Academia.eduAcademia.edu
February 2009 TNC Pacific Island Countries Report No 1/09 R a p i d Ec o l o g i c a l As s e s s m e nt Northern Bismarck Sea Pa p u a Ne w G u i n e a Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Supported by: AP Anonymous Disclaimer: This report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of The Nature Conservancy and do not necessarily reflect the views of USAID or the United States Government. February 2009 TNC Pacific Island Countries Report No 1/09 R a p i d Ec o l o g i c a l As s e s s m e nt Northern Bismarck Sea Pa p u a Ne w G u i n e a Technical report of survey conducted August 13 to September 7, 2006 Edited by: Richard Hamilton, Alison Green and Jeanine Almany Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: rhamilton@tnc.org Suggested Citation: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Manus © Gerald Allen ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications ii Foreword Manus and New Ireland provinces lie north of the Papua New Guinea mainland in the Bismarck Archipelago. More than half of the local communities in our provinces are coastal inhabitants, who for thousands of years have depended on marine resources for their livelihood. For coastal communities survival and prosperity is integrally linked to healthy marine ecosystems. Many of our ancestors’ recognised the need to manage our marine resources and developed intricate customs and traditional management practices that are still practised today. But in these modern times we are faced with new pressures and threats. Population growth, access to more efficient fishing technologies and the influence of the cash economy have dramatically increased pressure on our natural resources. We must also deal with recent threats such as climate change, a global challenge that could undermine one of the fundamental cornerstones of our livelihoods, our coral reefs. Today, more then ever, we the people of Manus and New Ireland must make informed decisions on how to conserve our marine environment, so to ensure that our children can enjoy the cultural, social and economic treasures that have defined our people for millennium. In Manus and New Ireland, The Nature Conservancy (TNC) has been supporting community-based conservation initiatives since 2004, and in 2006 The Nature Conservancy and partners conducted a marine assessment in the waters of the North Bismarck Sea. The area covered included the Tigak Islands, New Hanover and Djaul in New Ireland and around the main island of Manus. The survey provides an assessment of the biodiversity and status of corals and reef fish in waters surrounding these provinces and provides recommendations for their conservation and management. We hope that that this report will encourage us to be aware of our marine environment and in turn be more responsible in how we use the resources within it. On behalf of the people of New Ireland and Manus we would like to thank all of those involved in completing this project. In many ways the completion of this report is the beginning of the hard work not the end. As the Governors of New Ireland and Manus we urge all of us to continue to work in partnerships to sustain the future of our provinces. Rt Honourable Sir Julius Chan Governor New Ireland province Honourable Michael Sapau Governor Manus province iii Acknowledgements The survey was led by The Nature Conservancy and supported by the National Fisheries Authority of Papua New Guinea, Manus Provincial Government, New Ireland Provincial Government, The National Fisheries College, World Wide Fund for Nature, Wildlife Conservation Society, Gillett Preston Associate (Coastal Fisheries Management and Development Project, CFMDP), Ailan Awareness, Lissenung Dive Resort, Mansava Resort and Dive Manus. We express our sincere thanks to key individuals who assisted with community liaison work prior to and during this survey. In New Ireland we thank; Mr. Joel Opnai (late), Gillette Preston Associates, Ms. Sandra Marahang, New Ireland Province Provincial Fisheries, Mr. Satarek Taput, New Ireland Province Provincial Fisheries, Mr. John Aini, Ailan Awareness, Mr. Tatek Buraik, National Fisheries College, Manoua Karo, Wildlife Conservation Society and Mr. Samol Kanawi, National Fisheries College. In Manus we thank; Mr. Obed Otto, Manus Province Policy and Planning Division, Mrs. Ipau Apas, Manager at Harborside Hotel, Mr. John Malai, Manus Province Culture and Tourism Division, Mr. Pomat Powayai, Manus Province Fisheries Division, Mr. Selan Kaluwin, CBO, Mr. Bernard Menly, NBC Publication Officer and Mr Mr. Robert Siwer, LLG member. We would also like to thank the the survey team members, Litau Pomat NFA, Kavieng, Lawrence Litau, The Nature Conservancy, Kavieng, Miro Logai, New Ireland Provincial Fisheries, Jerry Pokiap, The Nature Conservancy Manus and Mr. Pomat Kaluwin, Kavieng. We also thank Nate Peterson from the TNC Brisbane Office for producing all of the maps presented in this report. The success of this survey hinged on the support and interest of tribal chiefs, church leaders, elders, men, women and children of the communities that we visited and we thank you all. Your kind assistance in helping us carry out this survey on your reefs has been instrumental to its success. It is hoped that the results of the marine assessment will be used to help ensure the sustainability of the marine resources of the Northern Bismarck Sea, while also raising global awareness of the uniqueness and importance of the Bismarck Sea, one of the last great places on earth. iv Contents FOREWORD ................................................................................................................................................. III ACKNOWLEDGEMENTS .......................................................................................................................... IV EXECUTIVE SUMMARY ........................................................................................................................... VI CONSERVATION & MANAGEMENT RECOMMENDATIONS ..................................................... VIII 1 OVERVIEW Conservation Context ........................................................................................................................... 4 Survey Description ................................................................................................................................. 7 Community Liaison................................................................................................................................ 11 Communications ..................................................................................................................................... 12 TECHNICAL REPORTS Chapter 1: Fisheries Resources: Food Fish and Benthic Cover................................................. 16 Chapter 2: Coral Reef Fish Diversity................................................................................................ 48 Chapter 3: Coral Communities & Reef Health ............................................................................. 101 v Executive Summary The Northern Bismarck Sea marine assessment was conducted in New Ireland and Manus Provinces between August 13th to September 7th, 2006. In New Ireland the survey covered the Tigak Islands, New Hanover and Djaul Island, while in Manus the survey was conducted predominantly around the main island of Manus. The survey team was comprised of international and local scientists, conservationists and Papua New Guinea fisheries’ officers. The survey provided an assessment of the biodiversity and status of corals and reef fish in the Northern Bismarck Sea, with recommendations for their conservation and management. The survey showed that the North Bismarck Sea hosts very high hard coral species richness. A total of 452 species belonging to 70 genera in 15 families were recorded on this survey. The reefs that the team visited around Manus Island were all in good to excellent condition and tended to have higher hard coral diversity than reefs around New Ireland. Although some reefs visited in New Ireland were healthy, many were in poor condition; there were crown of thorns starfish on most reefs with significant coral mortality at some sites within the Tigak Islands. The survey also confirmed that the Northern Bismarck Sea has a high biodiversity of reef fish. A combination of historical data and 577 new records from the current survey yields a total of 801 species belonging to 76 families and 274 genera for the Northern Bismarck Archipelago. A formula for predicting the total reef fish fauna indicates that at least 945 species can be expected to occur in this region. The entire Bismarck Sea is expected to support a total of 514 coral species (http://www.coralreefresearch.org/html/crr_cg.htm) and 1493 coral reef fish species (Allen, unpublished data). This survey confirms that the Bismarck Sea is part of the global centre of marine diversity, known as the Coral Triangle (Figure 1), which includes all or part of the Philippines, Indonesia, Malaysia, Timor Leste, Papua New Guinea and the Solomon Islands. The Coral Triangle comprises a staggering 76% of the world’s corals and 37% of the world's coral reef fish species in an area that covers less than 2% of the planet’s oceans. Fishing pressure appears to be considerably less than in some areas further west in the Coral Triangle. Fish populations were very healthy in most locations in Manus, with spectacular fish communities and lots of big fish observed at several sites. However, there was some evidence of overexploitation in New Ireland. Reef fish surveys showed that large vulnerable fishes such as sharks, bumphead parrotfish and large species of groupers were present in low abundances in New Ireland where historically commercial fishing pressure has been greater than in Manus. In both provinces the reef health team rarely sighted high value macro invertebrates such as sea cucumbers, trochus and giant clams, indicating that these resources have already been overfished. vi Figure 1. The Coral Triangle (Green and Mous, 2008). vii Conservation & Management Recommendations In this section the survey team offers a range or recommendations for the conservation and sustainable use of marine habitats and important marine resources in the Northern Bismarck Sea. These recommendations are based on the survey team’s collective experience along with input from community representatives and provincial fisheries departments. They include recommendations for the establishment of networks of community based marine protected areas and management options for some important reef fisheries. MARINE PROTECTED AREAS Locally managed Marine Protected Areas1 (MPAs) can play a critical role in protecting biological diversity and managing marine resources. Several good examples of this are the recent commitments of communities in Manus and New Ireland to protect specific areas on their customary reefs where 1000s of groupers are known to aggregate to spawn at predicable times of the year (Hamilton et al., 2005). By preventing fishing at these critically important areas communities are conserving the biodiversity at these multispecies spawning aggregation sites and exercising a precautionary approach towards managing their grouper fisheries. This and other efforts by local communities and NGOs are helping to build the socio-political and cultural climate for conservation in the region. However further efforts will be required if Papua New Guinea is to adequately protect the remarkable biological diversity of the Northern Bismarck Sea. One option that would help to conserve the Northern Bismarck Seas marine biodiversity would be to establish a network of locally managed MPAs that include representative examples of the main habitat types (coral reefs, mangroves and seagrasses), with special attention to critical sites such as fish spawning aggregations, nursery areas and turtle nesting beaches. In designing such a network the likely impacts of climate change could also be accounted for. While it is seldom possible to capture all key targets in a single area, there is plenty of scope to design a network of MPAs that covers the full range of biodiversity that occurs within the Northern Bismarck Sea. In Melanesia, coastal communities have customary ownership over the mangroves, lagoons and reefs in their nearby vicinity, so any efforts to establish MPAs requires support from the customary owners. Consequently, for a MPA network to be successfully implemented in the Northern Bismarck Sea, it will need to be designed so that it incorporates high biodiversity areas that local communities are interested in and capable of conserving. In general the Northern Bismarck Sea has good potential for reef conservation, based on the results of the current survey. A wide variety of habitats are represented, frequently within relatively confined areas which provide an ideal scenario for establishing MPAs. Some of the areas that the survey team believes would make good choices for inclusion into a MPA network are outlined below by province. These suggestions are made taking into account the very high coral and fish biodiversity of these regions as well as general reef health. In some of the areas of high biodiversity conservation efforts are already underway, and these geographies would be the obvious areas to focus on if attempting to scale up existing conservation efforts. 1 In this document we use the definition developed by the International World Conservation Union (IUCN), which defines MPA as: “Any area of intertidal or subtidal terrain, together with its overlaying water and associated flora, fauna, historical and cultural features, which has been reserved by law or other effective means to protect part or all of the enclosed environment.” viii New Ireland Areas that the survey team believes would make good choices for conservation action in New Ireland are shown in Figure 2. Figure 2. Some of the areas in New Ireland that the survey team believes would make good choices for conservation action. 1. Salapiu Island The outer reefs of Salapiu Island had the highest biodiversity of fish (234) seen in New Ireland and this is an area where The Nature Conservancy (TNC) is actively engaged in community based conservation. For the past four years the Conservancy has been working with the Salapiu community to monitor a known grouper spawning aggregation site that occurs on their customary reefs. This work has raised the profile of conservation in this community and TNC is currently working with the Salapiu community to assist them in developing a management plan which will see three marine areas formally set aside for conservation. 2. Bauddissin Bay, Bauddissin Island This areas includes a relatively narrow strip of reef covering less than one square km on the southern coast of Bauddissin (also known as Burusan) Island, one of the two largest islands that form the southern tier of islands linking New Ireland with New Hanover. The site is notable due to the unusual reef structure and rich habitat variability within a very confined area. There is a typical outer reef wall that drops to about 70 m depth that is separated from the coastal reef by a narrow channel with a maximum depth of 10-12 m. The channel then opens into the shallow sandy lagoon of the inner part of Bauddissin Bay. The channel is flushed periodically by clear water from the open sea and consequently supports a wealth of fishes, including numerous snappers and sweetlips. One of the highest fish counts (198 species) was obtained in the back reef channel, an exceptional total considering the sheltered nature of this location. ix There is also nearby mangrove environment along the shore. This site also had the third highest coral biodiversity (194) of all the sites surveyed in New Ireland. 3. Nusa Island and western tip of New Ireland Nusa Island and the western tip of New Ireland are considered suitable for conservation due to their high diversity of coral and fish. The highest and forth highest coral diversity in New Ireland was sighted on the Western tip of New Ireland (198) and at Nusa Island (182). The second and third highest fish biodiversity counts made in New Ireland were also at the Western tip of New Ireland (198) and at Nusa Island (193). 4. North Anelaua Island This area includes the complex of sheltered reefs lying north of Anelaua Island and its small satellite, Anelik Island. The maze of reef covers approximately six square km. The area, which lies only about 2.6 km off the eastern coast of New Hanover, supports luxurious coral gardens, which unlike much of the Tigak Archipelago, is relatively undamaged by crown of thorns starfish. It appears to be an important nursery area for at least three species: Humphead Wrasse (Cheilinus undulatus), Bumphead parrotfish (Bolbometopon muricatum), and Spanish flag snapper (Lutjanus carponotatus). 5. Djaul Island The western end of Djaul Island is an ideal location for conservation. The remoteness of this large island and its relatively small human population means that reef fish resources in this area are much healthier than in many areas in the Tigak’s and New Hanover. Unlike many areas in New Ireland the reefs around Djaul are unaffected by crown of thorns starfish. Djaul is an area where TNC is actively engaged in community based conservation. For the past four years TNC has been working with the Leon community to monitor and protect a large multispecies grouper spawning aggregation. x Manus Areas that the survey team believes would make good choices for conservation action in Manus are shown in Figure 3. Figure 3. Some of the areas in Manus that the survey team believes would make good choices for conservation action. 1. South coast of Manus The south coast of Manus has very high fish and coral biodiversity. In this survey Drova Island had the second highest coral count (200) and third highest fish count (198) in Manus Province, and the inner reefs in Patusi Bay have several coral species that are thought to be new to science. The south coast of Manus also has many multi species grouper spawning aggregation sites and nursery areas, and conservation efforts are well underway in this region of Manus. TNC has been working with communities in this area for four years to monitor and protect three large grouper spawning aggregation sites. The Pere community has now established several MPAs on their reefs, and they are working to finalize the Pere environmental and conservation management plan, which will provide a legally recognized framework for managing all of their customary waters. Other communities along the south coast have expressed interest in following Peres lead, and the community owners of Drova Island have approached TNC and expressed their interest in setting aside Drova Island as a conservation area. 2. Mbuke Islands The outer islands of Mbuke on the south coast of Manus have very high coral diversity and support healthy populations of reef fishes. In this survey Anun Island in Mbuke had the highest coral diversity (211) in Manus. This area also supported healthy numbers of sharks and other large vulnerable reef fishes. With a small nucleated human population and a large reef area Mbuke is an ideal region for community based conservation. Conservation efforts are underway here as the Mbuke community has xi been working with World Wildlife Foundation (WWF) for the past four years, and they have set aside several of their reefs as MPAs. 3. Sabben Islands The remote barrier reef and associated low lying islands cover approximately 200 square km off the extreme western end of Manus with the most distant portion of the reef situated 37 km from the mainland. The general environment is similar to that of an atoll with a shallow, sandy lagoon and abrupt outer reef walls. The highest number of fishes for any site on Manus (230) was recorded here. It was also one of the best locations for large vulnerable fishes (sharks, snappers, humphead wrasse, etc.) and was characterised by excellent underwater visibility. 4. Northern Manus outer islands In this survey islands off the northern coast of Manus had very high coral and fish diversity. The second highest coral biodiversity in Manus (200) was seen on Ponam Reef, and the nearby Hinru Island had exceptionally high live coral cover. The outer islands on the north coast of Manus is an region where traditional fisheries management practices continue to occur, such as the periodic closures of reefs to allow stocks to recover (Cinner, et al. 2005; Hamilton 2003a). World Conservation Society (WCS) has been working with communities in this region to assist them with their marine management issues in recent years. 5. Hayne Harbour The large bay next to the Manus airport on Los Negros Island covers an area of about 2.7 square km. This sheltered lagoon provides a habitat for a host of reef fishes and is partially lined with mangroves. The site yielded an unusually high fish species count (205) for a protected inshore habitat. The lagoon has a substantial opening to the open sea and is well-flushed by the tides. There is good representation of outer reef fishes in the entrance channel and a transitional zone around the mouth of the lagoon. Finally, it is noteworthy that many of distant islands that lie to the east and south east of Manus Island were not covered in this survey. This includes the islands of Lou, Pak, Tong and Rabbutyo. Previous underwater observations by some of the authors on this report have revealed that many of these islands support remarkably diverse and healthy reefs that would also be ideal for conservation action. FISHERIES MANAGEMENT Marine resources are the mainstay of the subsistence, artisanal and commercial fisheries in New Ireland and Manus, comprising a major component of the protein in the diet of coastal communities and an important source of income. The results of this survey and prior surveys indicate that overfishing of some high value marine resources has already occurred and management action is desirable to prevent further declines. Groupers and Coral Trout Many grouper spawning aggregations in Manus and New Ireland have been overfished by a combination of artisanal night time spearfishing and Live Reef Food Fish Trade (LRFFT) operations (Hamilton and Matawai 2006; Hamilton, et al. 2005). One of the species that regularly forms spawning aggregations in Melanesia is the squaretail coral trout , Plectropomus areolatus, a species that is now listed as Vulnerable on the IUCN Red list (Chan and Sadovy 2007). In this survey groupers were significantly more abundant in Manus than New Ireland, possibly due to differences in historical fishing pressure. To restore grouper populations in New Ireland and sustain current populations in Manus there is a need for management of this commercially important family of fish. One solution would be to impose provincial wide seasonal bans on the sale of any grouper during periods when they to aggregate to spawn. Two specific recommendations which should be implemented in conjunction with each other are: xii  Place a six month seasonal ban on all LRFFT activities in Manus and New Ireland from the 1st of March to the 31st of August each year. This is the period when many species of groupers (e.g. Epinephelus fuscoguttatus, E. polyphekadion, E. ongus and P. areolatus) aggregate in the 100s or 1000s at known sites in Manus and New Ireland for the purpose of spawning (Manuai Matawai and Tapas Potuku, unpublished data 2004-2008; Hamilton and Matawai, 2006).  Prevent the sale of all groupers in the 10 days leading up to and including the new moon. This is the lunar period when most groupers aggregate to spawn. A lunar ban would offer some protection to species of groupers such as P. areolatus that form different sized spawning aggregations throughout the entire year in New Ireland and Manus (Manuai Matawai and Tapas Potuku, unpublished data 2004-2008; Hamilton and Matawai, 2006). Humphead wrasse (Cheilinus undulatus) The humphead wrasse (Cheilinus undulatus) is a conspicuous indicator of general fishing pressure throughout the coral triangle region. It is a prime target of LRFFT operations and populations typically decline markedly once LRFFT operations occur. This species is listed as Endangered on the IUCN Red list (Russell 2004) in recognition of its slow population turnover (Choat, et al. 2006) and vulnerability to overfishing by the LRFFT (Sadovy, et al. 2003). In this survey C. undulatus were present in moderate numbers in both New Ireland and Manus; however C. undulatus sighted in Manus were on average far bigger, indicative of more intense LRFFT fishing pressure in New Ireland. To conserve this iconic species we recommend that a national wide ban should be placed on the sale of Cheilinus undulatus to LRFFT operations and commercial fisheries centres. Bumphead parrotfish (Bolbometopon muricatum) Bumphead parrotfish (Bolbometopon muricatum) is the largest of all parrotfishes and has recently been listed as Vulnerable on the IUCN Red list (Chan, et al. 2007). This listing is in recognition of the conservative life histories of this species (Hamilton, et al. 2008) and the ease with which nocturnal aggregations of this species can be overfished by night-time spear fishers (Dulvy and Polunin 2004; Hamilton 2003b). Densities of B. muricatum have dropped markedly in the Tigak Islands region in the recent years. The density of B. muricatum seen in the Tigak Islands on long swims in 2006 was eight times lower than densities of B. muricatum that professor Howard Choat recorded in the Tigak Islands on long swims in 2000 (Chan, et al. 2007). This marked drop in the Tigak Islands is almost certainly an indication of heavy night time spearfishing pressure on this species in this decade. Results of this survey indicate that in Manus this species is in somewhat better shape, with densities of B. muricatum in Manus being 12 times higher then densities seen in New Ireland. To protect this vulnerable species we recommend placing a national wide ban preventing commercial fisheries centres from purchasing B. muricatum. Sharks On coral reefs sharks are apex predators that play a key role in maintaining healthy reef ecosystems. In this survey low numbers of reef sharks were sighted in New Ireland and Manus, indicative of overfishing by the shark-fin trade (Figure 4). The shark fin trade is responsible for decimating shark populations globally, reef shark populations are plummeting and at risk of ecological extinction in the next twenty years as a result of shark fishing (Robbins, et al. 2006). We recommend a permanent ban on the shark-fin trade in the Bismarck Sea or, at a minimum, that a moratorium be place on shark-fin fishery until a NFA shark-fin management plan is in place. Sea Cucumbers Although not covered in this survey, sea cucumbers were extensity surveyed in the Tigak region in late 2006 (Kaly 2007). The Kaly et al. (2007) survey showed that sea cucumbers are severely overfished in the Tigak region of New Ireland and they recommended that the fishery be closed for several years in order to allow stocks to recover. We support this recommendation and we also recommend that a similar xiii survey be conducted in Manus. A NFA 2001 survey of sea cucumber resources in Manus would provide the baseline data to compare a future survey against (Lokani 2001). Figure 4. Shark fins and sea cucumbers drying at Loerngau, Manus. xiv REFERENCES Chan T, Sadovy Y. 2007. Plectropomus areolatus. IUCN 2007 Red List of Threatened Species www.iucnredlist.org. Chan T, Sadovy Y, Donaldson TJ. 2007. Bolbometopon muricatum. IUCN 2007 Red List of Threatened Species www.iucnredlist.org. Choat JH, Davies CR, Ackerman JL, Mapstone BD. 2006. Age structure and growth in a large teleost, Cheilinus undulatus, with a review of size distribution in labrid fishes. Marine Ecology-Progress Series 318:237-246. Cinner JE, Marnane MJ, McClanahan TR. 2005. Conservation and community benefits from traditional coral reef management at Ahus Island, Papua New Guinea. Conservation Biology 19(6):17141723. Dulvy NK, Polunin NVC. 2004. Using informal knowledge to infer human-induced rarity of a conspicuous reef fish. Animal Conservation 7:365-374. Green AL, Mous PJ. 2008. Delineating the coral triangle, its ecoregions and functional seascapes. Version 5.0. TNC Coral Triangle Program Report 1/08. http://conserveonline.org/workspaces/tnccoraltriangle/ Hamilton RJ. 2003a. A report on the current status of exploited reef fish aggregations in the Solomon Islands and Papua New Guinea – Choiseul, Ysabel, Bougainville and Manus Provinces. Western Pacific Fisher Survey Series, Volume 1 (confidential appendix). Society for the Conservation of Reef Fish Aggregations. Hamilton RJ. 2003b. The role of indigenous knowledge in depleting a limited resource - A case study of the Bumphead Parrotfish (Bolbometopon muricatum) artisanal fishery in Roviana Lagoon, Western Province, Solomon Islands. Putting fishers' knowledge to work conference proceedings, Canada: Fisheries Centre Research Reports, University of British Colombia. p 68-77. Hamilton RJ, Adams S, Choat JH. 2008. Sexual development and reproductive demography of the green humphead parrotfish (Bolbometopon muricatum) in the Solomon Islands. Coral Reefs 27(1):153163. Hamilton RJ, Matawai M. 2006. Live reef food fish trade causes rapid declines in abundance of squaretail coralgrouper (Plectropomus areolatus) at a spawning aggregation site in Manus, Papua New Guinea. SPC Live Reef Fish Information Bulletin 16:13-18. Hamilton RJ, Matawai M, Potuku T, Kama W, Lahui P, Warku J, Smith AJ. 2005. Applying local knowledge and science to the management of grouper aggregation sites in Melanesia. SPC Live Reef Fish Information Bulletin 14:7-19. Kaly U, Preston, G, Opnai, J and J Aini 2007. Sea cucumber survey, New Ireland Province. National Fisheries Authority, Papua New Guinea. Lokani P. 2001. Survey of beche-de-mer resouces in Manus. Final report to National Fisheries Authority, Papua New Guinea. Robbins WD, Hisano M, Connolly SR, Choat JH. 2006. Ongoing collapse of coral-reef shark populations. Current Biology 16(23):2314-2319. xv Russell B. 2004. Cheilinus undulatus. IUCN 2007 Red List of Threatened Species www.iucnredlist.org. Sadovy Y, Kulbicki M, Labrosse P, Letourneur Y, Lokani P, Donaldson TJ. 2003. The humphead wrasse, Cheilinus undulatus: synopsis of a threatened and poorly known giant coral reef. Reviews in Fish Biology and Fisheries 13(3):327-364. xvi February 2009 TNC Pacific Island Countries Report No 1/09 Overview Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea By: Richard Hamilton and Alison Green The Nature Conservancy Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia eMail: rhamilton@tnc.org Suggested Citation: Hamilton, R. and A. Green. 2009. Overview. In: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Local Leader, Manus © Louise Goggin ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications 2 Contents Conservation Context ................................................................................................................................4 Biological context ............................................................................................................................................................. 4 Social Context ...................................................................................................................................................................6 Survey Description.........................................................................................................................................7 Area of interest.................................................................................................................................................................. 7 Site Selection & Survey Protocol..................................................................................................................................8 Survey components and research Team .....................................................................................................................9 Scientific Team Leaders......................................................................................................................................................9 Coral Reef Biodiversity and Reef Health ......................................................................................................................... 10 Coral Reef Resources (Food fishes and Benthic communities)........................................................................................... 10 Community liaison....................................................................................................................................... 11 New Ireland ......................................................................................................................................................................11 Manus .................................................................................................................................................................................11 Communications ............................................................................................................................................12 References........................................................................................................................................................... 15 3 CONSERVATION CONTEXT BIOLOGICAL CONTEXT The global centre of marine biodiversity, known as the Coral Triangle, is a high priority for marine conservation. The Coral Triangle is known to support 76% of the world’s coral species (http://www.coralreefresearch.org/html/crr_cg.htm) and 37% of the world's coral reef fish species in an area that covers less than 2% of the planet’s oceans (Green and Mous, 2008). The Nature Conservancy and its partners are committed to conserving this extraordinary biodiversity through establishing resilient networks of Marine Protected Areas (MPA) throughout the Coral Triangle. One of the first steps in designing these networks is understanding how biodiversity is distributed throughout the area. The Conservancy and its partners have recently completed a process to delineate the Coral Triangle, its eco-region and functional seascapes (Green and Mous 2008: Figures 1, 2 & 3), which will serve as a blueprint for establishing MPA networks throughout this high priority area. Within eco-region, MPA networks will be established at the scale of functional seascapes1, leading to the establishment of a largescale resilient network of MPAs for each eco-region. While the delineation process was based on the best available information, further information is required to refine these planning units in areas where Rapid Ecological Assessments (REAs) have not been conducted. One high priority area for further surveys is the Bismarck Sea (Figure 1). Figure 1. Coral Triangle with arrow showing the location of the Bismarck Sea (Green and Mous 2008). 1 Areas within a wider ecoregion within which there is some geographical or ecological distinctiveness, but over a smaller area that maybe more suitable for the application of management measures such as MPA networks 4 Figure 2. Coral Triangle Ecoregions (Green and Mous 2008). Figure 3. Coral Triangle Functional Seascapes (Green and Mous 2008). Functional seascapes within the Bismarck Sea are numbered 17 -23. 