22	KO1	Ctenochaetus strigosus	8	7	0.41	D	Ι
8/19/22	KO1	Ctenochaetus strigosus	17	15	9.39	D	Ι
8/19/22	KO1	Ctenochaetus strigosus	13	10	2.03	D	Ι
8/19/22	KO1	Ctenochaetus strigosus	1	5	0.02	D	Ι
8/19/22	KO1	Ctenochaetus strigosus	2	20	2.71	D	Ι
8/19/22	KO1	Thalassoma duperrey	4	15	0.99	MI	Е
8/19/22	KO1	Thalassoma duperrey	5	12	0.62	MI	Е
8/19/22	KO1	Thalassoma duperrey	5	8	0.17	MI	Е
8/19/22	KO1	Thalassoma duperrey	4	6	0.06	MI	Е
8/19/22	KO1	Thalassoma duperrey	6	10	0.42	MI	Е
8/19/22	KO1	Plectroglyphidodon johnstonianus	2	6	0.06	С	Ι
8/19/22		Plectroglyphidodon					
8/19/22	KO1	johnstonianus Plectroglyphidodon	5	8	0.38	С	Ι
	KO1	johnstonianus	6	10	0.90	С	Ι
8/19/22	KO1	Melichthys vidua	1	20	1.47	Н	Ι
8/19/22	KO1	Melichthys vidua	1	22	1.88	Н	Ι
8/19/22	KO1	Sufflamen bursa	9	15	4.20	MI	Ι
8/19/22	KO1	Canthigaster jactator	6	4	0.08	Н	E
8/19/22	KO1	Canthigaster jactator	2	5	0.05	Н	E
8/19/22	KO1	Canthigaster jactator	1	3	0.01	Н	E
8/19/22	KO1	Stegastes fasciolatus	1	8	0.08	Н	Ι
8/19/22	KO1	Stethojulis balteata	1	10	0.09	MI	Е
8/19/22	KO1	Stethojulis balteata	1	20	0.83	MI	Е
8/19/22	KO1	Chaetodon multicinctus	6	10	0.88	С	Е
8/19/22	KO1	Paracirrhites forsteri	1	22	1.11	Р	Ι

8/19/22	KO1	Melichthys niger	8	23	14.66	Н	Ι
8/19/22	KO1	Chaetodon ornatissimus	2	20	3.03	С	Ι
8/19/22	KO1	Gomphosus varius	1	12	0.11	MI	Ι
8/19/22	KO1	Thalassoma ballieui	1	22	0.90	MI	Е
8/19/22	KO1	Zebrasoma flavescens	9	4	0.19	Н	Ι
8/19/22	KO1	Zebrasoma flavescens	5	6	0.29	Н	Ι
8/19/22	KO1	Zebrasoma flavescens	4	20	4.58	Н	Ι
8/19/22	KO1	Zebrasoma flavescens	5	5	0.18	Н	Ι
8/19/22	KO1	Zebrasoma flavescens	2	12	0.64	Н	Ι
8/19/22	KO1	Labroides phthirophagus	2	8	0.03	Р	Е
8/19/22	KO1	Labroides phthirophagus	1	7	0.01	Р	Е
8/19/22	KO1	Lutjanus kasmira	46	20	36.42	MI	Х
8/19/22	KO1	Chromis vanderbilti	4	4	0.03	Z	Ι
8/19/22	KO1	Aulostomus chinensis	1	33	0.29	Р	Ι
8/19/22	KO1	Aulostomus chinensis	1	30	0.21	Р	Ι
8/19/22	KO1	Naso lituratus	1	24	1.42	Н	Ι
8/19/22	KO1	Monotaxis grandoculis	2	23	2.77	MI	Ι
8/19/22	KO1	Monotaxis grandoculis	6	20	5.28	MI	Ι
8/19/22	KO1	Parupeneus cyclostomus	1	21	1.70	Р	Ι
8/19/22	KO1	Parupeneus multifasciatus	1	15	0.27	MI	Ι
8/19/22	KO1	Sargocentron spiniferum	1	35	4.32	MI	Ι
8/19/22	KO1	Sargocentron spiniferum	1	30	2.95	MI	Ι
8/19/22	KO1	Chaetodon quadrimaculatus	1	15	0.61	С	Ι
8/19/22	KO1	Cirrhitus pinnulatus	1	12	0.22	MI	Ι
8/19/22	KO1	Acanthurus nigricans	1	15	0.32	Н	Ι
8/19/22	KO1	Lutjanus fulvus	1	24	0.72	MI	Х
8/19/22	KO1	Forcipiger flavissimus	1	12	0.12	SI	Ι
8/19/22	KO2	Acanthurus nigrofuscus	40	10	4.59	Н	Ι
8/19/22	KO2	Acanthurus nigrofuscus	22	8	1.34	Н	Ι
8/19/22	KO2	Acanthurus nigrofuscus	3	12	0.58	Н	Ι
8/19/22	KO2	Ctenochaetus strigosus	7	10	1.09	D	Ι
8/19/22	KO2	Ctenochaetus strigosus	10	6	0.32	D	Ι
8/19/22	KO2	Ctenochaetus strigosus	5	12	1.38	D	Ι
8/19/22	KO2	Ctenochaetus strigosus	6	20	8.13	D	Ι
8/19/22	KO2	Ctenochaetus strigosus	15	16	10.14	D	Ι
8/19/22	KO2	Ctenochaetus strigosus	5	4	0.04	D	Ι
8/19/22	KO2	Ctenochaetus strigosus	1	3	0.00	D	I
8/19/22	KO2	Plectroglyphidodon imparipennis	10	4	0.09	MI	I
8/19/22		Plectroglyphidodon					
0.17122	KO2	imparipennis	4	6	0.12	MI	Ι

CIP Generating Station Project 2022 Community Benefits Program Reef Fishes Monitoring

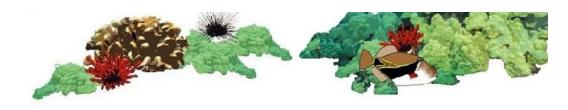

8/19/22	KO2	Canthigaster jactator	5	4	0.06	Н	Е
8/19/22	KO2	Canthigaster jactator	1	6	0.04	Н	Е
8/19/22	KO2	Zebrasoma flavescens	9	5	0.33	Н	Ι
8/19/22	KO2	Zebrasoma flavescens	1	10	0.20	Н	Ι
8/19/22	KO2	Zebrasoma flavescens	4	15	2.24	Н	Ι
8/19/22	KO2	Chaetodon unimaculatus	3	15	1.75	С	Ι
8/19/22	KO2	Thalassoma duperrey	7	8	0.24	MI	Е
8/19/22	KO2	Thalassoma duperrey	8	10	0.56	MI	Е
8/19/22	KO2	Thalassoma duperrey	4	15	0.99	MI	Е
8/19/22	KO2	Thalassoma duperrey	5	6	0.07	MI	Е
8/19/22	KO2	Thalassoma duperrey	3	12	0.37	MI	Е
8/19/22	KO2	Chaetodon multicinctus	5	10	0.73	С	Е
8/19/22	KO2	Chaetodon multicinctus	4	12	1.01	С	Е
8/19/22	KO2	Melichthys niger	4	22	6.50	Н	Ι
8/19/22	KO2	Melichthys niger	13	24	26.74	Н	Ι
8/19/22	KO2	Melichthys vidua	4	26	11.58	Н	Ι
8/19/22	KO2	Plectroglyphidodon johnstonianus Plactroglyphidodon	6	6	0.19	С	Ι
8/19/22	KO2	Plectroglyphidodon johnstonianus	2	8	0.15	С	Ι
8/19/22	KO2	Stethojulis balteata	1	6	0.02	MI	Е
8/19/22	KO2	Stethojulis balteata	1	10	0.09	MI	Е
8/19/22	KO2	Cephalopholis argus	1	24	1.20	Р	Х
8/19/22	KO2	Labroides phthirophagus	2	8	0.03	Р	Е
8/19/22	KO2	Acanthurus nigricans	1	18	0.55	Н	Ι
8/19/22	KO2	Acanthurus nigricans	1	16	0.39	Н	Ι
8/19/22	KO2	Acanthurus nigricans	1	8	0.05	Н	Ι
8/19/22	KO2	Gomphosus varius	1	12	0.11	MI	Ι
8/19/22	KO2	Acanthurus triostegus	1	10	0.10	Н	Ι
8/19/22	KO2	Scarus psittacus	2	20	2.08	Н	Ι
8/19/22	KO2	Scarus psittacus	1	25	2.17	Н	Ι
8/19/22	KO2	Zanclus cornutus	2	16	1.26	SI	Ι
8/19/22	KO2	Parupeneus multifasciatus	3	10	0.23	MI	Ι
8/19/22	KO2	Parupeneus multifasciatus	1	12	0.13	MI	Ι
8/19/22	KO2	Sufflamen bursa	4	15	1.87	MI	Ι
8/19/22	KO2	Parupeneus bifasciatus	1	20	1.00	MI	Ι
8/19/22	KO2	Stegastes fasciolatus	1	9	0.11	Н	Ι
8/19/22	KO2	Chromis vanderbilti	35	4	0.24	Z	Ι
8/19/22	KO2	Forcipiger flavissimus	2	17	0.70	SI	Ι
8/19/22	KO2	Paracirrhites arcatus	1	8	0.06	MI	Ι