5 The Bismarck Sea is one of the richest marine environments in the world, inhabited by many thousands of marine plant and animal species. Highly diverse communities live in the ecosystem complexes of coral reefs, lagoons, seagrass beds and mangroves. The biodiversity of the Northern Bismarck Sea remains in relatively good condition, and this region is of high value for marine conservation (Hunnan et al., 2001, WWF 2003). The Nature Conservancy is working with partners to design and implement resilient MPA networks throughout the Bismarck Sea, starting with the Kimbe Bay – Witu Islands functional seascape (Functional seascape No. 23, Figure 3). Kimbe Bay will be used as a platform site where the process of designing and implementing a resilient MPA network will be developed for the first time in Melanesia. The scientific design of a MPA network was completed for Kimbe in 2006 and current efforts are focused on implementing the MPA design through detailed community based planning processes (Green et al., 2007). Knowledge and lessons learned through the scientific design and implementation processes will be used to assist in the establishment of MPA networks in other functional seascapes in the Northern Bismarck Sea. The Conservancy set up field stations in Kavieng, New Ireland and Loerngau, Manus in 2004 (Seascapes 19 and 20, Figure 3), and various community based conservation efforts are now underway in these regions (e.g. Hamilton et al., 2005). The results of this survey will give us a better understanding of the patterns of biodiversity in the Northern Bismarck Sea. This information will assist the Conservancy and partners in identifying areas in the Northern Bismarck Sea that, from a biodiversity perspective, would be desirable to include in MPA networks in this region. Additional surveys are planned for other functional seascapes in future, and together with the surveys already conducted in Kimbe Bay (Holthus 1994, Beger 2002, Turak 2002), this should provide a more complete understanding of patterns of biological diversity in the Bismarck Sea. SOCIAL CONTEXT Melanesians have lived and fished in parts of the Northern Bismarck Sea for over 40 000 years, with midden deposits on New Ireland providing the earliest evidence in the world of human’s colonisation of oceanic islands, and some of the earliest evidence of marine fishing technologies (Allen et al., 1989). To this day the sea continues to form an intrinsic component of these people’s lives, providing these widespread maritime communities with a means of travel, survival and prosperity. In the Northern Bismarck Sea, resource owners have traditionally recognized rights over virtually all of their land and coastal marine resources. Subsistence, artisanal and commercial coastal fisheries in this region all operate within well developed Customary Marine Tenure (CMT) systems, where ownership of and hence access to coastal areas depends on a range of culturally defined variables, including descent line. Some communities in Northern Bismarck Sea have used their existing CMT systems as frameworks to manage their valuable marine resources for generations. Examples of contemporary community based fisheries management initiatives in the Northern Bismarck Sea include: restricting access to traditional fishing grounds, placing tambus (temporary closures) on reefs in order to allow valuable stocks of to recover, banning destructive fishing practices and placing gear restrictions on certain important stocks (Hamilton, 2003; Cinner et al., 2005). Despite these positive examples of community-based management, the immediate risks of over exploiting the resources in the narrow coastal zones of the Northern Bismarck Sea is mounting. Rapid population rise, an increasing dependence on cash economies, access to more efficient fishing technologies and the break down of CMT structures and traditional access rights are all factors putting increasing pressure on marine ecosystems in this region. In the Northern Bismarck Sea, critically endangered hawksbill turtles and dugongs continue to form an important component of expanding subsistence economies, and valuable marine invertebrates such as trochus, green snail, sea cucumbers and the globally threatened giant clam have been heavily exploited for decades. In recent years both the shark fin and Live Reef Food Fish Trade (LRFFT) fisheries have expanded rapidly in this region, often with detrimental consequences (Hamilton, 2005; Hamilton and Matawai, 2006). 6 In the Northern Bismarck Sea, successful biodiversity conservation at the site level hinges on developing long term partnerships with communities that own regions of high conservation priority. Previous experiences in this region has shown that one of the most effective ways to establish these partnerships is to begin by assisting communities in managing their essential marine resources. Supporting community based management initiatives can raise conservation awareness, result in communities actively managing their important marine resources, and build the enabling conditions for further biodiversity conservation work in these regions. In recognition of this and in response to communities’ requests, a component of this survey involved conducting a marine resource assessment. This involved surveying the abundance of a variety of marine species that communities have identified as key fisheries targets. It is hoped that the information collected from the resource assessment will be used by communities and governments to make informed decisions regarding the management of their essential marine resources. The information collected from the marine resource assessment will also be used by the Conservancy to develop appropriate strategies for working with communities in regions identified as high priorities for conservation. SURVEY DESCRIPTION AREA OF INTEREST The survey was conducted from August 13 to September 7, 2006 and focused on two locations in the Northern Bismarck Sea (Figure 4):  Tigak Islands and New Hanover in New Ireland Province (Figure 5); and  Manus Island and outer islands and reefs in Manus Province (Figure 6). Figure 4. Survey area (red line) in the Northern Bismarck Sea. 7 Figure 5. Survey area in New Ireland: New Hanover and the Tigak Islands. Figure 6. Survey area on Manus Island and outer islands and reefs. SITE SELECTION & SURVEY PROTOCOL Survey sites were selected during the survey based on interpretation of satellite images, logistic constraints and the guidance of local scientists, managers and survey participants. Survey sites were selected to provide maximum geographic coverage within the study area, and included representative examples of marine habitats of interest (particularly coral reefs), special and unique areas, and areas of particular interest to partner organisations. 8 Each day, the survey team assembled to select two general areas to survey the following day, and identify potential study sites within those areas. When the research team arrived in the study area the next day, they would confirm their site selection based on a visual assessment of potential sites. The community liaison team would then visit the local communities and obtain permission to survey those sites. Once permission had been obtained, the survey would proceed. Two survey teams were deployed in separate tenders to complete their surveys: the Coral Reef Biodiversity and Reef Health team; and the Coral Reef Fisheries Resources team. SURVEY COMPONENTS AND RESEARCH TEAM The survey provided a rapid ecological assessment of coral reef biodiversity, health and fisheries resources in the Northern Bismarck Sea. The assessment was conducted by a multi-disciplinary team focusing on the following components:  Coral Reef Biodiversity and Reef Health; and  Coral Reef Fisheries Resources. The following is a summary of the survey team, and the role of each member. Scientific Team Leaders The scientific team leaders were Dr Richard Hamilton, Dr. Alison Green and Tapas Potuku of The Nature Conservancy. Dr. Hamilton is the Marine Scientist for the Conservancy’s Melanesia Program. He works closely with field teams, communities and government departments in Papua New Guinea and the Solomon Islands to support their conservation and management agendas. He is a coral reef ecologist who is experienced in both anthropological and marine research, and he is particularly interested in understanding the ecology of large vulnerable reef fishes and the threats that are being placed on these iconic species. In recent years his work has focused in part on reef fish spawning aggregations (identification, monitoring, management and connectivity research). Dr. Hamilton speaks Tok Pidgin and has had extensive experience leading scientific surveys in Melanesia. Dr. Green is the Senior Marine Scientist with the Conservancy’s Tropical Marine Conservation Program, Asia Pacific Region. Dr. Green is a coral reef ecologist with expertise in coral reef assessment and monitoring, who has led numerous coral reef surveys in the Pacific Islands in the last 10 years (including the Solomon Islands Marine Assessment). Her other area of expertise include designing MPA networks. In 2006 she led the scientific design of a resilient network of MPAs in Kimbe Bay. Tapas Potuku has a Diploma in Fisheries Science. Mr Potuku worked for 21 years for the PNG National Fisheries Research Department before he retired in 2000. He has extensive experience conducting invertebrate and fisheries surveys throughout PNG, with much of his survey experience focusing around Wewak, the Gulf of Papua, New Ireland and Manus Province. In the 1990s he participated in biodiversity surveys in Kimbe Bay, and since 2004 he has been employed by The Nature Conservancy as the Community Conservation Officer for New Ireland. Mr Potuku’s diverse roles in his current position include coordinating monthly monitoring of grouper spawning aggregation sites, community liaison work and building conservation awareness in the New Ireland region. The role of the team leaders were to work with the survey team to design and implement the scientific aspects of the survey. 9 Coral Reef Biodiversity and Reef Health The primary objectives of this team were to assess and quantify: 1) the biological diversity of corals and reef fishes – two key components of the coral reef communities; and, 2) the current status of the coral reef communities. The team spent four to five hours diving each day (one-and-a-half to two hours at each of two or three sites). Team members were:  Dr. Gerry Allen, Tropical Reef Research and Western Australian Museum: Dr. Allen is recognized as one of the world’s leading experts in coral reef fish taxonomy and has refined the methodology for rapidly assessing fish biodiversity on coral reefs throughout the Coral Triangle. With more than 30 years experience, Dr. Allen has participated in many REAs for the Conservancy and other partners, including surveys in Papua New Guinea, Indonesia and the Solomon Islands. Dr. Allen complied detailed species lists for each site and a complete species inventory for the survey.  Emre Turak, Coral Reef Consultant: Mr. Turak is an experienced coral ecologist who conducted an ecological assessment of the coral communities at each site. In particular, he assessed coral community types, their current status and health, and the extent of impacts on these reefs from disturbances, such as coral bleaching, crown of thorns starfish outbreaks, destructive fishing practices, and terrestrial runoff. He also compiled detailed species lists of corals for each site. Mr Turak has participated in many REAs for the Conservancy and other partners, including surveys in Papua New Guinea, Indonesia and the Solomon Islands.  Dr. Charlie Veron, Australian Institute of Marine Science: Dr. Veron is a world expert on coral taxonomy. He compiled a complete species inventory for the survey, looking beyond the detailed species lists compiled at each site to search for new and rare species. This led to a more complete species list for the Northern Bismarck Sea, and possibly the identification of new species. Dr. Veron only partook in the New Ireland part of the survey. Coral Reef Resources (Food fishes and Benthic communities) A team of scientists conducted a quantitative baseline assessment of the status of marine resources in the survey area. They assessed the size and structure of populations of key reef fish species, and the cover and composition of benthic communities, including hard and soft corals. Key fisheries species were identified based on discussions with local scientists and local fishers. Large species that are particularly vulnerable to overfishing were a key focus, such as sharks, humphead wrasse, bumphead parrotfish and large groupers. This survey established the basis for the long term monitoring of coral reef resources in the Northern Bismarck Sea. This team was led by Dr Richard Hamilton and Tapas Potuku (see Team Leaders above), and included:  Litau Pomat, NFA, Kavieng  Lawrence Litau, The Nature Conservancy, Kavieng  Manuai Matawai, The Nature Conservancy, Manus  Miro Logai, New Ireland Provincial Fisheries  Jerry Pokiap, The Nature Conservancy Manus  Mr. Pomat Kaluwin, private contractor 10 COMMUNITY LIAISON NEW IRELAND In New Ireland community liaison was lead by Tapas Potuku. Prior to the survey commencing a steering committee was formed to assist Tapas Potuku with community liaison and awareness raising activates in New Ireland. Members of the New Ireland steering committee were: Mr. Joel Opnai (late) Ms. Sandra Marahang Mr. Satarek Taput Mr. John Aini Mr. Tatek Buraik Manoua Karo Mr. Samol Kanawi Tapas Potuku Chairman Committee Committee Committee Committee Committee Committee v/Chairman Gillette Preston Associate NI Provincial Fisheries NI Provincial Fisheries Advisor Ailan Awareness Principal, National Fisheries College Wildlife Conservation Society National Fisheries College The Nature Conservancy The New Ireland steering committee visited local communities within the areas of interest and informed them on the impending survey. Awareness of the upcoming survey was also raised through announcements on local radio stations. During the survey the community liaison team maintained communications with the communities and representatives from local communities and provincial government assisted with community liaison in their areas. Their participation greatly facilitated the community liaison team in obtaining permission to work within the areas of interest. Other organizations that assisted in this survey in New Ireland were Lissenung Dive Resort, who provided accommodation and other logistical support in the Tigak Islands component of this survey and Mansava Resort at New Hanover. The National Fisheries College also provided support with the use of their training vessel FTV Leilani to transport equipment to Manus. MANUS In Manus community liaison was lead by Manuai Matawai, The Nature Conservancy’s Community Conservation Officer for Manus. Prior to the survey the Manus Marine Assessment Coordinating Committee (MMACC) was formed for the sole purpose of raising community awareness about the NBREA. Awareness was raised through 12 LLG Presidents, Radio toksave and a jingle program through NBC local radio station. The MMACC comprised of members from various government and private agencies. They were; Mr. Obed Otto Mr. Manuai Matawai Mrs. Ipau Apas Mr. John Malai Mr. Pomat Powayai Mr. Selan Kaluwin Mr. Bernard Menly Mr. Robert Siwer Chairman Secretary Assoc. Secretary Committee Committee Committee Publication Officer Committee MP Policy and Planning Division The Nature Conservancy Hotel Manageress MP Culture and Tourism Division MP Fisheries Division CBO National Broadcasting Commission Local Level Government Member The MMACC organised a traditional welcome ceremony for the survey team at the Loerngau market. During this occasion speeches were made by members of the MMACC and the survey team, which was another effective means of raising public awareness about the survey. In Manus the survey team resided in Mbuke and Kali community for several nights, and in these two communities we gave presentations on 11 the survey and its objectives. At the end of the Manus fieldwork the findings of the survey were presented to the Provincial government assembly by Richard Hamilton and Emere Turuk at Loerngau Harbourside Hotel. COMMUNICATIONS The communications efforts were led by Dr Louise Goggin. Dr Goggin is a science writer and marine biologist, who is a communications specialist based in Canberra, Australia. She has written communication strategies, industry reports, scripts for corporate videos, promotional brochures, annual reports, press releases, radio scripts, and newsletters, as well as stories for newspapers, magazines, and the web. Dr. Goggin has been the communications expert on two recent REAs in the Solomon Islands and Pohnpei (Federated States of Micronesia). Dr Goggin provided the key findings produced at the end of this survey (see below). Note that some of numbers reported in the key findings have changed following more rigorous analysis of the data. Emre Turak provided high quality images for Dr. Goggin to use in communications. Jeanine Almany, Director of Communications for the Conservancy’s Pacific Island Countries Program, coordinated the publication of communication products for the survey. 12 Northern Bismarck Sea Rapid Ecological Assessment Key Findings- Biodiversity An international team of scientists conducted a rapid ecological assessment of the northern Bismarck Sea in Papua New Guinea between August and November 2006. Led by The Nature Conservancy, the team assessed the marine biodiversity near the Tigak Islands (New Ireland Province) and Manus Island (Manus Province). The region is less than 2,000 square kilometres in area and is located about 1,000 kilometres north-east of Port Moresby. The team found high biodiversity of corals and fish, confirming that this region is within the ‘Coral Triangle’; the area with the highest marine biodiversity in the world. © Susumu Okamoto The reefs that the team visited around Manus Island were some of the healthiest that the team had visited for sometime. However, they found crown-of-thorns starfish in many areas of the Tigak Islands. Fishing pressure appears to be considerably less than some areas further west in the Coral Triangle. Fish populations were very healthy in most locations in Manus, with spectacular fish communities and lots of big fish observed at several sites. However, there was some evidence of overexploitation in the Tigak Islands. CORALS AND REEF CONDITION Dr John (Charlie) Veron (Australian Institute of Marine Science) and Emre Turak (Consultant) found that the reefs of the region have high coral diversity. They recorded 408 coral species from reefs around and near the Tigak Islands, and 403 coral species from the reefs around Manus Island. An additional number of corals were not identified and could prove to be new to science. Combined with the 392 species already recorded from Kimbe Bay, New Britain, this brings the total number of coral species for the Bismarck Sea to 478. This number is likely to increase as more areas are surveyed. The reefs that the team visited around Manus Island were in very good condition and among the healthiest that the team have seen in sometime. In contrast, the reefs of the Tigak Islands were not in such good condition; there were crown-of-thorns starfish on most reefs with significant coral mortality at some sites. © Susumu Okamoto Dr Veron is a world-recognised coral specialist who has written more than 20 books about corals. Mr Emre Turak is an experienced coral ecologist who specialises in rapid assessments of coral reef biodiversity and health, and has participated in many REAs throughout the Coral Triangle. 13 Northern Bismarck Sea Rapid Ecological Assessment Key Findings- Biodiversity REEF FISH The survey confirms that the Bismarck Sea has a rich community of fishes that is only slightly less than the world’s highest ranked regions. Dr Gerald Allen (Western Australia Museum) recorded 801 fish species of which 750 were observed during the survey and the rest were described from museum collections. Combined with the number found from Kimbe Bay, this brings the total for the Bismarck Sea to 967 fish species. Dr Allen found between 65 and 234 fish species per site, with an average of 159 per site. Two hundred species is considered the benchmark for an excellent fish count; Dr Allen exceeded this total at 4 per cent of sites in the Tigak Islands/ New Hanover area, and 11 per cent of sites near Manus Island. The highest fish count he observed was 234 species at the southern coast of Selapiu Island in the New Hanover area. © Gerald Allen Dr Allen recorded several range extensions for fish species. He also found an important nursery area for Napoleon wrasse and Bumphead Parrotfish north of Anelaua Island off eastern New Hanover. Dr Allen is a world expert on coral reef fishes. He has been diving for 35 years and spent more than 7,000 hours underwater. Dr Allen has written more than 20 books about coral reef fishes. SUPPORT The survey was led by The Nature Conservancy (TNC) and supported by the National Fisheries Authority of Papua New Guinea, World Wide Fund for Nature, Gillett Preston Associate (Coastal Fisheries Management & Development Project, CFMDP), Manus Provincial Government, New Ireland Provincial Government, The National Fisheries College, Wildlife Conservation Society, Lissenung Dive Resort, Ailan Awareness and Mansava Resort. Manus Island Tigak Islands Ne w Ire land Bismarck Sea Kimbe Bay Madang Ne w Britain Papua New Guinea 14 REFERENCES Allen, J.C., Gosden, C., White, J.P. 1989 Human Pleistocene adaptations in the tropical island Pacific: recent evidence from New Ireland, a Greater Australian outlier. Antiquity 63: 548-561. Beger, M. 2002 The diversity and status of coral reefs fishes of Eastern Kimbe Bay. Report to The Nature Conservancy as part of the Eastern Kimbe Bay Rapid Ecological Assessment, December 2002. Cinner JE, Marnane MJ, McClanahan TR. 2005. Conservation and community benefits from traditional coral reef management at Ahus Island, Papua New Guinea. Conservation Biology 19(6):17141723. Green AL, Mous PJ. 2008. Delineating the coral triangle, its ecoregions and functional seascapes. Version 5.0. TNC Coral Triangle Program Report 1/08. http://conserveonline.org/workspaces/tnccoraltriangle/ Hamilton RJ. 2003. A report on the current status of exploited reef fish aggregations in the Solomon Islands and Papua New Guinea – Choiseul, Ysabel, Bougainville and Manus Provinces. Western Pacific Fisher Survey Series, Volume 1 (confidential appendix). Society for the Conservation of Reef Fish Aggregations. Hamilton RJ, Matawai M. 2006. Live reef food fish trade causes rapid declines in abundance of squaretail coralgrouper (Plectropomus areolatus) at a spawning aggregation site in Manus, Papua New Guinea. SPC Live Reef Fish Information Bulletin 16:13-18. Hamilton RJ, Matawai M, Potuku T, Kama W, Lahui P, Warku J, Smith AJ. 2005. Applying local knowledge and science to the management of grouper aggregation sites in Melanesia. SPC Live Reef Fish Information Bulletin 14:7-19. Holthus, P. 1994 Kimbe Bay Rapid Ecological Assessment: The coral reefs of Kimbe Bay (West New Britain, PNG). Volume 1: Synthesis Report. Report to The Nature Conservancy, Auckland, New Zealand. Hunnam, P., Jenkins, A., Kile, N., Shearman, P. 2001. Marine resource management and conservation planning: Bismarck-Solomon Seas ecoregion: Papua New Guinea Solomon Islands. World Wide Fund for Nature, South Pacific program. Oceanic Printers, Suva, Fiji Islands. pp. 86. Turak, E., Aitsi, J. 2002 Assessment of coral biodiversity and status of coral reefs of East Kimbe Bay, New Britain, PNG 2002. Report to The Nature Conservancy as part of the Eastern Kimbe Bay Rapid Ecological Assessment, December 2002. WWF 2003 Bismarck Solomon Seas Ecoregion. A Cradle of Marine Biodiversity. 24 pp. 15 February 2009 TNC Pacific Island Countries Report No 1/09 Chapter 1: Fisheries Resources: Fo od Fi sh and Benthic Cover Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea By: Richard Hamilton, Tapas Potuku and Manuai Matawai The Nature Conservancy Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Dr. Richard Hamilton, 51 Edmondstone Street, South Brisbane, QLD 4101 Australia Email: rhamilton@tnc.org Suggested Citation: Hamilton, R., T. Potoku and M. Matawai. 2009. Fisheries Resources: Food Fish and Benthic Cover. In: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Maps: Nate Peterson Cover Photo: © Susumu Okamoto ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications 17 Contents Executive Summary......................................................................................................................................20 Introduction...................................................................................................................................................21 Methods – Food Fishes ..............................................................................................................................21 Study sites ......................................................................................................................................................................... 21 Target species................................................................................................................................................................... 23 Survey methods ............................................................................................................................................................... 25 Transect counts ............................................................................................................................................................... 25 Long swim surveys .......................................................................................................................................................... 25 Data analysis..................................................................................................................................................................... 25 Methods – Benthic Communities...................................................................................................... 26 Study sites .........................................................................................................................................................................26 Survey methods ...............................................................................................................................................................26 Data analysis.....................................................................................................................................................................27 Results – Food Fishes..................................................................................................................................27 Density of food fishes sighted on transect swims ..................................................................................................27 Density of total fish assemblage..................................................................................................................................28 Densities of the key families of fishes .......................................................................................................................28 Snappers...........................................................................................................................................................................28 Surgeonfishes....................................................................................................................................................................29 Emperors.......................................................................................................................................................................... 30 Parrotfishes ...................................................................................................................................................................... 30 Groupers .......................................................................................................................................................................... 31 Biomass of food fishes sighted on transect swims...................................................................................................31 Biomass of total fish assemblage................................................................................................................................. 32 Biomass of the key families of fishes.......................................................................................................................... 32 Snappers........................................................................................................................................................................... 32 Surgeonfishes.................................................................................................................................................................... 33 Emperors.......................................................................................................................................................................... 33 Parrotfishes ......................................................................................................................................................................34 Groupers ..........................................................................................................................................................................34 Food fishes sighted on long swims............................................................................................................................. 35 Results – Benthic communities ...........................................................................................................37 Coral Cover ...................................................................................................................................................................... 37 Macroalgae........................................................................................................................................................................ 38 Non-living ........................................................................................................................................................................ 38 Other..................................................................................................................................................................................39 Discussion..........................................................................................................................................................40 Conservation & Management Recommendations....................................................................41 References...........................................................................................................................................................43 Appendix...............................................................................................................................................................45 18 List of Figures Figure 1. Map of the northern end of New Ireland showing the locations of the 18 sites that were surveyed for food fishes and coral cover........................................................................................................................22 Figure 2. Map of the Manus Island showing the locations of the 11 sites that were surveyed for food fishes and coral cover......................................................................................................................................................................22 Figure 3. Mean density (+/- 1SE) of food fishes sighted in New Ireland and Manus....................................28 Figure 4. Mean density (+/- 1SE) of snappers sighted in New Ireland and Manus. ......................................29 Figure 5. Mean density (+/- 1SE) of surgeonfishes sighted in New Ireland and Manus...............................29 Figure 6. Mean density (+/- 1SE) of emperors sighted in New Ireland and Manus. .....................................30 Figure 7. Mean density (+/- 1SE) of parrotfishes sighted in New Ireland and Manus..................................30 Figure 8. Mean density (+/- 1SE) of groupers sighted in Kavieng and Manus..................................................31 Figure 9. Mean biomass (+/- 1SE) of food fishes sighted in New Ireland and Manus.................................. 32 Figure 10. Mean biomass (+/- 1SE) of snappers sighted in New Ireland and Manus.................................... 33 Figure 11. Mean biomass (+/- 1SE) of surgeonfishes sighted in New Ireland and Manus. .......................... 33 Figure 12. Mean biomass (+/- 1SE) of emperors sighted in New Ireland and Manus................................... 34 Figure 13. Mean biomass (+/- 1SE) of parrotfishes sighted in New Ireland and Manus. ............................. 34 Figure 14. Mean biomass (+/- 1SE) of groupers sighted in New Ireland and Manus. .................................... 35 Figure 15. Mean density of large vulnerable fish sighted in New Ireland and Manus .................................... 35 Figure 16. Mean biomass of large vulnerable fish sighted in New Ireland and Manus ..................................36 Figure 17. Percentage of the major life forms in New Ireland and Manus Province. ...................................... 37 Figure 18. The mean percentage of Coral cover at each site .................................................................................. 37 Figure 19. The mean percentage of Macroalgae cover at each site....................................................................... 38 Figure 20. The mean percentage of Non-living cover at each site........................................................................ 38 Figure 21. The mean percentage of Other cover at each site ..................................................................................39 List of Tables Table 1. Key species of food fishes surveyed ................................................................................................................ 23 Table 2. Lifeform categories and Major categories....................................................................................................26 Table 3. Relative densities of each fish family at New Ireland and Manus.........................................................27 Table 4. Relative biomass of each fish family at Kavieng and Manus....................................................................31 Table 5. Mean density of groupers, humphead wrasse and bumphead parrotfish in each province.............36 Table 6. Mean biomass of groupers Humphead wrasse and Bumphead parrotfish in each province ........36 19 Executive Summary There was no significant difference between the mean density and mean biomass of all reef fish sighted on transects in New Ireland and Manus. However an examination of five abundant families of coral reef fish (snappers, surgeonfishes, emperors, parrotfishes and groupers) revealed some significant differences. New Ireland had a significantly higher density and biomass of surgeonfishes then Manus, while in Manus the densities and biomasses of parrotfishes and groupers were significantly higher than in New Ireland. While differences seen between the two provinces at the family level could be due to a number of confounding variables, it is likely that the lower densities and biomass of groupers and parrotfishes seen on transects in New Ireland relate in part to higher levels of historical fishing pressure. In the past two decades groupers and parrotfishes have been heavily fished in New Ireland to supply local markets at Kavieng town and, in the case of groupers, the Live Reef Food Fish Trade (LRFFT). The densities and biomass of large vulnerable reef fishes sighted on long swims was significantly different between the two provinces. For example, bumphead parrotfish densities were 12 times higher in Manus than in New Ireland; grouper densities were 6 times higher in Manus than in New Ireland and humphead wrasse densities were 2.5 times higher in Manus then in New Ireland. The lower densities of indicator species such as bumphead parrotfish and humphead wrasse suggest higher historical fishing pressure in New Ireland. The results from the benthic cover survey showed that only Macroalgae cover differed significantly between the two provinces, making up on average 25% of benthic cover in New Ireland and 11% in Manus. The much higher levels of Macroalgae in New Ireland is related to the extensive coral mortality that some sites in the Tigak Islands have suffered as a result of relatively recent damage from Crown of Thorns Starfish (COTS) and bleaching events. 20 INTRODUCTION Reef finfish are the mainstay of the subsistence and artisanal fisheries in New Ireland and Manus and comprise a major component of the protein in the diet of coastal communities. These reefs also support several commercial fishing operations and a number of tourism operations. The Tigak area of New Ireland is a particularly well known tourist destination in Papua New Guinea, and draws SCUBA divers, surfers and holiday makers to the area. In recent years growing coastal population coupled with an ever increasing move towards artisanal and commercial fishing has resulted in depletion of some marine resources’ in both provinces. Valuable macro invertebrates’ such as sea cucumbers are now severely overfished in the Tigak region of New Ireland (Kaly 2007) and many grouper spawning aggregations in Manus and New Ireland have been seriously overfished by a combination of artisanal night time spearfishing and Live Reef Food Fish Trade (LRFFT) operations (Hamilton and Matawai 2006; Hamilton, et al. 2005). Anecdotal information from fishers also suggests that abundances of large rare species such as the bumphead parrotfish (Bolbometopon muricatum) and the humphead wrasse (Cheilinus undulatus) have also declined markedly in both provinces in recent decades (Hamilton, unpublished data). In recent years the reefs around New Ireland have also been detrimentally affects by outbreaks of Crown of Thorns Starfish (COTS) (See Coral communities and reef health) this report. While no COTS outbreaks were sighted in Manus during this survey, in mid 2001 there was a report of a COTS outbreak from Patali Island at Mbuke to Point stone on the south west coast of Manus (Selarn Kaluwin, personal communications, March 2008). Severe coral bleaching was sighted at outer reefs between Mbuke and Anun Island in the same year (Tapas Potuku, personal observations 2001). Clearly, the coral reefs and marine resources that they support in the Northern Bismarck Sea are beginning to be negatively impacted upon, a scenario that is unlikely to change given the rate of population growth in Papua New Guinea and climate change predictions for this area of the world. The purpose of this survey was to collect baseline data on reef fishes of importance to local fisheries, as well as information on the benthic cover in each province. This baseline data highlights species and areas of concern and will inform better management of these resources in the future. METHODS – FOOD FISHES STUDY SITES In total 29 sites in New Ireland and Manus were surveyed for food fish and coral cover. 18 sites were surveyed within the Tigak Islands, north New Hanover and Djual Island (Figure 1) and 11 sites were surveyed around Manus (Figure 2). Food fish surveys were not conducted in the northern part of Manus due to logistical problems encountered during the survey period. In both New Ireland and Manus exposed reef slopes (both fringing and barrier reefs) were the most common habitat surveyed although some sheltered sites in New Ireland and Manus (i.e. lagoons or bays) were also surveyed. 21 Figure 1. Map of the northern end of New Ireland showing the locations of the 18 sites that were surveyed for food fishes and coral cover. Figure 2. Map of the Manus Island showing the locations of the 11 sites that were surveyed for food fishes and coral cover. 22 TARGET SPECIES The list of 111 fishery species that were surveyed is shown in Table 1. This extensive species list was developed by the resource team based on their detailed knowledge of the food fishes of importance to subsistence and commercial reef fisheries in this region. Litau Pomat carried out all transect swims and many of the long swims in this survey and he has over 30 years of experience in carrying out fish surveys in Papua New Guinea. Table 1. Key species of food fishes surveyed Taxa/Family Species Acanthuridae Ctenochaetus striatus (surgeonfishes) Acanthurus fowleri Acanthurus lineatus Acanthurus maculiceps Acanthurus mata Acanthurus nigricaudus Acanthurus nubilus Acanthurus olivaceus Acanthurus pyroferus Acanthurus xanthopterus Naso brevirostris Naso hexacanthus Naso lituratus Naso unicornis Naso vlamingii Balistidae (triggerfishes) Balistapus undulatus Balistoides viridescens Odonus niger Pseudobalistes flavimarginatus Carangidae (trevally) Carangoides bajad Carangoides plagiotaenia Caranx ignobilis Caranx melampygus Caranx sexfasciatus Elagatis bipinnulatus Gnathanodon speciosus Ephippidae (batfish) Platax orbicularis Kyphosidae (drummers) Kyphosus cinerascens Kyphosus vaigiensis Haemulidae (sweetlips) Plectorhinchus albovittatus Plectorhinchus chaetodonoides Plectorhinchus gibbosus Plectorhinchus lessonii Plectorhinchus lineatus Plectorhinchus vittatus Holocentridae Sargocentron spiniferum (soldierfishes and squirrelfishes) Labridae (wrasses) Cheilinus fasciatus Cheilinus trilobatus Cheilinus undulatus Lethrinidae (emperors) Lethrinus erythracanthus Lethrinus erythropterus Lethrinus harak Lethrinus obsoletus Lethrinus olivaceus Lethrinus nebulosus Lethrinus rubrioperculatus Lethrinus xanthochilus Monotaxis grandoculis Lutjanidae (snappers) Aphareus furca 23 Common Name Lined bristletooth Blackspine surgeonfish Striped surgeonfish White-freckled surgeonfish Yellowmask surgeonfish Blackstreak surgeonfish Dark surgeonfish Orangeband surgeonfish Mimic surgeonfish Yellowfin surgeonfish Spotted unicornfish Sleek unicornfish Orangespine unicornfish Bluespine unicornfish Bignose unicornfish Orange-lined triggerfish Titan triggerfish Redtooth triggerfish Yellowmargin triggerfish Orange-spotted trevally Barcheek trevally Giant trevally Bluefin trevally Bigeye trevally Rainbow runner Golden trevally Circular spadefish Topsail drummer Lowfin drummer Giant sweetlips Many-spotted sweetlips Blubberlip Striped sweetlips Diagonal-banded sweetlips Oriental sweetlips Sabre squirrelfish Redbreasted wrasse Tripletail wrasse Humphead wrasse Yellowfin emperor Longfin emperor Thumbprint emperor Orange-striped emperor Longface emperor Spangled emperor Spotcheek emperor Yellowlip emperor Humpnose bigeye bream Smalltooth jobfish Taxa/Family Mullidae (goatfishes) Nemipteridae (coral breams) Pomacanthidae (angelfishes) Scaridae (parrotfishes) Scombridae (tunas and mackerels) Siganidae (rabbitfishes) Sphyraenidae (barracudas) Serranidae (groupers) Species Aprion virescens Lutjanus argentimaculatus Lutjanus bohar Lutjanus carponotatus Lutjanus fulviflamma Lutjanus fulvus Lutjanus gibbus Lutjanus kasmira Lutjanus monostigma Lutjanus rivulatus Lutjanus russelli Lutjanus semicinctus Macolor macularis Macolor niger Symphorichthys spilurus Parupeneus bifasciatus/trifasciatus Parupeneus barberinus Parupeneus cyclostomus Parupeneus multifasciatus Scolopsis monogramma Common Name Green jobfish Mangrove red snapper Red snapper Spanish flag Longspot snapper Blacktail snapper Humpback snapper Bluestripe snapper Onespot snapper Blubberlip snapper Russell’s snapper Black-banded snapper Midnight snapper Black snapper Sailfin snapper Doublebar/Indian goatfish Dash-dot goatfish Goldsaddle goatfish Manybar goatfish Monogram monocle bream Pomacanthus navarchus Pomacanthus sexstriatus Pomacanthus xanthometopon Bolbometopon muricatum Cetoscarus bicolor Chlorurus microrhinos Hipposcarus longiceps Scarus festivus Scarus ghobban Scarus oviceps Scarus prasiognathos Scarus niger Scomberomorus commerson Blue-girdled angelfish Six-banded angelfish Yellow-mask angelfish Bumphead parrotfish Bicolor parrotfish Steephead parrotfish Pacific longnose parrotfish Festive parrotfish Blue-barred parrotfish Dark-capped parrotfish Greenthroat parrotfish Swarthy parrotfish Narrow barred Spanish mackerel Siganus argenteus Siganus corallinus Siganus doliatus Siganus fuscescens Siganus lineatus Siganus puellus Siganus punctatissimus Siganus punctatus Siganus stellatus Siganus vulpinus Sphyraena barracuda Sphyraena qenie Aethaloperca rogga Anyperodon leucogrammicus Cephalopholis argus Cephalopholis cyanostigma Cromileptes altivelis Epinephelus fuscoguttatus Epinephelus hexagonatus Epinephelus lanceolatus Epinephelus merra Epinephelus polyphekadion Gracila albomarginata Plectropomus areolatus Plectropomus laevis Plectropomus leopardus Forktail rabbitfish Coral rabbitfish Barred rabbitfish Dusky rabbitfish Lined rabbitfish Masked rabbitfish Fine-spotted rabbitfish Gold-spotted rabbitfish Honeycomb rabbitfish Foxface rabbitfish Great barracuda Blackfin barracuda Redmouth grouper Slender grouper Peacock grouper Bluespotted grouper Barramundi cod Brown-marbled grouper Hexagon grouper Giant grouper Honeycomb grouper Camouflage grouper Masked grouper Squaretail coral grouper Blacksaddle coral grouper Leopard coral grouper 24 Taxa/Family Species Plectropomus oligacanthus Variola albimarginata Variola louti Common Name Highfin coral grouper White-edged lyretail Yellow-edged lyretail SURVEY METHODS Key food fish species were surveyed using underwater visual census techniques that consisted of a combination of transect counts and long swims, based on methods in the Solomon Islands REA (Green et al., 2006). TRANSECT COUNTS Five replicate transects were surveyed at each site. Each transect was 50m long and 10m wide, giving a total area surveyed of 500m2 per transect. Transect lengths were measured using 50m tapes, and transect widths were visually estimated. Transect tapes were laid by an assistant following the observer to minimize disturbance to the fish communities being counted. The tapes then remained in situ until all surveys were completed at that site. Benthic communities were surveyed along the same transects after the fish counts were completed. In each pass of a transect the number of individuals of each fish species was counted and recorded onto underwater paper. The size of each individual (length in cm) was also estimated and recorded. Fish identifications were based on (Allen, et al. 2003). LONG SWIM SURVEYS Key fisheries species of food fish that are large and particularly vulnerable to overfishing were also counted (and their size estimated) using long swim methods specifically developed for this purpose (Choat and Pears 2003). This method was developed to improve estimates of the abundance of these species, since they tend to be uncommon and clumped in distribution, so smaller transects dimensions (e.g., 50m x 10m) are not suitable for obtaining reasonable estimates of their abundance. In this method, the observer surveyed a 20m wide area during a single pass of the reef slope over a set time period (20 minutes) scanning the reef slope for these species. Average swim speeds for an observer were calculated such that the average distance covered in a timed swim could be estimated. Long swims covered an average area of 8000 m2. The species surveyed using the long swim method were:      Humphead wrasse (Cheilinus undulatus); Bumphead parrotfish (Bolbometopon muricatum) and steephead parrotfish (Chlorurus microrhinos); Large groupers (Epinephelus fuscoguttatus, Epinephelus polyphekadion, Epinephelus lanceolatus, Cromileptes altivelis, Plectropomus areolatus, Plectropomus laevis, Plectropomus leopardus, Plectropomus oligacanthus Variola louti and Variola albimarginata); Giant trevally (Caranx ignobilis); and Large and uncommon emperors (Lethrinus olivaceus, Lethrinus erythropterus, Lethrinus rubrioperculatus and Lethrinus xanthochilus). DATA ANALYSIS Key fisheries species were compared among the two provinces based on the density and biomass of all species and key families. Fish density estimates per transect and per long swim were converted to the number of individuals per hectare (ha). Fish biomass was calculated by converting estimated fish lengths to weights (Appendix 1) using the allometric length-weight conversion formulae W=aLb where a and b 25 are constants for each species. Fish biomass per transect and per long swim were converted to the biomass of fish per hectare (ha). Constants were not available for most species in Papua New Guinea so they were obtained from Fishbase (www.fishbase.org). Typically the median value for a species was used, or when no species-specific information was available, the constants for a closely related species or the constants of the overall mean values of a genus were used. Differences in fish abundances and biomass between the two provinces were investigated using Mann-Whitney Rank Sum tests (SigmaStat) since data was non-normal. METHODS – BENTHIC COMMUNITIES STUDY SITES Benthic cover was surveyed at the same sites that were surveyed for food fishes (Figure 1 and 2). SURVEY METHODS Benthic data were collected using a modified version of the Point Intercept Method (Hill and Wilkinson 2004; Hughes, 2006). Benthic data were collected from three points every 2m along a 50m transect tape. Two points were located 1 metre on either side of the transect line and the third was below the transect. A total of five 50m transects were laid at a depth profile of 8-10m at each site. This resulted in a total collection of 75 data points for each transect, and a total of 375 data points for each site. Benthic composition was recorded based on lifeforms consistent with the categories provided by (English, et al. 1997). For ease of presentation, these were further grouped into four major categories: Corals, Macroalgae, Abiotic and Others (Table 2). Table 2. Lifeform categories and Major categories Code ACB ACE ACD ACT ACS CB CE CF CM CS CMR CHL CME CTU DCA AA CA HA MA TA S R Si DC l RCK Lifeform Acropora Branching Acropora Encrusting Acropora Digitate Acropora Tabular Acropora Submassive Coral Branching Coral Encrusting Coral Foliose Coral Massive Coral Submassive Mushroom Coral Blue Coral Fire Coral Organ Pipe Coral Dead Coral with Algae Algae Assemblage Coralline Algae Halimeda Algae Macroalgae Turf Algae Sand Rubble Silt Dead Coral Rock Major category Coral Coral Coral Coral Coral Coral Coral Coral Coral Coral Coral Coral Coral Coral Macroalgae Macroalgae Macroalgae Macroalgae Macroalgae Macroalgae Non-living Non-living Non-living Non-living Non-living 26 Code SC SP ZO OT Lifeform Soft Coral Sponge Zoanthid Others (Ascidians, anemones, gorgonians etc) Major category Others Others Others Others DATA ANALYSIS Data was grouped at the major lifeform category for the purpose of graphing and analysis. T- tests (SigmaStat) were carried out to investigate if the mean Coral, Macroalgae, Non-living and Other major lifeforms were significantly different between the two provinces. RESULTS – FOOD FISHES DENSITY OF FOOD FISHES SIGHTED ON TRANSECT SWIMS In New Ireland the most five most abundant families were snappers, surgeonfishes, emperors, triggerfish and trevallys, whereas in Manus the five most abundant families were snappers, surgeonfishes, parrotfishes, emperors and rabbitfishes (Table 3). Table 3. Relative densities of each fish family at New Ireland and Manus Family LUTJANIDAE ACANTHURIDAE LETHRINIDAE BALISTIDAE CARANGIDAE SCARIDAE KYPHOSIDAE SIGANIDAE MULLIDAE SERRANIDAE SPYYRAENIDAE HAEMULLIDAE LABRIDAE POMACANTHIDAE HOLOCENTRIDAE EPHIPPIDAE SCOMBRIDAE NEMIPTERIDAE Total Common names Snappers Surgeonfishes Emperors Triggerfishes Trevally Parrotfishes Drummers Rabbitfishes Goatfishes Groupers Barracudas Sweetlips Wrasses Angelfishes Squirrelfishes Batfishes Mackerels Coral breams Relative density (% of total) New Ireland 41.29 24.41 7.69 6.81 4.79 3.97 3.50 2.35 1.87 1.11 0.74 0.59 0.53 0.22 0.08 0.03 0.00 0.00 100.00 27 Relative density (% of total) Manus 28.32 27.44 10.22 0.45 0.84 11.83 6.02 7.82 1.39 3.17 0.00 1.09 0.75 0.45 0.06 0.02 0.09 0.04 100.00 DENSITY OF TOTAL FISH ASSEMBLAGE The density of bony food fishes at each site is shown in Figure 3. A Mann-Whitney Rank sum test showed that the mean density of fish sighted on transects in New Ireland and Manus were not significantly different (U statistic = 2631.5, P=0.525). 18000 16000 14000 Density (per ha) 12000 10000 New Ireland Manus 8000 6000 4000 2000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 3. Mean density (+/- 1SE) of food fishes sighted in New Ireland and Manus DENSITIES OF THE KEY FAMILIES OF FISHES To examine if densities of key families of fishes differed significantly between the two provinces we compared the total densities of snappers, surgeonfishes, emperors, parrotfishes and groupers. Snappers and surgeonfishes are the first and second most sighted families in both provinces, whereas emperors were the 3rd and 4th most important family in New Ireland and Manus respectively. Parrotfish were examined due to their functional role in maintaining reef health (Hoey and Bellwood 2008) and groupers were examined as they are a key commercial species that is well surveyed by underwater visual census (Zellar and Russ 2000) and declines in their densities are often indicative of overfishing. Snappers The density of snappers at each site is shown in Figure 4. The densities of snapper were highly variable both between and within sites, no doubt in part due to the frequency with which many snapper species form large roving schools. A Mann-Whitney Rank sum test showed that the mean density of fish sighted on transects in New Ireland and Manus were not significantly different (U statistic = 2206, P=0.272). Inspection of the raw data revealed that the very high densities of snapper seen at Site 13 are attributable to large schools of Lutjanus kasmira being sighted on several of the transects at this site. 28 16000 14000 Density (per ha) 12000 10000 New Ireland 8000 Manus 6000 4000 2000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 4. Mean density (+/- 1SE) of snappers sighted in New Ireland and Manus. Surgeonfishes The density of surgeonfishes at each site is shown in Figure 5. A Mann-Whitney Rank sum test showed that the mean density of surgeonfishes sighted on transects in New Ireland were significantly higher than at Manus (U statistic = 3036.5, P=0.022). 3000 2500 Density (per ha) 2000 1500 New Ireland Manus 1000 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 5. Mean density (+/- 1SE) of surgeonfishes sighted in New Ireland and Manus. 29 Emperors The density of emperors at each site is shown in Figure 6. A Mann-Whitney Rank sum test showed that the mean density of emperors sighted on transects in Manus were significantly higher than at New Ireland (U statistic = 1609.5, P<0.001). 2000 1800 1600 Density per hectare 1400 1200 1000 New Ireland Manus 800 600 400 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 6. Mean density (+/- 1SE) of emperors sighted in New Ireland and Manus. Parrotfishes The density of parrotfishes at each site is shown in Figure 7. A Mann-Whitney Rank sum test showed that the mean density of parrotfishes sighted on transects in Manus were significantly higher than at New Ireland (U statistic =1452, P<0.001). 1200 1000 Density (per ha) 800 600 New Ireland 400 Manus 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 7. Mean density (+/- 1SE) of parrotfishes sighted in New Ireland and Manus. 30 Groupers The density of groupers at each site is shown in Figure 8. A Mann-Whitney Rank sum test showed that the mean density of groupers sighted on transects in Manus were significantly higher than at New Ireland (U statistic =1826, P=0.006). 200 180 160 Density (per ha) 140 120 New Ireland 100 Manus 80 60 40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 8. Mean density (+/- 1SE) of groupers sighted in Kavieng and Manus. BIOMASS OF FOOD FISHES SIGHTED ON TRANSECT SWIMS In New Ireland the five families that made of the majority of fish biomass were snappers, surgeonfishes, trevallys emperors and triggerfish (Table 4), whereas in Manus five families that made up the majority of fish biomass were parrotfishes, emperors, snappers, surgeonfishes and sweetlips (Table 4). Table 4. Relative biomass of each fish family at Kavieng and Manus Common Family names LUTJANIDAE Snappers ACANTHURIDAE Surgeonfishes CARANGIDAE Trevally LETHRINIDAE Emperors SPYYRAENIDAE Barracudas KYPHOSIDAE Drummers SCARIDAE Parrotfishes BALISTIDAE Triggerfishes HAEMULLIDAE Sweetlips SERRANIDAE Groupers SIGANIDAE Rabbitfishes LABRIDAE Wrasses MULLIDAE Goatfishes POMACANTHIDAE Angelfishes EPHIPPIDAE Batfishes HOLOCENTRIDAE Squirrelfishes SCOMBRIDAE Mackerels NEMIPTERIDAE Coral breams Total Relative biomass (% of total) New Ireland 40.24 15.55 13.45 9.52 4.33 4.12 3.59 2.73 2.67 1.43 0.83 0.79 0.47 0.11 0.10 0.08 0.00 0.00 100 31 Relative biomass (% of total) Manus 9.67 4.69 0.56 28.39 0.00 2.11 40.94 0.99 2.38 3.27 1.22 0.99 0.2 0.08 0.05 0.03 1.41 0.01 100 BIOMASS OF TOTAL FISH ASSEMBLAGE The biomass of bony food fishes at each site is shown in Figure 9. The mean biomass of fish sighted on transects in New Ireland and Manus were not significantly different (Mann-Whitney U statistic = 2197.5, T = 4292.5, P = 0.259). 7000 6000 5000 4000 New Ireland Manus 3000 2000 1000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Figure 9. Mean biomass (+/- 1SE) of food fishes sighted in New Ireland and Manus BIOMASS OF THE KEY FAMILIES OF FISHES To examine if biomass of key families of fishes differed significantly between the two provinces we compared the total biomass of snappers, surgeonfishes, emperors, parrotfishes and groupers. These being the same five families whose relative densities were compared between both provinces. Snappers The biomass of snappers at each site is shown in Figure 10. The biomass of snapper were highly variable both between and within sites and mean biomass of fish sighted on transects in New Ireland and Manus were not significantly different (Mann-Whitney U statistic = 2374.5, T = 4115.5, P = 0.683). Sites 3, 10 and 13 in New Ireland had the highest biomass of all the sites. 32 4500 4000 3500 Kg/ha 3000 2500 New Ireland Manus 2000 1500 1000 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 10. Mean biomass (+/- 1SE) of snappers sighted in New Ireland and Manus. Surgeonfishes The biomass of surgeonfishes at each site is shown in Figure 11. The biomass of surgeonfish was significantly higher in New Ireland than in Manus (Mann-Whitney U statistic = 2885, T =3406, P = 0.045). 1200 1000 kg/ha 800 New Ireland 600 Manus 400 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 11. Mean biomass (+/- 1SE) of surgeonfishes sighted in New Ireland and Manus. Emperors The biomass of emperors at each site is shown in Figure 12. The mean biomass of emperors sighted on transects in New Ireland and Manus were not significantly different (Mann-Whitney U statistic = 2264, T = 4081, P = 0.486). 33 4000 3500 3000 kg/ha 2500 New Ireland 2000 Manus 1500 1000 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 12. Mean biomass (+/- 1SE) of emperors sighted in New Ireland and Manus. Parrotfishes The biomass of parrotfishes at each site is shown in Figure 13. The mean biomass of parrotfishes sighted on transects was significantly higher in Manus than in New Ireland (Mann-Whitney U statistic = 1519.5, T =4970.5, P < 0.001). The very high biomass seen at Site 22 was due to a sighting of a large school of Bolbometopon muricatum. 6000 5000 kg/ha 4000 New Ireland 3000 Manus 2000 1000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 13. Mean biomass (+/- 1SE) of parrotfishes sighted in New Ireland and Manus. Groupers The density of groupers at each site is shown in Figure 14. The mean biomass of groupers sighted on transects was significantly higher in Manus than in New Ireland (Mann-Whitney U statistic = 1853, T =4637, P = 0.009). 34 120 100 kg/ha 80 New Ireland 60 Manus 40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 14. Mean biomass (+/- 1SE) of groupers sighted in New Ireland and Manus. FOOD FISHES SIGHTED ON LONG SWIMS The mean density of large vulnerable species sighted on long swims in New Ireland and Manus is shown in Figure 15. The mean density of large vulnerable fishes was significantly higher in Manus than in New Ireland (Mann-Whitney U statistic = 27.5, T = 236.5, P = 0.001). 30 Density (per ha) 25 20 15 10 5 0 New Ireland Manus Province Figure 15. Mean density of large vulnerable fish sighted in New Ireland and Manus The mean biomass of large vulnerable species sighted on long swims in New Ireland and Manus is shown in Figure 16. The mean biomass of large vulnerable fishes was significantly higher in Manus than in New Ireland (Mann-Whitney U statistic = 54, T = 210, P = 0.045). 35 140 120 Kg/ha 100 80 60 40 20 0 New Ireland Manus Province Figure 16. Mean biomass of large vulnerable fish sighted in New Ireland and Manus The higher densities and biomass of large vulnerable species in Manus was due largely to much higher densities and biomass of groupers in Manus Province (Table 5 and 6). Humphead wrasse and bumphead parrotfish were also in much higher densities and biomass in Manus, although these differences were not statistically significant. Table 5. Mean density of groupers, humphead wrasse and bumphead parrotfish in each province Family/Species Mean density per ha New Ireland All Groupers Humphead wrasse Bumphead parrotfish 1.25 (SE = 0.40) 0.69 (SE = 0.32) 0.35 (SE = 0.22) Mean density per Differences’ significant Yes/No (Mann-Whitney ha Manus test) 7.27 (SE = 1.81) Yes (P<0.001) 1.71 (SE = 0.68) No (P = 0.115) 4.21 (SE = 3.5) No (P = 0.427) Table 6. Mean biomass of groupers Humphead wrasse and Bumphead parrotfish in each province Family/Species All Groupers Humphead wrasse Bumphead parrotfish Mean biomass per ha New Ireland 1.21 (SE = 0.49) 0.54 (SE = 0.35) Mean biomass per ha Manus 3.72 (SE = 0.84) 3.08 (SE = 1.60) Differences’ significant Yes/No (Mann-Whitney test) Yes (P=0.003) No (P = 0.071) 52.22 (SE = 51.11) 0.54 (SE = 0.32) No (P=0.465) 36 RESULTS – BENTHIC COMMUNITIES The mean percentage of each major lifeform in New Ireland and Manus Province is shown in Figure 17. Non-living made up the highest percentage cover in both provinces (New Ireland 42.4%, Manus 47.3%), followed by Coral in both provinces (New Ireland 25.7%, Manus 30.4%). Macroalgae made up 25.1% of benthic cover in New Ireland but only 10.6% of benthic cover in Manus. Other lifeforms were slightly more abundant in Manus (11.7) than in New Ireland (6.8). To investigate if any of the differences seen were significant each Major lifeform was compared between the two provinces. 60 Percentage 50 40 New Ireland Manus 30 20 10 0 Coral Macroalgae Non living Others Major lifeform Figure 17. Percentage of the major life forms in New Ireland and Manus Province. CORAL COVER The mean percentage of Coral cover at each site is shown in Figure 18. Coral cover was highly variable between sites, ranging from 11.79% (Site 12) to 64.78% (Site 10). The mean percentage of Coral was not significantly different between the two provinces (P=0.438). 70 60 Percentage cover 50 40 New Ireland Manus 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 18. The mean percentage of Coral cover at each site 37 MACROALGAE The mean percentage of algal cover at each site is shown in Figure 19. Macroalgae cover was highly variable between sites, ranging from 1.54% (Site 10) to 76.61% (Site 17). The mean percentage of Macroalgae was significantly higher in New Ireland than in Manus (P=0.024). 90 80 70 Percentage cover 60 50 New Ireland Manus 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 19. The mean percentage of Macroalgae cover at each site NON-LIVING The mean percentage of Non-living cover at each site in each year is shown in Figure 20. Non-living cover ranged from 9.25% (Site 17) to 84.79% (Site 23). The mean percentage of Non-living was not significantly different between the two provinces (P=0.502). 100 90 80 Percentage cover 70 60 New Ireland 50 Manus 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 20. The mean percentage of Non-living cover at each site 38 OTHER The mean percentage of Other cover at each site is shown in Figure 21. Other cover ranged from 1.03% (Site 17) to 30.49% (Site 17). The mean percentage of Other cover was not significantly different between the two provinces (P=0.067). 35 30 Percentage cover 25 20 New Ireland Manus 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Site Figure 21. The mean percentage of Other cover at each site 39 DISCUSSION Densities and biomass of fish sighted on transects varied considerably within and between sites. Within site variability (as evidenced by large standard errors around many of the means) in part reflects the schooling and patchy nature of many of the target species surveyed. While some of the between site variation is probably due to the variation in the amount of live hard coral habitat at each site, which ranged from approximately 12-65% across all the sites surveyed. When data was pooled by province and compared there was no significant difference between the mean density and mean biomass of all reef fish sighted on transects in New Ireland and Manus. However an examination of five abundant families of coral reef fish (snappers, surgeonfishes, emperors, parrotfishes and groupers) revealed some significant differences between the two provinces. New Ireland had a significantly higher density and biomass of surgeonfishes then Manus and the mean densities of emperors in New Ireland were also significantly higher than at Manus. While in Manus the densities and biomasses of parrotfishes and groupers were significantly higher than in New Ireland. The differences seen between the two provinces at the family level could be due to a number of confounding variables including geographical variability, recruitment variability, different levels of historical fishing pressure and/or the survey sampling design. Without pre-existing baseline data from the sites surveyed it is difficult to determine with certainty which factors explain the differences seen. One short coming of this survey from an analysis perspective is that site selection was not balanced. We did not get an equal number of exposed or sheltered sites in each province and a greater number of sites were surveyed in New Ireland. These issues aside, one area of potential concern is the much low densities of groupers and parrotfishes in New Ireland. Groupers are a key target of artisanal and commercial fishers that are easily overfished due to their longevity, reproductive biology and tendency to form spawning aggregations in highly predicable times and places (Sadovy and Domeier 2005). Although targeted in both provinces, groupers have historically been much more heavily targeted in the New Ireland then in Manus Province. LRFFT operations that have been fishing in the Tigak Islands and surrounding areas since the early 1990s have wiped out many of the grouper spawning aggregations known to local fishers (Hamilton, et al. 2004). Furthermore, the close proximity of the Tigak Islands and New Hanover to fisheries centres and restaurants in Kavieng has provided the incentive for artisanal fishers in these regions to heavily target this family of fish. Today artisanal fishers receive premium prices for groupers, and even aggregations of estuarine groupers (Epinephelus polystigma) that were historically lightly fished are now being heavily targeted for sale to commercial outlets in Kavieng town (Hamilton and Potuku 2007). In contrast in the areas we surveyed in Manus, commercial LRFFT operations did not commence until 2005 and there are no commercial fisheries centres and few restaurants in the province. Most fish that is taken by artisanal fishers is sold as smoked fish in local markets and groupers do not receive a higher price than numerous other fish species that are consumed by the Manus population. The differences in parrotfish densities and biomass between the two provinces may also reflect difference levels of historical fishing pressure. Parrotfishes are extremely vulnerable to overexploitation by night divers, and in areas where night spearfishing is practiced their densities and biomass tends to drop rapidly once cash markets for parrotfishes develop (Gillett and Moy 2006; Hamilton 2003). This is a concern given that parrotfishes are ecologically important elements of the coral reef fish fauna that have profound effects on the dynamics of reef growth and sedimentation (Bellwood, et al. 2003). Perhaps of greatest concern are the differences in densities and biomass of large vulnerable reef fish in the two provinces. Manus had a significantly higher density and biomass of large vulnerable reef fishes than New Ireland. In Manus groupers and the humphead wrasse (Cheilinus undulatus) were 6 and 2.5 times more abundant on long swims then in New Ireland. Like groupers, the humphead wrasse is a prime target of LRFFT operations. This species is now listed as Endangered on the IUCN Red list, and is completely protected from recreational and commercial fisheries in Australia. 40 Although sharks were not recorded in food fish surveys, they were rarely encountered by the marine survey team, consistent with observations made by Gerald Allen during his biodiversity surveys (See Coral Reef Fish Diversity, this report). On coral reefs sharks are apex predators that play a key role in maintaining healthy reef ecosystems. The low numbers of reef sharks sighted in New Ireland and Manus are indicative of overfishing by the shark fin trade. The shark fin trade is responsible for decimating shark populations globally, and even on the Great Barrier Reef, the best managed reef system in the world, reef shark populations are plummeting and at risk of ecological extinction in the next twenty years as a result of shark fishing (Robbins, et al. 2006). In Manus the densities of bumphead parrotfish (Bolbometopon muricatum) sighted on long swims was 12 times higher then in New Ireland1. Bumphead parrotfish is the largest of all parrotfishes, and has recently been listed as Vulnerable on the IUCN Red list, in recognition of the ease with which nocturnal aggregations of this species are overfished by night-time spear fishers (Dulvy and Polunin 2004; Hamilton 2003). Being the largest of the parrotfishes and given its size range and the excavating mode of feeding, this is potentially the most important species in the functional group of reef fishes associated with bioerosion, sediment transport and coral removal on tropical reefs (Bellwood, et al. 2003). In the Tigak Islands juvenile bumphead parrotfish that were speared at night with hand held spears formed an important component of artisanal catches in the early 1980’s (Wright and Richards 1985). However very large catches of this species were not taken by night time spear fishers until the late 1980s and early 1990s when the increasing availability and affordability of underwater flashlights in trade stores at the regional centre of Kavieng made this practice more common (Hamilton, et al. 2004). For the Tigak Islands we had the ability to compare counts of bumphead parrotfish seen on long swims in this survey with counts made earlier. In 2000 the mean densities of bumphead parrotfish sighted on long swims in the Tigak Islands was 2.7 bumphead parrotfish per hectare (Choat, 2000 unpublished data in (Chan, et al. 2007), a 7.7 times higher density than the 0.35 bumphead parrotfish per hectare seen in the Tigak Islands and New Hanover region during this survey. This marked drop in the Tigak Islands is almost certainly an indication of heavy night time spearfishing pressure on this species in this decade. The results from the benthic cover survey showed that the major lifeform Non-living (rubble, sand and dead coral) made up the highest percentage of substrate cover in the 8-10 m zones in both provinces. Mean Non –living cover was 43% in New Ireland and 47% in Manus and these differences were not significantly different. Live hard coral was the second dominant major lifeform, comprising of 26% of cover in New Ireland and 30% of cover in Manus and again, these differences were not significantly different. Macroalgae cover differed significantly between the two provinces, making up 25% of benthic cover in New Ireland and 11% in Manus. At Site 17 in New Ireland Macroalgae made up 80% of the benthic cover. This site had suffered extensive coral mortality as a result of relatively recent damage from COTS and bleaching events. Finally, the Lifeform Other made up 7% over cover in New Ireland and 11% of cover in Manus and these differences were not significantly different. CONSERVATION & MANAGEMENT RECOMMENDATIONS 1. To restore grouper populations in New Ireland and sustain current populations in Manus there is a need for management of this commercially important family of fish. One solution would be to impose provincial wide seasonal bans on the sale of any grouper during periods when they to aggregate to spawn. Two specific recommendations which should be implemented in conjunction with each other are: a) Place a six month seasonal ban on all LRFFT activities in Manus and New Ireland from the 1st of March to the 31st of August each year. This is the period when many species of groupers (e.g. Epinephelus fuscoguttatus, Epinephelus polyphekadion, Epinephelus ongus, Plectropomus areolatus) aggregate in the 100s or 1000s at known sites in Manus and New 1 Although bumphead parrotfish densities were higher in Manus than in New Ireland, this species is nevertheless targeted by night spear fishers in Manus (Tapas Potuku, personal observations), and densities are much lower than in other areas of the Indo-Pacific where this species is not targeted (Chan et al., 2007). 41 Ireland for the purpose of spawning (Manuai Matawai and Tapas Potuku, unpublished data 2004-2008;(Hamilton and Matawai 2006). b) Prevent the sale of all groupers in the 10 days leading up to and including the new moon. This is the lunar period when most groupers aggregate to spawn. A lunar ban would offer some protection to species of groupers such as Plectropomus areolatus that form different sized spawning aggregations throughout the entire year in New Ireland and Manus (Manuai Matawai and Tapas Potuku, unpublished data 2004-2008; (Hamilton and Matawai 2006). 