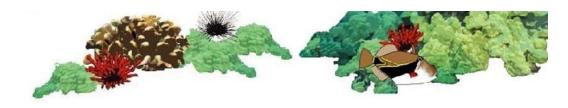

8/19/22	KO2	Paracirrhites arcatus	1	4	0.00	MI	Ι
8/19/22	KO2	Acanthurus triostegus	2	15	0.82	Н	Ι
8/19/22	KO2	Chaetodon ornatissimus	3	16	2.29	С	Ι
8/19/22	KO2	Chaetodon ornatissimus	1	20	1.51	С	Ι
8/19/22	KO2	Chaetodon ephippium	2	20	2.07	MI	Ι
8/19/22	KO2	Sufflamen fraenatus	2	24	3.58	MI	Ι
8/19/22	KO2	Monotaxis grandoculis	1	22	1.20	MI	Ι
8/19/22	KO2	Gomphosus varius	2	12	0.21	MI	Ι
8/19/22	KO2	Gomphosus varius	1	15	0.18	MI	Ι
8/19/22	KO2	Gomphosus varius	2	10	0.13	MI	Ι
8/19/22	KO2	Gomphosus varius	1	6	0.02	MI	Ι
8/19/22	7B	Chromis vanderbilti	103	4	0.71	Z	Ι
8/19/22	7B	Chromis vanderbilti	20	3	0.06	Z	Ι
8/19/22	7B	Chromis vanderbilti	40	2	0.03	Z	Ι
8/19/22	7B	Thalassoma duperrey	1	15	0.25	MI	Е
8/19/22	7B	Thalassoma duperrey	2	10	0.14	MI	Е
8/19/22	7B	Thalassoma duperrey	1	20	0.61	MI	Е
8/19/22	7B	Sargocentron xantherythrum	1	12	0.17	MI	
8/19/22	7B	Stethojulis balteata	1	12	0.17	MI	Е
8/19/22	7B	Stethojulis balteata	2	10	0.19	MI	Е
8/19/22	7B	Parupeneus multifasciatus	4	15	1.07	MI	Ι
8/19/22	7B	Parupeneus multifasciatus	1	20	0.66	MI	Ι
8/19/22	7B	Lutjanus kasmira	1	20	0.79	MI	Х
8/19/22	7B	Zanclus cornutus	3	15	1.57	SI	Ι
8/19/22	7B	Zanclus cornutus	1	16	0.63	SI	Ι
8/19/22	7B	Apogon menesemus	1	14	0.26	MI	Е
8/19/22	7B	Apogon kallopterus	1	12	0.18	MI	Ι
8/19/22	7B	Naso lituratus Blastnoolumbido don	2	8	0.09	Н	Ι
8/19/22	7B	Plectroglyphidodon johnstonianus	2	8	0.15	С	Ι
8/19/22	7B	Plectroglyphidodon johnstonianus	2	4	0.02	С	Ι
8/19/22	7B	Dascyllus albisella	6	12	1.86	Z	Е
8/19/22	7B	Dascyllus albisella	2	6	0.06	Z	Е
8/19/22	7B	Ctenochaetus strigosus	1	8	0.08	D	I
8/19/22	7B	Ctenochaetus strigosus	3	6	0.10	D	Ι
8/19/22	7B	Chaetodon multicinctus	2	8	0.15	С	Е
8/19/22	7B	Oxycheilinus bimaculatus	1	5	0.00	MI	Ι
8/19/22	7B	Parupeneus pleurostigma	2	10	0.19	MI	Ι
8/19/22	7B	Canthigaster jactator	3	4	0.04	Н	Е


8/19/22	7B	Acanthurus nigrofuscus	5	8	0.30	Н	Ι
8/19/22	7B	Acanthurus nigrofuscus	8	12	1.54	Н	Ι
8/19/22	7B	Acanthurus nigrofuscus	3	10	0.34	Н	Ι
8/19/22	7B	Sufflamen bursa	8	15	3.73	MI	Ι
8/19/22	7B	Acanthurus olivaceus	1	22	1.04	Н	Ι
8/19/22	7B	Acanthurus olivaceus	3	12	0.49	Н	Ι
8/19/22	7B	Plectroglyphidodon imparipennis	1	4	0.01	MI	Ι
8/19/22	7B	Parupeneus cyclostomus	1	20	1.41	Р	Ι
8/19/22	7B	Paracirrhites arcatus	1	5	0.01	MI	Ι
8/19/22	7B	Gomphosus varius	1	22	0.48	MI	Ι
8/19/22	7B	Canthigaster jactator	1	6	0.04	Н	Е
8/19/22	7B	Naso unicornis	1	18	0.62	Н	Ι
8/19/22	7E	Thalassoma duperrey	5	12	0.62	MI	Е
8/19/22	7E	Thalassoma duperrey	1	20	0.61	MI	Е
8/19/22	7E	Thalassoma duperrey	2	5	0.02	MI	Е
8/19/22	7E	Thalassoma duperrey	3	18	1.32	MI	Е
8/19/22	7E	Thalassoma duperrey	1	10	0.07	MI	Е
8/19/22	7E	Sufflamen bursa	7	15	3.26	MI	Ι
8/19/22	7E	Sufflamen bursa	4	18	3.14	MI	Ι
8/19/22	7E	Chaetodon miliaris	4	10	0.56	Ζ	Е
8/19/22	7E	Chaetodon miliaris	1	6	0.03	Ζ	Е
8/19/22	7E	Chaetodon miliaris	2	5	0.04	Ζ	Е
8/19/22	7E	Parupeneus multifasciatus	4	12	0.53	MI	Ι
8/19/22	7E	Parupeneus multifasciatus	1	21	0.77	MI	Ι
8/19/22	7E	Parupeneus multifasciatus	2	15	0.54	MI	Ι
8/19/22	7E	Parupeneus multifasciatus	3	10	0.23	MI	Ι
8/19/22	7E	Paracirrhites arcatus	4	6	0.08	MI	Ι
8/19/22	7E	Canthigaster jactator	1	5	0.02	Н	Е
8/19/22	7E	Canthigaster jactator	3	4	0.04	Н	Е
8/19/22	7E	Chromis vanderbilti	20	3	0.06	Ζ	Ι
8/19/22	7E	Chromis vanderbilti	10	2	0.01	Ζ	Ι
8/19/22	7E	Chromis vanderbilti	10	4	0.07	Ζ	Ι
8/19/22	7E	Parupeneus cyclostomus	2	15	0.94	Р	Ι
8/19/22	7E	Plagiotremus goslinei	1	7	0.01	Р	Е
8/19/22	7E	Ostracion meleagris	1	8	0.08	SI	Ι
8/19/22	7E	Xyrichtys umbrilatus	1	6	0.01	MI	Е
8/19/22	7E	Pseudojuloides cerasinus	5	6	0.07	MI	Ι
8/19/22	7E	Oxycheilinus bimaculatus	3	5	0.01	MI	Ι

8/19/22	7E	Melichthys vidua	1	24	2.36	Н	Ι
8/19/22	7E	Acanthurus olivaceus	2	25	3.08	Н	Ι
8/19/22	7E	Chromis vanderbilti	110	4	0.76	Z	Ι
8/19/22	7E	Chromis vanderbilti	65	5	0.87	Z	Ι
8/19/22	7E	Chromis vanderbilti	30	2	0.03	Z	Ι
8/19/22	7E	Acanthurus nigrofuscus	1	10	0.11	Н	Ι
8/19/22	7E	Acanthurus nigrofuscus	1	5	0.02	Н	Ι
8/19/22	7E	Parupeneus multifasciatus	2	8	0.08	MI	Ι
8/19/22	7E	Canthigaster coronata	1	7	0.05	SI	Ι
8/19/22	7E	Canthigaster coronata	1	9	0.11	SI	Ι
8/19/22	7E	Halichoeres ornatissimus	1	12	0.08	MI	Ι
8/19/22	7E	Centropyge potteri	1	8	0.11	Н	Е
8/19/22	NANA1	Chromis vanderbilti	1	5	0.01	Z	Ι
8/19/22	NANA1	Chromis vanderbilti	4	4	0.03	Z	Ι
8/19/22	NANA1	Chromis vanderbilti	5	2	0.00	Z	Ι
8/19/22	NANA1	Chromis vanderbilti	12	3	0.04	Z	Ι
8/19/22	NANA1	Cirripectes vanderbilti	1	8	0.02	Н	Е
8/19/22	NANA1	Ctenochaetus strigosus	1	3	0.00	D	Ι
8/19/22	NANA1	Parupeneus bifasciatus	1	4	0.01	MI	Ι
8/19/22	NANA1	Plectroglyphidodon imparipennis	6	4	0.05	MI	Ι
8/19/22	NANA1	Parupeneus multifasciatus	4	8	0.15	MI	Ι
8/19/22	NANA1	Parupeneus multifasciatus	5	14	1.08	MI	Ι
8/19/22	NANA1	Parupeneus multifasciatus	2	16	0.66	MI	Ι
8/19/22	NANA1	Parupeneus multifasciatus	1	6	0.02	MI	Ι
8/19/22	NANA1	Thalassoma duperrey	4	6	0.06	MI	Е
8/19/22	NANA1	Thalassoma duperrey	10	3	0.02	MI	Е
8/19/22	NANA1	Rhinecanthus rectangulus	3	20	3.19	MI	Ι
8/19/22	NANA1	Rhinecanthus rectangulus	1	22	1.39	MI	Ι
8/19/22	NANA1	Thalassoma ballieui	1	18	0.47	MI	Е
8/19/22	NANA1	Thalassoma ballieui	1	14	0.21	MI	Е
8/19/22	NANA1	Canthigaster jactator	1	6	0.04	Н	Е
8/19/22	NANA1	Canthigaster jactator	1	4	0.01	Н	Е
8/19/22	NANA1	Chaetodon quadrimaculatus	2	10	0.34	С	Ι
8/19/22	NANA1	Stethojulis balteata	2	10	0.19	MI	Е
8/19/22	NANA1	Ostracion meleagris	1	12	0.28	SI	Ι
8/19/22	NANA1	Thalassoma trilobatum	2	15	0.58	MI	Ι
8/19/22	NANA1	Thalassoma trilobatum	2	10	0.17	MI	Ι
8/19/22	NANA2	Parupeneus multifasciatus	5	15	1.34	MI	Ι

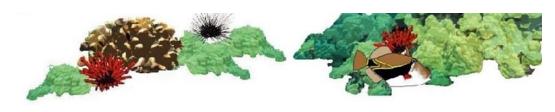
8/19/22	NANA2	Thalassoma duperrey	3	12	0.37	MI	Е
8/19/22	NANA2	Thalassoma duperrey	7	10	0.49	MI	Е
8/19/22	NANA2	Thalassoma duperrey	2	15	0.50	MI	Е
8/19/22	NANA2	Acanthurus nigrofuscus	9	12	1.73	Н	Ι
8/19/22	NANA2	Acanthurus nigrofuscus	7	8	0.42	Н	Ι
8/19/22	NANA2	Acanthurus nigrofuscus	1	14	0.30	Н	Ι
8/19/22	NANA2	Acanthurus nigrofuscus	2	6	0.05	Н	Ι
8/19/22	NANA2	Acanthurus nigrofuscus	5	8	0.30	Н	Ι
8/19/22	NANA2	Acanthurus nigrofuscus	1	4	0.01	Н	Ι
8/19/22	NANA2	Canthigaster jactator	3	6	0.11	Н	Е
8/19/22	NANA2	Canthigaster jactator	1	3	0.01	Н	Е
8/19/22	NANA2	Plectroglyphidodon imparipennis	1	4	0.01	MI	Ι
8/19/22	NANA2	Chaetodon ornatissimus	2	20	3.03	С	Ι
8/19/22	NANA2	Chaetodon ornatissimus	3	16	2.29	С	Ι
8/19/22	NANA2	Chaetodon ornatissimus	1	5	0.02	С	Ι
8/19/22	NANA2	Stethojulis balteata	7	8	0.32	MI	Е
8/19/22	NANA2	Parupeneus cyclostomus	1	8	0.04	Р	Ι
8/19/22	NANA2	Stegastes fasciolatus	1	8	0.08	Н	Ι
8/19/22	NANA2	Acanthurus triostegus	4	16	2.05	Н	Ι
8/19/22	NANA2	Acanthurus olivaceus	2	23	2.39	Н	Ι
8/19/22	NANA2	Acanthurus olivaceus	3	25	4.62	Н	Ι
8/19/22	NANA2	Acanthurus olivaceus	1	8	0.05	Н	Ι
8/19/22	NANA2	Acanthurus leucopareius	30	20	42.16	Н	Ι
8/19/22	NANA2	Naso lituratus	1	24	1.42	Н	Ι
8/19/22	NANA2	Melichthys vidua	1	25	2.62	Н	Ι
8/19/22	NANA2	Zebrasoma flavescens	2	15	1.12	Н	Ι
8/19/22	NANA2	Zebrasoma flavescens	3	6	0.17	Н	Ι
8/19/22	NANA2	Zebrasoma flavescens	2	4	0.04	Н	Ι
8/19/22	NANA2	Sufflamen bursa	4	16	2.24	MI	Ι
8/19/22	NANA2	Lutjanus fulvus	4	22	2.23	MI	Х
8/19/22	NANA2	Chaetodon quadrimaculatus	1	14	0.49	С	Ι
8/19/22	NANA2	Melichthys niger	2	24	4.11	Н	Ι
8/19/22	NANA2	Chaetodon multicinctus	2	10	0.29	С	Е
8/19/22	NANA2	Gomphosus varius	1	22	0.48	MI	Ι
8/19/22	NANA2	Gomphosus varius	1	10	0.07	MI	Ι
8/19/22	NANA2	Ctenochaetus strigosus	8	6	0.25	D	Ι
8/19/22	NANA2	Ctenochaetus strigosus	2	10	0.31	D	Ι
8/19/22	NANA2	Ctenochaetus strigosus	8	8	0.62	D	Ι