2. Place a national wide ban on the sale of humphead wrasse (Cheilinus undulatus). This is in recognition of the extreme vulnerability of this species, the very high desirability of this species in the LRFFT and its listing as Endangered on the IUCN Red list (Russell 2004). 3. Place a national wide ban preventing commercial fisheries centres from purchasing bumphead parrotfish (Bolbometopon muricatum). This is in recognition of the extreme vulnerability of this species to night time spearfishing, and its recent listing as Vulnerable on the IUCN red List (Chan, et al. 2007). 4. We recommend a permanent ban on the shark-fin trade in the Bismarck Sea or, at a minimum, that a moratorium be place on shark-fin fishery until a NFA shark-fin management plan is in place. 5. We recommend that a study should be carried out to assess the extent of Crown of thorns starfish damage in New Ireland and the history of outbreaks. The feasibility of managing COTS by mobilising communities to remove COTS from specific reefs of high value should also be investigated. 42 REFERENCES Allen G, Steene R, Humann P, Deloach N. 2003. Reef fish identification. Tropical pacific: New World Publications. Bellwood DR, Hoey AS, Choat JH. 2003. Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters 6(4):281-285. Chan T, Sadovy Y, Donaldson TJ. 2007. Bolbometopon muricatum. IUCN 2007 Red List of Threatened Species www.iucnredlist.org. Choat H, Pears R. 2003. A rapid, quantitative survey method for large, vulnerable reef fishes. In: Wilkinson, C., Green, A., Almany, J., and Dionne, S. Monitoring Coral Reef Marine Protected Areas. A Practical Guide on How Monitoring Can support Effective Management MPAs. Australian Institute of Marine Science and the IUCN Marine Program Publication Dulvy NK, Polunin NVC. 2004. Using informal knowledge to infer human-induced rarity of a conspicuous reef fish. Animal Conservation 7:365-374. English S, Wilkinson C, Barker V. 1997. Survey Manual for Tropical Marine Resources. 2nd Edition. Australian Institute of Marine Science Gillett R, Moy W. 2006. Spearfishing in the Pacific Islands – Current Status and Management Issues. Secretariat of the Pacific Community, Noumea, Food and Agriculture Organization of the United Nations, Rome. Gillett, Preston and Associates Inc. Green A, Lokani P, Atu W, Ramohia P, Thomas P, Almany J, (eds). 2006. Solomon Islands Marine Assessment: Technical report of survey conducted May 13 to June 17, 2004. TNC Pacific Island Countries Report No 1/06. http://conserveonline.org/workspaces/pacific.island.countries.publications Hamilton RJ. 2003. The role of indigenous knowledge in depleting a limited resource - A case study of the Bumphead Parrotfish (Bolbometopon muricatum) artisanal fishery in Roviana Lagoon, Western Province, Solomon Islands. . Putting fishers' knowledge to work conference proceedings Canada: Fisheries Centre Research Reports, University of British Colombia. p 6877. Hamilton RJ, Matawai M. 2006. Live reef food fish trade causes rapid declines in abundance of squaretail coralgrouper (Plectropomus areolatus) at a spawning aggregation site in Manus, Papua New Guinea. SPC Live Reef Fish Information Bulletin 16:13-18. Hamilton RJ, Matawai M, Potuku T. 2004. Spawning aggregations of coral reef fish in New Ireland and Manus Provinces, Papua New Guinea: local knowledge field survey report (unrestricted access version). Report prepared for the Pacific Island Countries Coastal Marine Program, The Nature Conservancy. TNC Pacific Island Countries Report No. 4/04. Hamilton RJ, Matawai M, Potuku T, Kama W, Lahui P, Warku J, Smith AJ. 2005. Applying local knowledge and science to the management of grouper aggregation sites in Melanesia. SPC Live Reef Fish Information Bulletin 14:7-19. Hamilton RJ, Potuku T. 2007. Local knowledge of white-dotted grouper (Epinephelus polystigma) aggregations in Melanesia. SPC Traditional Marine Resource Management and Knowledge Information Bulletin 22:3-14. 43 Hill J, Wilkinson C. 2004. Methods for ecological monitoring of coral reefs: a resource for managers. Version 1. Australian Institute of Marine Science (AIMS), Townsville, Australia Hoey AS, Bellwood DR. 2008. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27(1):37-47. Hughes A. (2006). Benthic Communities. In: Green A., Lokani P., Atu W., Ramohia P., Thomas P. and Almany J. (eds). (2006). Solomon Islands Marine Assessment: Technical report of survey conducted May 13 to June 17, 2004. TNC Pacific Island Countries Report No 1/06. http://conserveonline.org/workspaces/pacific.island.countries.publications Kaly U, Preston, G, Opnai, J and J Aini 2007. Sea cucumber survey, New Ireland Province. National Fisheries Authority, Papua New Guinea. Robbins WD, Hisano M, Connolly SR, Choat JH. 2006. Ongoing collapse of coral-reef shark populations. Current Biology 16(23):2314-2319. Russell B. 2004. Cheilinus undulatus. IUCN 2007 Red List of Threatened Species www.iucnredlist.org. Sadovy Y, Domeier M. 2005. Are aggregation-fisheries sustainable? Reef fish fisheries as a case study. Coral Reefs 24(2):254-262. Wright R, Richards AH. 1985. A multispecies fishery associated with coral reefs in the Tigak Islands, Papua New Guinea. Asian Marine Biology 2:69-84. Zellar DC, Russ GR. 2000. Population estimates and size structure of Plectropomus leopardus (Pisces: Serranidae) in relation to no-fishing zones: mark-release-resighting and underwater visual census. Marine Freshwater Research 51:221-228. 44 APPENDIX Biomass conversion constants for fish species recorded on the survey. Constants obtained from Fishbase (www.fishbase.org). Typically the median value for a species was used, or when no species-specific information was available, the constants for a closely related species or the constants of the overall mean values of a genus were used. Family ACANTHURIDAE BALISTIDAE CARANGIDAE EPHIPPIDAE KYPHOSIDAE HAEMULLIDAE HOLOCENTRIDAE LABRIDAE LETHRINIDAE Genus and species Ctenochaetus striatus Acanthurus fowleri Acanthurus lineatus Acanthurus maculiceps Acanthurus mata Acanthurus nigricaudus Acanthurus nubilus Acanthurus olivaceus Acanthurus pyroferus Acanthurus xanthopterus Naso brevirostris Naso hexacanthus Naso lituratus Naso unicornis Naso vlamingii Balistapus undulatus Balistoides viridescens Odonus niger Pseudobalistes flavimarginatus Carangoides bajad Carangoides plagiotaenia Caranx ignobilis Caranx melampygus Caranx sexfasciatus Elagatis bipinnulatus Gnathanodon speciosus Platax orbicularis Kyphosus cinerascens Kyphosus vaigiensis Plectorhinchus albovittatus Plectorhinchus chaetodonoides Plectorhinchus gibbosus Plectorhinchus lessonii Plectorhinchus lineatus Plectorhinchus vittatus Sargocentron spiniferum Cheilinus fasciatus Cheilinus trilobatus Cheilinus undulatus Lethrinus erythracanthus Lethrinus erythropterus Lethrinus harak Lethrinus obsoletus Lethrinus olivaceus Lethrinus nebulosus Lethrinus rubrioperculatus Lethrinus xanthochilus Monotaxis grandoculis Biomass constant a 0.0231 0.0210 0.0126 0.0210 0.0222 0.0312 0.0210 0.0070 0.0210 0.0267 0.0136 0.0202 0.0487 0.0228 0.0525 0.0058 0.0244 0.0366 0.0244 0.0269 0.0269 0.0296 0.0211 0.0318 0.0135 0.0199 0.0425 0.0218 0.0200 0.0270 0.0148 0.0209 0.0209 0.0131 0.0209 0.0154 0.0318 0.0162 0.0123 0.0219 0.0219 0.0167 0.0185 0.0297 0.0303 0.0201 0.0219 0.0239 45 Biomass constant b 3.0635 2.9435 3.0640 2.9435 3.0080 2.7590 2.9435 3.3980 2.9435 2.9845 3.1280 2.9558 2.8390 2.9220 2.8430 3.5540 3.0180 3.0000 3.0180 2.8891 2.8891 2.9780 2.9410 2.9300 2.9200 2.9950 2.9750 3.0053 3.0370 2.8848 3.0830 2.9474 2.9474 3.0663 2.9474 3.1188 3.0000 3.0595 3.1123 2.9471 2.9471 3.0371 3.0024 2.8187 2.8697 2.9694 2.9395 3.0110 Family LUTJANIDAE MULLIDAE NEMIPTERIDAE POMACANTHIDAE SCARIDAE SCOMBRIDAE SIGANIDAE SPYYRAENIDAE SERRANIDAE Genus and species Aphareus furca Aprion virescens Lutjanus argentimaculatus Lutjanus bohar Lutjanus carponotatus Lutjanus fulviflamma Lutjanus fulvus Lutjanus gibbus Lutjanus kasmira Lutjanus monostigma Lutjanus rivulatus Lutjanus russelli Lutjanus semicinctus Macolor macularis Macolor niger Symphorichthys spilurus Parupeneus bifasciatus/trifasciatus Parupeneus barberinus Parupeneus cyclostomus Parupeneus multifasciatus Scolopsis monogramma Pomacanthus navarchus Pomacanthus sexstriatus Pomacanthus xanthometopon Bolbometopon muricatum Cetoscarus bicolor Chlorurus microrhinos Hipposcarus longiceps Scarus festivus Scarus ghobban Scarus oviceps Scarus prasiognathos Scarus niger Scomberomorus commerson Siganus argenteus Siganus corallinus Siganus doliatus Siganus fuscescens Siganus lineatus Siganus puellus Siganus punctatissimus Siganus punctatus Siganus stellatus Siganus vulpinus Sphyraena barracuda Sphyraena qenie Aethaloperca rogga Anyperodon leucogrammicus Cephalopholis argus Cephalopholis cyanostigma Cromileptes altivelis Epinephelus fuscoguttatus Epinephelus hexagonatus Epinephelus lanceolatus Epinephelus merra Epinephelus polyphekadion Gracila albomarginata Plectropomus areolatus 46 Biomass constant a 0.0186 0.0162 0.0071 0.0156 0.0167 0.0205 0.0211 0.0131 0.0111 0.0184 0.0326 0.0166 0.0040 0.0211 0.0211 0.0189 Biomass constant b 3.0000 2.9050 3.1800 3.0587 2.9773 2.9599 2.9743 3.1375 3.1540 2.9700 3.0000 2.9779 3.4280 3.0000 3.0000 2.9349 0.0036 0.0151 0.0243 0.0114 0.0205 0.0193 0.0217 0.0193 0.0098 0.0240 0.0179 0.0198 0.0186 0.0165 0.0224 0.0186 0.0170 0.0099 0.0131 0.0023 0.0104 0.0137 0.0219 0.0246 0.0168 0.0344 0.0168 0.0287 0.0267 0.0056 0.0152 0.0014 0.0093 0.0164 0.0962 0.0134 0.0140 0.0173 0.0096 0.0124 0.0152 0.0079 3.4510 3.0780 3.0000 3.2108 2.9840 2.9696 2.9079 2.9696 3.1329 3.0000 3.0448 3.0000 3.0455 3.0412 3.0000 3.0455 3.1300 2.9500 3.0880 3.8208 3.2721 3.0682 2.9983 3.0000 3.0326 3.0000 3.0326 3.0000 2.9200 3.0000 3.0063 3.5481 3.1807 3.0303 2.4893 3.0572 3.0000 3.0000 3.1960 3.0570 3.0063 3.1570 Family Genus and species Plectropomus laevis Plectropomus leopardus Plectropomus oligacanthus Variola albimarginata Variola louti Biomass constant a 0.0059 0.0079 0.0132 0.0139 0.0122 47 Biomass constant b 3.2377 3.1570 3.0000 3.0424 3.0791 February 2009 TNC Pacific Island Countries Report No 1/09 Chapter 2: Coral Reef Fi s h D i v e r s i t y Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea Prepared for The Nature Conservancy by: Gerald R. Allen Western Australia Museum Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Gerald R. Allen: 1 Dreyer Road Roleystone, WA 6111 Australia Email: tropical_reef@bigpond.com Suggested Citation: Allen, G.R. 2009. Coral Reef Fish Diversity. In: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: Paracheilinus rubricaudalis, Manus Island © Gerald R. Allen ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications 49 CONTENTS EXECUTIVE SUMMARY ......................................................................................................................................52 Introduction................................................................................................................................................... 53 Historical background....................................................................................................................................................53 Methods ...............................................................................................................................................................54 Site Selection ................................................................................................................................................................... 54 Results................................................................................................................................................................... 55 General faunal composition .........................................................................................................................................55 Site faunal composition ................................................................................................................................................ 56 Coral Fish Diversity Index (CFDI)......................................................................................................................... 57 Survey Sites ...................................................................................................................................................................... 58 Manus.............................................................................................................................................................................. 58 Tigak - New Hanover...................................................................................................................................................... 59 Combined Results.............................................................................................................................................................60 Dr. Alison Green Fish Observations ....................................................................................................................... 60 Overall faunal results for Bismarck Archipelago ................................................................................................... 61 Inter-Regional Comparisons...................................................................................................................................... 61 Bismarck Endemism and Noteworthy Records..................................................................................................... 63 General Habitat Condition and Fishing Pressure ................................................................................................ 65 Conservation Recommendations ...................................................................................................... 67 Acknowledgements...................................................................................................................................... 69 References.......................................................................................................................................................... 70 Appendices........................................................................................................................................................... 71 Appendix 1. .......................................................................................................................................................................71 Appendix 2....................................................................................................................................................................... 73 Appendix 3. ...................................................................................................................................................................... 95 50 List of Figures Figure 1. Ten largest families of northern Bismarck Archipelago.......................................................................... 55 Figure 2. Map of southeastern Asia-Melanesia showing boundary of the Coral Triangle and the speciesrich “heart” of the Triangle............................................................................................................................62 Figure 3. Chrysiptera sinclairi, adult, approximately 5 cm total length, Manus Island .........................................64 Figure 4. Meiacanthus crinitus, adult, approximately 5 cm total length, New Hanover .......................................64 Figure 5. Paracheilinus rubricaudalis., adult, approximately 6 cm total length, Manus Island .............................65 Figure 6. Satellite image of Sabben Islands area, west Manus................................................................................67 Figure 7. Satellite image of Hayne Harbour lagoon, Manus...................................................................................67 Figure 8. Satellite image of Bauddissin Bay, Tigak Archipelago. .......................................................................... 68 Figure 9. Small juveniles of the Napoleon Wrasse and Bumphead Parrotfish were common at the Anelaua reef complex..................................................................................................................................... 69 List of Tables Table 1. Typical species associated with major habitat types. ................................................................................56 Table 2. Typical species that are restricted to shallow and deep habitats...........................................................56 Table 3. Typical species associated with sand/rubble and live coral substrata................................................... 57 Table 4. Coral fish diversity index values for selected localities in the Indo-west Pacific region................. 58 Table 5. Number of fish species observed at each site during survey of Manus................................................. 58 Table 6. Average number of fish species per site recorded for major habitats at Manus. ...............................59 Table 7. Number of fish species observed at each site in Tikak Islands- New Hanover region...................59 Table 8. Average number of fish species per site recorded for major habitat situations in Tigak IslandsNew Hanover region. .....................................................................................................................................59 Table 9. Summary of results for northern Bismarck Archipelago fish survey. .................................................. 60 Table 10. Richest fish sites during northern Bismarck survey. .............................................................................. 60 Table 11. Number of fish species observed at each site during initial reef survey at Manus by Alison Green................................................................................................................................................................... 61 Table 12. Number of fish species observed at each site during initial reef survey at Tigak Islands-New Hanover by Alison Green.............................................................................................................................. 61 Table 13. Number of reef species for various Pacific locations...............................................................................62 Table 14. Comparison of CFDI and estimated faunal totals for the New Guinea-Solomon Islands.........63 Table 15. Comparison of site data for marine surveys in the coral triangle 1997-2002. .................................63 Table 16. Frequency of Napoleon Wrasse for various locations in the Indo-Pacific. ................................... 66 51 EXECUTIVE SUMMARY  A list of fishes was compiled for Manus (18 sites and 27 hours of scuba diving) and the Tigak Islands-New Hanover region (25 sites and 36 hours of diving) to a maximum depth of 50 m.  A combination of historical data and 577 new records from the current survey yields a total of 801 species belonging to 76 families and 274 genera for the northern Bismarck Archipelago.  A formula for predicting the total reef fish fauna based on the number of species in six key indicator families (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae, and Acanthuridae) indicates that at least 945 species can be expected to occur at the northern Bismarck Archipelago (Admiralty Islands, New Hanover, and New Ireland).  Gobies (Gobiidae), wrasses (Labridae), damselfishes (Pomacentridae), cardinalfishes (Apogonidae), and groupers (Serranidae) are the dominant fish families in the region in both number of species and number of individuals, comprising about 46 percent of the total observed fauna (excluding cryptic species).  Species numbers at visually sampled sites during ranged from 65 to 234, with an average of 159.0. The average number of species per site for Manus was 154.4 and for the Tigak IslandsNew Hanover region was 162.2.  Outer reef sites generally harboured the richest fish fauna with an average of 177 species (n = 18) compared with averages of 176 and 132 species respectively for channels/passages (n =7) and sheltered lagoon sites (n = 17).  Fishing pressure appears to be considerably reduced compared to areas farther west in the Coral Triangle, but the scarcity of large Napoleon Wrasse, particularly in the Tigak Islands is cause for concern and may indicate over-exploitation. Relatively large numbers of Napoleon Wrasse were sighted during the survey with average sizes of 70 cm and 37 cm total length recorded at Manus (n = 18) and Tigak Islands-New Hanover (n = 45) respectively.  Recommended conservation areas based on reef fish observations include the Sabben Islands off western Manus, Hayne Harbour on eastern Manus, Bauddisssin Bay in the Tigak Islands, and the reef complex north of Anelaua Island off eastern New Hanover. The latter area appears to be an important nursery area for both Napoleon Wrasse and Bumphead Parrotfish. 52 INTRODUCTION The primary goal of the fish survey was to provide a comprehensive inventory of reef species inhabiting the northern Bismarck Archipelago, specifically the Manus and Tigak Islands-New Hanover regions. This segment of the fauna includes fishes living on or near coral reefs down to the limit of safe sport diving or approximately 50 m depth. It therefore excludes deepwater fishes, offshore pelagic species such as flyingfishes, tunas, and billfishes, and most estuarine forms. Survey results facilitate comparison of key locations within the Bismarck Archipelago as well as inter-regional and global comparisons. The author was unable to participate in the original reef survey of the Tigak Islands-New Hanover region and Manus during August-September 2006, but was fortunately able to conduct an independent fish survey aided by Manuai Matawai (TNC-Manus) approximately one month later between 18 October and 8 November. HISTORICAL BACKGROUND Munro (1967) provided a summary of ichthyological fieldwork in the New Guinea region. The Bismarck Archipelago has a lengthy history of fish collections dating back to the voyage of French naturalists Quoy and Gaimard aboard the vessel L’Astrolabe, which visited New Ireland in 1826. Albert Gunther, Curator of Fishes at the British Museum published additional records from the Admiralty Islands collected during an oceanographical expedition on H.M.S. Challenger in 1875. During the same year the German vessel S.M.S. Gazelle collected specimens at New Ireland and New Hanover for the Royal Academy in Berlin. Additionally, the German South Seas Expedition organised by the Hamburg Museum made collections at the Bismarck Archipelago, including the Admiralty Islands during 1908-09. Australian ichthyologists have maintained an interest in the Bismarck region beginning with Charles DeVis, who published a paper in 1883 recording 17 species from New Ireland, New Britain, and the Duke of York Islands. Sir William Macleay and the Russian naturalist Miklouho-Maclay, recorded two ray species from the Admiralty and Hermit Islands in 1886. The American ichthyologist Henry Fowler included many species from the Bismarck Archipelago based on collections at the Australian Museum, Sydney in the second supplement of his Fishes of Oceania published in 1934. These records were supplied by Gilbert Whitley, who served as Curator of Fishes at AMS. Additional collections from the Bismarck areas were made in 1948-1950 during expeditions aboard the Australian government research vessel Fairwind. Collections were obtained from numerous locations around the Territory of Papua, including the Bismarck Archipelago. These were reported by Munro (1958) and consisted of the following species totals: New Ireland – 41, New Hanover – 53, and Admiralty Islands – 38. Kailola (1975) included 28 records of reef fishes the Bismarck Archipelago in her 1975 catalogue of fishes in the Kanudi Fisheries Research Laboratory collections. She later (1987-1991) summarized the entire fish fauna of Papua New Guinea in an annotated checklist, which included new records of 36 coral reef fishes from the Bismarck area in addition to the G. Allen collections summarised in the following paragraph. The present author visited Manus Island between 3-13 October 1982 and obtained specimens and underwater photographs during 25 hours of scuba-diving. These collections, consisting of 81 species the majority of which were new records for the Admiralty Islands, are deposited at the Western Australian Museum, Perth, and were reported by Kailola (1987-1991). They include the holotypes of Chrysiptera sinclairi (Allen, 1987), and Meiacanthus limbatus Smith-Vaniz (1987) and paratypes of Amsichthys knighti (Allen, 1987), Lubbockichthys multisquamatus (Allen, 1987), and Pomacentrus aurifrons (Allen, 2004). 53 METHODS The fish portion of the Bismarck survey involved 63 hours of scuba diving by G. Allen to a maximum depth of 50 m. A list of fishes was compiled for 43 sites. The basic method consisted of underwater observations made during a 1-2, 60-90 minute dives at each site. The name of each observed species was recorded in pencil on a plastic sheet attached to a clipboard. The technique usually involved rapid descent to 20-50 m, then a slow, meandering ascent back to the shallows. The majority of time was spent in the 2-12 m depth zone, which consistently harbors the largest number of species. Each dive included a representative sample of all major bottom types and habitat situations, for example rocky intertidal, reef flat, steep drop-offs, caves (utilizing a torch if necessary), rubble and sand patches. Only the names of fishes for which identification was absolutely certain were recorded. However, very few, less than one percent of those observed, could not be identified to species. This high level of recognition is based on nearly 40 years of diving experience in the Indo-Pacific and an intimate knowledge of the reef fishes of this vast region as a result of extensive laboratory and field studies. The visual survey was supplemented by underwater photography of approximately 165 fish species using a Nikon D-100 digital camera and 105 mm macro lens contained in a Nexus housing. SITE SELECTION Emre Turak provided the author with a list of GPS coordinates for the sites that were surveyed by the TNC team during August-September 2006. An effort was made to duplicate the majority of these sites for the fish survey. Consequently, 32 of the 45 sites surveyed for fishes were situated within 200-300 metres of the initial TNC survey sites. The remaining sites were selected primarily by consulting satellite imagery and marine charts. Site selection was also dictated by inclement weather conditions that were experienced during much of the Tigak-New Hanover portion of the survey. A list of the sites with an indication of which ones were also surveyed by the initial TNC team is included in Appendix 2. 54 RESULTS Totals of 665 and 572 were recorded for Manus and Tigak Islands-New Hanover respectively during the present survey with a combined total of 750 species. The Manus figure includes 94 species recorded on the basis of photographs and information supplied by Susomu Okamoto, who runs a diving business on the island. These records are especially valuable as they mainly represent species that are rare or infrequently sighted and were compiled by Mr. Okamoto over a 3-year period. Combining historical collections with records from the present survey yields a total reef fish fauna for the northern Bismarck Archipelago consisting of 801 species belonging to 76 families and 274 genera (Appendix 2). The total consists of the following components: 81 species collected between 1826-1950 that were summarised by Munro (1958), 62 species reported in publications by Kailola (1975 and 19871991), 81 species collected at Manus by G. Allen in 1982 and reported by Kailola (1987-1991), and an additional 577 species recorded during the present survey, which represent new records for the northern Bismarck Archipelago (Admiralty Islands, New Hanover, and New Ireland). GENERAL FAUNAL COMPOSITION The fish fauna of the Bismarck Archipelago consists mainly of species associated with coral reefs. The most abundant families in terms of number of species are gobies (Gobiidae), wrasses (Labridae), damselfishes (Pomacentridae), cardinalfishes (Apogonidae), groupers (Serranidae), butterflyfishes (Chaetodontidae), surgeonfishes (Acanthuridae), parrotfishes (Scaridae), snappers (Lutjanidae), and blennies (Blenniidae). These 10 families collectively account for 55 percent of the total reef fish fauna (Figure 1). Lutjanidae Blenniidae Scaridae Acanthuridae Chaetodontidae Serranidae Apogonidae Pomacentridae Labridae Gobiidae 0 10 20 30 40 50 60 70 80 90 100 No. species Figure 1. Ten largest families of northern Bismarck Archipelago. The relative abundance of Bismarck fish families is similar to other reef areas in the Indo-Pacific, although the ranking of individual families is variable. Even though the Gobiidae was one of the leading families, it was not adequately collected due to the small size and cryptic habits of many species. Similarly, the moray eel family Muraenidae is consistently among the most speciose groups at most localities, and is no doubt abundant in the Bismarck Archipelago. However, they are best sampled with icthyocides due to their cryptic habits. 55 The composition of local reef fish communities in the Indo-Pacific region is dependent on habitat variability. The incredibly rich reef fish fauna of the Coral Triangle region directly reflects a high level of habitat diversity. Nearly every conceivable habitat situation is present from highly sheltered embayments with a large influx of freshwater to oceanic atolls and outer barrier reefs. Similar to other reef areas in the Indo-Pacific, most Bismarck fishes are benthic (or at least living near the bottom) diurnal carnivores with approximately 80 percent and 60 percent of species being assigned to these respective categories. Approximately 10 percent of Bismarck fishes are nocturnal, 4 percent are cryptic crevice dwellers, 4 percent are durnal mid-water swimmers, and about 3 percent are transient or roving predators. In addition to carnivores, the other major feeding categories include omnivores (16 percent), planktivores (16 percent), and herbivores (8 percent). SITE FAUNAL COMPOSITION The fishes at a particular site are generally composed of faunal elements that include both generalist species occurring over a broad range of habitats as well as a suite of specialist species that are adapted to various levels of exposure to general sea conditions. For example, certain species are exclusively encountered on outer or seaward reefs that provide maximum exposure, whereas others are restricted to sheltered silty bays. Between these two extremes there is a vaguely defined situation with variable degrees of moderate exposure, which is also characterized by certain species, although this habitat generally contains a variable mixture of outer and inner reef specialists depending on the level of exposure. Table 1 provides a list of Bismarck species that are typical indicators of the major habitat types. Table 1. Typical species associated with major habitat types. Seaward reefs Cephalopholis spiloparea Caranx sexfasciatus Lutjanus monostigma Caesio teres Hemitaurichthys polylepis Apolemichthys trimaculatus Pomacentrus vaiuli Bodianus anthioides Halichoeres biocellatus Nemateleotris magnifica Naso hexacanthus Balistoides conspicillum Moderate exposure Lutjanus biguttatus Scolopsis margaritifer Pentapodus aureofasciatus Caesio cuning Chaetodontoplus mesoleucus Choerodon anchorago Neoglyphidodon nigroris Pomacentrus nigromanus Diproctacanthus xanthurus Halichoeres leucurus Scarus quoyi Acanthurus fowleri Sheltered reefs Cephalopholis microprion Scolopsis ciliatus Sphaeramia nematoptera Chaetodon octofasciatus Chrysiptera cymatilis Chrysiptera parasema Chrysiptera sinclairi Pomacentrus burroughi Pomacentrus albimaculus Halichoeres chloropterus Amblygobius nocurna Signigobius biocellatus There are also suites of species that are closely correlated with various depth regimes. Although most coral reef fishes are encountered at depths between about 3-20 m, certain species are restricted to shallow, wave-swept areas, while others seldom venture above 20 m. Typical members of these categories are listed in Table 2. Table 2. Typical species that are restricted to shallow and deep habitats. Shallow, wave-washed reefs Cirrhitus pinnulatus Chrysiptera brownriggii Plectrglyphidodon leucozonus Stegastes fasciolatus Thalassoma jansenii Thalasssoma purpureum Blenniella spp. Acanthurus lineatus Acanthurus guttatus Deep reefs Myripristis vittata Cepholopholis spiloparaea Pseudanthias randalli Hoplolatilus spp. Apogon ocellicaudus Chaetodon burgessi Chromis analis Chromis elerae Halichoeres melasmapomus 56 A final category includes species that are closely associated with specific substrate types, the most notable of which are sand or rubble and live coral (Table 3). In addition, another conspicuous group, containing transient predators, is basically pelagic, although they are closely associated with reef environments. Prominent members include certain sharks (Carcharhinidae), manta and devil rays (Mobulidae), half-beaks (Hemiramphidae), needlefishes (Belonidae), trevallies or jacks (Carangidae), tunas and mackerels (Scombridae), and barracuda (Sphyraenidae). Table 3. Typical species associated with sand/rubble and live coral substrata. Sand/Rubble species Synodus spp. Malacanthus spp. Scolopsis affinis Upeneus tragula Parachaetodon ocellatus Dischistodus perspicillatus Cirrhilabrus spp. Paracheilinus spp. Coris batuensis Parapercis spp. Gobiid spp (Amblyeleotris, etc.) Soleiid, bothid spp. Coral species Archamia zosterophora Apogon similis Sphaeramia nematoptera Chaetodon baronessa Chaetodon trifascialis Plectroglyphidodon dickii Pomcentrus moluccensis Labrichthys lineatus Scarid spp. (Chlorurus and Scarus) Eviota bifasciata Eviota sebreei Oxymonacanthus longirostris CORAL FISH DIVERSITY INDEX (CFDI) Allen (1998) devised a convenient method for assessing and comparing overall reef fish diversity. The technique essentially involves an inventory of six key families: Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae, and Acanthuridae. The number of species in these families is totaled to obtain the Coral Fish Diversity Index (CFDI) for a single dive site, relatively restricted geographic areas (e.g. Bismarck Archipelago) or countries and large regions (eg. Papua New Guinea). CFDI values can be used to make a reasonably accurate estimate of the total coral reef fish fauna of a particular locality by means of regression formulas. The latter were obtained after analysis of 35 IndoPacific locations for which reliable, comprehensive species lists exist. The data were first divided into two groups: those from relatively restricted localities (surrounding seas encompassing less than 2,000 km2) and those from much larger areas (surrounding seas encompassing more than 50,000 km2). Simple regression analysis revealed a highly significant difference (P = 0.0001) between these two groups. Therefore, the data were separated and subjected to additional analysis. The Macintosh program Statview was used to perform simple linear regression analyses on each data set in order to determine a predictor formula, using CFDI as the predictor variable (x) for estimating the independent variable (y) or total coral reef fish fauna. The resultant formulae were obtained: 1. total fauna of areas with surrounding seas encompassing more than 50,000 km2 = 4.234(CFDI) - 114.446 (d.f = 15; R2 = 0.964; P = 0.0001); 2. Total fauna of areas with surrounding seas encompassing less than 2,000 km2 = 3.39 (CFDI) - 20.595 (d.f = 18; R2 = 0.96; P = 0.0001). The CFDI predictor value is especially useful to gauge the thoroughness of a short-term survey that is either currently in progress or already completed. For example, the CFDI for Bismarck Archipelago based on the present survey is 285 and the appropriate regression formula (3.39 x 285 – 20.595) predicts an approximate total of 945 species, indicating that at least 144 additional species can be expected. On a much larger scale the CFDI can be used to estimate the reef fish fauna of the entire Indo-west Pacific region, a frequent subject of conjecture. Using this method Allen and Adrim (2003) estimated a faunal total of 3,764 species, a figure that is remarkably close to the 3,890 total obtained by the author as a result of a comprehensive species mapping project for this region. It also compares favorably with the approximately 3,950 total proposed by Springer (1982). However, Springer’s figure covers shore fishes 57 rather than reef fishes and therefore includes species not always associated with reefs (e.g. estuarine fishes). The total CFDI for the Bismarck Archipelago has the following components: Labridae (89), Pomacentridae (86), Chaetodontidae (35), Acanthuridae (33), Scaridae (25), and Pomacanthidae (16). Table 5 presents a ranking of Indo-Pacific areas that have been surveyed to date based on CFDI values. It also includes the number of reef fishes thus far recorded for each area, as well as the total fauna predicted by the CFDI regression formula. Although situated within the Coral Triangle, the Bismarck Archipelago lies near the margin of this region, which contains the world’s greatest concentration of coral reef organisms. Consequently, its reef fish fauna is less diverse than areas in the Philippines and western Indonesia that lie within the centre of the Triangle. Moreover, the results of the Bismark survey are based on a relatively small area, well under 2,000 km2, compared to most of the locations listed in Table 4. Therefore, considering the size and location of the Bismark Archipelgo, it supports a rich community of reef fishes that is only slightly less diverse than the world’s highest ranked regions. Table 4. Coral fish diversity index (CFDI) values for selected localities in the Indo-west Pacific region. The total number of fishes thus far recorded from each region and estimated total based on the CFDI regression formula (see text for details) are also indicated. Locality Bird’s Head Peninsula, Indonesia Milne Bay, Papua New Guinea Great Barrier Reef, Australia Maumere Bay, Flores, Indonesia Taiwan New Caledonia Bismarck Archipelago Komodo Islands, Indonesia North West Shelf, Australia Marshall Islands, Micronesia Maldive Islands Christmas Island, Indian Ocean Society Islands, French Polynesia Hawaiian Islands CFDI No. reef fishes Estim. Reef fishes 365 337 343 333 319 300 285 280 273 221 219 185 160 121 1227 1109 1325 1111 1172 1097 801 722 932 795 894 560 560 435 1431 1313 1338 1107 1237 1156 945 928 1042 822 813 606 563 398 SURVEY SITES Manus The number of species found at each site is indicated in Table 5. Totals ranged from 65 to 230, with an average of 154.4 per site. Table 5. Number of fish species observed at each site during survey of Manus. Site 1 2 3 4 5 6 Species 198 205 169 167 65 135 Site 7 8 9 10 11 12 Species 160 109 153 180 159 230 Site 13 14 15 16 17 18 58 Species 110 162 116 167 105 189 The highest total (230 species) was recorded at site 12, situated in the relatively remote Sabben Islands. This site was characterised by an outer reef dropoff and extensive shallow reef top with variable amounts of wave exposure. The underwater visibility was exceptionally good (estimated 40 m) and the location is subject to periodic strong currents that support rich schools of fusiliers, trevallies, and plankton-feeding surgeonfishes. In general, outer reefs were significantly more diverse than sheltered inner reefs as indicated in Table 6. Table 6. Average number of fish species per site recorded for major habitats at Manus. General habitat Outer reef slopes and dropoffs Sheltered inner reefs No. Sites 11 7 Site nos. Avg. species/site 174.3 123.3 1, 3-4, 6-7, 10-12, 14, 16, 18 2, 5, 8-9, 13, 15, 17 Tigak - New Hanover The number of species found at each site is indicated in Table 7. Totals ranged from 110 to 234, with an average of 162.2 per site. Table 7. Number of fish species observed at each site in Tikak Islands- New Hanover region. Site 1 2 3 4 5 6 7 Species 151 189 110 159 198 165 198 Site 8 9 10 11 12 13 14 Species 193 123 188 154 173 234 165 Site 15 16 17 18 19 20 21 Species 120 162 149 172 151 184 137 Site 22 23 24 25 Species 127 161 118 174 The highest number of species (230) was recorded at site 13 situated on the southern coast of Selapiu Island. The site was characterized by a typical assemblage of outer reef species, but also contained a nearby community associated with sheltered reefs. This apparent contradiction resulted from the unusual reef structure consisting of a narrow prong of reef paralleling the shore that was exposed to the open sea on one side, but completely protected from surge on the other. Consequently, the conditions were dramatically different within a linear distance of only 20-30 metres, grading from clear oceanic waters to a turbid lagoon. Similar to the situation at Manus and most areas in the tropical Indo-Pacific, outer reefs supported the most diverse fish community (Table 8). The Tigak-New Hanover region is bisected by numerous channels and passages ranging in depth from few metres to more than 30 m. They support a reef community that is similar to that of the outer slopes, but slightly less diverse. Turbid inshore reefs and lagoon patch reefs exhibited the lowest diversity, but represent a unique habitat situation containing many species that are restricted to sheltered waters. This habitat also provides important nursery grounds for species such as Napoleon Wrasse and parrotfishes. Table 8. Average number of fish species per site recorded for major habitat situations in Tigak Islands- New Hanover region. General habitat Outer reefs Channels and passages Sheltered lagoonal reefs No. sites 8 7 10 Site nos. 1, 4, 7-8, 10, 13-14, 23 2, 5, 1112, 16, 20, 25 3, 6, 9, 15, 17-19, 21-22, 24 59 Avg. species/site 181.1 176.3 137.2 Combined Results A total of 750 species were recorded during the 2006 surveys of Manus and the Tigak Islands-New Hanover region. Combined with previous collections between 1826 and 1982 the overall total for the northern Bismarck region is currently 801 species (Table 9). Species totals for individual survey sites ranged from 65 to 234, with an average of 159 per site. Table 9. Summary of results for northern Bismarck Archipelago fish survey. Location Manus Tigak Is. – New Hanover Combined No. Bismarck Total spp. 665 572 801 CFDI 263 241 283 Est. Spp. 871 796 939 The most speciose sites for fishes during the present survey is summarised in Table 10. Table 10. Richest fish sites during northern Bismarck survey. Site no. T-13 M-12 M-2 M-1 T-5 T-7 T-8 T-2 M-18 General locations Nausen Island Yambon Island Hayne Harbour Little Ndrova Island Baudissin Island West New Ireland Nusa Island NW Globig Island (Nusa Channel) Pityilu Island No. spp. 234 230 205 198 198 198 193 189 188 Most of the high-diversity sites were situated on outer reef slopes with the exception of M-2, which was in a sheltered lagoon near the airport at Manus. The high number of species is attributed to the location near the mouth of the bay. Besides the regular component of lagoon fishes, there was a mix of species that are generally seen on more exposed outer reefs. DR. ALISON GREEN FISH OBSERVATIONS Due to my last minute withdrawal from the initial survey, the task of assessing reef fish biodiversity at each site was graciously assumed by Dr. Alison Green. Although not a trained ichthyologist, she has wide experience in general reef ecology and did an excellent job of conducting the necessary inventory work. Essentially her overall list of fishes was similar to my own, except for the omission of a relatively small number of cryptic or non-descript species. The following species (not seen by G. Allen) were observed by Dr. Green and no doubt constitute valid records, but are not included on the overall list presented in Appendix 1: Sargocentrum rubrum, S. melanospilos and S. tiere (Holocentridae), Epinephelus hexagonatus, E. howlandi, E. melanostigma, and E. spilotoceps (Serranidae), Cypho purpurascens (Pseudochromidae), Leiognathus sp. (Leiognathidae), Ambassis sp. (Ambassidae), Lutjanus lunulatus (Lutjanidae), Toxotes jaculatrix (Toxotidae), Chaetodon speculum (Chaetodontidae), Scarus globiceps (Scaridae), Acanthurus auranticavus (Acanthuridae), and Xanthichthys auromarginatus (Balistidae). The results of Dr. Green’s inventories for Manus and the Tigak-Hanover regions are presented in Tables 11 and 12. 60 Table 11. Number of fish species observed at each site during initial reef survey at Manus by Alison Green. Site 1 2 3 4 5 6 Species 204 155 190 176 225 156 Site 7 8 9 10 11 12 Species 217 156 195 101 218 217 Site 13 14 Species 171 176 Table 12. Number of fish species observed at each site during initial reef survey at Tigak Islands-New Hanover by Alison Green. Site 1 2 3 4 5 6 7 Species 164 103 111 169 153 166 180 Site 8 9 10 11 12 13 14 Species 171 169 159 196 127 169 209 Site 15 16 17 18 19 Species 178 103 152 164 167 The average number of species per site was 183 at Manus and 158 at Tigak Islands-New Hanover with a combined average for both areas of 169 species per site. OVERALL FAUNAL RESULTS FOR BISMARCK ARCHIPELAGO Allen and Munday (unpublished) conducted a comprehensive reef fish survey at Kimbe Bay, New Britain in the southern portion of the Bismarck Archipelago between1994-2000. Although visual observation methods were primarily involved, collections of cryptic reef species with the use of chemical ichthyocides were also employed. A total of 851 species were recorded, including 23 species of pelagic or deep reef species. Therefore, the overall total of shallow reef fishes for the entire Bismarck Archipelago is 969 species, consisting of 801 species reported from the current survey and previous historical records combined with 151 Kimbe Bay species that were not seen during the present survey of the northern Bismarcks (Appendix 3). INTER-REGIONAL COMPARISONS The Coral Triangle (CT) of southeastern Asia (Figure 2) is universally acknowledged as the centre of marine biodiversity with the richest concentration of fishes, corals, and other reef-associated organisms (Allen, 2002). Species richness gradually decreases with increasing distances from the heart of the CT consisting of the southern Philippines and eastern Indonesia. This trend is particularly evident in the tropical Pacific (Table 13). 61 Figure 2. Map of southeastern Asia-Melanesia showing boundary of the Coral Triangle (red) and the species-rich “heart” of the Triangle (bold black). Table 13. Number of reef species for various Pacific locations. Location Molucca Islands, Indonesia Milne Bay Province, PNG Solomon Islands Marshall Islands Phoenix Islands Line Islands Hawaiian Islands Easter Island Distance from CT (km) Total reef species 0 2,400 3,000 4,300 6,200 7,600 8,200 13,800 1647 1109 1019 899 509 488 421 86 Papua New Guinea forms an integral part of the CT, lying at distances of about 1,300-3,000 km from the “heart” of the Triangle. The richest area for fishes in PNG is Milne Bay Province, due to its large area and wide range of habitat variability including mainland coast, variable-sized coastal islands, large highisland archipelagos (i.e. D’Entrecasteaux Group), and oceanic atolls. Although slightly less rich than Milne Bay, the northern Bismarck Archipelago supports an extensive reef fish fauna that in a global context is notable for both its high number of species and diverse range of families. Nearly all the same habitat situations described for Milne Bay are represented, except those associated with the mainland coast. Although the current reef-fish total for the area is now 801 species, nearly 1000 species are expected to occur, based on the CFDI. This is a remarkable total, given the physical area occupied by the northern Bismarcks and the fact that only 13 of the world’s countries have 1000 or more reef fishes (Allen, 2006 - submitted manuscript). Table 14 presents a comparison of estimated faunal totals for various locations in the New Guinea-Solomons region based on CFDI values. Although the values for Manus and the Tigak-New Hanover areas may not seem impressive in comparison to other locations, they are based on surveys covering significantly smaller areas. 62 Table 14. Comparison of CFDI and estimated faunal totals for the New Guinea-Solomon Islands. Locations in the Indonesian portions of New Guinea are indicated with an asterisk. These data are from G. Allen surveys during 1994-2006. Location Approx. area km2 CFDI Est. Fauna 14,000 17,000 15,000 40,000 770 166,000 1,800 950 730 345 337 309 295 265 264 263 257 241 1346 1313 1194 1156 877 874 871 850 796 Raja Ampat Islands* Milne Bay Fak-Fak Kaimana region* Cenderawasih Bay* Kimbe Bay Solomon Islands Manus Madang area Tigak Islands-New Hanover Table 15 presents the average number of species per site, number of sites where more than 200 species were observed, and the greatest number seen at a single site for recent marine surveys by the author in the Coral Triangle region of South East Asia. A total of 200 or more species is generally considered as the benchmark for an excellent fish count for a single site. This figure was obtained at five of 33 sites by Alison Green during the initial TNC survey and two of 43 sites during the present ichthyological survey. Although the 200 mark was achieved at only a few of the northern Bismarck sites, the actual survey area was much less than for most of the other areas in Table 15. Table 15. Comparison of site data for marine surveys in the coral triangle 1997-2002. Location Fak Fak-Kaimana Coast (CI 2006) Cenderawasih Bay (2006) Raja Ampat Islands (CI 2001 and TNC 2002) Halmahera (New England Aquarium 2005) Solomon Islands (TNC 2004) NE Kalimantan (TNC 2003) Milne Bay, PNG (CI 1997 and 2000) Togean/Banggai Is., Sulawesi (CI 1998) NO. Bismarck Archipelago (Green 2006) NO. Bismarck Archipelago (Allen -2006) Calamianes Is., Philippines (CI 1998) 34 32 95 Average spp./site 216 175 184 No. 200+ sites 19 (56%) 12 (38%) 49 (52%) Most spp. one site 330 257 284 27 65 42 110 47 33 229 184.7 187 192 173 169 24(86%) 37 (57%) 18 (43%) 46 (42%) 9 (19%) 5 (15.2%) 304 279 273 270 266 225 43 21 159 158 2 (4.4%) 4 (10.5%) 234 208 No. sites BISMARCK ENDEMISM AND NOTEWORTHY RECORDS The presence of endemic species is a considerable asset in promoting and justifying conservation action for a particular area. Considering the broad dispersal capabilities via the pelagic larval stage of most reef fishes it is not surprising that very few endemics are known to occur in the Bismarck region. At present only two species, a damselfish Chrysiptera sinclairi and blenny Meiacanthus limbatus are considered as northern Bismarck endemics. These species as well as two notable range extensions are discussed in the following paragraphs. Chrysiptera sinclairi Allen, 1987 (Figure 3) - It was first collected at Hayne Harbour on Manus in 1982 and subsequently described by the author. This small (about 6 cm total length), colourful fish is common in sheltered coastal bays and lagoons with moderate sedimentation levels at depths between about 3-12 m. During the present survey it was abundant at both Manus and the Tigak-New Hanover region. 63 Figure 3. Chrysiptera sinclairi, adult, approximately 5 cm total length, Manus Island (G. Allen photo). Meiacanthus limbatus Smith-Vaniz, 1987 – Also first collected by the author at Manus in October 1982. The holotype (only known specimen) was collected on the outer reef slope about 3 km east of the air strip on Los Negros Island at a depth between 35-41 m. Despite a deliberate attempt to locate additional specimens during the present survey, it was not seen and is therefore presumed to be rare. Meiacanthus crinitus Smith-Vaniz, 1987 (Figure 4) - The species was originally described from the Raja Ampat Islands off the western tip of New Guinea (Indonesian province of Irian Jaya Barat). Surprisingly, it was collected by the author from sheltered lagoon environments in the Solomon Islands during the TNC marine survey of 2004. It was also observed at a single site (T-22) near Anelaua Island off eastern New Hanover during the current survey. Despite numerous dives on sheltered coastal reefs during the present survey it was only recorded at this location where it was relatively common. Tissue samples were collected for DNA comparison with Raja Ampat fish. Figure 4. Meiacanthus crinitus, adult, approximately 5 cm total length, New Hanover (G. Allen photo). The Solomons and Tigak records are particularly important, as they may provide the first example of a coral reef fish that has dispersed to the Coral Triangle via island arc fragments. Polhemus (1996) described this mechanism to account for the dispersal of a number of aquatic insects, which are distributed on Melanesian islands as well as mainland New Guinea. According to paleogeographic reconstructions by Hill and Hall (2004) there was a continuous chain of island fragments (South Caroline Arc) linking the Solomon Islands and New Ireland with western New Guinea during a period that extended approximately 3-10 million years ago. Paracheilinus rubricaudalis Randall and Allen, 2003 (Figure 5) – The species was originally described on the basis of two specimens collected at Fiji and was later reported from Vanuatu (Allen, unpublished 64 data). During the current survey it was collected and photographed near Pityilu Island (site 18) on Manus, representing a considerable range extension for the species. Members of this genus, collectively known as flasher wrasses, inhabit dead coral rubble/algal substrate, usually at depths below about 15 m. They feed in aggregations on zooplankton and therefore occur in areas exposed to moderate current. The group is among the most brilliantly coloured of all coral reef fishes. The display patterns of courting males are particularly brilliant and responsible for their common name of flasherwrasses. The neon-like “flasher” pattern is produced instantaneously during a spectacular display that is reminiscent of the courtship display of certain birds of paradise. The dazzling fins are fully erected, including a spectacular filamentous dorsal fin that is characteristic of several species. Females, by contrast, are relatively dull, usually shades of red, without distinguishing marks, and are generally much smaller. Fourteen species are currently known with most taxa concentrated in the Coral Triangle region. Figure 5. Paracheilinus rubricaudalis, adult, approximately 6 cm total length, Manus Island (G. Allen photo). GENERAL HABITAT CONDITION AND FISHING PRESSURE Reef habitats were generally in good condition with an abundance of fishes around Manus, but extensive damage, presumably due to crown-of-thorns starfish, was noted throughout the Tikak-New Hanover region. This phenomenon, as observed by Emre Turak, is discussed elsewhere in the Bismark report. Fishing pressure is definitely less intense in Papua New Guinea waters compared to other portions of the Coral Triangle farther west, particularly Indonesia and the Philippines. This is a direct reflection of a much smaller, more widely scattered human population and far less commercial exploitation of reef fishes, especially for the Hong Kong-based live restaurant fish trade. Sharks were seen at several sites and are reported to be common in some areas by commercial dive operators at Manus and New Ireland. However, as is the case elsewhere in the Coral Triangle, the shark-fin trade has caused a serious decline in local populations. The Napoleon Wrasse (Cheilinus undulatus) is a conspicuous indicator of general fishing pressure throughout the Coral Triangle region. Apparently it has been harvested for the live fish trade for several years at both Manus and the Tigak Islands. However, relatively high numbers were noted during the current survey (Table 16). The average size of Manus fish was approximately 70 cm total length (n = 18) compared with an average size of only 37 cm (n = 45) at Tigak-New Hanover. The smaller size noted at the latter location may be due to more intense pressure by the live reef fish trade. A large live fish collector ship was seen moored off the south coast of Bangatang Island in the middle of the Tigak Archipelago during our survey. 65 Table 16. Frequency of Napoleon Wrasse (Cheilinus undulatus) for various locations in the Indo-Pacific (G. Allen data). Location Phoenix Islands 2002 Tigak Islands-New Hanover - 2006 Milne Bay, PNG – 1997 Milne Bay, PNG – 2000 Solomon Islands - 2004 Manus - 2006 Cenderawasih Bay - 2006 Fak Fak-Kaimana Coast Raja Ampat Islands – 2002 Raja Ampat Islands – 2001 Togean/Banggai Islands – 1998 Calamianes Is., Philippines – 1998 Weh Island, Sumatra – 1999 No. sites where seen 47 19 28 28 31 8 12 11 9 7 6 3 0 66 % of total sites 83.92 76.00 52.83 49.12 47.69 44.44 37.5 32.35 18.0 15.55 12.76 7.89 0.00 No. seen 412 45 85 90 56 18 33 23 14 7 8 5 0 CONSERVATION RECOMMENDATIONS The Bismarck Archipelago has good potential for reef conservation, based on the results of the present fish survey. A wide variety of habitats are represented, frequently within relatively confined areas, an ideal scenario for establishing marine protected areas or reserves. The following locations seem particularly well suited for MPA establishment: 1. Sabben Islands, west Manus (Figure 6) – The remote barrier reef and associated low-lying islands that cover approximately 200 square km off the extreme western end of Manus with the most distant portion of the reef situated 37 km from the mainland. The general environment is similar to that of an atoll with a shallow, sandy lagoon and abrupt outer reef walls. The highest number of fishes for any site on Manus was recorded here (site M-12). It was also one of the best locations for large fishes (sharks, snappers, Napoleon wrasse, etc.) and was characterised by the best underwater visibility (about 40 m). One of the advantages of MPA establishment would be the relatively remote location and consequent natural protection from over-fishing. Figure 6. Satellite image of Sabben Islands area, west Manus. 2. Hayne Harbour, East Manus (Figure 7) – The large bay next to the Manus airport on Los Negros Island covering an area of about 2.7 square km. This sheltered lagoon provides a habitat for a host of reef fishes and is partially lined with mangroves. The site yielded an unusually high species count (205) for a protected inshore habitat. The lagoon has a substantial opening to the open sea and is well-flushed by the tides. There is good representation of outer reef fishes in the entrance channel and a transitional zone around the mouth of the lagoon. Figure 7. Satellite image of Hayne Harbour lagoon, Manus. 67 3. Bauddissin Bay, Bauddissin Island, Tigak Archipelago (Figure 8) – A relatively narrow strip of reef covering less than one square km on the southern coast of Bauddissin (also known as Binnegem) Island, one of the two largest islands that form the southern tier of islands linking New Ireland with New Hanover. The site is notable due to the unusual reef structure and rich habitat variability within a very confined area. There is typical outer reef wall that drops to about 70 m depth that is separated from the coastal reef by a narrow channel with a maximum depth of 10-12 m. The channel then opens into the shallow sandy lagoon of the inner part of Bauddissin Bay. The channel is flushed periodically by clear water from the open sea and consequently supports a wealth of fishes, including numerous snappers and sweetlips. One of the highest fish counts (198 species) was obtained in the back reef channel (site T-5), an exceptional total considering the sheltered nature of this location. There is also nearby mangrove environment along the shore. Figure 8. Satellite image of Bauddissin Bay, Tigak Archipelago. Note the unusual reef formation around the protruding point consisting of an outer reef wall and back reef channel. 4. North Anelaua Island, Tigak Archipelago – The complex of sheltered reefs lying north of Anelaua Island and its small satellite, Anelik Island. The maze of reef covers approximately six square km. I was so impressed with this site (T-16) that I did an extra dive there with total dive duration of approximately three hours. The area, which lies only about 2.6 km off the eastern coast of New Hanover, supports luxurious coral gardens, which unlike much of the Tigak Archipelago, is relatively undamaged by COTS. Judging from my brief visit, it appears to be an important nursery area for at least three species: Napoleon Wrasse (Cheilinus undulatus), Bumphead Parrotfish (Bolbometopon muricatum), and Spanish Flag Snapper (Lutjanus carponotatus). I observed 15 small Napoleons ranging in size from 4-10 cm and at least 20 similar sized Bumpheads (Figure 9). These totals would certainly have increased substantially if I had concentrated on these species at the expense of the overall inventory. Young Napoleons are especially wary and remain close to cover, unlike the adults. This site is particularly significant given that Cheilinus undulatus is one of the very few reef fishes designated as an endangered species on the IUCN Redlist and is also listed in Appendix II of CITES. 68 Figure 9. Small juveniles of the Napoleon Wrasse (left, 7 cm) and Bumphead Parrotfish (right, 6 cm total length) were common at the Anelaua reef complex (site T-22). The above locations obviously represent a small sample of potential MPA or marine reserve sites. One of the challenges of local TNC staff will be to locate an array of sites of similar importance. Excellent progress has already been made on Manus where a number of important spawning aggregation sites for coral trout (Plectropomus areolatus) and grouper (Epinephelus fuscoguttatus) have been identified. I had the fortunate opportunity to dive on two of these sites during the survey. Large aggregations of Plectropomus areolatus numbering between 60-100 individuals were witnessed at both sites. ACKNOWLEDGEMENTS I am extremely grateful for the excellent companionship and diving assistance provided by Manuai Matawai (TNC-Manus) who accompanied me during both the Manus and Tigak-New Hanover portions of the survey. I also thank Jerry Pakop of TNC-Manus for diving assistance and the Manus boat crew including Pokakes Pondraken, Molean Polin, Steven Kaloi Tapas, and Pakop Pokanau. Special thanks are also due to Dr. Thomas Mundri, who generously donated his time to be our local guide on Manus, explaining our activities and insuring a good reception by the local communities. Finally, I thank Tapas Ptuku (TNC-Kavieng) for his excellent logistic assistance and Pomat Kaluwin, who capably assisted with diving and boat operations during the Tigak-New Hanover portion of the survey. 69 REFERENCES Allen, G.R. 1987. Chrysiptera sinclairi, a new species of damselfish from the tropical western Pacific Ocean. Rev. Fr.. Aquariol., 13 (4): 107-110. Allen, G.R. 1987. Descriptions of three new pseudochromid fishes of the genus Pseudoplesiops from Australia and surrounding regions. Rec. West. Aust. Mus., 13 (2): 249-261. Allen, G.R. 1998. Reef and shore fishes of Milne Bay Province, Papua New Guinea. In: A rapid biodiversity assessment of the coral reefs of Milne Bay Province, Papua New Guinea (Werner, T. B. and Allen, G.R., eds.). RAP Working Papers 11, Conservation International, Washington, DC: 39-49, 67-107. Allen, G.R. 2002. Indo-Pacific coral-reef fishes as indicators of conservation hotspots. Proc. 9th Inter. Coral Reef Symposium, Bali, Indonesia. Vol. 2: 921-926. Allen, G.R. & M. Adrim. 1992. A new species of damselfish (Chrysiptera: Pomacentridae) from Irian Jaya, Indonesia. Rec. West. Aust. Mus., 16(1): 103-108. Allen, G. R. and M. Adrim. 2003. Coral reef fishes of Indonesia. Zool. Stud. 42(1): 1-72. Fowler, H.W. 1934. The fishes of Oceania. Supplement II. Mem. Bishop Mus. 11(6): 385-466. Randall, J.E. and Allen, G.R. 2003. Paracheilinus rubricaudalis, a new species of flasherwrasse (Perciformes: Labridae) from Fiji. Aqua, J. Ichthyol. Aquatic Biol. 7(3):89-132. Hill, K.C. and Hall, R. 2003. Mesozoic-Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context. In: Evolution and Dynamics of the Australian Plate (Hillis, R.R. and Müller, R.D., eds). Geological Society of Australia Special Publication 22 and Geological Society of America Special Paper 372: 265-290. Kailola, P.J. 1975. A catalogue of the fish reference collection at the Kanudi Fisheries Research Laboratory, Port Moresby. Research Bulletin Number 16. Department of Agriculture, Stock, and Fisheries, Port Moresby. Kailola, P.J. 1987-1991. The fishes of Papua New Guinea: a revised and annotated checklist. Volumes 1-3. Research Bulletin Number 41. Department of Fisheries and Marine Resources, Port Moresby, Papua New Guinea: 1-572. Munro, I.S.R. 1958. The fishes of the New Guinea region. Papua and New Guinea Agricultural Journal 10(4):97-369. Munro, I.S.R. 1967. The Fishes of New Guinea. Department of Agriculture, Stock, and Fisheries, Port Moresby, New Guinea. 650 pp + 78 pls. Polhemus, D.A. 1996. Island arcs, and their influence on Indo-Pacific biogeography. In: The origin and evolution of Pacific Island biotas, New Guinea to Eastern Polynesia: patterns and processes (Keast, A. and Miller, S.E., eds.). Academic publishing, Amsterdam, The Netherlands: 51-66. Smith-Vaniz, W.F. 1987. The saber-toothed blennies, tribe Neomophini (Pisces: Blenniidae): an update. Proc. Acad. Nat. Sci. Phila. 139: 1-52. 70 71 18/10/2006 18/10/2006 19/10/2006 19/10/2006 19/10/2006 20/10/2006 20/10/2006 20/10/2006 21/10/2006 21/10/2006 22/10/2006 22/10/2006 23/10/2006 23/10/2006 23/10/2006 24/10/2006 24/10/2006 25/10/2006 30/10/2006 30/10/2006 M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10 M-11 M-12 M-13 M-14 M-15 M-16 M-17 M-18 T-1 T-2 T-3 T-4 T-5 T-6 T-7 12 1 new new 7 31/10/2006 31/10/2006 31/10/2006 11/01/2006 30/10/2006 Date Site Emre no. 7 8 3 1 new 2 9 new 12 new 13 14 15 16 17 5 6 4 5 6 APPENDIX 1. List of Sites APPENDICES Tigak Tigak Tigak Tigak Tigak Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Manus Tigak Tigak Area Shark Point Hayne Harbour Dramolow Point Little Ndrova Island Big Ndrova Island Patui Bay - outside reef Ndruval Reef Peli Island Yambon Island Mbuke Island Southwest Point Sabben Islands Salihau Island Massong Islands Noru Island Ponam Reef Hinru Island Pityilu Island N Nusalomon I. NW Globig I. (Nusa Channel) N Limmelon I. (Balgai Bay) Baudissin Island Baudissin Island Lissenung Island W New Ireland Location 02° 44.606' 02° 44.606' 02° 44.618' 02° 34.806' S, 150° 39.034’ E S, 150° 39.901’ E S, 150° 39.166’ E S, 150° 49.925’ E 02° 40.290’ S, 150° 46.599’ E 02° 03.149’ S, 147° 25.852’ E 02° 03.048’ S, 147° 25.532’ E 02° 06.321’ S, 147° 17.063’ E 02°13.751’ S, 147° 12.816’ E 02° 12.831’ S, 147° 14.098’ E 02° 13.669’ S, 147° 06.866’ E 02° 16.148’ S, 147° 01.242’ E 02° 13.107’ S, 146° 57.721’ E 02° 18.764’ S, 146° 51.316’ E 02° 18.869’ S, 146° 51.240’ E 02° 14.460’ S, 146° 31.991’ E 02° 14.646’ S, 146° 17.385’ E 02° 05.712’ S, 146° 33.192’ E 01° 57.850’ S, 146° 28.424’ E 01° 57.554’ S, 146° 37.558’ E 01° 55.076’ S, 146° 55.457’ E 01° 58.056’ S, 147° 00.291’ E 01° 57.219’ S, 147° 13.994’ E 02° 36.556’ S, 150° 40.683’ E 02° 38.388’ S, 150° 43.877’ E Coordinates 930 1130 1430 930 1430 930 1300 1030 1430 1600 800 1230 1530 1300 1630 1000 1400 800 1200 1415 1030 1500 1000 945 1115 Time 70 90 85 70 85 150 70 90 65 80 70 60 60 70 70 90 160 100 70 80 60 90 180 70 90 Duration 1-50 m 1-19 m 1-10 m 2-24 m 1-14 m 0-38 m 1-25 m 2-25 m 1-35 m 1-20 m 1-36 m 1-45 m 2-23 m 2-40 m 2-45 m 1-37 m 2-35 m 1-15 m 3-28 m 1-15 m 5-28 m 1-12 m 5-30 m 1-24 m 1-19 m Depth outer dropoff lagoon channel island fringing reef (sheltered) outer slope sheltered fringing sheltered outer lagoon sheltered outer outer reef wall sheltered lagoon sheltered outer slope outer slope (mod shel) lagoon patch patch reef outer wall (mod shel) sheltered outer slope outer patch drop off inner fringing shletered outer moderate slope island fringing reef (current) outer slope inner coastal reef outer slope and lagoon outer slope to rubble sheltered passage Habitat 72 T-8 T-9 T-10 T-11 T-12 T-13 T-14 T-15 T-16 T-17 T-18 T-19 T-20 T-21 T-22 T-23 T-24 T-25 11 9 new new new new new new new 19 16 17 18 new Site Emre no. 8 13 15 10 11/08/2006 11/07/2006 11/07/2006 11/06/2006 11/02/2006 11/03/2006 11/03/2006 11/03/2006 11/04/2006 11/04/2006 11/05/2006 11/05/2006 11/05/2006 11/06/2006 11/01/2006 11/01/2006 11/02/2006 11/02/2006 Date Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak New Hanover New Hanover New Hanover New Hanover Tigak Tigak Tigak Tigak Tigak Area Lagoon patch south of Nemto I. Ribnitz I. (Steffen Strait) Nemto I. Anelaua I. Nusa I. Nausen I. Konokorr I. Bangatang I. (Steffen Strait) Lemus I. (Steffen Strait) Selapiu I. Selapiu I. Selapiu I. Kulaumis I (north) Kulaumis I (south) Ra I. (Nusa Channel) Ungan I. Lemus I. Balang I. Location 02° 40.116' S, 150° 37.091’ E 02° 23.659' S, 150° 20.077’ E 02° 21.110' S, 150° 20.392’ E 02° 33.956' S, 150° 28.758’ E 02° 36.665 S, 150° 38.470’ E 02° 43.084 S, 150° 34.265’ E 02° 36.665 S, 150° 38.470’ E 02° 42.033 S, 150° 36.109’ E 02° 42.519 S, 150° 38.406’ E 02° 42.009 S, 150° 38.746’ E 02° 36.794' S, 150° 42.420’ E 02° 38.706 S, 150° 41.501’ E 02° 38.034 S, 150° 38.788’ E 02° 36.029' S, 150° 28.012’ E 02° 34.857' S, 150° 46.214’ E 02° 38.777' S, 150° 46.083’ E 02° 35.406 S, 150° 35.610’ E 02° 37.074 S, 150° 36.426’ E Coordinates 1045 1130 930 1200 1400 930 1115 1400 1000 1145 900 1045 1530 900 1130 1430 900 1115 Time 80 70 70 180 85 85 80 100 75 100 70 75 65 90 80 95 85 80 Duration 2-24 m 1-12 m 4-15 m 2-16 m 1-25 m 1-48 m 1-31 m 1-6 m 1-10 m 1-10 m 2-16 m 1-6 m 1-30 m 0-18 m 1-27 m 3-18 m 3-27 m 1-21 m Depth channel slope lagoon patch outer slope sheltered island fringing channel slope outer slope and dropoff outer dropoff backreef lagoon narrow channel w/ current sheltered fringing reef island fringing reef - lagoon island fringing reef - lagoon channel dropoff shletered island fringing outer slope sheltered lagoon patch outer slope w/ big cave channel slope Habitat APPENDIX 2. List of the reef fishes of the northern Bismarck Archipelago, Papua New Guinea. This list includes all species of shallow (to 50 m depth) coral reef fishes observed during the 2006 survey of Manus and the Tigak Islands-New Hanover region as well as historical records (indicated by an asterisk) from Munro (1958 and 1967), Kailola (1975 and 1987-1991), and Allen (collections at Manus in 1982). The column titled "Okamoto" refers to records of Manus fishes obtained from Susomu Okamoto. The column titled “GRA 1982” contains records of fishes collected by G. Allen on Manus in 1982 (reported by Kailola, 1987-1991), which are deposited at the Western Australian Museum, Perth. The column titled “Kailola” contains records of reef fishes reported by Patricia Kailola in her three-part annotated checklist of the fishes of Papua New Guinea (1987-1991). The column titled “Munro” contains records of northern Bismarck reef fish summarised by Ian Munro (1958) in Fishes of the New Guinea Region.The phylogenetic sequence of the families appearing in this list follows Eschmeyer (Catalog of Fishes, California Academy of Sciences, 1998) with slight modification (e.g.. placement of Cirrhitidae). Genera and species are arranged alphabetically within each family. The Author name(s) and year of publication have been omitted from each species entry, but this information is readily accessed on the California Academy of Sciences Catalog of Fishes website. Terms relating to relative abundance that appear in the first column to the right of the species name are as follows: Abundant (A) - Common at most sites in a variety of habitats with up to several hundred individuals being routinely observed on each dive. Common (C) - seen at the majority of sites in numbers that are relatively high in relation to other members of a particular family, especially if a large family is involved. Moderately common (MC) - not necessarily seen on most dives, but may be relatively common if the correct habitat conditons are encountered. Occasional (O) - infrequently sighted and usually in small numbers, but may be relatively common in a very limited habitat. Rare (R) - less than 10, often only one or two individuals seen on all dives. Cryptic (Cr) - primarily cave, crevice, or shallow surge zone dwelling fishes that are seldom seen unless collected with ichthyocides. This category also includes very small gobies that easily escape notice as well as sand-dwelling gobies that dwell along the fringe of reefs and are difficult to properly assess. Species previously reported from the Bismarck Archipelago by various authors mentioned in the previous paragraph are indicated with an asterisk (*). Combined Bismarck Okamoto 1 1 1 R 1 1 1 R 1 1 1 Carcharhinus albimarginatus R 1 Carcharhinus amblyrhynchos O 1 1 1 Carcharhinus melanopterus* O 1 1 1 Galeocerdo cuvier R 1 1 1 Triaenodon obesus R 1 1 1 Dasyatis kuhlii R 1 1 1 Himantura granulata R 1 1 1 Taeniura lymma* R 1 1 1 1 Taeniura meyeni R 1 1 1 1 Urogymnus asperrimus R 1 1 1 Family/species abundance Manus 2006 R Tigak 2006 GRA 1982 Kailola Munro Rhincodontidae (1 spp.) Rhincodon typus Stegostomatidae (1 spp.) Stegostoma fasciatum Ginglymostomatidae (1 spp.) Nebrius ferrugineum 1 Carcharhinidae (5 spp.) 1 1 Dasyatidae (5 spp.) 73 1 Family/species abundance Manus 2006 R 1 R 1 Tigak 2006 Combined Bismarck Okamoto 1 1 1 1 GRA 1982 Kailola Munro Myliobatidae (1 spp.) Aetobatus narinari* 1 Mobulidae (1 spp.) Manta birostris 1 Chlopsidae (1 spp.) Kaupichthys brachychirus* 1 1 1 1 Muraenidae (10 spp.) Enchelycore bayeri* Gymnothorax