8/19/22	NANA2	Ctenochaetus strigosus	2	4	0.02	D	Ι
8/19/22	NANA2	Chromis hanui	3	6	0.05	Z	Е
8/19/22	NANA2	Chromis vanderbilti	25	5	0.34	Z	Ι
8/19/22	NANA2	Stegastes fasciolatus	1	8	0.08	Н	Ι
8/19/22	NANA2	Lutjanus fulvus	1	20	0.42	MI	х
8/19/22	NANA2	Cirrhitus pinnulatus	1	12	0.22	MI	Ι
8/19/22	NANA2	Macropharyngodon geoffroyi	1	8	0.06	MI	Е
10/31/22	KO1	Acanthurus nigrofuscus	5	8	0.30	Н	Ι
10/31/22	KO1	Acanthurus nigrofuscus	10	12	1.93	Н	Ι
10/31/22	KO1	Acanthurus nigrofuscus	5	10	0.57	Н	Ι
10/31/22	KO1	Thalassoma duperrey	5	15	1.24	MI	Е
10/31/22	KO1	Thalassoma duperrey	5	10	0.35	MI	Е
10/31/22	KO1	Thalassoma duperrey	5	4	0.02	MI	Е
10/31/22	KO1	Thalassoma duperrey	8	7	0.18	MI	Е
10/31/22	KO1	Thalassoma duperrey	11	18	4.83	MI	Е
10/31/22	KO1	Ctenochaetus strigosus	18	15	9.94	D	Ι
10/31/22	KO1	Ctenochaetus strigosus	23	12	6.33	D	Ι
10/31/22	KO1	Ctenochaetus strigosus	6	10	0.94	D	Ι
10/31/22	KO1	Ctenochaetus strigosus	2	8	0.16	D	Ι
10/31/22	KO1	Ctenochaetus strigosus	5	5	0.09	D	Ι
10/31/22	KO1	Ctenochaetus strigosus	1	15	0.55	D	Ι
10/31/22	KO1	Canthigaster jactator	1	4	0.01	Н	Е
10/31/22	KO1	Canthigaster jactator	2	3	0.01	Н	Е
10/31/22	KO1	Melichthys niger	9	24	18.51	Н	Ι
10/31/22	KO1	Chaetodon ornatissimus	1	16	0.76	С	Ι
10/31/22	KO1	Cirripectes vanderbilti	1	8	0.02	Н	Е
10/31/22	KO1	Plectroglyphidodon johnstonianus	1	5	0.02	С	Ι
10/31/22	KO1	Plectroglyphidodon johnstonianus	2	7	0.10	С	I
10/31/22	KO1	Stethojulis balteata	1	10	0.09	MI	Е
10/31/22	KO1	Stethojulis balteata	1	8	0.05	MI	Е
10/31/22	KO1	Stethojulis balteata	1	15	0.33	MI	Е
10/31/22	KO1	Lutjanus kasmira	5	22	5.56	MI	х
10/31/22	KO1	Sufflamen bursa	2	20	2.12	MI	Ι
10/31/22	KO1	Sufflamen bursa	1	18	0.79	MI	Ι
10/31/22	KO1	Chaetodon multicinctus	6	12	1.52	С	Е
10/31/22	KO1	Monotaxis grandoculis	3	15	1.04	MI	Ι
10/31/22	KO1	Lutjanus fulvus	2	24	1.45	MI	х
10/31/22	KO1	Labroides phthirophagus	1	8	0.02	Р	Е


10/31/22	KO1	Chaetodon quadrimaculatus	1	12	0.30	С	Ι
10/31/22	KO2	Thalassoma duperrey	6	15	1.49	MI	Е
10/31/22	KO2	Thalassoma duperrey	8	5	0.06	MI	Е
10/31/22	KO2	Thalassoma duperrey	14	12	1.74	MI	Е
10/31/22	KO2	Thalassoma duperrey	1	20	0.61	MI	Е
10/31/22	KO2	Ctenochaetus strigosus	13	6	0.41	D	Ι
10/31/22	KO2	Ctenochaetus strigosus	2	18	1.95	D	Ι
10/31/22	KO2	Ctenochaetus strigosus	2	14	0.89	D	Ι
10/31/22	KO2	Ctenochaetus strigosus	4	12	1.10	D	Ι
10/31/22	KO2	Ctenochaetus strigosus	3	8	0.23	D	Ι
10/31/22	KO2	Ctenochaetus strigosus	3	5	0.05	D	Ι
10/31/22	KO2	Sufflamen bursa	1	18	0.79	MI	Ι
10/31/22	KO2	Canthigaster jactator	2	4	0.03	Н	Е
10/31/22	KO2	Plectroglyphidodon imparipennis	9	4	0.08	MI	Ι
10/31/22	KO2	Plectroglyphidodon imparipennis	3	5	0.05	MI	Ι
10/31/22	KO2	Forcipiger flavissimus	1	16	0.29	SI	Ι
10/31/22	KO2	Acanthurus nigrofuscus	9	12	1.73	Н	Ι
10/31/22	KO2	Acanthurus nigrofuscus	12	10	1.38	Н	Ι
10/31/22	KO2	Acanthurus nigrofuscus	1	6	0.03	Н	Ι
10/31/22	KO2	Acanthurus nigrofuscus	1	15	0.36	Н	Ι
10/31/22	KO2	Plectroglyphidodon johnstonianus	1	4	0.01	С	Ι
10/31/22	KO2	Plectroglyphidodon johnstonianus	4	7	0.20	С	I
10/31/22	KO2	Plectroglyphidodon johnstonianus	2	5	0.04	С	Ι
10/31/22	KO2 KO2	Zebrasoma flavescens	2	10	0.41	Н	I
10/31/22	KO2	Zebrasoma flavescens	5	6	0.29	Н	I
10/31/22	KO2	Zebrasoma flavescens	2	15	1.12	Н	I
10/31/22	KO2	Zebrasoma flavescens	3	13	0.96	Н	I
10/31/22	KO2	Acanthurus nigroris	1	18	0.61	Н	I
10/31/22	KO2	Acanthurus blochii	1	18	0.29	Н	I
10/31/22	KO2	Acanthurus blochii	1	15	0.17	Н	I
10/31/22	KO2	Acanthurus leucopareius	1	16	0.71	Н	Ι
10/31/22	KO2	Chaetodon unimaculatus	2	15	1.17	С	Ι
10/31/22	KO2	Melichthys vidua	1	25	2.62	Н	Ι
10/31/22	KO2	Stethojulis balteata	2	7	0.06	MI	Е
10/31/22	KO2	Stethojulis balteata	1	10	0.09	MI	Е
10/31/22	KO2	Acanthurus olivaceus	2	24	2.72	Н	Ι
10/31/22	KO2	Gomphosus varius	1	8	0.04	MI	Ι
10/31/22	KO2	Chaetodon multicinctus	4	12	1.01	С	Е

10/31/22	KO2	Zanclus cornutus	2	18	1.77	SI	Ι
10/31/22	KO2	Chromis vanderbilti	20	4	0.14	Z	Ι
10/31/22	KO2	Chaetodon ornatissimus	2	20	3.03	С	Ι
10/31/22	5D	Exallias brevis	1	8	0.04	С	Ι
10/31/22	5D	Thalassoma duperrey	11	12	1.36	MI	Е
10/31/22	5D	Thalassoma duperrey	4	10	0.28	MI	Е
10/31/22	5D	Thalassoma duperrey	5	15	1.24	MI	Е
10/31/22	5D	Thalassoma duperrey	2	20	1.22	MI	Е
10/31/22	5D	Thalassoma duperrey	3	7	0.07	MI	Е
10/31/22	5D	Acanthurus nigrofuscus	16	12	3.08	Н	Ι
10/31/22	5D	Acanthurus nigrofuscus	63	11	9.48	Н	Ι
10/31/22	5D	Acanthurus nigrofuscus	2	5	0.03	Н	Ι
10/31/22	5D	Acanthurus nigrofuscus	3	7	0.12	Н	Ι
10/31/22	5D	Acanthurus nigrofuscus	12	10	1.38	Н	Ι
10/31/22	5D	Parupeneus multifasciatus	2	10	0.15	MI	Ι
10/31/22	5D	Parupeneus multifasciatus	1	8	0.04	MI	Ι
10/31/22	5D	Parupeneus multifasciatus	4	14	0.86	MI	Ι
10/31/22	5D	Parupeneus multifasciatus	2	20	1.32	MI	Ι
10/31/22	5D	Plectroglyphidodon johnstonianus	2	4	0.02	С	Ι
10/31/22	5D	Plectroglyphidodon johnstonianus	2	5	0.04	С	Ι
10/31/22	5D	Plectroglyphidodon johnstonianus	1	7	0.05	С	I
10/31/22	5D 5D	Acanthurus blochii	1	10	0.05	н	I
10/31/22	5D 5D	Acanthurus olivaceus	2	8	0.10	Н	I
10/31/22	5D	Chromis vanderbilti	111	3	0.32	Z	I
10/31/22	5D	Chromis vanderbilti	21	4	0.14	Z	I
10/31/22	5D	Stegastes fasciolatus	1	7	0.05	H	I
10/31/22	5D 5D	Pervagor spilosoma	3	10	0.30	Н	E
10/31/22	5D	Halichoeres ornatissimus	1	10	0.06	MI	I
10/31/22	5D	Canthigaster jactator	3	4	0.04	Н	E
10/31/22	5D	Forcipiger flavissimus	1	15	0.23	SI	I
10/31/22	5D	Forcipiger flavissimus	1	13	0.15	SI	I
10/31/22	5D	Cantherhines sandwichiensis	2	10	0.29	Н	E
10/31/22		Plectroglyphidodon					
10/31/22	5D	imparipennis Plectroglyphidodon	10	4	0.09	MI	Ι
10/31/22	5D	imparipennis	3	5	0.05	MI	Ι
10/31/22	5D	Stethojulis balteata	2	10	0.19	MI	E
10/31/22	5D	Stethojulis balteata	1	13	0.21	MI	Е
10/31/22	5D	Paracirrhites arcatus	1	7	0.03	MI	Ι
10/31/22	5D	Paracirrhites arcatus	1	5	0.01	MI	Ι

10/31/22	5D	Canthigaster amboinensis	2	8	0.28	Н	Ι
10/31/22	5D	Naso lituratus	3	6	0.06	Н	Ι
10/31/22	5D	Naso lituratus	2	8	0.09	Н	Ι
10/31/22	5D	Naso lituratus	10	10	0.94	Н	Ι
10/31/22	5D	Sufflamen bursa	1	4	0.01	MI	Ι
10/31/22	5D	Zanclus cornutus	1	15	0.52	SI	Ι
10/31/22	5D	Coris gaimard	3	8	0.09	MI	Ι
10/31/22	5D	Rhinecanthus rectangulus	1	20	1.06	MI	Ι
10/31/22	5D	Canthigaster jactator	1	3	0.01	Н	E
10/31/22	NANA2	Acanthurus nigrofuscus	3	3	0.01	Н	Ι
10/31/22	NANA2	Acanthurus nigrofuscus	38	10	4.36	Н	Ι
10/31/22	NANA2	Acanthurus nigrofuscus	30	5	0.48	Н	Ι
10/31/22	NANA2	Acanthurus nigrofuscus	7	12	1.35	Н	Ι
10/31/22	NANA2	Thalassoma duperrey	6	15	1.49	MI	E
10/31/22	NANA2	Thalassoma duperrey	1	12	0.12	MI	E
10/31/22	NANA2	Acanthurus blochii	1	10	0.05	Н	Ι
10/31/22	NANA2	Sufflamen bursa	1	14	0.38	MI	Ι
10/31/22	NANA2	Sufflamen bursa	3	18	2.36	MI	Ι
10/31/22	NANA2	Ctenochaetus strigosus	10	8	0.78	D	Ι
10/31/22	NANA2	Ctenochaetus strigosus	9	10	1.40	D	Ι
10/31/22	NANA2	Ctenochaetus strigosus	13	6	0.41	D	Ι
10/31/22	NANA2	Ctenochaetus strigosus	4	12	1.10	D	Ι
10/31/22	NANA2	Canthigaster jactator	1	3	0.01	Н	Е
10/31/22	NANA2	Paracirrhites arcatus	1	8	0.06	MI	Ι
10/31/22	NANA2	Paracirrhites arcatus	1	6	0.02	MI	Ι
10/31/22	NANA2	Stethojulis balteata	1	8	0.05	MI	Е
10/31/22	NANA2	Zebrasoma flavescens	4	8	0.47	Н	Ι
10/31/22	NANA2	Zebrasoma flavescens	1	3	0.01	Н	Ι
10/31/22	NANA2	Zebrasoma flavescens	5	4	0.10	Н	Ι
10/31/22	NANA2	Zebrasoma flavescens	1	20	1.15	Н	Ι
10/31/22	NANA2	Acanthurus achilles	1	12	0.30	Н	Ι
10/31/22	NANA2	Plectroglyphidodon johnstonianus	2	4	0.02	С	Ι
10/31/22	NANA2	Acanthurus leucopareius	9	18	9.14	Н	Ι
10/31/22	NANA2	Acanthurus leucopareius	12	20	16.86	Н	Ι
10/31/22	NANA2	Chaetodon multicinctus	3	8	0.22	С	Е
10/31/22	NANA2	Chaetodon multicinctus	2	5	0.04	С	Е
10/31/22	NANA2	Parupeneus multifasciatus	2	10	0.15	MI	Ι
10/31/22	NANA2	Parupeneus multifasciatus	2	15	0.54	MI	Ι

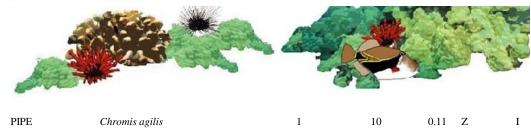

10/31/22	NANA2	Chaetodon ornatissimus	2	16	1.53	С	Ι
10/31/22	NANA2	Canthigaster jactator	5	3	0.03	Н	Е
10/31/22	NANA2	Canthigaster jactator	2	4	0.03	Н	Е
10/31/22	NANA2	Lutjanus fulvus	4	22	2.23	MI	Х
10/31/22	NANA2	Melichthys vidua	3	24	7.07	Н	Ι
10/31/22	NANA2	Parupeneus cyclostomus	2	14	0.72	Р	Ι
10/31/22	NANA2	Parupeneus cyclostomus	1	10	0.10	Р	Ι
10/31/22	NANA2	Forcipiger flavissimus	1	15	0.23	SI	Ι
10/31/22	NANA2	Stegastes fasciolatus	5	8	0.38	Н	Ι
10/31/22	NANA2	Stegastes fasciolatus	2	10	0.30	Н	Ι
10/31/22	NANA2	Stegastes fasciolatus	1	3	0.00	Н	Ι
10/31/22	NANA2	Cirripectes vanderbilti	1	8	0.02	Н	Е
10/31/22	NANA2	Chaetodon lunula	2	15	0.68	SI	Ι
10/31/22	NANA2	Halichoeres ornatissimus	1	12	0.08	MI	Ι
10/31/22	NANA2	Chromis vanderbilti	5	4	0.03	Z	Ι
10/31/22	NANA2	Zanclus cornutus	1	15	0.52	SI	Ι
10/31/22	NANA2	Naso brevirostris	8	25	14.89	Z	Ι
10/31/22	7B	Halichoeres ornatissimus	1	12	0.08	MI	Ι
10/31/22	7B	Halichoeres ornatissimus	1	10	0.06	MI	Ι
10/31/22	7B	Acanthurus nigrofuscus	9	12	1.73	Н	Ι
10/31/22	7B	Acanthurus nigrofuscus	7	10	0.80	Н	Ι
10/31/22	7B	Acanthurus nigrofuscus	8	6	0.21	Н	Ι
10/31/22	7B	Myripristis kuntee	2	12	0.37	Z	Ι
10/31/22	7B	Apogon kallopterus	2	12	0.35	MI	Ι
10/31/22	7B	Chromis vanderbilti	88	3	0.26	Z	Ι
10/31/22	7B	Chromis hanui	2	5	0.02	Z	Е
10/31/22	7B	Mulloidichthys vanicolensis	4	10	0.28	MI	Ι
10/31/22	7B	Mulloidichthys vanicolensis	1	14	0.21	MI	Ι
10/31/22	7B	Plectroglyphidodon imparipennis	2	4	0.02	MI	Ι
10/31/22	7B	Forcipiger flavissimus	5	15	1.17	SI	Ι
10/31/22	7B	Canthigaster jactator	4	4	0.05	Н	Е
10/31/22	7B	Acanthurus blochii	1	10	0.05	Н	Ι
10/31/22	7B	Acanthurus blochii	2	15	0.33	Н	Ι
10/31/22	7B	Oxycheilinus bimaculatus	1	6	0.01	MI	Ι
10/31/22	7B	Acanthurus triostegus	3	10	0.30	Н	Ι
10/31/22	7B	Fistularia commersonii	1	15	0.01	Р	Ι
10/31/22	7B	Zanclus cornutus	2	10	0.33	SI	Ι
10/31/22	7B	Ctenochaetus strigosus	4	6	0.13	D	Ι