bredeni Cr 1 1 Gymnothorax eurostus* 1 1 Gymnothorax flavimarginatus Cr 1 Gymnothorax javanicus O 1 1 1 1 1 1 Gymnothorax margaritophorus* 1 1 Gymnothorax melatremus* 1 1 Gymnothorax zonipectis* 1 1 Pseudechidna brummeri* 1 Rhinomuraena quaesita 1 R 1 1 1 Gorgasia preclara R 1 1 1 Heteroconger hassi O 1 1 1 1 1 1 Congridae (2 spp.) Clupeidae 3 spp.) Clupeid sp. (collected) O Spratelloides delicatulus* O Spratelloides gracilis O 1 1 1 1 1 Plotosidae (1 spp.) Plotosus lineatus O 1 Saurida gracilis O 1 Synodus binotatus O Synodus dermatogenys O Synodus jaculum* O Synodus rubromarmoratus O 1 Synodus variegatus O 1 1 Synodontidae 6 spp.) 1 1 1 1 1 1 1 1 1 1 1 1 1 Bythitidae (1spp.) Brosmophyciops pautzkei* 1 1 Antennariidae (3 spp.) Antennarius biocellatus Cr 1 1 1 Antennarius nummifer Cr 1 1 1 Histrio histrio Cr 1 1 1 Diademichthys lineatus* O 1 Discotrema crinophila Cr 1 1 Lepadichthys bolini R 1 1 Gobiesocidae (3 spp.) 1 74 1 1 Family/species abundance Manus 2006 Tigak 2006 Combined Bismarck Okamoto GRA 1982 Kailola Munro Mugilidae (4 spp.) Liza vaigiensis* 1 1 Atherinidae (1 spp.) Atherinomorus enddrachtensis O 1 O 1 1 Belonidae (1 spp.) Tylosurus crocodilus* 1 1 1 1 1 Hemiramphidae (1 spp.) Hyporhmphus dussumieri* Zenarchopterus dispar O 1 1 1 Myripristis adusta MC 1 1 1 Myripristis berndti* MC 1 1 1 Myripristis hexagona R 1 1 Myripristis kuntee* Cr 1 1 1 Myripristis murdjan O 1 Myripristis pralinia* MC 1 1 1 Myripristis violacea Cr 1 1 1 Myripristis vittata* MC 1 Neoniphon argenteus* O 1 Neoniphon aurolineatus R 1 Neoniphon opercularis O 1 1 1 Neoniphon sammara* C 1 1 1 Sargocentron caudimaculatum C 1 1 1 Sargocentron microstoma R 1 1 1 Sargocentron spiniferum O 1 1 1 Sargocentron violaceum* R 1 1 1 R 1 O 1 1 1 O 1 1 1 Aeoliscus strigatus* 1 1 1 Centriscus scutatus 1 1 Holocentridae 16 spp.) 1 1 1 1 1 1 1 1 1 1 1 1 Pegasidae (1 spp.) Eurypegasus draconis 1 1 Aulostomidae (1 spp.) Aulostomus chinensis Fistulariidae (1 spp.) Fistularia commersonii Centriscidae (2 spp.) 1 1 Solenostomidae (2 spp.) Solenostomus cyanopterus Cr 1 1 1 Solenostomus paradoxus Cr 1 1 1 1 1 Syngnathidae (6 spp.) Corythoichthys flavofasciatus R 1 Corythoichthys haematopterus R 1 Doryrhamphus melanopleura R 1 1 1 Dunckerocampus dactyliophorus R 1 1 1 1 75 abundance Manus 2006 Tigak 2006 Combined Bismarck Okamoto Hippocampus denise Cr 1 1 1 1 Hippocampus kuda Cr 1 1 1 Family/species Phoxocampus diacanthus* GRA 1982 1 Kailola Munro 1 Scorpaenidae (9 spp.) Dendrochirus zebra R 1 1 1 Pterois antennata* R 1 1 1 Pterois radiata R 1 1 Pterois volitans R 1 1 1 1 Scorpaenodes albaiensis* 1 1 Scorpaenopsis diabolus Cr 1 1 1 Scorpaenopsis papuensis Cr 1 1 1 Sebastapistes cyanostigma Cr 1 1 Taenianotus triacanthus Cr 1 1 1 Cr 1 1 1 Cr 1 1 1 1 1 Synanceiidae (1 spp.) Inimicus didactylus* 1 Platycephalidae (2 spp.) Cymbacephalus beauforti* Thysanophrys chiltonae* 1 1 Caracanthidae (1 spp.) Caracanthus maculatus Cr 1 R 1 1 1 Dactylopteridae (1 spp.) Dactyloptena orientalis 1 1 Centropomidae (1 spp.) Psammoperca waigiensis* 1 1 Serranidae (46 spp.) Aethaloperca rogaa O 1 1 1 Anyperodon leucogrammicus O 1 1 1 Belonoperca chabanaudi Cr 1 1 1 Cephalopholis argus O 1 1 1 Cephalopholis boenak R 1 Cephalopholis cyanostigma* C 1 1 1 1 Cephalopholis leopardus* O 1 1 1 1 Cephalopholis microprion O 1 1 1 Cephalopholis miniata O 1 1 1 Cephalopholis sexmaculata O 1 1 1 Cephalopholis sonnerati R 1 1 1 Cephalopholis spiloparaea O 1 1 1 Cephalopholis urodeta C 1 1 1 Cromileptes altivelis R 1 1 1 Diploprion bifasciatum R 1 Epinephelus caeruleopunctatus O 1 Epinephelus corallicola R 1 1 Epinephelus fasciatus R 1 1 1 1 1 1 1 76 1 1 Family/species Epinephelus fuscoguttatus abundance Manus 2006 Tigak 2006 Combined Bismarck Okamoto O 1 1 1 1 GRA 1982 Kailola Epinephelus hexagonatus* 1 1 Epinephelus howlandi* 1 1 Epinephelus lanceolatus R 1 1 1 Epinephelus maculatus* R 1 1 1 Epinephelus melanostigma* Epinephelus merra 1 1 O 1 1 1 1 1 Epinephelus microdon* 1 1 Epinephelus spilotoceps* 1 1 1 1 1 1 Gracila albomarginata* O 1 1 Liopropomum multilineatum* Plectranthias inermis* Cr 1 Plectranthias longimanus* Plectropomus areolatus O Plectropomus laevis* R Plectropomus leopardus* O Plectropomus maculatus* R Plectropomus oligocanthus O Pseudanthias dispar* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 Pseudanthias huchtii R 1 1 Pseudanthias hypselosoma R 1 1 Pseudanthias pleurotaenia* O 1 Pseudanthias randalli R Pseudanthias smithvanizi R 1 Pseudanthias squamipinnis R 1 Pseudanthias tuka* A Variola albimarginata* Variola louti* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 R 1 1 1 Cirrhitichthys falco* O 1 1 1 Cirrhitichthys oxycephalus* O 1 1 1 Cirrhitus pinnulatus R 1 1 Paracirrhites arcatus C 1 1 1 Paracirrhites forsteri C 1 1 1 1 1 1 1 1 Cirrhitidae (5 spp.) 1 1 1 Pseudochromidae (13 spp.) Amsichthys knighti Cr Cypho purpurescens* 1 Labracinus cyclophthalmus R Lubbockichthys multisquamatus Cr Pictichromis paccagnellae* O 1 1 O Pseudochromis cyanotaenia Cr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pictichromis porphyreus* Pseudochromis bitaeniatus* Munro 77 abundance Manus 2006 Tigak 2006 Combined Bismarck Pseudochromis fuscus C 1 1 1 Pseudochromis marshallensis* Cr 1 1 1 Pseudochromis sp. R 1 Family/species Okamoto GRA 1982 Kailola 1 1 Pseudoplesiops immaculatus* 1 1 Pseuodplesiops rosae* 1 1 Plesiopidae (1 spp.) Assessor flavissimus R 1 Plesiops corallicola* 1 1 1 1 1 Terapontidae (1 spp.) Terapon jarbua* O 1 R 1 O 1 1 Opistognathidae (1 spp.) Opistognathus sp. 1 1 Priacanthidae 1 spp.) Priacanthus hamrur 1 1 Apogonidae (48 spp.) Apogon angustatus R 1 1 Apogon apogonides O 1 1 Apogon bandanensis O Apogon compressus MC 1 1 1 Apogon crassiceps Apogon cyanosoma 1 1 MC 1 1 1 Apogon dispar O 1 1 1 Apogon exostigma* O 1 1 Apogon fraenatus MC 1 1 1 Apogon fragilis* MC 1 1 1 Apogon gilberti O 1 Apogon hartzfeldii O 1 Apogon hoevenii O 1 Apogon jenkinsi O 1 1 1 Apogon kallopterus* MC 1 1 1 Apogon leptacanthus O 1 1 1 1 1 Apogon moluccensis O 1 Apogon nanus O Apogon neotes MC 1 Apogon nigrofasciatus* O 1 1 1 Apogon novemfasciatus O 1 1 1 Apogon ocellicaudus O 1 Apogon perlitus O 1 1 1 1 Apogon similis O 1 1 Apogon savayensis* R 1 1 1 Apogon selas 1 1 1 1 1 1 1 O 1 1 Apogon melanoproctus* Apogon sealei 1 1 1 1 1 78 1 1 Munro abundance Manus 2006 Apogon thermalis O 1 Archamia biguttata* O 1 1 1 Archamia fucata* C 1 1 1 Archamia macroptera O 1 1 1 MC 1 1 1 Cheilodipterus alleni R 1 Cheilodipterus artus MC 1 Family/species Archamia zosterophora Tigak 2006 Combined Bismarck GRA 1982 Kailola Munro 1 1 1 1 Cheilodipterus isostigma* 1 1 Cheilodipterus macrodon* O 1 1 1 Cheilodipterus parazonatus MC 1 1 1 C 1 1 1 Cheilodipterus quinquelineatus Okamoto 1 Fowleria aurita* 1 1 Gymnapogon sp.* 1 1 Pseudamia amblyuroptera* 1 1 Pseudamia gelatinosa* 1 1 Pseudamia hayashi* 1 1 Pseudamia zonata Cr 1 1 Rhabdamia cypselurus* O 1 Rhabdamia gracilis O 1 Sphaeramia nematoptera O 1 Sphaeramia orbicularis O 1 1 Hoplolatilus starcki R 1 1 Malacanthus brevirostris* O 1 1 1 Malacanthus latovittatus O 1 1 1 O 1 Carangoides bajad* O 1 Carangoides ferdau 1 1 1 1 1 1 1 Malacanthidae (3 spp.) 1 1 Echeneidae (1 spp.) Echeneis naucrates 1 Carangidae (13 spp.) 1 1 R 1 1 Carangoides fulvoguttatus R 1 1 Carangoides oblongus* R 1 Carangoides plagiotaenia R 1 Caranx ignobilis* O 1 Caranx melampygus* C 1 Caranx papuensis R Caranx sexfasciatus C 1 Elagatis bipinnulata* O 1 Gnathanodon speciosus* O 1 Scomberoides lysan* O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Lutjanidae (23 spp.) 79 1 1 1 R 1 1 Selar crumenophthalmus* Trachinotus blochii 1 1 abundance Manus 2006 Tigak 2006 Combined Bismarck Aphareus furca O 1 1 1 Aprion virescens* R 1 1 1 1 Lutjanus argentimaculatus* O 1 1 1 Lutjanus biguttatus C 1 1 1 Lutjanus bohar* O 1 1 1 Lutjanus boutton R 1 1 Lutjanus carponotatus C 1 1 1 Lutjanus ehrenbergii O 1 Lutjanus fulviflamma O 1 1 1 Lutjanus fulvus O 1 1 1 Lutjanus gibbus* C 1 1 1 1 Lutjanus kasmira* O 1 1 1 1 Lutjanus monostigma C 1 1 1 Lutjanus quinquelineatus O 1 1 Lutjanus rivulatus* R 1 1 1 Lutjanus russelli O 1 1 1 Lutjanus semicinctus* C 1 1 1 1 Lutjanus vitta* O 1 1 1 1 Macolor macularis C 1 1 1 MC 1 1 1 Pinjalo lewisi R 1 1 Symphorichthys spilurus* O 1 1 Symphorus nematophorus O Family/species Macolor niger* Okamoto GRA 1982 Kailola Munro 1 1 1 1 1 1 1 Caesionidae (11 spp.) Caesio caerulaurea* C 1 1 1 Caesio cuning A 1 1 1 MC 1 1 1 Caesio teres O 1 1 1 Gymnocaesio gymnoptera* O 1 1 1 Pterocaesio diagramma O 1 1 1 Pterocaesio lativittata R 1 Pterocaesio pisang MC 1 1 1 Pterocaesio tessellata MC 1 1 1 Pterocaesio tile C 1 1 1 Pterocaesio trilineata O 1 1 1 Caesio lunaris* 1 1 1 1 1 Gerridae (2 spp.) Gerres erythrourus* Gerres oyena 1 O 1 Diagramma pictum O 1 Plectorhinchus albovittatus R 1 Haemulidae (9 spp.) Plectorhinchus chaetodontoides Plectorhinchus chrysotaenia 1 1 1 1 MC 1 1 1 C 1 1 1 80 1 Family/species abundance Manus 2006 Tigak 2006 Combined Bismarck 1 1 Plectorhinchus gibbosus R Plectorhinchus lessonii R 1 1 1 Plectorhinchus lineata* MC 1 1 1 Plectorhinchus picus R 1 Plectorhinchus vittatus* O 1 Okamoto GRA 1982 Kailola Munro 1 1 1 1 1 1 1 1 1 1 1 Lethrinidae (14 spp.) Gnathodentex aurolineatus O Gymnocranius sp. O Lethrinus atkinsoni R Lethrinus erythracanthus* O 1 1 1 Lethrinus erythropterus MC 1 1 1 Lethrinus harak* MC 1 1 1 Lethrinus lentjan* O 1 1 1 1 Lethrinus microdon* 1 Lethrinus obsoletus O 1 Lethrinus olivaceus* O 1 1 Lethrinus xanthochilus O Monotaxis grandoculis C MC 1 1 1 R 1 1 Lethrinus reticulatus* Lethrinus variegatus* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Nemipteridae (10 spp.) Pentapodus aureofasciatus Pentapodus caninus* R Pentapodus trivittatus MC 1 1 1 Scolopsis affinis O 1 1 1 Scolopsis bilineatus C 1 1 1 Scolopsis ciliatus C 1 1 1 Scolopsis lineatus O 1 1 1 Scolopsis margaritifer C 1 1 1 Scolopsis temporalis MC 1 1 1 Scolopsis xenochrous MC 1 1 1 1 1 1 Mullidae (10 spp.) Mulloidichthys flavolineatus O Mulloidichthys vanicolensis O 1 1 1 Parupeneus barberinus C 1 1 1 Parupeneus crassilabris C 1 1 1 Parupeneus cyclostomus MC 1 1 1 Parupeneus heptacanthus O 1 1 1 Parupeneus indicus O 1 1 1 Parupeneus multifasciatus C 1 1 1 Parupeneus pleurostigma* O 1 1 1 Upeneus tragula* O 1 1 1 Pempheridae (3 spp.) 81 1 1 abundance Manus 2006 Tigak 2006 Combined Bismarck Parapriacanthus dispar* O 1 1 1 Pempheris oualensis O 1 Pempheris vanicolensis O 1 1 1 Kyphosus bigibbus O 1 1 1 Kyphosus cinerascens O 1 1 1 Kyphosus vaigensis O 1 1 1 MC 1 1 1 C 1 1 1 Chaetodon bennetti MC 1 1 1 Chaetodon burgessi R 1 Chaetodon citrinellus C 1 1 1 Chaetodon ephippium C 1 1 1 Chaetodon kleinii C 1 1 1 Chaetodon lunula O 1 1 1 Chaetodon lunulatus* C 1 1 1 1 Chaetodon melannotus* O 1 1 1 1 MC 1 1 1 Chaetodon ocellicaudus* O 1 1 1 Chaetodon octofasciatus* MC 1 1 1 1 Chaetodon ornatissimus* C 1 1 1 1 Chaetodon oxycephalus* MC 1 1 1 1 Chaetodon pelewensis R 1 1 Chaetodon plebius R 1 1 Chaetodon punctatofasciatus O 1 1 1 Chaetodon rafflesi* C 1 1 1 Chaetodon semion C 1 1 1 Chaetodon trifascialis MC 1 1 1 Chaetodon ulietensis C 1 1 1 Chaetodon unimaculatus O 1 1 1 Chaetodon vagabundus C 1 1 1 Chelmon rostratus O 1 1 1 Coradion chrysozonus O 1 1 1 Forcipiger flavissimus C 1 1 1 Forcipiger longirostris O 1 1 1 Hemitaurichthys polylepis O 1 Heniochus acuminatus* R 1 1 1 Heniochus chrysostomus C 1 1 1 Heniochus monoceros O 1 1 1 Heniochus singularius O 1 1 1 Heniochus varius C 1 1 1 Parachaetodon ocellatus R 1 1 Family/species Okamoto GRA 1982 Kailola Munro 1 1 Kyphosidae (3 spp.) Chaetodontidae (35 spp.) Chaetodon auriga Chaetodon baronessa* Chaetodon meyeri 1 1 1 1 1 1 1 1 82 1 abundance Manus 2006 Tigak 2006 Combined Bismarck Apolemichthys trimaculatus O 1 1 1 Centropyge bicolor C 1 1 1 Centropyge bispinosa O 1 1 1 Centropyge flavicauda* O 1 1 1 Centropyge loricula R 1 MC 1 1 1 C 1 1 1 MC 1 1 1 Paracentropyge multifasciata* O 1 1 1 Pomacanthus annularis R 1 Pomacanthus imperator* R 1 Pomacanthus navarchus* O 1 Pomacanthus semicirculatus R 1 Pomacanthus sexstriatus MC 1 1 1 Pomacanthus xanthometopon* MC 1 1 1 1 C 1 1 1 1 Abudefduf lorenzi* O 1 1 1 Abudefduf sexfasciatus O 1 1 1 MC 1 1 1 C 1 1 1 Amblyglyphidodon aureus* MC 1 1 1 Amblyglyphidodon curacao* Amblyglyphidodon leucogaster* C 1 1 1 C 1 1 1 Amblyglyphidodon ternatensis O 1 1 1 Amphiprion chrysopterus* O 1 1 1 1 Amphiprion clarkii* C 1 1 1 1 Amphiprion leucokranos* R 1 1 1 Amphiprion melanopus O 1 1 1 Amphiprion percula* O 1 1 1 Amphiprion perideraion O 1 1 1 Amphiprion polymnus O 1 1 Amphiprion sandaracinos O 1 1 Chromis alpha* O 1 1 1 Chromis amboinensis A 1 1 1 Chromis analis R 1 Chromis atripectoralis O 1 1 1 Chromis atripes* A 1 1 1 MC 1 1 1 Chromis elerae* O 1 1 1 1 Chromis lepidolepis* C 1 1 1 1 Family/species Okamoto GRA 1982 Kailola Munro Pomacanthidae (16 spp.) Centropyge nox Centropyge vroliki Chaetodontoplus mesoleucus grey Pygoplites diacanthus* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pomacentridae (86 spp.) Abudefduf vaigiensis Acanthochromis polyacanthus Chromis delta 1 1 1 1 1 83 1 abundance Manus 2006 Tigak 2006 Combined Bismarck MC 1 1 1 Chromis margaritifer A 1 1 1 Chromis retrofasciata* C 1 1 1 Chromis ternatensis A 1 1 1 Chromis viridis C 1 1 1 Chromis weberi* C 1 1 1 Chromis xanthochira O 1 1 1 Chromis xanthura C 1 1 1 Chrysiptera biocellata* O 1 1 Chrysiptera brownriggii MC 1 1 1 Chrysiptera cyanea* O 1 1 1 Chrysiptera cymatilis MC 1 1 1 Chrysiptera flavipinna O 1 1 1 Chrysiptera parasema* O 1 1 1 Chrysiptera rex O 1 1 1 Chrysiptera rollandi* C 1 1 1 Chrysiptera sinclairi MC 1 1 1 Chrysiptera talboti C 1 1 1 Chrysiptera unimaculata O 1 1 Family/species Chromis lineata* Dascyllus aruanus* MC 1 1 1 Dascyllus melanurus* MC 1 1 1 Dascyllus reticulatus C 1 1 1 Dascyllus trimaculatus C 1 1 1 Dischistodus chrysopoecilus O 1 MC 1 1 1 Dischistodus perspicillatus O 1 1 1 Dischistodus prosopotaenia Hemiglyphidodon plagiometopon O 1 1 1 MC 1 1 1 Neoglyphidodon melas O 1 1 1 Neoglyphidodon nigroris Neoglyphidodon thoracotaeniatus C 1 1 1 O 1 MC 1 Neopomacentrus cyanomos R 1 Neopomacentrus filamentosus O 1 1 1 Neopomacentrus nemurua MC 1 1 1 Plectroglyphidodon dickii MC 1 1 1 Plectroglyphidodon lacrymatus A 1 1 1 Plectroglyphidodon leucozona O 1 1 1 Pomacentrus adelus C 1 1 1 Pomacentrus albimaculus O 1 1 1 Pomacentrus amboinensis A 1 1 1 MC 1 1 1 Dischistodus melanotus* Neopomacentrus azysron Pomacentrus aurifrons* Okamoto GRA 1982 Kailola Munro 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 84 1 abundance Manus 2006 Tigak 2006 Combined Bismarck Pomacentrus bankanensis C 1 1 1 Pomacentrus brachialis C 1 1 1 Pomacentrus burroughi* C 1 1 1 1 Pomacentrus coelestis* C 1 1 1 1 Pomacentrus grammorhynchus O 1 1 1 Pomacentrus lepidogenys* C 1 1 1 Pomacentrus moluccensis A 1 1 1 Pomacentrus nagasakiensis O 1 1 1 Pomacentrus nigromanus C 1 1 1 MC 1 1 1 Pomacentrus pavo* O 1 1 1 Pomacentrus philippinus O 1 1 Family/species Pomacentrus nigromarginatus* Pomacentrus reidi* MC 1 1 1 Pomacentrus simsiang MC 1 1 1 Pomacentrus vaiuli MC 1 Premnas biaculeatus MC 1 Stegastes albifasciatus Stegastes fasciolatus O Okamoto GRA 1982 Kailola Munro 1 1 1 1 1 1 1 1 1 MC 1 1 1 Stegastes lividus O 1 1 1 Stegastes nigricans O 1 1 1 Anampses caeruleopunctatus R 1 1 Anampses geographicus R 1 1 Anampses meleagrides O 1 Anampses neoguinaicus* R Anampses twistii R 1 Bodianus anthoides R 1 Labridae (89 spp.) 1 1 1 1 1 1 1 1 Bodianus axillaris* 1 1 Bodianus bimaculatus O 1 1 1 Bodianus diana C 1 1 1 Bodianus mesothorax C 1 1 1 Cheilinus chlorourus O 1 1 1 Cheilinus fasciatus C 1 1 1 Cheilinus oxycephalus C 1 1 1 Cheilinus trilobatus MC 1 1 1 Cheilinus undulatus MC 1 1 1 O 1 1 1 1 MC 1 1 1 1 Choerodon zosterophorus R 1 1 Cirrhilabrus condei O 1 1 Cirrhilabrus exquisitus MC 1 1 1 Cirrhilabrus punctatus A 1 1 1 Cheilio inermis* Choerodon anchorago* 85 abundance Manus 2006 Cirrhilabrus walindi O 1 Coris batuensis O 1 1 1 Coris gaimardi MC 1 1 1 Diproctacanthus xanthurus* MC 1 1 1 Epibulus insidiator C 1 1 1 Gomphosus varius C 1 1 1 Halichoeres argus O 1 1 1 Halichoeres biocellatus O 1 1 1 MC 1 1 1 Halichoeres chrysus* C 1 1 1 Halichoeres hartzfeldii O 1 Halichoeres hortulanus C 1 1 1 Halichoeres leucurus O 1 1 1 Halichoeres margaritaceus C 1 1 1 Halichoeres marginatus C 1 1 1 Halichoeres melanochir R 1 1 Halichoeres melanurus C 1 1 Halichoeres melasmapomus R 1 1 Halichoeres miniatus O 1 1 1 Halichoeres nebulosus R 1 Halichoeres ornatissimus R Halichoeres papilionaceus O 1 1 Halichoeres podostigma R 1 1 Halichoeres prosopeion C 1 Halichoeres richmondi O 1 Halichoeres scapularis C 1 1 1 Halichoeres trimaculatus O 1 1 1 Hemigymnus fasciatus* C 1 1 1 1 Hemigymnus melapterus* C 1 1 1 1 Hologymnosus doliatus R 1 1 1 Iniistius pavo Cr 1 1 Labrichthys unilineatus C 1 1 1 Labroides bicolor C 1 1 1 Labroides dimidatus A 1 1 1 Labroides pectoralis C 1 1 1 Labropsis alleni O 1 Labropsis xanthonota O 1 1 1 Leptojulis cyanopleura O 1 1 1 Macropharyngodon meleagris Macropharyngodon negrosensis C 1 1 1 O 1 1 1 Novaculichthys taeniourus O 1 1 1 Oxycheilinus arenatus R 1 1 Oxycheilinus bimaculatus O 1 1 Family/species Halichoeres chloropterus 1 Tigak 2006 Okamoto GRA 1982 Kailola Munro 1 1 1 1 1 1 1 Combined Bismarck 1 1 1 1 1 86 abundance Manus 2006 Tigak 2006 Combined Bismarck Oxycheilinus celebicus* MC 1 1 1 Oxycheilinus digramma C 1 1 1 Oxycheilinus unifasciatus R 1 1 Paracheilinus filamentosus* C 1 1 1 Paracheilinus sp. O 1 1 1 Pseudocheilinops ataenia R 1 Pseudocheilinus evanidus* MC 1 1 1 Pseudocheilinus hexataenia C 1 1 1 Pseudocheilinus octotaenia R 1 Pseudocoris yamashiroi* O 1 1 1 1 Pseudodax moluccanus* MC 1 1 1 1 Pseudojuloides ceracinus R 1 Pteragogus cryptus O 1 Pteragogus enneacanthus O Family/species 1 1 1 1 1 1 Stethojulis interrupta MC 1 1 1 Stethojulis strigiventer O 1 1 1 Stethojulis trilineata C 1 1 1 Thalassoma amblycephalus C 1 1 1 Thalassoma hardwicke* A 1 1 1 Thalassoma jansenii MC 1 1 1 Thalassoma lunare A 1 1 1 Thalassoma purpureum O 1 1 1 1 1 1 Wetmorella albofasciata Cr Munro 1 1 1 1 1 1 Kailola 1 MC MC GRA 1982 1 Stethojulis bandanensis Thalassoma quinquevittatum Okamoto 1 Scaridae (26 spp.) Bolbometopon muricatum O 1 1 1 Calotomus carolinus O 1 1 1 Calotomomus spinidens* 1 Cetoscarus ocellatus MC 1 1 1 Chlorurus bleekeri* A 1 1 1 Chlorurus frontalis R 1 Chlorurus japanensis MC 1 1 1 Chlorurus microrhinos MC 1 1 1 A 1 1 1 MC 1 1 1 Scarus chameleon O 1 1 1 Scarus dimidatus O 1 1 1 Scarus flavipectoralis C 1 1 1 Scarus forsteni O 1 1 1 Scarus frenatus O 1 1 1 Scarus ghobban MC 1 1 1 A 1 1 1 Chlorurus sordidus Hipposcarus longiceps Scarus niger 1 87 1 1 abundance Manus 2006 Tigak 2006 Combined Bismarck Scarus oviceps C 1 1 1 Scarus prasiognathos* O 1 1 1 Scarus psittacus O 1 1 Scarus quoyi C 1 1 1 Scarus rivulatus MC 1 1 1 Scarus rubroviolaceus MC 1 1 1 Scarus schlegeli O 1 1 1 Scarus spinus C 1 1 1 Scarus tricolor O 1 Parapercis clathrata* MC 1 Parapercis cylindrica R 1 Parapercis lineopunctata O 1 1 1 Parapercis sp. 6 xanth O 1 1 1 O 1 1 1 R 1 1 1 1 1 1 1 1 1 Family/species Okamoto GRA 1982 Kailola Munro 1 1 Pinguipedidae (4 spp.) 1 1 1 1 1 Pholidichthyidae (1 spp.) Pholidichthys leucotaenia Tripterygiidae (1 spp.) Helcogramma striatum* 1 Blenniidae (25 spp.) Aspidontus taeniatus O Atrosalarias fuscus O Blenniella chrysospilos Cr 1 Blenniella interrupta* 1 Cirripectes castaneus* O Cirripectes filamentosus 1 1 O 1 1 Cirripectes springeri O 1 1 Cirripectes stigmaticus O 1 1 1 Ecsenius bicolor O 1 1 1 Ecsenius lividanalis R 1 Ecsenius namiyei O 1 Ecsenius pictus O 1 Ecsenius prooculis* MC 1 Ecsenius trilineatus* O 1 Ecsenius yaeyamaenis O 1 1 1 Meiacanthus atrodorsalis* C 1 1 1 Meiacanthus crinitus O 1 1 1 1 Meiacanthus grammistes MC 1 1 1 1 1 1 1 1 1 Meiacanthus limbatus 1 1 1 1 1 1 1 Plagiotremus laudanus* O 1 1 1 Plagiotremus rhinorhynchus C 1 1 1 Plagiotremus tapeinosoma O 1 1 1 Salarias alboguttatus R 1 Salarias segmentatus MC 1 1 1 88 1 1 Family/species Stanulus seychellensis abundance Manus 2006 R Tigak 2006 Combined Bismarck 1 1 1 1 1 Okamoto GRA 1982 Kailola Callionymidae (5 spp.) Callionymus enneactis O 1 Dactylopus dactylopus R 1 1 1 Diplogrammus goramensis R 1 1 1 Synchiropus morrisoni Cr 1 1 Synchiropus splendidus Cr 1 1 1 Amblyeleotris diagonalis Cr 1 1 1 Amblyeleotris fasciata Cr 1 1 1 Amblyeleotris fontanesii Cr 1 1 1 Amblyeleotris guttata Cr 1 1 1 Amblyeleotris gymnocephala Cr 1 1 1 Amblyeleotris periophthalma Cr 1 1 1 Amblyeleotris randalli* Cr 1 1 1 Amblyeleotris sp. Cr 1 1 Amblyeleotris steinitzi Cr 1 1 1 Amblyeleotris yanoi Cr 1 Amblygobius decussatus* O 1 1 1 Amblygobius nocturnus O 1 1 1 Amblygobius phalaena* O 1 1 1 Ancistrogobius yanoi Cr 1 Asterropteryx bipunctatus Cr 1 Asterropteryx semipunctata Cr Asterropteryx striata Cr 1 1 Bryaninops amplus Cr 1 1 Bryaninops loki Cr 1 1 Bryaninops yongei Cr 1 1 Cryptocentrus cinctus Cr 1 Cryptocentrus cyanotaenia Gobiidae (96 spp.) 1 1 1 1 1 1 1 1 1 1 1 Cr 1 1 Cryptocentrus fasciatus Cr 1 1 Cryptocentrus leptocephalus Cr 1 1 1 Cryptocentrus strigilliceps Cryptocentrus sp A. (vent. barred) Cryptocentrus sp. B (bluespotted) Cr 1 1 1 Cr 1 1 1 1 1 Ctenogobiops aurocingulus Cr 1 1 1 Ctenogobiops feroculus Cr 1 1 1 Ctenogobiops pomastictus Cr 1 1 1 Ctenogobiops tangaroai* Cr Eviota albolineata Cr 1 Eviota bifasciata Cr 1 1 1 Eviota guttata Cr 1 1 1 Cr 1 1 1 89 1 1 1 Munro abundance Manus 2006 Tigak 2006 Combined Bismarck Eviota nigriventris Cr 1 1 1 Eviota pellucidus Cr 1 1 1 Eviota prasites Cr 1 1 1 Eviota punctulata Cr 1 1 Eviota sebreei Cr 1 Eviota sigillata Cr 1 Exyrias akihito Cr 1 Exyrias belissimus Cr 1 Fusigobius duospilus Family/species 1 1 1 1 Cr 1 1 Fusigobius melacron Cr 1 1 Fusigobius neophytus Cr 1 1 Fusigobius signipinnis Cr 1 1 Fusigobius sp. (photo) Cr 1 1 Gladiogobius ensifer Cr 1 1 Gnatholepis anjerensis Cr 1 1 Gnatholepis cauerensis Cr 1 1 Gobiid sp. (sand - photo) Cr 1 1 Gobiodon histrio Cr 1 1 Gobiodon okinawae Cr 1 1 1 GRA 1982 1 1 1 Okamoto Gobiopsis angustifrons* 1 1 Istigobius decoratus Cr 1 1 Istigobius goldmanni Cr 1 1 Istigobius ornatus Cr Istigobius rigilius Cr Koumansetta rainfordi* MC 1 Lotilia graciliosa Cr 1 Macrodontogobius wilburi Cr 1 1 1 Mahidolia mystacinus Cr 1 1 1 Mahidolia sp. (black) Cr 1 Oplopomus oplopomus Cr 1 Oxyurichthys papuensis Cr 1 1 Paragobiodon echinocephalus Cr 1 1 Paragobiodon lacunicola Cr 1 1 Phyllogobius platycephalops Cr 1 1 Pleurosicya elongata Cr 1 Pleurosicya labiata Cr 1 Pleurosicya mossambica Cr Priolepis cinctus Cr 1 Signigobius biocellatus* O 1 Stonogobiops xanthorhinica Cr 1 1 Tomiyamichthys oni? Cr 1 1 Tomayamichthys sp. Cr 1 1 Trimma benjamini Cr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 90 1 1 1 1 1 1 Kailola Munro abundance Manus 2006 Trimma caesiura Cr 1 1 Trimma griffithsi Cr 1 1 Trimma hoesei* Cr 1 1 1 1 1 Family/species Tigak 2006 Trimma macrophthalma* Trimma rubromaculatus Cr 1 Trimma sp. ( cf sheppardi) Cr 1 Trimma striata* Cr 1 Combined Bismarck Okamoto GRA 1982 Kailola Munro 1 1 1 Trimma taylori* 1 1 1 1 1 1 1 Trimma tevegae* Cr 1 Tryssogobius sp. Cr 1 1 Valenciennea immaculata R 1 1 Valenciennea muralis O 1 1 1 Valenciennea puellaris O 1 1 1 Valenciennea randalli R 1 Valenciennea sexguttata O 1 Valenciennea strigata O Vanderhorstia ambanoro Cr Vanderhorstia dorsomacula Vanderhorstia flavilineata 1 1 1 1 1 1 1 1 1 1 Cr 1 1 1 1 Cr 1 1 1 Aioliops megastigma O 1 1 Aioliops novaeguineae R Nemateleotris decora* O Nemateleotris magnifica Ptereleotridae (10 spp.) 1 1 1 1 1 O 1 1 1 Parioglossus nudus* R 1 Ptereleotris evides* C 1 Ptereleotris hanae R 1 Ptereleotris heteroptera MC 1 1 1 Ptereleotris microlepis O 1 1 1 Ptereleotris zebra O 1 1 1 1 1 1 1 1 1 1 1 Ephippidae (4 spp.) Platax boersi O 1 Platax orbicularis R 1 Platax pinnatus O 1 Platax teira* O 1 Siganus argenteus* MC 1 1 1 Siganus corallinus C 1 1 1 Siganus doliatus C 1 1 1 Siganus fuscescens* O 1 MC 1 1 1 C 1 1 1 MC 1 1 1 1 1 1 1 1 Siganidae (11 spp.) Siganus lineatus* Siganus puellus Siganus punctatissimus 1 1 91 1 1 Family/species abundance Manus 2006 Tigak 2006 Combined Bismarck Siganus punctatus R 1 1 Siganus spinus* R 1 1 Siganus vermiculatus R 1 Siganus vulpinus C 1 1 1 C 1 1 1 1 1 1 1 Okamoto GRA 1982 Kailola Munro 1 1 Zanclidae (1 spp.) Zanclus cornutus Acanthuridae (33 spp.) Acanthurus barine R Acanthurus blochii O 1 Acanthurus fowleri O 1 Acanthurus guttatus O 1 Acanthurus leucocheilus O 1 Acanthurus lineatus C 1 Acanthurus maculiceps O 1 Acanthurus mata MC 1 1 1 Acanthurus nigricans MC 1 1 1 Acanthurus nigricauda C 1 1 1 Acanthurus nigrofuscus C 1 1 1 Acanthurus nubilus O 1 Acanthurus olivaceus O 1 1 1 Acanthurus pyroferus C 1 1 1 Acanthurus thompsoni O 1 1 1 Acanthurus triostegus* O 1 1 Acanthurus xanthopterus O 1 1 1 Ctenochaetus binotatus* C 1 1 1 Ctenochaetus cyanocheilus O 1 1 1 Ctenochaetus striatus A 1 1 1 MC 1 1 1 Naso annulatus O 1 Naso brachycentron O Naso brevirostris O 1 Naso caeruleacauda O 1 1 Naso hexacanthus O 1 1 Naso lituratus* C 1 Naso tonganus O Naso unicornis O Naso vlamingii Ctenochaetus tominiensis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 Paracanthurus hepatus O 1 1 1 Zebrasoma scopas A 1 1 1 Zebrasoma veliferum* C 1 1 1 Sphyraena barracuda* R 1 1 1 Sphyraena forsteri* O 1 1 1 1 Sphyraenidae (5 spp.) 1 92 1 1 1 abundance Manus 2006 Sphyraena jello* R 1 Sphyraena obtusata* O 1 Sphyraena qenie O 1 Euthynnus affinis O 1 1 1 Grammatorcynus bilineatus* O 1 1 1 1 Gymnosarda unicolor* O 1 1 1 Rastrelliger kanagurta* O 1 1 1 Scomberomorus commersonnianus* O 1 1 1 1 Bothus mancus Cr 1 1 1 Bothus pantherinus Cr 1 1 1 Balistapus undulatus* C 1 1 1 1 Balistoides conspicillum* O 1 1 1 1 MC 1 1 1 Canthidermis maculatus* O 1 1 Melichthys niger O 1 1 Melichthys vidua MC 1 1 1 Odonus niger MC 1 1 1 Pseudobalistes flavimarginatus MC 1 1 1 Rhinecanthus aculeatus R 1 Rhinecanthus rectangulus O Rhinecanthus verrucosus O Sufflamen bursa Sufflamen chrysopterus Family/species Tigak 2006 Combined Bismarck Okamoto GRA 1982 Kailola 1 1 1 1 1 Munro 1 1 Scombridae (5 spp.) Bothidae (2 spp.) Balistidae (14 spp.) Balistoides viridescens 1 1 1 1 1 1 C 1 1 1 C 1 1 1 1 1 Sufflamen frenatus* 1 1 1 Monacanthidae (6 spp.) Aluterus scriptus* R 1 1 1 Amanses scopas O 1 1 1 Cantherhines pardalis O 1 1 1 Oxymonacanthus longirostris O 1 Pervagor nigrolineatus* R 1 1 1 1 Rudarius minutus* 1 1 1 1 Ostraciidae (3 spp.) Ostracion cubicus* O 1 1 1 Ostracion meleagris O 1 1 1 Ostracion solorensis O 1 1 1 Arothron hispidus O 1 1 1 Arothron manilensis* R 1 Arothron mappa O 1 1 1 Tetraodontidae (7 spp.) 1 93 1 1 1 1 1 abundance Manus 2006 Tigak 2006 Combined Bismarck MC 1 1 1 Arothron stellatus* R 1 Canthigaster papua O 1 1 1 Canthigaster valentini* O 1 1 1 R 1 1 1 1 665 572 801 94 Family/species Arothron nigropunctatus 1 Okamoto GRA 1982 Kailola 1 Munro 1 1 Diodontidae (1 spp.) Diodon hystrix Species totals 94 81 62 82 APPENDIX 3. List of fishes collected or observed at Kimbe Bay, New Britain by G. Allen and P. Munday that were not seen during 2006 northern Bismarck survey. Rhincodontidae Rhincodon typus (Smith, 1828) Carcharhinidae Carcharhinus falciformis (Muller and Henle, 1841) longimanus (Poey, 1861) Sphyrnidae Sphyrna lewini (Griffith and Smith, 1834) mokarran (Rüppell, 1835) Moringuidae Moringua bicolor (Kaup, 1856) microchir (Bleeker, 1853) Chlopsidae Kaupichthys atronasus (Schultz, 1953) hypoproroides (Stromann, 1896) Muraenidae Echidna nebulosa (Thunberg, 1789) polyzona (Richardson, 1845) rhodochilus (Bleeker, 1863) Gymnothorax monochrous (Bleeker, 1856) pictus (Ahl, 1789) Uropterygius nagoensis (Hatooka, 1984) sp. Congridae Conger cinereus (Rüppell, 1828) Gorgasia maculata (Klausewitz and Eibl-Eibesfeldt, 1959) Ophichthidae Callechelys marmoratus (Bleeker, 1852) Muraenichthys macropterus (Bleeker, 1857) Clupeidae Herklotsichthys quadrimaculatus (Rüppell, 1837) Chandidae Chanos chanos (Forsskal, 1775) Antennariidae Antennarius pictus (Shaw and Nodder, 1794) Ophidiidae Brotula multibarbata (Temminck and Schlegel, 1846) Microbrotula randalli (Cohen and Wourms, 1976) Bythitidae Ogilbya sp. 95 Hemiramphidae Hemirhamphus far (Forsskäl, 1775) Belonidae Platybelone platyura (Bennett, 1832) Atherinidae Hypoatherina barnesi (Schultz, 1953) Holocentridae Sargocentron cornutum (Bleeker, 1853) melanospilos (Bleeker, 1858) tieroides (Bleeker, 1853) Syngnathidae Corythoichthys intestinalis (Ramsay, 1881) ocellatus (Herald, 1953) Cosmocampus banner (Herald & Randall, 1972) Doryrhamphus dactyliophorus (Bleeker, 1853) Halicampus dunckeri (Chabanaud, 1929) Hippocampus bargibanti (Whitley, 1970) Micrognathus andersonii (Bleeker, 1858) Syngnathoides biaculeatus (Bloch, 1785) Scorpaenidae Scorpaenodes hirsutus (Smith, 1957) Scorpaenopsis macrochir (Ogilby, 1910) Synanceia alula (Eschmeyer and Rama Rao, 1973) verrucosa (Bloch and Schneider, 1801) Caracanthidae Caracanthus unipinnis (Gray, 1831) Ambassidae Ambassis buruensis (Bleeker, 1857) Serranidae Epinephelus areolatus (Forsskäl, 1775) chlorostigma (Valenciennes, 1828) ongus (Bloch, 1790) polyphekadion (Bleeker, 1849) quoyanus (Valenciennes, 1830) Grammistops ocellatus (Schultz, 1953) Liopropoma susumi (Jordan & Seale, 1906) Luzonichthys waitei (Fowler, 1931) Pseudanthias bartlettorum (Randall and Lubbock, 1981) bicolor (Randall, 1979) rubrizonatus (Randall, 1983) Pseudogramma polyacantha (Bleeker, 1856) Pseudoplesiops annae (Weber, 1913) Plesiopidae Plesiops coeruleolineatus (Rüppell, 1835) Steeneichthys plesiopsus (Allen and Randall, 1985) 96 Terapontidae Mesopristes argenteus (Cuvier, 1829) Apogonidae Apogon lateralis (Valenciennes, 1832) multilineatus (Bleeker, 1865) taeniophorus (Regan, 1908) trimaculatus (Cuvier, 1828) unicolor (Doederlein, 1901) Cercamia eremia (Allen, 1987) Foa brachygramma (Jenkins, 1903) Fowleria marmorata (Alleyne & Macleay, 1877) Neamia octospina (Smith & Radcliffe, 1912) Siphamia jebbi (Allen, 1993) Malacanthidae Hoplolatilus cuniculus (Randall and Dooley, 1974) Carangidae Caranx tille (Valenciennes, 1833) Scomberoides commersonnianus (Lacepède, 1801) Selar boops (Cuvier, 1833) Lutjanidae Lutjanus sebae (Cuvier, 1828) timorensis (Quoy and Gaimard, 1824) Paracaesio sordidus (Abe and Shinohara, 1962) Pinjalo pinjalo (Bleeker, 1850) Nemipteridae Scolopsis monogramma (Cuvier, 1830) Lethrinidae Lethrinus nebulosus (Forsskäl, 1775) Mullidae Parupeneus barberinoides (Lacepède, 1801) Monodactylidae Monodactylus argenteus (Linnaeus, 1758) Scatophagidae Scatophagus argus (Bloch, 1788) Chaetodontidae Chaetodon speculum (Cuvier, 1831) Pomacanthidae Genicanthus lamarck (Lacepède, 1798) melanospilos (Bleeker, 1857) Pomacentridae Abudefduf septemfasciatus (Cuvier, 1830) Amblypomacentrus breviceps (Schlegel and Muller, 1839-44) Cheiloprion labiatus (Day, 1877) Chrysiptera oxycephala (Bleeker, 1877) Neopomacentrus violascens (Bleeker, 1848) 97 Cirrhitidae Cyprinocirrhites polyactis (Bleeker, 1875) Oxycirrhitus typus (Bleeker, 1857) Labridae Anampses melanurus (Bleeker, 1857) Labropsis manabei (Schmidt, 1930) Pseudocoris aurantifasciata (Fourmanoir, 1971) Xyrichtys baldwini (Jordan and Evermann, 1903) tricolor (Bleeker, 1849) Pinguipedidae Parapercis millepunctata (Günther, 1860) multiplicata Randall, 1984 Trichonotidae Trichonotus elegans (Shimada and Yoshino, 1984) setiger (Bloch and Schneider, 1801) Blenniidae Aspidontus dussumieri (Valenciennes, 1836) Cirripectes polyzona (Bleeker, 1868) Crossosalarias macrospilus (Smith-Vaniz and Springer, 1971) Ecsenius axelrodi (Springer, 1988) midas (Starck, 1969) Exallias brevis (Kner, 1868) Istiblennius lineatus (Valenciennes, 1836) periopthalmus (Valenciennes, 1836) Petroscirtes thepassi (Bleeker, 1853) xestus (Jordan and Seale, 1906) Tripterygiidae Enneapterygius mirabilis (Fricke, 1994) Helcogramma sp. Callionymidae Anaora tentaculata (Gray, 1835) Gobiidae Amblyeleotris arcupinna (Mohlmann and Munday, 1999) rubrimarginata (Mohlmann and Randall, 2002) Amblygobius sphynx (Valenciennes, 1837) Callogobius sp. 1 sp. 2 Cryptocentrus leucostictus (Günther, 1871) octofasciatus (Regan, 1908) polyophthalmus (Bleeker, 1853) Ctenogobiops crocineus (Smith, 1959) 98 Eviota lachdeberei (Giltay, 1933) sparsa (Jewett & Lachner, 1983) Exyrias puntang (Bleeker, 1851) Favonigobius reichei (Bleeker, 1853) Gnatholepis davaoensis (Seale, 1909) Gobiodon acicularis (Harold and Winterbottom, 1995) axillaris (De Vis, 1884) erythrospilus (Bleeker 1875) oculolineatus (Wu, 1979) quinquestrigatus (Valenciennes, 1837) rivulatus (Rüppell, 1828) spilopthalmus (Fowler, 1944) unicolor (Castelnau, 1873) sp A (as per Munday et al. 1999) sp C (as per Munday et al. 1999) sp D (as per Munday et al. 1999) n. sp. (goldlined species, collected by Munday) Myersina lachneri (Hoese and Lubbock, 1982) Paragobiodon xanthosomus (Bleeker, 1852) Trimma marinae (Winterbottom, 2005) nasa (Winterbottom, 2005) Trimmatom zapotes (Winterbottom, 1989) Tryssogobius colini (Larson and Hoese 2001) Valenciennea helsdingenii (Bleeker, 1858) parva (Hoese and Larson, 1994) Vanderhorstia lanceolata (Yanagisawa, 1978) Yongeichthys nebulosus (Forsskäl, 1775) Eleotridae Calumia profunda (Larson and Hoese, 1980) Xenisthmidae Xenisthmus polyzonatus (Klunzinger, 1871) Microdesmidae Gunnelichthys curiosus (Dawson, 1968) monostigma (Smith, 1958) Ptereleotris monoptera (Randall and Hoese, 1985) Acanthuridae Acanthurus auranticavus (Randall, 1956) Naso lopezi (Herre, 1927) thynnoides (Valenciennes, 1835) Monacanthidae Cantherines dumerilii (Hollard, 1854) Paraluteres prionurus (Bleeker, 1851) 99 Tetraodontidae Arothron caeruleopunctatus (Matsuura, 1994) Canthigaster bennetti (Bleeker, 1854) compressa (Proce, 1822) Chelonodon patoca (Hamilton-Buchanan, 1822) Diodontidae Diodon liturosus (Shaw, 1804) 100 February 2009 TNC Pacific Island Countries Report No 1/09 Chapte r 3: Coral Communitie s & Reef Health Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea Prepared for The Nature Conservancy by: Emre Turak, Lyndon DeVantier & Charlie Veron Published by: The Nature Conservancy, Indo-Pacific Resource Centre Author Contact Details: Emre Turak: Rue Francois Villon, 95000, Cergy, France Email: emreturak@wanadoo.fr Lyndon DeVantier Email: Ldevantier@aol.com Charlie Veron: Australian Institute of Marine Science, Townsville 4810, Australia Email: j.veron@coralreefresearch.com Suggested Citation: Turak, E., L. DeVantier and J.E.N. Veron. 2009. Coral Communities and Reef Health. In: Hamilton, R., A. Green and J. Almany (eds.) 2009. Rapid Ecological Assessment: Northern Bismarck Sea, Papua New Guinea. Technical report of survey conducted August 13 to September 7, 2006. TNC Pacific Island Countries Report No. 1/09. © 2009, The Nature Conservancy All Rights Reserved. Reproduction for any purpose is prohibited without prior permission. Cover Photo: © Emre Turak ISBN 9980-9964-9-8 Available from: Indo-Pacific Resource Centre The Nature Conservancy 51 Edmondstone Street South Brisbane, QLD 4101 Australia Or via the worldwide web at: conserveonline.org/workspaces/pacific.island.countries.publications 102 Contents LIST OF FIGURES............................................................................................................................................................. 104 LIST OF TABLES ............................................................................................................................................................... 104 LIST OF PLATES ............................................................................................................................................................... 104 EXECUTIVE SUMMARY..................................................................................................................................................105 INTRODUCTION ............................................................................................................................................................. 106 Regional and local setting ......................................................................................................................................... 106 Biodiversity, ecological status, impacts and threats............................................................................................ 106 Marine management and conservation ................................................................................................................. 106 Rationale........................................................................................................................................................................ 107 A Rapid Ecological Assessment (REA)................................................................................................................ 107 Objectives...................................................................................................................................................................... 107 METHODS.......................................................................................................................................................................... 108 Taxonomic Inventories ............................................................................................................................................. 