10/31/22	7B	Cirrhitops fasciatus	1	8	0.05	MI	Ι
10/31/22	7B	Parupeneus bifasciatus	1	15	0.41	MI	Ι
10/31/22	7B	Centropyge potteri	1	7	0.08	Н	Е
10/31/22	7B	Stethojulis balteata	1	12	0.17	MI	Е
10/31/22	7B	Stethojulis balteata	1	10	0.09	MI	Е
10/31/22	7B	Stethojulis balteata	1	15	0.33	MI	Е
10/31/22	7B	Gomphosus varius	1	20	0.38	MI	Ι
10/31/22	7B	Dascyllus albisella	1	10	0.17	Z	Е
10/31/22	7B	Dascyllus albisella	2	4	0.02	Z	Е
10/31/22	7B	Thalassoma duperrey	3	20	1.83	MI	Е
10/31/22	7B	Thalassoma duperrey	3	12	0.37	MI	Е
10/31/22	7B	Thalassoma duperrey	6	15	1.49	MI	Е
10/31/22	7B	Thalassoma duperrey	7	10	0.49	MI	Е
10/31/22	7B	Parupeneus multifasciatus	6	16	1.97	MI	Ι
10/31/22	7B	Parupeneus multifasciatus	6	12	0.80	MI	Ι
10/31/22	7B	Parupeneus multifasciatus	2	20	1.32	MI	Ι
10/31/22	7B	Chaetodon multicinctus	1	3	0.00	С	Е
10/31/22	7B	Chaetodon multicinctus	3	5	0.05	С	Е
10/31/22	7B	Chaetodon miliaris	1	10	0.14	Z	Е
10/31/22	7B	Melichthys vidua	1	24	2.36	Н	Ι
10/31/22	7B	Acanthurus olivaceus	2	12	0.33	Н	Ι
10/31/22	7B	Acanthurus olivaceus	2	15	0.65	Н	Ι
10/31/22	7B	Acanthurus olivaceus	2	8	0.10	Н	Ι
10/31/22	7B	Naso lituratus	1	8	0.05	Н	Ι
10/31/22	7B	Parupeneus cyclostomus	2	20	2.82	Р	Ι
10/31/22	7B	Coris gaimard	1	20	0.62	MI	Ι
10/31/22	7B	Chaetodon kleinii	2	10	0.27	Z	Ι
10/31/22	7B	Parupeneus pleurostigma	1	16	0.38	MI	Ι
10/31/22	7B	Calotomus zonarchus	1	12	0.18	Н	Е
10/31/22	7B	Sufflamen bursa	4	18	3.14	MI	Ι
10/31/22	7B	Paracirrhites arcatus	4	6	0.08	MI	Ι
10/31/22	7B	Gomphosus varius	1	12	0.11	MI	Ι
10/31/22	7B	Naso unicornis	1	12	0.20	Н	Ι
10/31/22	7B	Sargocentron diadema	1	10	0.09	MI	Ι
10/31/22	7E	Sufflamen bursa	4	18	3.14	MI	Ι
10/31/22	7E	Sufflamen bursa	1	16	0.56	MI	Ι
10/31/22	7E	Canthigaster jactator	5	4	0.06	Н	Е
10/31/22	7E	Thalassoma duperrey	3	20	1.83	MI	Е
10/31/22	7E	Thalassoma duperrey	2	7	0.05	MI	Е

10/31/22	² 7E	Thalassoma duperrey	1	5	0.01	MI	Е
10/31/22	² 7E	Thalassoma duperrey	5	15	1.24	MI	Е
10/31/22	² 7E	Acanthurus nigrofuscus	5	10	0.57	Н	Ι
10/31/22	² 7E	Acanthurus nigrofuscus	9	3	0.03	Н	Ι
10/31/22	² 7E	Acanthurus nigrofuscus	5	8	0.30	Н	Ι
10/31/22	² 7E	Acanthurus nigrofuscus	1	12	0.19	Н	Ι
10/31/22	² 7E	Naso unicornis	1	22	1.10	Н	Ι
10/31/22	² 7E	Naso lituratus	2	22	2.17	Н	Ι
10/31/22	² 7E	Paracirrhites arcatus	5	6	0.10	MI	Ι
10/31/22	² 7E	Paracirrhites arcatus	1	3	0.00	MI	Ι
10/31/22	² 7E	Paracirrhites arcatus	2	4	0.01	MI	Ι
10/31/22	² 7E	Parupeneus multifasciatus	4	12	0.53	MI	Ι
10/31/22	² 7E	Parupeneus multifasciatus	9	8	0.34	MI	Ι
10/31/22	² 7E	Parupeneus multifasciatus	1	20	0.66	MI	Ι
10/31/22	² 7E	Parupeneus multifasciatus	2	16	0.66	MI	Ι
10/31/22	² 7E	Parupeneus pleurostigma	1	8	0.05	MI	Ι
10/31/22	² 7E	Chromis vanderbilti	1	3	0.00	Z	Ι
10/31/22	² 7E	Oxycheilinus bimaculatus	2	4	0.00	MI	Ι
10/31/22	² 7E	Oxycheilinus bimaculatus	5	6	0.05	MI	Ι
10/31/22	² 7E	Acanthurus olivaceus	4	22	4.18	Н	Ι
10/31/22	² 7E	Canthigaster coronata	1	8	0.08	SI	Ι
10/31/22	² 7E	Cantherhines dumerilii	1	32	3.89	С	Ι
10/31/22	² 7E	Zanclus cornutus	1	18	0.88	SI	Ι
10/31/22	² 7E	Acanthurus blochii	2	20	0.79	Н	Ι
10/31/22	² 7E	Acanthurus blochii	1	16	0.20	Н	Ι
10/31/22	² 7E	Ostracion meleagris	1	4	0.01	SI	Ι
10/31/22	² 7E	Melichthys vidua	1	18	1.12	Н	Ι
10/31/22	² 7E	Melichthys niger	10	22	16.25	Н	Ι
10/31/22	² 7E	Forcipiger flavissimus	1	15	0.23	SI	Ι
10/31/22	² 7E	Forcipiger flavissimus	1	12	0.12	SI	Ι
10/31/22	² 7E	Acanthurus triostegus	1	15	0.41	Н	Ι
10/31/22	² E1	Paracirrhites arcatus	4	8	0.23	MI	Ι
10/31/22	² E1	Gymnothorax meleagris	1	41	0.34	Р	Ι
10/31/22	² E1	Rhinecanthus rectangulus	2	18	1.57	MI	Ι
10/31/22	² E1	Chaetodon ornatissimus	2	20	3.03	С	Ι
10/31/22	LI	Scarus rubroviolaceus	1	36	6.74	Н	Ι
10/31/22	LI	Canthigaster jactator	6	5	0.14	Н	Е
10/31/22	² E1	Acanthurus triostegus	15	15	6.15	Н	Ι


10/31/22	E1	Plectroglyphidodon imparipennis	4	4	0.04	MI	I
10/31/22	E1	Plectroglyphidodon johnstonianus	1	8	0.08	С	I
10/31/22	E1	Lutjanus fulvus	2	20	0.84	MI	Х
10/31/22	E1	Acanthurus olivaceus	2	25	3.08	Н	Ι
10/31/22	E 1	Acanthurus olivaceus	3	20	2.34	Н	Ι
10/31/22	E1	Acanthurus dussumieri	1	25	0.77	Н	Ι
10/31/22	E1	Acanthurus dussumieri	1	20	0.39	Н	Ι
10/31/22	E1	Acanthurus nigroris	1	18	0.61	Н	Ι
10/31/22	E1	Acanthurus nigrofuscus	10	10	1.15	Н	Ι
10/31/22	E1	Acanthurus blochii	2	30	2.66	Н	Ι
10/31/22	E1	Acanthurus blochii	1	25	0.77	Н	Ι
10/31/22	E1	Parupeneus multifasciatus	1	20	0.66	MI	Ι
10/31/22	E1	Thalassoma duperrey	5	10	0.35	MI	Е
10/31/22	E1	Thalassoma duperrey	5	8	0.17	MI	Е
10/31/22	E1	Thalassoma duperrey	1	13	0.16	MI	Е
10/31/22	E1	Labroides phthirophagus	4	8	0.06	Р	Е
10/31/22	E1	Halichoeres ornatissimus	1	10	0.06	MI	Ι
10/31/22	E1	Forcipiger flavissimus	2	15	0.47	SI	Ι
10/31/22	E1	Chromis vanderbilti	15	3	0.04	Z	Ι
10/31/22	E3	Acanthurus nigrofuscus	70	8	4.25	Н	Ι
10/31/22	E3	Thalassoma duperrey	15	13	2.39	MI	Е
10/31/22	E3	Thalassoma duperrey	25	10	1.75	MI	Е
10/31/22	E3	Ctenochaetus strigosus	45	8	3.50	D	Ι
10/31/22	E3	Plectroglyphidodon johnstonianus	2	5	0.04	С	Ι
10/31/22	E3	Plectroglyphidodon johnstonianus	3	8	0.23	С	I
10/31/22	E3	Chaetodon multicinctus	8	10	1.17	С	Е
10/31/22	E3	Sufflamen bursa	1	18	0.79	MI	I
10/31/22	E3	Stethojulis balteata	2	8	0.09	MI	Е
10/31/22	E3	Pseudocheilinus octotaenia	2	10	0.19	MI	I
10/31/22	E3	Scarus psittacus	1	8	0.05	Н	I
10/31/22	E3	Canthigaster jactator	2	5	0.05	Н	Е
10/31/22	E3	Lutjanus fulvus	1	20	0.42	MI	Х
10/31/22	E3	Halichoeres ornatissimus	1	10	0.06	MI	Ι
10/31/22	E3	Melichthys vidua	2	23	4.22	Н	Ι
10/31/22	E3	Stegastes fasciolatus	1	8	0.08	Н	Ι
10/31/22	E3	Acanthurus olivaceus	1	25	1.54	Н	Ι
10/31/22	E3	Naso lituratus	1	25	1.61	Н	Ι
10/31/22	E3	Parupeneus bifasciatus	1	10	0.12	MI	Ι

10/31/22	E3	Caranx melampygus	2	20	1.47	Р	Ι
10/31/22	E4	Chromis vanderbilti	100	3	0.29	Z	Ι
10/31/22	E4	Paracirrhites arcatus	4	8	0.23	MI	Ι
10/31/22	E4	Acanthurus nigrofuscus	65	8	3.94	Н	Ι
10/31/22	E4	Melichthys vidua	2	23	4.22	Н	Ι
10/31/22	E4	Acanthurus olivaceus	15	28	32.67	Н	Ι
10/31/22	E4	Acanthurus blochii	1	25	0.77	Н	Ι
10/31/22	E4	Acanthurus dussumieri	1	25	0.77	Н	Ι
10/31/22	E4	Zebrasoma flavescens	1	18	0.88	Н	Ι
10/31/22	E4	Zebrasoma flavescens	2	8	0.23	Н	Ι
10/31/22	E4	Bodianus bilunulatus	1	33	3.70	MI	Ι
10/31/22	E4	Bodianus bilunulatus	1	28	2.22	MI	Ι
10/31/22	E4	Labroides phthirophagus	3	8	0.05	Р	Е
10/31/22	E4	Gymnothorax meleagris	1	33	0.17	Р	Ι
10/31/22	E4	Stegastes fasciolatus	1	8	0.08	Н	Ι
10/31/22	E4	Stegastes fasciolatus	1	5	0.02	Н	Ι
10/31/22	E4	Paracirrhites forsteri	1	13	0.22	Р	Ι
10/31/22	E4	Cephalopholis argus	1	25	1.36	Р	Х
10/31/22	E4	Pseudocheilinus tetrataenia	1	4	0.01	MI	Ι
10/31/22	E4	Naso lituratus	1	18	0.58	Н	Ι
10/31/22	E4	Plectroglyphidodon imparipennis	1	3	0.00	MI	Ι
10/31/22	E4	Halichoeres ornatissimus	3	10	0.18	MI	Ι
10/31/22	E4	Thalassoma duperrey	5	13	0.80	MI	Е
10/31/22	E4	Canthigaster jactator	4	5	0.09	Н	Е
10/31/22	E4	Stethojulis balteata	1	8	0.05	MI	Е
10/31/22	E4	Thalassoma duperrey	25	10	1.75	MI	Е
10/31/22	E4	Coris gaimard	1	28	1.88	MI	Ι
10/31/22	E4	Parupeneus multifasciatus	2	10	0.15	MI	Ι
10/31/22	E4	Parupeneus multifasciatus	1	18	0.47	MI	Ι
10/31/22	E4	Rhinecanthus rectangulus	1	18	0.79	MI	Ι
10/31/22	E4	Plectroglyphidodon johnstonianus	1	5	0.02	С	Ι
10/31/22	1D	Sufflamen bursa	2	18	1.57	MI	I
10/31/22	1D	Ctenochaetus strigosus	5	13	1.77	D	I
10/31/22	1D	Rhinecanthus rectangulus	1	18	0.79	MI	I
10/31/22	1D 1D	Thalassoma duperrey	25	13	3.98	MI	Ē
10/31/22	1D 1D	Thalassoma duperrey	30	10	2.11	MI	Ē
10/31/22	1D 1D	Acanthurus nigrofuscus	50	10	5.73	Н	I
10/31/22	1D 1D	Melichthys niger	5	23	9.16	Н	I
			5	20	2.10		


10/31/22	1D	Stethojulis balteata	1	10	0.09	MI	Е
10/31/22	1D	Stethojulis balteata	1	13	0.21	MI	Е
10/31/22	1D	Zanclus cornutus	1	18	0.88	SI	Ι
10/31/22	1D	Canthigaster jactator	4	4	0.05	Н	Е
10/31/22	1D	Naso lituratus	1	23	1.25	Н	Ι
10/31/22	1D	Plectroglyphidodon imparipennis	2	4	0.02	MI	Ι
10/31/22	1D	Gomphosus varius	2	10	0.13	MI	Ι
10/31/22	1D	Cantherhines sandwichiensis	2	13	0.57	Н	Е
10/31/22	1D	Chromis vanderbilti	30	3	0.09	Z	Ι
10/31/22	1D	Acanthurus leucopareius	10	20	14.05	Н	Ι
10/31/22	1D	Canthigaster amboinensis	1	8	0.14	Н	Ι
10/31/22	1D	Acanthurus nigroris	3	18	1.84	Н	Ι
10/31/22	NANA1	Plectroglyphidodon imparipennis	10	4	0.09	MI	Ι
10/31/22	NANA1	Thalassoma duperrey	2	10	0.14	MI	Е
10/31/22	NANA1	Acanthurus nigrofuscus	3	8	0.18	Н	Ι
10/31/22	NANA1	Rhinecanthus rectangulus	1	18	0.79	MI	Ι
10/31/22	NANA1	Rhinecanthus rectangulus	1	5	0.02	MI	Ι
10/31/22	NANA1	Canthigaster jactator	4	4	0.05	Н	Е
10/31/22	NANA1	Parupeneus multifasciatus	1	13	0.17	MI	Ι
10/31/22	NANA1	Chromis vanderbilti	35	3	0.10	Z	Ι
10/31/22	NANA1	Stegastes fasciolatus	2	8	0.15	Н	Ι
10/31/22	NANA1	Canthigaster amboinensis	1	8	0.14	Н	Ι
10/31/22	NANA1	Stethojulis balteata	1	8	0.05	MI	Е
10/31/22	NANA1	Paracirrhites forsteri	1	10	0.10	Р	Ι
10/31/22	NANA1	Sufflamen bursa	1	10	0.15	MI	Ι
10/31/22	NANA1	Sufflamen bursa	1	8	0.08	MI	Ι
10/31/22	NANA1	Sufflamen bursa	2	18	1.57	MI	Ι
10/31/22	PIPE	Pervagor aspricaudus	2	8	0.11	Н	Ι
10/31/22	PIPE	Pervagor aspricaudus	4	10	0.40	Н	Ι
10/31/22	PIPE	Halichoeres ornatissimus	2	13	0.20	MI	Ι
10/31/22	PIPE	Halichoeres ornatissimus	1	15	0.13	MI	Ι
10/31/22	PIPE	Abudefduf vaigiensis	75	13	46.90	Ζ	Ι
10/31/22	PIPE	Abudefduf abdominalis	75	13	23.71	Ζ	Е
10/31/22	PIPE	Thalassoma duperrey	45	13	7.16	MI	Е
10/31/22	PIPE	Thalassoma duperrey	35	15	8.70	MI	Е
10/31/22	PIPE	Thalassoma duperrey	10	18	1550.36	MI	Е
10/31/22	PIPE	Canthigaster amboinensis	1	8	0.14	Н	Ι
10/31/22	PIPE	Monotaxis grandoculis	1	10	0.09	MI	Ι