109 Taxonomic Certainty......................................................................................................................................................110 Benthic Cover and Reef Development .................................................................................................................. 112 Species diversity.............................................................................................................................................................113 Community Types ........................................................................................................................................................113 Coral Injury ....................................................................................................................................................................113 RESULTS ...............................................................................................................................................................................113 I. Environmental Setting.............................................................................................................................................113 Tigak...............................................................................................................................................................................114 Manus.............................................................................................................................................................................114 II. Coral Cover ............................................................................................................................................................. 114 Tigak...............................................................................................................................................................................114 Manus.............................................................................................................................................................................115 III. Species Diversity .................................................................................................................................................. 116 IIIa. Site (Alpha) diversity .............................................................................................................................................116 IIIb. Tigak and Manus (Beta) diversity..........................................................................................................................118 IIIc. Bismarck Sea (Gamma) diversity ...........................................................................................................................119 IV. Coral Communities ............................................................................................................................................ 120 Tigak.............................................................................................................................................................................. 120 Manus............................................................................................................................................................................ 120 Northern Bismarck Sea.................................................................................................................................................. 120 V. Ecological status – disturbances .........................................................................................................................128 Tigak.............................................................................................................................................................................. 128 Manus............................................................................................................................................................................ 128 DISCUSSION .......................................................................................................................................................................131 Recommendations for Conservation planning .....................................................................................................131 Functional Seascapes of the Bismarck Sea .............................................................................................................131 ACKNOWLEDGEMENTS ..................................................................................................................................................133 REFERENCES ...................................................................................................................................................................... 134 APPENDICES ...................................................................................................................................................................... 136 Appendix I. .................................................................................................................................................................... 136 Appendix II. .................................................................................................................................................................. 138 Appendix III................................................................................................................................................................ 140 103 List of Figures Figure 1. Functional seascapes within the area of interest to TNC’s Melanesia Program in the eastern side of the Coral Triangle........................................................................................................................... 108 Figure 2. Full study area showing all numbered locations......................................................................................111 Figure 3. Mean % cover (+ s.d.) of benthic attributes, Northern Bismarck Sea ............................................... 116 Figure 4. Dendrogram of similarity in coral community types in the Tigak area........................................... 120 Figure 5. Distribution of the four coral communities among 19 locations, Tigak area.................................. 121 Figure 6. Dendrogram of similarity in coral community types in the Manus area..........................................124 Figure 7. Distribution of the three coral communities among the 17 locations, Manus area......................124 Figure 8. Dendrogram of similarity in three coral community types in the Northern Bismarck Sea.......127 Figure 9. Distribution of the three coral communities among 36 locations, Northern Bismarck Sea ......127 Figure 10. Scatterplot of the average injury per species versus proportion of injured species in each of 38 sites, Tigak area...............................................................................................................................................129 Figure 11. Scatterplot of the average injury per species versus proportion of injured species in each of 34 sites, Manus area. ...........................................................................................................................................130 Figure 12. Dendrogram of similarity in coral community types in the Bismarck Sea (Tigak, Manus and Kimbe Bay areas). ...........................................................................................................................................133 Figure 13. Distribution of coral communities, Bismarck Sea ................................................................................133 List of Tables Table 1. Categories of relative abundance, injury and sizes (maximum diameter) of each benthic taxon in the biological inventories. ........................................................................................................................... 109 Table 2. Categories of benthic attributes and % cover categories......................................................................... 112 Table 3. Summary statistics for environmental variables ....................................................................................... 114 Table 4. Ranking of the top 20 sites for coral richness, Tigak and Manus areas............................................. 117 Table 5. Ranking of locations for coral richness, Tigak and Manus area. .......................................................... 118 Table 6. Species and generic composition of reef-building corals in 15 scleractinian coral families, Tigak and Manus areas.. ........................................................................................................................................... 118 Table 7. Comparison of diversity and various other ecological characteristics of Tigak and Manus with other Indo-West Pacific coral reef areas................................................................................................. 119 Table 8. Environmental parameters for four coral communities, Tigak area................................................... 121 Table 9. Characteristic species among four coral communities, Tigak area. ....................................................122 Table 10. Environmental parameters for three coral communities, Manus area............................................. 125 Table 11. Characteristic species among three coral communities, Manus area. ...............................................126 Table 12. The most diverse 20 locations, Tigak and Manus areas....................................................................... 132 List of Plates Plate 1. Unidentified species of Acropora from the Manus area. .......................................................................110 Plate 2. Very high coral cover in site 7.2, Momote, Manus Island. ......................................................................115 Plate 3. High diversity and coral cover in site 6.2, Hinrun, Manus Island........................................................ 117 Plate 4. Extensive coral mortality in site 17.1, Nemto, New Hanover................................................................128 Plate 5. Healthy coral fields on Anun reef, site 12.2, Buke, Manus Island. .......................................................129 104 Executive Summary The rationale for the present study is based on TNC’s goal of furthering the development of a resilient network of MPAs in the Bismarck Sea. Towards this purpose, the main objectives of the present study were to: 1. Conduct a survey of species diversity by identifying hard and soft corals and other benthic marine organisms and by compiling a detailed list of species for each site and for the survey region in general; 2. Assess coral community types, their current status and health, and the extent of impacts on these reefs from disturbances such as coral bleaching, crown-of-thorns seastar outbreaks, destructive fishing practices, and terrestrial runoff; 3. Collect samples of hard corals and other benthic organisms which were difficult to identify in the field for further identification; 4. Map and rank the coral reefs for biodiversity conservation value. Coral diversity, community structure and reef status was assessed by SCUBA surveys at 72 sites at 36 locations around the Tigak and Manus areas of the North Bismarck Sea. The region hosts high hard coral species richness with some 452 species belonging to 70 genera in 15 families recorded overall. The Manus communities had higher alpha diversity than those around Tigak and were also less impacted by disturbance. For the Tigak area, a total of 408 hermatypic coral species was recorded by E. Turak and J.E.N. Veron. For Manus, 403 hermatypes were recorded by E. Turak. Tigak shared close to 90 % of its coral fauna with Manus. For Tigak, mean location (alpha) diversity of hermatypic corals was 140 species. For Manus, mean alpha diversity of hermatypes was 174 species. Comparison of coral community structure between the two areas and that of Kimbe Bay revealed six main coral community types in the Bismarck Sea. There was a moderate to high degree of dissimilarity among the seascapes. Three communities were composed predominantly of Kimbe Bay locations. The remaining three communities were composed by Tigak and Manus locations, one of which was composed of sheltered locations from both Tigak and Manus areas, one was predominantly formed by exposed locations of the Tigak area while another was mostly exposed Manus locations. Thus the broader scale analysis demonstrated a high degree of dissimilarity in coral community structure between the eastern (Kimbe Bay) and northern areas (Tigak and Manus) of the Bismarck Sea. There was a broad range in ecological condition or reef ‘health’ in the Northern Bismarck Sea, with the Tigak area being more impacted by crown-of-thorns starfish predation, bleaching and other impacts than the Manus area. Sediment impact was rarely noted. However such areas were usually avoided for the purpose of this survey. There was evidence of over harvesting of commercially targeted reef species, such as giant clams, Trochus and sea cucumbers. Locations of particular conservation importance were identified. 105 INTRODUCTION REGIONAL AND LOCAL SETTING The Bismarck Sea is a semi-enclosed equatorial sea located to the north-east of Papua New Guinea, bordered by the latter island to the south-west, New Britain to the south-east, New Ireland, New Hanover and the Tigak Islands to the north-east and Manus Island to the north (Figure 1). The area is active tectonically, with volcanic (e.g. Rabaul) and earthquake activity on a regular basis, resulting in episodic tsunamis. The Bismarck Sea has only moderate tidal exchange, of the order of 1 m. In respect of its biodiversity, the Nature Conservancy (TNC) has identified 7 functional seascapes within the greater Bismarck Sea, two of which are directly relevant to the present study – Manus (Seascape 14) and New Hanover-St. Matthias group (Seascape 16, herein referred to as the Tigak area or seascape). A major objective of the present study was to determine the overall coral diversity of the Northern Bismarck Sea, and to place its coral fauna into the biogeographic framework of the seascapes of the broader region more generally. BIODIVERSITY, ECOLOGICAL STATUS, IMPACTS AND THREATS ‘The Bismarck Sea is one of the richest marine environments in the world, inhabited by many thousands of marine plant and animal species. Highly diverse communities live in the ecosystem complexes of coral reefs, lagoons, seagrass beds and mangroves. The biodiversity of the Northern Bismarck Sea remains in relatively good condition, and this region is of high value for marine conservation (Hunnam et al., 2001, WWF 2003)”. The coral biodiversity of the area remains little known, although prior coral surveys (using the same method as the present study) in Milne Bay (Seascape 21), Kimbe Bay (Seascape 17) and the Solomon Islands (Seascape 26) have revealed highly diverse coral faunas, each of more than 350 species of hermatypic Scleractinia. Kimbe Bay was the least diverse of these three areas, with some 390 coral species recorded (Brodie and Turak 2004, Turak and Aitsi 2002). Milne Bay was significantly more diverse, with the present tally, derived from several independent surveys, of some 436 species, while the Solomon Islands hosts approximately 474 species (Turak 2006). MARINE MANAGEMENT AND CONSERVATION The present REA falls within the strategic goal of The Nature Conservancy and its partners to delineate the Coral Triangle, its ecoregions and functional seascapes (Green and Mous 2008). This “… will serve as a blueprint for establishing MPA networks throughout this high priority area. Within ecoregions, MPA networks will be established at the scale of functional seascapes, leading to the establishment of a large-scale resilient network of MPAs for each ecoregion. While the delineation process was based on the best available information, further information is required to refine these planning units in areas where Rapid Ecological Assessments (REAs) have not been conducted. One high priority area for further surveys is the Bismarck Sea.” (Lokani and Green 2006). Previous studies in the area have indicated that the local coastal people have a strong ethic of coastal and marine resource ownership as exemplified by Customary Marine Tenure Systems: “In the Northern Bismarck Sea, resource owners have traditionally recognized rights over virtually all of their land and coastal marine resources. Subsistence, artisanal and commercial coastal fisheries in this region all operate within well developed Customary Marine Tenure (CMT) systems, where ownership of 106 and hence access to coastal areas depends on a range of culturally defined variables, including descent line. Some communities in Northern Bismarck Sea have used their existing CMT systems as frameworks to manage their valuable marine resources for generations. … Despite … positive examples of community-based management, the immediate risks of over exploiting the resources in the narrow coastal zones of the Northern Bismarck Sea is mounting. Rapid population rise, an increasing dependence on cash economies, access to more efficient fishing technologies and the break down of CMT structures and traditional access rights are all factors putting increasing pressure on marine ecosystems in this region.” (Lokani and Green 2006). As has already occurred elsewhere, these increasing pressures may lead to the depletion of marine biodiversity and degradation of marine habitats. In this respect, a major objective of this study was to document the present ecological condition of the coral communities of the area, as exemplified by levels of living and dead coral cover and injury on the coral species present (see Methods). RATIONALE As introduced above, the rationale for the present study is based on furthering the development of a resilient network of MPAs in the Bismarck Sea, and follows from initial work in Kimbe Bay, West New Britain. “… the Conservancy initiated the Kimbe Bay Project in West New Britain, Papua New Guinea with the goal of protecting and managing its rich marine biodiversity and marine resources and mitigating the growing threats posed by a rapid increase in population and development within the Bay. … TNC with partners has begun to design and implement resilient MPA networks throughout the Bismarck Sea, starting with Kimbe Bay. Kimbe Bay will be used as a platform site where the process of designing and implementing a resilient MPA network will be developed for the first time in Melanesia. Once this process has been established, we will use this knowledge to establish MPA networks in other functional seascapes of the Bismarck Sea, starting with two functional seascapes in the Northern Bismarck Sea: the Tigak Islands in the New Hanover-St. Matthais group and Manus Island.” (Lokani and Green 2006). A RAPID ECOLOGICAL ASSESSMENT (REA) The present REA aims to provide detailed ecological information for marine management initiatives, and falls within TNC’s overall strategic objectives of strengthening protected areas management both locally and regionally. The assessment forms part of a series of biological surveys in the terrestrial and marine ecosystems within and adjacent to the Northern Bismarck Sea. This report documents the biodiversity and present status of the reef-building corals and allied sessile Cnidarian taxa, providing ecological data on the environmental setting, composition, diversity and community structure of corals at 36 widely distributed locations around the Tigak and Manus areas of the Northern Bismarck Sea (Figure 2). OBJECTIVES The main objectives of the present study were to: 1. Conduct a survey of species diversity by identifying hard and soft corals and other benthic marine organisms and by compiling a detailed list of species for each site and for the survey region in general; 2. Assess coral community types, their current status and health, and the extent of impacts on these reefs from disturbances such as coral bleaching, crown-of-thorns seastar outbreaks, destructive fishing practices, and terrestrial runoff; 107 3. Collect samples of hard corals and other benthic organisms which were difficult to identify in the field for further identification; 4. Map and rank the coral reefs for biodiversity conservation value. Figure 1. Functional seascapes within the Coral Triangle (Green and Mous, 2008). METHODS Rapid Ecological Assessment (REA) surveys were conducted using SCUBA at 36 fringing reef locations (Tigak Islands: 19 locations; Manus Island: 17 locations; Figure 2, Appendix I) in August-September 2006. Locations, each of approx. 1 ha in total area, were selected to provide the broadest range of reef habitat types, developed in relation to different environmental conditions (e.g. exposure, slope angle, depth). At all locations, deep and shallow sites (designated as site #1 and #2 respectively) were surveyed concurrently, representing the deeper reef slope (> 10m depth) and the shallow slope, reef crest and flat (< 10m depth). Deep sites were surveyed first, in accordance with safe diving practice, with the observer swimming initially to the maximum survey depth (max. of 40-45 m), then working steadily into shallower waters. In total, 72 sites at the 36 locations were surveyed. The method was similar to that employed during biodiversity assessments for TNC and other agencies in other parts of the Indo-West Pacific, Indonesia and Australia (see e.g. DeVantier et al. 1998, 2000, DeVantier 2002, 2003, Turak 2002, Turak, 2003, Turak and Fenner 2002, Turak and DeVantier, 2003, Turak and Shouhoko 2003, Turak and Aitsi 2003, Turak et al. 2003, DeVantier et al., 2006). It thus provides the opportunity for future comparisons of species diversity, composition and community structure of these different areas in terms of their coral communities. At each site, the survey swim covered an area of approx. 5,000m2 (ca. 50m x 100 m), such that each survey location represented approx. one ha in total. Although 'semi-quantitative', this method has proven far superior to more traditional quantitative methods (transects, quadrats) in terms of biodiversity 108 assessment, allowing for the active searching for new species records at each site, rather than being restricted to a defined quadrat area or transect line (DeVantier et al. 1998, 2000). For example, the present method has regularly returned a two- to three-fold increase in coral species records in comparison with line transects conducted concurrently at the same sites (e.g. Red Sea, Great Barrier Reef). Two types of information were recorded on water-proof data-sheets during the ca. one and a half hour SCUBA survey swims at each location: 1. an inventory of species, genera and families of sessile benthic taxa (Appendices 2 and 3); and 2. an assessment of the percent cover of the substrate by the major benthic groups and status of various environmental parameters (Appendix I, after Done 1982, DeVantier et al. 1998, 2000). TAXONOMIC INVENTORIES A detailed inventory of sessile benthic taxa was compiled during each swim. Taxa were identified in situ to the following levels:  stony (hard) corals were identified to species level wherever possible (based on Veron and Pichon 1976, 1980, 1982, Veron, Pichon and Wijsman-Best 1977, Veron and Wallace 1984, Veron 1986, 1993, 1995, 2000, Hoeksema 1989, Wallace and Wolstenholme 1998, Wallace 1999, Veron and Stafford-Smith 2002), otherwise genus and growth form (e.g. Porites sp. of massive growthform).  soft corals, zoanthids, corallimorpharians, anemones and some macro-algae were identified to genus, family or broader taxonomic group (Allen and Steene 1995, Colin and Arneson 1995, Goslinger et al. 1996, Fabricius and Alderslade 2000);  other sessile macro-benthos, such as sponges, ascidians and most algae were usually identified to phylum plus growth-form (Allen and Steene 1995, Colin and Arneson 1995, Goslinger et al. 1996). At the end of each survey swim, the inventory was reviewed, and each taxon was categorized in terms of its relative abundance in the community (Table 1). The categories reflect relative numbers of individuals in each taxon, rather than its contribution to benthic cover and are analogous to those long employed in vegetation analysis (van der Maarel 1979, Jongman et al. 1995, DeVantier et al. 1998). For each coral taxon present, a visual estimate of the total amount of injury (dead surface area) present on colonies at each site was made, in increments of 0.1, where 0 = no injury and 1 = all colonies dead. The approximate proportion of colonies of each taxon in each of three size classes was also estimated. The size classes were 1 - 10 cm diameter, 11 - 50 cm diameter and > 50 cm diameter (Table 1). Table 1. Categories of relative abundance, injury and sizes (maximum diameter) of each benthic taxon in the biological inventories. Rank 0 1 2 3 4 5 Relative abundance absent rare uncommon common abundant dominant Injury 0 - 1 in increments of 0.1 109 Size frequency distribution proportion of corals in each of 3 size classes: 1) 1 - 10 cm 2) 11 - 50 cm 3) > 50 cm Taxonomic Certainty Despite recent advances in field identification and stabilizing of coral taxonomy (e.g. Hoeksema 1989, Veron 1986, Wallace 1999, Veron 2000, Veron and Stafford-Smith 2002), substantial taxonomic uncertainty and disagreement among different workers remains. This is particularly so in the families Acroporidae and Fungiidae, with different workers each providing different taxonomic classifications and synonymies for various corals (see e.g. Hoeksema 1989, Wallace 1999, Veron 2000). In the present study, extensive use of digital underwater photography and collection of specimens of taxonomically difficult reef-building coral species were made to confirm field identifications (eg. Plate 1). Small samples, usually < 10 cm on longest axis, were removed from living coral colonies in situ, leaving the majority of the sampled colony intact. Living tissue was removed from the specimens by bleaching with household bleach. The dried specimens were examined and identified, as far as possible to species level. Most of these specimens were identified in the field using all the above reference materials, resulting in a comprehensive list of reef-building coral taxa for the area. Most specimens were left with the local TNC office as a basis for a reference collection for the local researchers. Some specimens required additional detailed study, and were prepared for shipping to the Museum of Tropical Queensland, Australia. Plate 1. Unidentified species of Acropora from the Manus area. 110 111 13 15 17 11 12 10 9 6 2 1 4 3 8 7 3 Kimbe Bay Bismarck Sea 4 9 15 1 6 2 8 13 12 New Ireland 14 11 5 10 New Britain Djual 19 16 Tigak 7 Figure 2. Full study area showing all numbered locations. At all locations two sites were surveyed, each corresponding to deep (10m to maximum depth) and shallow. (minimum depth to 8m). PNG 14 16 5 Manus 18 17 BENTHIC COVER AND REEF DEVELOPMENT At completion of each swim, six ecological and six substratum attributes were assigned to 1 of 6 standard categories (Table 2), based on an assessment integrated over the length of the swim (after Done 1982, DeVantier et al. 1998, 2000). Table 2. Categories of benthic attributes and % cover categories Attribute ecological physical Hard coral Hard substrate Dead standing coral Continuous pavement Soft coral Large blocks (diam. > 1 m) Coralline algae Small blocks (diam. < 1 m) Turf algae Rubble Macro-algae Sand % cover not present 1 - 10 % 11 - 30 % 31 - 50 % 51 - 75 % 76 - 100 % The sites were classified into one of four categories based on the amount of biogenic reef development (after Hopley 1982, DeVantier et al. 1998): 1. Coral communities developed directly on non-biogenic rock, sand or rubble; 2. Incipient reefs, with some calcium carbonate accretion but no reef flat; 3. Reefs with moderate flats (< 50m wide); and 4. Reefs with extensive flats (> 50m wide). The sites were also classified arbitrarily on the degree of exposure to wave energy, where: 1. sheltered; 2. semi-sheltered; 3. semi-exposed; and 4. exposed. The depths of the sites (maximum and minimum in m), average angle of reef slope to the horizontal (estimated visually to the nearest 10 degrees), and underwater visibility (to the nearest m) were also recorded. The presence of any unique or outstanding biological features, such as particularly large corals or unusual community composition, and evidence of impacts, were also recorded, such as:  sedimentation;  blast fishing;  poison fishing;  anchoring;  bleaching impact;  crown-of-thorns seastars predation; 112  Drupella snails predation; and  coral diseases. Digital underwater photos were taken of sampled corals for which field identifications were uncertain, and of the representative coral community types. All data were input to EXCEL spreadsheets for storage and preliminary analysis. SPECIES DIVERSITY Diversity was determined for the individual sites (within-habitat – alpha), among sites (Pohnpei, And and Pakin Atolls – beta) and regionally (FSM – gamma) (after Whittaker 1972, also see Paulay 1997). Herein diversity is considered simply as the number of species present (richness), rather than as an index of evenness - dominance (e.g. H') which takes no account of rare species, important in conservation planning. COMMUNITY TYPES Site groups defined by community type were generated by hierarchical cluster analysis using abundance ranks of all corals in the inventories. The analysis used Squared Euclidean Distance as the clustering algorithm and Ward's Method as the fusion strategy to generate site groups of similar community composition and abundance. Analyses were conducted on the raw (untransformed) data. The clustering results were plotted as a dendrogram to illustrate the relationships among sites in terms of levels of similarity among the different community groups. Four separate analyses were conducted, for the Tigak and Manus areas independently at the site (depth) level, for the two areas combined (location level – two depths/sites combined), and with the Kimbe Bay area also included (location level). Kimbe Bay data is from a combination of two surveys; east Kimbe Bay (Turak and Aitsi, 2002) and west Kimbe Bay (Stettin Bay, Brodie and Turak, 2004). CORAL INJURY Each coral species in the sites was assigned a score for its level of injury, from 0 – 1 in increments of 0.1 (from 0 for no injury to any colony of that species at that site to 1 where all colonies of the species were dead, see Methods above). Sites were compared for the amounts of injury to their coral communities, for the proportion of the total number of species present in each site that were injured, and the average injury to those coral species in each site. RESULTS I. ENVIRONMENTAL SETTING There was substantial reef development throughout the area, with large sub-tidal - inter-tidal reef flats usually wider than 50 m at most stations (Table 3, Appendix I). The coral communities were developed from low-tide level to > 40 m depth, on reef slopes ranging from c. 2o (reef flats) to 90o to the horizontal (steep – near vertical reef walls). The communities were distributed over exposure regimes from sheltered to exposed (Table 3), some outer reefs being exposed to regular heavy seasonal oceanic swell. Sea temperatures throughout the survey area averaged 28.9 oC, ranging from a minimum of 28 oC to a maximum if 31 oC (Table 3). Water clarity overall averaged 12 m, ranging from 4 m to 35 m, with highest clarity in the Manus area. 113 Table 3. Summary statistics for environmental variables, for the Overall survey region (O) and for Tigak (T) and Manus (M) areas, Northern Bismarck Sea, 2006. Environmental variable Reef development (rank 1-4) Slope angle (degrees) Mean (s.d.) O 3.9 (0.2) 23 (21) Exposure (rank 1 - 4) 2.3 (0.8) Water Clarity (Visibility m) Sea temperature (oC) 12 (7) Hard substrate (%, using untransformed field estimates) Sand (%, using untransformed field estimates) 87 (12) 28.9 (0.5) 8 (10) Range Median Mode T 3.9 (0.3) 21 (19) 2.3 (0.9) 9 (4) M 4 (0) T 3-4 M 4 T 4 M 4 T 4 M 4 26 (22) 2.4 (0.8) 15 (9) 5-80 2-90 15 20 10 30 1-4 1-4 2 2 2 2 4-20 4-35 8 15 6 20 28.8 (0.5) 87 (12) 29.0 (0.5) 87 (11) 28-31 28-30 29 29 29 29 60100 60100 90 90 100 90 9 (11) 8 (10) 0-30 0-40 5 5 0 0 Tigak Most of the coral communities surveyed were developed in areas of hard reefal substrate (mean of 87 % cover) with only small areas of sand (mean 9 %), and were subject to variable levels of current flow, in part related to tidal movements. There was a range in levels of sedimentation, particularly near-shore. The lower silt levels offshore contributed to the moderate mean water clarity, which averaged 9 m, ranging from 4 m at the most turbid sites to 20 m on the outer barrier reef slopes during the survey period (Table 3). Manus Similarly to the Tigak area, most coral communities surveyed were developed in areas of hard substrate (mean of 87 % cover) with only small areas of sand (mean 8 %), and were subject to variable levels of current flow, in part related to tidal movements. Water clarity on average was better than the Tigak area, with a mean of 15 m, ranging from 4 m in the most turbid sites to c. 35 m during the survey period (Table 3). II. CORAL COVER Overall, cover of living hard corals ranged from 1 – 80 %, with a mean of 29 %; recently dead coral ranged from 0 – 10 % with a mean of 1 %; rubble ranged from 0 – 30 %, with a mean of 4 % and soft corals ranged from 0 – 40 % with a mean of 4 %. Algal cover was typically low, with highest cover of macro-algae, turf and coralline algae being less than 40 % and with mean values of 5 %, 11 % and 9 % respectively (Figure 3). Of the two areas, the Manus area had higher live coral cover than Tigak area. Tigak Living cover of reef-building corals ranged from ~ 1 % to 80 %, and was high in locations of most exposure regimes (e.g. Appendix II). On average in the stations surveyed, cover of living hard corals was c. 23 % (Figure 3), with a strong overall positive ratio of living : recently dead coral cover (mean 2 %) of some 12 : 1. Highest live coral cover (estimated at 50 % or higher) occurred at sites 12.2, 13.2, 14.2, 15.2 and 18.2 (Appendix II). Recently dead coral was present, if a relatively minor component of cover, at most sites (Appendix II), with an overall mean of 2 % (Figure 3). Highest cover of recently dead corals (c. 5 - 10 %) occurred at sites 1.1, 1.2, 6.1, 6.2, 8.2, 11.2, 12.2, 14.1, 14.2 and 17.2. Large coral rubble 114 areas (cover of 20 % or greater) occurred at sites 2.2, 9.2 and 10.1, variously attributable to predation and bleaching. Coral growth, particularly in most shallower sites (< 10 m depth) appeared vigorous, although continuing episodic and chronic disturbances continued to reduce cover in some locations. Cover of soft corals ranged from 0 to 30 %, with an overall mean of 3 % and with highest cover (10 % or higher) occurring at sites 8.1, 18.1 and 18.2. Algae cover was generally low to moderate throughout, with cover of macro, turf and coralline algae typically of 10 % or less. Notably, there were no sites with high cover (> 30 %) of fleshy macro-algae. Manus Living cover of reef-building corals ranged from ~ 10 % to 70 %, and was high in locations of most exposure regimes (e.g. Appendix II), composed of large monospecific and multi-specific coral stands (e.g. Acropora, Porites spp.). On average in the locations surveyed, cover of living hard corals was c. 36 % (Figure 3), with a very strong overall positive ratio of living: recently dead coral cover (mean 1 %). Coral growth, particularly in most of the shallower sites (< 10 m depth) appeared vigorous. Highest live coral cover (estimated at 50 % or higher) occurred at sites 6.1, 7.1, 7.2 (Plate 2), 8.2, 10.2, 12.2, 14.2 and 15.2. Many other sites had living coral cover of 30 % or higher (Appendix II). Recently dead coral was only a minor component of cover at most sites (Appendix II), with an overall mean of < 1 % (Figure 3). Importantly, no site had dead coral cover of > 3 %, in contrast with Tigak area (Appendix II). Extensive rubble areas (cover of 20 %) were also rare, occurring only at sites 7.2 and 17.2. Cover of soft corals ranged from 1 to 40 %, with an overall mean of 6 % and with highest cover (20 % or greater) occurring at sites 6.2, 15.2 and 17.2. As with Tigak area, there was generally low cover of algae, ranging up to 20 % maximums for macro-algae, turf algae and coralline algae respectively (Appendix II). Plate 2. Very high coral cover in site 7.2, Momote, Manus Island. 