10/31/22	PIPE	Monotaxis grandoculis	5	23	6.91	MI	Ι
10/31/22	PIPE	Thalassoma quinquevittatum	1	13	0.16	MI	Ι
10/31/22	PIPE	Thalassoma quinquevittatum	1	10	0.07	MI	Ι
10/31/22	PIPE	Parupeneus multifasciatus	150	18	71.02	MI	Ι
10/31/22	PIPE	Stegastes fasciolatus	4	8	0.30	Н	Ι
10/31/22	PIPE	Stegastes fasciolatus	3	10	0.45	Н	Ι
10/31/22	PIPE	Plectroglyphidodon johnstonianus	2	8	0.15	С	Ι
10/31/22	PIPE	Synodus dermatogenys	1	18	0.27	Р	Ι
10/31/22	PIPE	Mulloidichthys vanicolensis	50	15	12.84	MI	Ι
10/31/22	PIPE	Parupeneus bifasciatus	4	15	1.65	MI	Ι
10/31/22	PIPE	Parupeneus bifasciatus	1	18	0.72	MI	Ι
10/31/22	PIPE	Chaetodon miliaris	2	10	0.28	Z	Е
10/31/22	PIPE	Chaetodon miliaris	2	13	0.60	Z	Е
10/31/22	PIPE	Sufflamen fraenatus	1	25	2.01	MI	Ι
10/31/22	PIPE	Lutjanus kasmira	250	15	70.88	MI	Х
10/31/22	PIPE	Lutjanus kasmira	75	20	59.38	MI	Х
10/31/22	PIPE	Sufflamen bursa	5	18	3.93	MI	Ι
10/31/22	PIPE	Chaetodon fremblii	2	13	0.56	SI	Е
10/31/22	PIPE	Chaetodon quadrimaculatus	2	13	0.77	С	Ι
10/31/22	PIPE	Mulloidichthys flavolineatus	100	18	42.22	MI	Ι
10/31/22	PIPE	Mulloidichthys flavolineatus	15	13	2.47	MI	Ι
10/31/22	PIPE	Myripristis kuntee	5	13	1.18	Z	Ι
10/31/22	PIPE	Chaetodon kleinii	1	13	0.29	Z	Ι
10/31/22	PIPE	Chromis ovalis	3	15	0.96	Z	Е
10/31/22	PIPE	Fistularia commersonii	1	61	0.53	Р	Ι
10/31/22	PIPE	Canthigaster jactator	5	5	0.11	Н	Е
10/31/22	PIPE	Stethojulis balteata	3	13	0.64	MI	Е
10/31/22	PIPE	Stethojulis balteata	2	10	0.19	MI	Е
10/31/22	PIPE	Novaculichthys taeniourus	1	18	0.61	MI	Ι
10/31/22	PIPE	Paracirrhites arcatus	5	8	0.29	MI	Ι
10/31/22	PIPE	Zebrasoma flavescens	1	5	0.04	Н	Ι
10/31/22	PIPE	Acanthurus nigrofuscus	100	10	11.46	Н	Ι
10/31/22	PIPE	Dascyllus albisella	10	10	1.70	Z	Е
10/31/22	PIPE	Thalassoma trilobatum	5	18	2.49	MI	Ι
10/31/22	PIPE	Thalassoma trilobatum	5	25	6.61	MI	Ι
10/31/22	PIPE	Acanthurus olivaceus	2	20	1.56	Н	Ι
10/31/22	PIPE	Scarus psittacus	1	10	0.10	Н	Ι
10/31/22	PIPE	Scarus psittacus	4	15	1.60	Н	Ι

10/31/22	PIPE	Chaetodon multicinctus	6	10	0.88	С	Е
10/31/22	PIPE	Chaetodon multicinctus	1	8	0.07	С	Е
10/31/22	PIPE	Melichthys vidua	1	23	2.11	Н	Ι
10/31/22	PIPE	Ostracion meleagris	3	8	0.23	SI	Ι
10/31/22	PIPE	Ostracion meleagris	1	10	0.16	SI	Ι
10/31/22	PIPE	Gomphosus varius	3	10	0.20	MI	Ι
10/31/22	PIPE	Gomphosus varius	7	13	0.90	MI	Ι
10/31/22	PIPE	Gomphosus varius	2	15	0.37	MI	Ι
10/31/22	PIPE	Naso lituratus	2	15	0.66	Н	Ι
10/31/22	PIPE	Naso lituratus	1	13	0.21	Н	Ι
10/31/22	PIPE	Naso lituratus	1	18	0.58	Н	Ι
10/31/22	PIPE	Ctenochaetus strigosus	3	13	1.06	D	Ι
10/31/22	PIPE	Ctenochaetus strigosus	1	10	0.16	D	Ι
10/31/22	PIPE	Parupeneus pleurostigma	10	15	3.12	MI	Ι
10/31/22	PIPE	Parupeneus pleurostigma	2	13	0.41	MI	Ι
10/31/22	PIPE	Naso unicornis	2	15	0.74	Н	Ι
10/31/22	PIPE	Labroides phthirophagus	2	8	0.03	Р	Е
10/31/22	PIPE	Acanthurus leucopareius	1	20	1.41	Н	Ι
10/31/22	PIPE	Acanthurus leucopareius	1	18	1.02	Н	Ι
10/31/22	PIPE	Naso hexacanthus	1	28	2.33	Z	Ι
10/31/22	PIPE	Parupeneus cyclostomus	1	15	0.47	Р	Ι
10/31/22	PIPE	Aulostomus chinensis	2	41	1.21	Р	Ι
10/31/22	PIPE	Thalassoma purpureum	1	33	3.22	MI	Ι
10/31/22	PIPE	Forcipiger flavissimus	3	15	0.70	SI	Ι
10/31/22	PIPE	Forcipiger flavissimus	5	13	0.74	SI	Ι
10/31/22	PIPE	Forcipiger flavissimus	2	10	0.13	SI	Ι
10/31/22	PIPE	Calotomus carolinus	1	18	0.55	Н	Ι
10/31/22	PIPE	Chaetodon lunula	2	18	1.18	SI	Ι
10/31/22	PIPE	Parupeneus multifasciatus	1	18	0.47	MI	Ι
10/31/22	PIPE	Parupeneus multifasciatus	7	13	1.20	MI	Ι
10/31/22	PIPE	Chaetodon unimaculatus	2	13	0.74	С	Ι
10/31/22	PIPE	Cantherhines sandwichiensis	1	10	0.14	Н	Е
10/31/22	PIPE	Cantherhines sandwichiensis	1	13	0.28	Н	Е
10/31/22	PIPE	Melichthys niger	3	23	5.50	Н	Ι
10/31/22	PIPE	Canthigaster jactator	1	5	0.02	Н	Е
10/31/22	PIPE	Naso annulatus	3	33	8.79	Z	Ι
10/31/22	PIPE	Naso annulatus	3	28	5.51	Ζ	Ι
10/31/22	PIPE	Zanclus cornutus	7	13	2.43	SI	Ι
10/31/22	PIPE	Zanclus cornutus	4	18	3.54	SI	Ι

10/31/22	PIPE	Chromis agilis	1	10	0.11	Z	Ι
10/31/22	PIPE	Platybelone argalus	4	30	1.16	Р	Ι