115 Benthic Cover 60 % cover 50 40 30 20 10 M O T CA M O T TA M T MA O T M SC O M T RBL O M O T DC M T HC O 0 Attribute Figure 3. Mean % cover (+ s.d.) of benthic attributes, Northern Bismarck Sea, 2006, where HC - Hard Coral; DC Recently Dead Coral; RBL - Rubble; SC - Soft Coral; MA – Macro-algae; TA - Turf Algae; CA - Coralline Algae; O - Overall, T - Tigak; M - Manus. III. SPECIES DIVERSITY Diversity is here equated with species richness, and assessed at three levels, local or site (alpha), withinregion (Tigak and Manus areas, beta) and among regions within the Indo-west Pacific (gamma, after Pauly 1997). IIIa. Site (Alpha) diversity Tigak For all cnidarians, including Scleractinia, the alcyonarian soft corals, gorgonians and related sessile Anthozoa (e.g. zoanthids, corallimorpharians, anemones) and Hydrozoa (Millepora spp.), average site diversity was 101 taxa (s.d. 23, range: 46-137). Importantly, this is an underestimate of total diversity, as species-level identifications were not possible for the groups other than the reef-building Scleractinia. These accounted for more than 90 % of the site tallies, with mean site diversity of 91 species (s.d. 22 spp., range: 36-126 spp.). High coral diversity occurred in both shallow and deep sites. The richest sites, hosting > 100 species of reef-building corals, were widely distributed (Table 4). For the locations, with the two sites (depths) combined, mean alpha diversity of hermatypes was 140 species (Table 5 and 7). For all cniderian taxa, mean alpha diversity was 156 species (Table 5). Manus For all cnidarians, mean site diversity was 130 taxa (s.d. 23, range: 79-171). As noted above, this is an underestimate of total diversity, as species-level identifications were not possible other than for reefbuilding Scleractinia (the latter with mean: 116 spp.; s.d. 20 spp., range: 76-146 spp.). High coral diversity occurred in both deep and shallow sites (Table 4). The richest sites, hosting > 150 species of hermatypes, were widely distributed (Plate 3). For the locations, with the two sites (depths) combined, mean alpha diversity for all cniderians was 196 taxa (s.d 24, Table5). For hermatypes, mean alpha diversity was 174 spp. (s.d. 21). 116 Plate 3. High diversity and coral cover in site 6.2, Hinrun, Manus Island. Table 4. Ranking of the top 20 sites for coral richness, Tigak and Manus areas, 2006. Tigak Site 11.1 12.2 18.2 1.2 4.1 1.1 8.1 16.1 14.1 18.1 12.1 9.1 13.1 16.2 7.1 2.2 8.2 4.2 2.1 9.2 Hermatype Other Cniderian species taxa 123 14 126 10 117 16 114 17 121 8 106 16 105 15 116 3 98 21 96 23 105 13 108 8 97 18 107 6 104 9 102 6 98 8 96 10 99 3 92 9 Manus Total 137 136 133 131 129 122 120 119 119 119 118 116 115 113 113 108 106 106 102 101 Site 17.1 5.2 16.1 12.1 1.2 12.2 14.1 7.1 9.1 3.1 11.1 6.1 1.1 2.2 5.1 6.2 4.1 13.1 16.2 2.1 117 Hermatype Other Cniderian species taxa 142 29 146 21 144 20 142 18 145 14 143 12 134 19 134 13 125 22 126 19 123 20 118 25 125 17 126 13 125 13 126 9 117 16 120 12 114 14 117 10 Total 171 167 164 160 159 155 153 147 147 145 143 143 142 139 138 135 133 132 128 127 Table 5. Ranking of locations for coral richness, Tigak and Manus area, 2006. Tigak Manus Location Hermatype species Other Cniderian taxa Total 18 1 12 8 4 13 16 9 11 14 7 6 2 15 10 5 19 17 195 194 198 182 182 166 172 168 164 157 157 150 155 142 134 129 106 104 28 25 18 19 13 23 8 12 16 23 11 18 8 14 14 13 19 18 223 219 216 201 195 189 180 180 180 180 168 168 163 156 148 142 125 122 3 107 4 111 Hermatype Other Location species Cniderian taxa Total 12 1 5 3 16 6 17 2 9 13 14 7 4 11 8 15 10 211 200 200 186 186 181 177 187 173 171 167 169 153 150 156 143 137 25 27 23 27 24 29 32 16 24 20 21 15 21 23 13 18 14 236 227 223 213 210 210 209 203 197 191 188 184 174 173 169 161 151 IIIb. Tigak and Manus (Beta) diversity Comparison between the two areas for species richness indicated that both were highly diverse, sharing a similar overall number of reef-building coral genera (Tigak 68 and Manus 69). Some 408 hermatypic coral species were confirmed from the Tigak area, while the Manus area hosted some 403 species (Table 6). In total from the two seascapes, 452 hermatypic Scleractinia were confirmed during the survey, with an additional six species unconfirmed and likely new to science, several of which have been previously recorded from other seascapes (e.g. Solomon Islands). Of the total confirmed species pool, 359 species were shared between Tigak and Manus and a further 93 species were recorded from just one of the seascapes. Of the smaller Manus species pool, 89 % of the species recorded were shared with Tigak, indicating a high degree of coral faunal similarity between these two seascapes. Table 6. Species and generic composition of reef-building corals in 15 scleractinian coral families, Tigak and Manus areas. Species tallies include confirmed species only and do not include taxa for which identifications remain provisional. Scleractinian family Number of genera Number of species Tigak Manus Tigak Manus Astrocoeniidae 3 3 4 4 Pocilloporidae Acroporidae 3 4 3 4 13 125 13 138 Euphylliidae 3 4 8 9 Oculinidae 1 1 7 7 Siderastreidae 3 3 13 13 Agariciidae 5 5 27 28 118 Scleractinian family Number of genera Number of species Tigak Manus Tigak Manus Fungiidae 13 13 42 39 Pectiniidae 5 4 17 17 Merulinidae 3 3 8 7 Dendrophylliidae 1 1 7 6 Mussidae 7 7 25 20 Faviidae 14 14 78 68 Trachyphylliidae 0 1 0 1 Poritidae 3 3 34 33 Total 68 69 408 403 IIIc. Bismarck Sea (Gamma) diversity The overall and within-location richness recorded here is moderate to high by comparison with other areas throughout the Indowest Pacific (Table 7). In the Northern Bismarck Sea for the two areas of Tigak and Manus combined, 452 coral species were recorded. The combined total for the Bismarck Sea, including Kimbe Bay, currently stands at 478 species of hard corals (Appendix III). Table 7. Comparison of diversity and various other ecological characteristics of Tigak and Manus with other IndoWest Pacific coral reef areas.; TIG – Tigak Islands, New Ireland (includes data from C. Veron), PNG; MAN – Manus Island, PNG; T/M – Tigak and Manus combined; KIM - Kimbe Bay, Bismarck Sea, PNG; MB - Milne Bay, PNG; SOL – Solomon Islands; TC – Teluk Cendereewasih, Papua, Indonesia; F/K – Fakfak region, Papua, Indonesia; C/F - Cenderewasih and Fakfak combined RA - Rajah Ampat area, Papua, Indonesia; GBR - North Great Barrier Reef, Australia; POH - Pohnpei, And and Pakin Atolls (Federated States of Micronesia). Data from Turak 2002, Turak and Fenner 2002, Turak and Shouhoko 2003, Turak et al. 2003, , Turak & DeVantier 2005, Turak 2006, Turak & DeVantier 2006 and for N GBR - Turak, unpublished data. * Combined two surveys in Kimbe Bay (Turak and Aitsi 2002, Brodie & Turak 2004). TIG MAN T/M KIM* MB SOL TC F/K C/F RA GBR POH Total number of species 408 403 452 390 393 485 456 456 504 487 318 323 Average no. of species per station 140 174 156 124 147 135 178 171 174 131 100 84 % of stations with over 1/3 rd species 42 100 61 47 82 12 79 65 48 18 - 3 Average % hard coral cover 23 36 29 25 33.3 32 27 26 27 33 34.8 35 19 17 36 43 28 59 33 34 67 51 26 36 4.9 8.1 13 11.2 15 120 27 12 39 30 0.8 0.8 Number of stations surveyed Area covered (x1000 km2) approx. 119 IV. CORAL COMMUNITIES Tigak The corals formed four major community types (tA – tD) broadly distributed in relation to incident environmental conditions, particularly depth and exposure, separating into one shallow (tA), one deep (tD) and two mixed depth communities (tB and tC, Figures 4 and 5). The environmental variables and coral taxa that characterize each community are listed in Tables 8 and 9. Manus The corals formed 3 major community types (mA - mC, Figures 6 and 7) distributed in relation to incident environmental conditions, particularly depth and exposure, separating into one mostly shallow (mA), one mostly deep (mC) and one mixed depth community (mB, Figures 6 and 7). The environmental variables and coral taxa that characterize each community are listed in Tables 10 and 11. Northern Bismarck Sea Pooling of the Tigak and Manus datasets, with and analysed at the level of locations (2 depths/sites combined per location), revealed three major community ‘types’ (nA – nC). Communities nA and nB were composed predominantly of locations from the Tigak seascape while Community nC was predominantly composed of Manus locations, with some Tigak locations (Figures 8 and 9). Linkage Distance 1800 1200 600 tA tB 0 tD T11_2 T15_2 T10_2 T8_2 T7_2 T6_2 T17_2 T5_2 T12_2 T16_2 T3_2 T2_2 T18_1 T19_1 T13_1 T3_1 T16_1 T12_1 T2_1 T6_1 T14_2 T13_2 T17_1 T19_2 T5_1 T18_2 T4_2 T9_2 T1_2 T14_1 T10_1 T8_1 T15_1 T11_1 T7_1 T9_1 T4_1 T1_1 tC Figure 4. Dendrogram of similarity in coral community types in the Tigak area, derived from the species abundances of corals in 19 deep (#1) and shallow (#2) sites. 120 17 18 3 Mansawa 7 16 10 9 19 1 2 15 Keviang 4 5 12 13 11 Lissenung 6 8 tA tC tB tD Figure 5. Distribution of the four coral communities among 19 locations, Tigak area, 2006, where: pink – community tA; green – community tB; brown – community tC; blue – community tD. Table 8. Environmental parameters for four coral communities, Tigak area, 2006. Tigak area tA tB tC tD Number of sites 8 11 10 9 Maximum Minimum Slope Hard substrate 8 1 7 99 13 5 24 77 12 3 12 88 29 10 40 88 Hard coral Soft coral Macro algae Turf algae Coralline algae Dead coral 27 1 3 11 14 4 27 4 9 11 2 1 24 5 7 14 8 2 13 2 3 13 9 2 Continuous pavement Large blocks Small blocks Rubble Sand 94 4 1 1 1 54 14 10 3 20 66 12 9 6 7 80 2 7 7 4 exposure Reef develop. 3 4 2 4 3 4 2 4 Visibility Water temp. 13 29 5 29 9 29 11 29 Average species 86 97 82 108 121 Table 9. Characteristic species among four coral communities, Tigak area, 2006. Community Scleractinia Acropora nana Acropora palifera Galaxea fascicularis Acropora gemmifera Pocillopora verrucosa Acropora digitifera Coeloseris mayeri Stylophora pistillata Acropora valida Favia stelligera Pocillopora eydouxi Acanthastrea subechinata Montastrea curta Montipora grisea Porites lichen Goniastrea retiformis Platygyra daedalea Leptoria phrygia Acropora monticulosa Hydnophora microconos Others CRA Millepora exesa Halimeda Lissoclinum Millepora intricata Palythoa Sinularia spp. Carterospongia Lobophytum Linckia Chlorodesmis Tridacna maxima Acanthaster planci Paralemnalia Millepora dichotoma Sarcophyton Xenia Entophysalis Anemon Sargassum tA abn 8 site 27 24 24 23 22 20 20 19 19 19 18 18 18 18 18 17 16 16 15 15 abn 23 18 16 15 10 9 9 8 7 7 7 6 6 6 5 5 5 5 4 4 Community Scleractinia 8 8 8 8 8 8 8 8 8 7 8 8 8 7 7 8 8 8 8 8 Porites massive Favia favus Pachyseris foliosa Pectinia alcicornis Astreopora myriophthalma Psammocora contigua Scolymia vitiensis Favia danae Goniastrea pectinata Porites vaughani Pachyseris speciosa Cyphastrea serailia Galaxea fascicularis Favites russelli Porites cylindrica Acropora divaricata Hydnophora exesa Pocillopora damicornis Pavona cactus Hydnophora rigida 8 8 8 6 7 7 5 4 4 4 4 4 4 3 4 3 3 2 3 2 Others Caulerpa Paralemnalia Peyssonnelia Sarcophyton Sinularia spp. Halimeda Polycarpa Lobophytum Nephthea Sponge Sponge blue tubes Rumphella Sinularia tree Sponge foliose Annella Linckia Clavularia Tridacna crocea Anemon Xestospongia site 122 tB abn 24 21 20 20 19 19 18 18 18 18 17 16 16 16 16 15 15 15 15 15 abn 17 14 14 13 12 12 11 11 10 10 10 8 8 8 7 7 7 7 6 6 11 site 11 11 10 10 10 9 9 9 9 9 9 9 8 8 8 9 9 8 8 8 site 8 7 6 7 7 6 7 6 5 5 5 5 4 4 4 4 3 3 5 5 Community Scleractinia Porites massive Porites lichen Pocillopora danae Porites cylindrica Porites nigrescens Ctenactis crassa Diploastrea heliopora Acropora formosa Favia pallida Pocillopora verrucosa Acropora cerealis Porites rus Platygyra daedalea Fungia fungites Goniastrea pectinata Coeloseris mayeri Physogyra lichtensteini Fungia concinna Stylophora pistillata Sandalolitha robusta Others Sinularia spp. Sarcophyton Polycarpa Paralemnalia Lissoclinum Halimeda Sponge Millepora exesa Carterospongia Lobophytum CRA Anemon Linckia Tridacna crocea Sinularia tree Palythoa Clavularia Diademnum Peyssonnelia Millepora tenella tC abn 29 23 21 19 19 16 16 16 15 15 15 15 14 14 14 14 13 13 13 13 abn 10 site 10 9 9 9 8 10 10 8 9 8 8 7 9 8 8 7 8 8 7 7 site 22 21 16 15 15 14 13 12 12 11 11 10 10 10 9 8 8 8 8 7 10 10 7 8 6 7 6 6 6 6 4 6 6 5 4 6 4 4 3 6 Community Scleractinia Porites massive Porites vaughani Favia matthai Favites russelli Goniastrea pectinata Galaxea fascicularis Sandalolitha dentata Cyphastrea serailia Scolymia vitiensis Merulina ampliata Montipora grisea Acropora formosa Favia pallida Platygyra daedalea Cyphastrea microphthalma Echinopora gemmacea Acropora divaricata Fungia paumotensis Mycedium elephatotus Porites rus Others CRA Sinularia spp. Polycarpa Millepora exesa Sarcophyton Halimeda Clavularia Dendronephthya Millepora tenella Didemnum Scleronephthya Sponge Carterospongia Cirrhipathes Nephthea Dictyota Peyssonnelia Distichopora Capnella Paralemnalia 123 tD abn 19 18 17 17 17 15 15 14 14 13 13 13 13 13 13 13 12 12 12 12 abn 9 site 9 8 9 9 9 9 9 9 8 9 8 8 8 8 8 8 8 8 8 8 site 19 17 16 15 15 14 11 10 10 10 9 8 8 6 6 6 6 5 5 5 8 9 8 9 9 7 7 8 5 5 6 5 4 4 3 3 3 3 3 3 2000 Linkage Distance 1600 1200 800 mC mB mA 400 M1_1 M2_1 M3_1 M9_1 M11_1 M13_1 M14_1 M4_1 M12_1 M5_1 M2_2 M16_1 M7_2 M8_2 M6_1 M7_1 M17_1 M8_1 M10_1 M10_2 M15_1 M1_2 M15_2 M3_2 M12_2 M6_2 M5_2 M17_2 M4_2 M9_2 M13_2 M16_2 M11_2 M14_2 0 Figure 6. Dendrogram of similarity in coral community types in the Manus area, derived from the species abundances of corals in 17 deep (#1) and shallow (#2) sites. 5 4 6 17 16 Loreng 8 7 Kali 15 3 2 10 14 1 13 9 12 Buk 11 mA mB mC Figure 7. Distribution of the three coral communities among the 17 locations, Manus area, 2006, where: pink – community mA; orange – community mB; green – community mC. 124 Table 10. Environmental parameters for three coral communities, Manus area, 2006. Manus area Community type Number of sites Shallow mA 12 Mixed mB 11 Deep mC 11 Maximum Minimum slope Hard substrate 8 1 8 94 15 5 25 77 32 10 46 90 Hard coral Soft coral Macro algae Turf algae Coralline algae Dead coral 35 8 4 10 14 1 45 7 7 9 3 0 27 3 5 8 11 1 Continuous pavement Large blocks Small blocks Rubble Sand 83 5 5 4 3 56 11 10 5 18 82 4 5 5 5 Exposure rating Reef development 3 4 2 4 2 4 Visibility 16 10 19 Average species 114 113 130 125 Table 11. Characteristic species among three coral communities, Manus area, 2006. Comunity Scleractinia mA 12 abn site Comunity Scleractinia mB abn 11 site Comunity Scleractinia mC abn 11 site Acropora palifera 29 12 Fungia paumotensis 24 11 Porites vaughani 28 11 Favia stelligera 29 12 Pavona cactus 24 10 Montipora grisea 23 11 Acropora hyacinthus 27 12 Pachyseris foliosa 24 10 Favites russelli 22 11 Pocillopora verrucosa 26 12 Merulina ampliata 22 11 Goniastrea pectinata 22 11 Stylophora pistillata 26 12 Echinopora lamellosa 22 11 Porites massive 22 11 Montipora grisea 25 12 Acropora formosa 22 10 Fungia fungites 21 11 Hydnophora microconos 25 12 Seriatopora hystrix 21 10 Platygyra daedalea 21 11 Goniastrea retiformis 25 12 Galaxea fascicularis 21 10 Cyphastrea microphthalma 21 11 Acropora gemmifera 25 11 Fungia danai 21 10 Echinopora lamellosa 21 11 Galaxea fascicularis 25 11 Echinopora mammiformis 21 10 Astreopora myriophthalma 20 11 Favites complanata 24 12 Porites cylindrica 21 9 Mycedium elephatotus 20 11 Platygyra daedalea 24 12 Fungia fungites 20 10 Diploastrea heliopora 20 11 Acropora cerealis 24 11 Goniastrea pectinata 20 10 Seriatopora hystrix 20 10 Porites massive 24 11 Fungia concinna 20 9 Stylophora pistillata 20 10 Acropora millepora 23 12 Ctenactis crassa 20 9 Acropora granulosa 20 10 Pocillopora danae 23 11 Porites massive 19 9 Fungia paumotensis 20 10 Porites cylindrica 23 11 Pocillopora damicornis 18 10 Merulina ampliata 20 10 Acropora nana 23 10 Astreopora myriophthalma 18 10 Cyphastrea serailia 20 10 Fungia fungites 22 12 Herpolitha limax 18 10 Oxypora lacera 19 11 Echinopora gemmacea 22 12 Acropora selago 17 9 Galaxea fascicularis 19 10 Others abn site Others abn site CRA 30 11 Sarcophyton 20 Millepora exesa 24 12 Sinularia spp. 19 Halimeda 24 11 Millepora intricata 18 Sinularia spp. 22 11 Paralemnalia 18 Tridacna maxima 16 11 Halimeda 17 Aglophenia 16 8 Briareum Sarcophyton 15 8 Nephthea 15 7 Millepora platyphylla 14 Palythoa 14 Carterospongia Lobophytum Others site Halimeda 23 10 9 Paralemnalia 22 11 9 CRA 22 10 8 Sarcophyton 21 11 8 Nephthea 20 10 16 8 Sinularia spp. 18 9 Millepora dichotoma 12 9 Millepora exesa 17 9 Lobophytum 12 6 Lobophytum 15 8 8 Nephthea 12 6 Scleronephthya 15 8 8 Isis 12 5 Sponge 14 7 14 7 Sinularia tree 10 5 Dendronephthya 13 7 13 7 Diademnum 10 5 Polycarpa 13 7 Millepora dichotoma 12 9 Polycarpa 10 5 Caulerpa racemosa 11 6 Heliopora coerolea 11 6 Millepora tenella 9 6 Distichopora 11 5 Millepora intricata 11 5 Lemnalia 9 4 Sponge encrusting 10 5 Paralemnalia 10 5 Millepora exesa 8 4 Elisella 9 7 Sponge encrusting 10 5 Sponge 8 4 Carterospongia 9 5 Polycarpa 9 5 Padina 8 3 Sinularia brascica 9 4 Chlorodesmis 9 5 Dictyota 8 3 Tubipora musica 8 7 Tridacna squamosa 8 6 Cirrhipathes 7 4 Palythoa 8 5 126 9 abn 2000 Linkage Distance 1500 1000 nA nC nB 500 M1 M17 M3 M2 M6 M7 M5 M14 M11 M9 M12 M16 M13 T14 T1 T4 T9 T15 T11 T10 T8 T7 T5 T6 T17 T2 T16 M15 M10 T12 T13 T3 T19 T18 0 Figure 8. Dendrogram of similarity in three coral community types in the Northern Bismarck Sea (Tigak and Manus areas) derived from the species - abundances of corals in 36 locations (2 depths/sites at each location pooled). Tigak Manus Bismarck Sea nA nB nC Kimbe Bay Figure 9. Distribution of the three coral communities among the 36 locations, Northern Bismarck Sea (Tigak and Manus areas combined), 2006, where: brown – community nA; green – community nB; pink – community nC. 127 V. ECOLOGICAL STATUS – DISTURBANCES Tigak At some locations surveyed, there was evidence of recent damage to coral communities, mostly attributed to storm damage, predation by Crown-of-thorns starfish and/or coral bleaching. This was evidenced in the levels of injury sustained by coral species, with most sites exhibiting low levels of species' injury (Figure 10). Coral species exhibiting highest average levels of injury were mostly the longer-lived massive species that typically suffer partial mortality but survive disturbances that may kill corals of other growth forms. Storm damage was particularly prevalent on south-facing reefs. This was attributable to a large swell, the largest in living memory reported at some 6-8 m in height, which impacted the reefs in August 2006. The worst affected locations included Tigak 1 and 9, and most exposed south-facing reefs in the Manus area. These reefs are typically relatively protected in relation to the north-facing exposed reefs on the north coasts of the islands, which receive regular seasonal open-ocean ground swell from the North Pacific. Crown-of-thorns starfish were present in low to moderate numbers in most locations in the Tigak area, particularly at Tigak 5, 8 and 17. Outbreaks have recently occurred in other areas of the Northern Bismarck Sea, such as around Buke (Manus area) in 2005 and Kavieng (Enuk and Nusa Islands) more recently (T. Potuku, TNC, pers. comm.). The coral-feeding snails Drupella spp. were also present, notably at Tigak 17 and most sites in the Manus area, although these were not usually in excessive abundances. Damage consistent with coral bleaching was apparent at several sites, likely attributable to elevated sea surface temperatures in early 2000. This was most apparent at Tigak 1, 8, 9 and adjacent to 17 (Plate 4). There was little apparent impact from sedimentation, although there has been some land clearing. The low levels of impact are likely attributable to the small stream and river catchments and to the fact that most reefs surveyed were well offshore. There was some destructive fishing damage from fish bombing and/or poison fishing (eg. Tigak 9), but compared with other areas these impacts were relatively minor. Plate 4. Extensive coral mortality in site 17.1, Nemto, New Hanover. Manus At most locations surveyed, coral communities were in good condition (Plate 5), exhibiting moderate to high living coral cover, low dead coral cover (strong positive ratio of live : dead cover) and high diversity (Figure 3, Appendix II). This was also reflected in the levels of injury sustained by coral species, with all sites exhibiting low levels of species' injury (Figure 11). There was some apparent storm damage at Manus (Buke) 11 and some old bomb-fishing damage at Manus 13. Generally however there was little 128 evidence of recent poison fishing, which apparently occurs only sporadically in the area when the transport vessels for the live food-fish trade are present. Plate 5. Healthy coral fields on Anun reef, site 12.2, Buke, Manus Island. R ecen t in ju ry to co rals 0.8 14.1 0.7 17.1 0.6 Ave. injury per species 18.2 13.1 0.5 0.4 17.2 0.3 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Pr o p o r tio n o f s p e cie s w ith in ju r y Figure 10. Scatterplot of the average injury per species versus proportion of injured species in each of 38 sites, Tigak area 2006. 129 Recent injury to corals 0.6 Ave. injury per species 0.5 0.4 0.3 0.2 0.1 0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 Proportion of species with injury Figure 11. Scatterplot of the average injury per species versus proportion of injured species in each of 34 sites, Manus area 2006. All sites had insignificant proportions of species with injury. 130 DISCUSSION Tigak and Manus areas, Northern Bismarck Sea support diverse reef-building coral assemblages, composed of more than 450 species from 70 genera in 15 scleractinian families, including some species that may be undescribed. The corals form three major community types (Figure 8), broadly distributed (Figure 9) in relation to distance from shore, depth (influencing both illumination and exposure), wave energy, slope angle and other environmental factors. The area supports regionally important populations of a wide array of coral species, including some species considered to be globally rare. In most locations surveyed, the coral communities were in good condition, with positive ratios of live: dead coral cover (Figure 3). There was some evidence of recent coral damage, particularly in the Tigak area, and any future increases in use may threaten incident coral communities. Key recommendations in the latter regard include:  Avoid destructive fishing practices, including both bomb and poison fishing  Avoid pollution of coastal waters from land run-off  Avoid over-fishing and poor water quality, particularly nutrient enrichment from inapproprriate land-use practices, as these can lead to severe crown-of-thorns starfish outbreaks and other forms of coral damage.  Monitor the harvesting of branching Acropora coral for lime use. Consider alternatives to collecting. RECOMMENDATIONS FOR CONSERVATION PLANNING Of the 36 locations surveyed in the two seascapes of the Northern Bismarck Sea, many had high coral species richness and other attributes of high conservation value (Tables 4-11). The most diverse 20 locations, all hosting more than 160 hermatypic Scleractinia, are listed in Table 12. FUNCTIONAL SEASCAPES OF THE BISMARCK SEA As introduced above, TNC identified 7 functional seascapes within the greater Bismarck Sea (Figure 1), two of which were the focus of the present study – Manus (Seascape 14) and New Hanover-St. Matthias group (herein ‘Tigak area’, Seascape 16). The above analyses indicate that both seascapes are highly diverse in terms of their overall coral richness, with some 408 species of hermatypic Scleractinia recorded from the Tigak area and some 403 species from the Manus area, with most species shared between the two seascapes. Despite the high degree of coral faunal similarity (~ 90 %), there was a moderate degree of dissimilarity in the community types present (Figures 8 and 9). The Manus communities had higher alpha diversity than those around Tigak (Tables 5, 6, 8 and 10), and were also less impacted by disturbance (Figures 10 and 11) In order to place the coral fauna of the Northern Bismarck Sea into the biogeographic framework of the seascapes of the region more generally, a further cluster analysis was undertaken, incorporating prior data from Kimbe Bay. This indicated that these three seascapes of the Bismarck Sea host six major coral community types (bA – bF, Figures 12 and 13). There was a moderate to high degree of dissimilarity among the seascapes. Three communities were composed predominantly of Kimbe Bay locations (bA – Kimbe East; bB – Stettin West and bC – very sheltered locations from both areas with two Tigak locations). The remaining three communities were composed by Tigak and Manus locations (bD – bF). Community bD was composed of sheltered locations from both Tigak and Manus areas. Community bE was predominantly formed by exposed locations of the Tigak area while Community bF was mostly 131 exposed Manus locations. Thus the broader scale analysis demonstrated a high degree of dissimilarity in coral community structure between the eastern (Kimbe Bay) and northern areas (Tigak and Manus) of the Bismarck Sea. Coral cover % Community types Location name (no.) Manus (12) Manus (1) Manus (5) Tigak (12) Tigak (18) Tigak (1) Manus (2) Manus (16) Manus (3) Tigak (8) Tigak (4) Manus (6) Manus (17) Manus (9) Tigak (16) Manus (13) Manus (7) Tigak (9) Manus (14) Tigak (11) Spp. diversity Table 12. The most diverse 20 locations (> 160 spp. reef-building corals), Tigak and Manus areas. Coral cover is the mean of the 2 sites at each location. Site numbers correspond with those in Figures 2, 4 and 6, community types with those in Figures 8 and 9. 211 200 200 198 195 194 187 186 186 182 182 181 177 173 172 171 169 168 167 164 45 30 35 55 35 10 25 40 20 18 20 50 25 35 23 25 60 10 40 20 C C C A A C C C C B C C C C A C C C C B 132 Bismarck Sea combined HC site cluster 300 Linkage Distance 250 200 150 100 bF bA 50 bC bA bB bD 0 K9 K21 K20 K18 K22 K16 K14 K12 K11 K10 K19 K8 K3 K27 K13 K6 K24 K7 K4 K5 K2 K1 S12 S11 S9 S15 S14 S8 S4 S6 S3 S1 K26 K23 K17 S13 S10 K15 K25 S16 S7 S2 S5 T19 T3 T16 T2 M15 M10 T18 T13 T12 M8 T6 T17 T5 T8 T7 T15 T11 T10 M4 T4 T9 T14 T1 M16 M13 M14 M11 M9 M12 M5 M7 M2 M6 M17 M3 M1 bE Kimbe - east Stettin - west Very sheltered Tigak & Manus sheltered Tigak north exposed Manus exposed Figure 12. Dendrogram of similarity in coral community types in the Bismarck Sea (Tigak, Manus and Kimbe Bay areas). 17 Tigak 18 Manu 16 8 11 19 7 15 10 5 6 13 12 14 2 9 1 4 3 bA bB bC bD Bismarck Sea bE bF Kimbe Stettin west Kimbe - east Figure 13. Distribution of coral communities, Bismarck Sea, where: red – community bA; purple – community bB; yellow – community bC; brown – community bD; green – community bE; pink – community bF. ACKNOWLEDGEMENTS We wish to thank Alison Green, Jeanine Almany, Rick Hamilton, Paul Lokani and the The Nature Conservancy’s Pacific Island Countries Program. 133 REFERENCES Allen G.R., and R. Steene. 1994. Indo-Pacific Coral Reef Field Guide. Tropical Reef Research 378pp. Best, M.B., B.W. Hoeksema, W. Moka, H. Moll, Suharsono, and I.N Sutarna. 1989. Recent scleractinian coral species collected during the Snellius-II Expedition in eastern Indonesia. Netherlands Journal of Sea Research 23: 107-115. Brodie, J. and E. Turak, 2004. Land use practices in the Stettin Bay catchment area and their relation to the status of the coral reefs in Kimbe Bay. Australian center for tropical freshwater research report No. 04/01. James Cook University, Townsville, Australia. 109 pp. Colin, P. and C. Arneson. 1995. Tropical Pacific Invertebrates. Coral Reef Press, California, USA, 296pp. DeVantier, L.M., G. De’Ath, T.J. Done, and E. Turak. 1998. Ecological Assessment of a complex natural system: A case study from the Great Barrier Reef. Ecological Applications 8: 480-496. DeVantier, L.M., Turak, E., Al-Shaikh, K.A. and G. De’Ath. 2000. Coral communities of the centralnorthern Saudi Arabian Red Sea. Fauna of Arabia 18: 23-66. DeVantier, L.M., De’ath, G., Turak, E., Done, T.J. and K. Fabricius 2006. Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs 25: 329-340 Done, T. J. 1982. Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1: 95-107. Fabricius, K. and P. Alderslade. 2000. Soft Corals and Sea Fans A comprehensive guide to the tropical shallow-water genera of the Central-West Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Townsville, Australia, 264pp. Goslinger, T.M., Behrens, D.W. and G.C. Williams. 1996. Coral Reef Animals of the Indo-Pacific. Sea Challengers publ., Monteray, California, 314pp. Green AL, Mous PJ. 2008. Delineating the coral triangle, its ecoregions and functional seascapes. Version 5.0. TNC Coral Triangle Program Report 1/08. http://conserveonline.org/workspaces/tnccoraltriangle/ Hoeksema, B.W. 1989. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zoologische Verhandelingen 254, 295pp. Hopley, D. 1982. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs. John Wiley-InterScience, New York, 453p. Hopley, D., Parnell, K.E. and P.J. Isdale 1989. The Great Barrier Reef Marine Park: Dimensions and Regional Patterns. Australian Geographic Studies 27: 47-66. Hunnam, P., Jenkins, A., Kile, N., Shearman, P. 2001. Marine resource management and conservation planning: Bismarck-Solomon Seas ecoregion: Papua New Guinea Solomon Islands. World Wide Fund for Nature, South Pacific program. Oceanic Printers, Suva, Fiji Islands. pp. 86. Jongman, R.H.G., C.J.F. ter Braak, and O.F.R. van Tongereren. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, 299pp. 134 Lokani, P. and A. Green, 2006. Project proposal - Rapid ecological assessment: Northern Bismarck Sea, Papua New Guinea. The Nature Conservancy, Pacific Island Countries Program. 13 pp. Paulay, G. 1997. Diversity and distribution of reef organisms. In: Life and Death of Coral Reefs. Birkeland, C. ed. USA, Chapman and Hall: 298-345. Turak, E. 2006. Coral communities and reef health. In: Green A, P lokani, W Atu, P Romahia, P Thomas and J Almany (eds) 2006. Solomon Island Marine Assessment: Technical report of survey conducted May 13 to June 17, 2004, TNC Pacific Island Countries Report No. 1/06. pp 65-110. Turak, E. and L. DeVantier, 2005. Reef-building corals and coral communities of Pohnpei, Federated States of Micronesia: Rapid ecological assessment of biodiversity and status. Final report for the conservation society of Pohnpei. 104 pp. Turak, E. and L. DeVantier, 2006. Biodiversity and conservation priorities of reef-building corals in the Papuan Bird’s Head seascape. Conservation International RAP report. 70pp. Turak, E. and D. Fenner. 2002. Hard Corals of Milne Bay Province, Papua New Guinea. In, RAP working papers, Conservation International, Washington, DC. Turak, E. and J. Aitsi. 2002 Assessment of coral biodiversity and status of coral reefs of East Kimbe Bay, New Britain, PNG 2002. Report to The Nature Conservancy as part of the Eastern Kimbe Bay Rapid Ecological Assessment, December 2002. Turak, E. and J. Shouhoka. 2003. Coral diversity and status of the coral reefs in the Raja Ampat islands, Papua province, Indonesia, November 2002. Final Report to The Nature Conservancy. Van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97-114. Veron, J.E.N. 1986. Corals of Australia and the Indo-Pacific. Sydney and London: Angus and Robertson, Australia, 644pp. Veron, J.E.N. 1993. A biogeographic database of hermatypic corals species of the central Indo-Pacific genera of the world. Australian Institute of Marine Science Monograph Series 10, 433pp. Veron, J.E.N. 1995. Corals in Space and Time The Biogeography and Evolution of the Scleractinia. University of New South Wales Press, 321pp. Veron, J.E.N. 2000. Corals of the World. 3 Vols. Australian Institute of Marine Science. WWF 2003 Bismarck Solomon Seas Ecoregion. A Cradle of Marine Biodiversity. 24 pp. 135 APPENDICES APPENDIX I. Details of sites surveyed in the Northern Bismarck Sea, 2006. GPS locations using WGS 84 datum. Site #.1 - deep. Site #.2- shallow. RD – Reef development. Location Site name site lat. lat. dec. long. deg. min. deg Tigak Tigak Tigak Tigak Djual Djual Djual Djual Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak New Hanover New Hanover New Hanover New Hanover New Hanover New Hanover New Hanover New Hanover Manus SE Manus SE Manus SE Manus SE Baudisson Baudisson Limalam Limalam Banabis Banabis Lakaiang Lakaiang Nusalaman Nusalaman Enuk Enuk Maiom Maiom Nusalik Nusalik Salabiu Salabiu Bangatan East Bangatan East Lemus North Lemus North Limalom Limalom Eusen Eusen Lemus South Lemus South Bangatan North Bangatan North Anelava Anelava Nemto Nemto Nasalik Nasalik Palang Palang Drover Drover Onai Onai 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2 12.1 12.2 13.1 13.2 14.1 14.2 15.1 15.2 16.1 16.2 17.1 17.2 18.1 18.2 19.1 19.2 1.1 1.2 2.1 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 44.611 44.611 41.112 41.112 57.764 57.764 58.593 58.593 36.541 36.541 38.271 38.271 34.771 34.771 34.933 34.933 42.727 42.727 37.013 37.013 36.574 36.574 40.175 40.175 38.698 38.698 38.255 38.255 35.306 35.306 33.93 33.93 21.098 21.098 23.714 23.714 36.041 36.041 13.751 13.751 12.897 12.897 136 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 147 147 147 147 long. dec. Max. Min. Slope RD Date min. depth depth (m) (m) 39.396 35 10 80 4 15-Aug-06 39.396 8 1 5 4 15-Aug-06 46.708 16 7 40 3 15-Aug-06 46.708 7 1 10 3 15-Aug-06 49.02 19 8 30 4 16-Aug-06 49.02 8 1 5 4 16-Aug-06 43.513 33 10 70 4 16-Aug-06 43.513 8 1 10 4 16-Aug-06 40.655 26 10 20 4 17-Aug-06 40.655 8 0.5 10 4 17-Aug-06 43.879 18 10 10 4 17-Aug-06 43.879 8 0.5 10 4 17-Aug-06 49.96 23 10 20 4 18-Aug-06 49.96 8 0.5 10 4 18-Aug-06 46.215 26 10 20 4 18-Aug-06 46.215 8 0.5 5 4 18-Aug-06 34.051 38 10 70 4 19-Aug-06 34.051 8 1 10 4 19-Aug-06 36.503 22 10 20 4 19-Aug-06 36.503 8 1 5 4 19-Aug-06 38.456 23 10 20 4 20-Aug-06 38.456 8 1 5 4 20-Aug-06 46.637 15 6 30 4 20-Aug-06 46.637 6 1 5 4 20-Aug-06 45.986 17 8 40 4 21-Aug-06 45.986 8 1 5 4 21-Aug-06 37.487 32 10 40 3 21-Aug-06 37.487 8 1 10 3 21-Aug-06 35.635 26 10 20 4 22-Aug-06 35.635 8 1 5 4 22-Aug-06 28.834 14 7 30 4 22-Aug-06 28.834 7 0.5 10 4 22-Aug-06 20.563 18 8 10 4 23-Aug-06 20.563 8 0.5 5 4 23-Aug-06 19.878 15 8 40 4 23-Aug-06 19.878 8 0.5 20 4 23-Aug-06 28.042 18 8 20 4 24-Aug-06 28.042 8 0.5 20 4 24-Aug-06 12.816 41 10 80 4 26-Aug-06 12.816 9 0.5 20 4 26-Aug-06 6.93 29 10 50 4 26-Aug-06 6.93 8 0.5 20 4 26-Aug-06 Location Site name site lat. lat. dec. long. deg. min. deg Manus SE Manus SE Manus North Manus North Manus North Manus North Manus North Manus North Manus SE Manus SE Manus SE Manus SE Buke Buke Buke Buke Buke Buke Buke Buke Kali Kali Kali Kali Kali Kali Kali Kali Kali Kali Portmor Portmor Pityilu Pityilu Ponam Ponam Hinrun Hinrun Momote Momote Momote Lagoon Momote Lagoon Prenpat Prenpat Tawi Tawi Nampom Nampom Anun Anun West of Stone Point West of Stone Point Parinte Parinte Salihau Salihau Moseley (Three Islands) Moseley (Three Islands) Noru (Herengan Islands) Noru (Herengan Islands) 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2 12.1 12.2 13.1 13.2 14.1 14.2 15.1 15.2 16.1 16.2 17.1 17.2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 6.251 6.251 57.126 57.126 54.998 54.998 57.978 57.978 3.029 3.029 2.487 2.487 16.252 16.252 11.818 11.818 25.818 25.818 18.764 18.764 14.361 14.361 14.625 14.625 5.617 5.617 57.787 57.787 57.554 57.554 137 147 147 147 147 146 146 147 147 147 147 147 147 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 long. dec. Max. Min. Slope RD Date min. depth depth (m) (m) 17.07 33 10 60 4 27-Aug-06 17.07 8 1 5 4 27-Aug-06 14.054 24 10 10 4 27-Aug-06 14.054 8 2 2 4 27-Aug-06 55.492 26 10 20 4 28-Aug-06 55.492 8 0.5 5 4 28-Aug-06 0.287 11 5 30 4 28-Aug-06 0.287 5 0.5 5 4 28-Aug-06 25.77 29 10 30 4 29-Aug-06 25.77 8 0.5 30 4 29-Aug-06 25.586 18 10 30 4 29-Aug-06 25.586 8 0.5 10 4 29-Aug-06 59.496 43 10 90 4 30-Aug-06 59.496 8 0.5 20 4 30-Aug-06 51.082 19 10 30 4 30-Aug-06 51.082 8 1 10 4 30-Aug-06 48.009 40 10 50 4 31-Aug-06 48.009 8 1 3 4 31-Aug-06 51.316 31 10 30 4 31-Aug-06 51.316 8 1 10 4 31-Aug-06 31.996 23 10 30 4 1-Sep-06 31.996 8 0.5 10 4 1-Sep-06 17.425 33 10 70 4 1-Sep-06 17.425 8 2 5 4 1-Sep-06 33.257 18 9 30 4 2-Sep-06 33.257 8 0.5 20 4 2-Sep-06 28.463 30 10 20 4 3-Sep-06 28.463 8 0.5 5 4 3-Sep-06 37.558 25 10 30 4 3-Sep-06 37.558 8 1 5 4 3-Sep-06 APPENDIX II. Ecological and environmental attributes of coral communities, Northern Bismarck Sea, 2006, where HC - Hard Coral, DC - Dead Coral, SC - Soft Coral, MA - Macro-Algae, TA - Turf Algae, CA - Coralline Algae. VIS - Underwater visibility (water clarity m), EXP - Exposure (rank 1 - 4); DIV Species diversity of reef-building Scleractinian corals. Location Site name site Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak Tigak New Hanover New Hanover New Hanover New Hanover New Hanover New Hanover New Hanover New Hanover Manus SE Manus SE Manus SE Manus SE Manus SE Manus SE Manus North Manus North Baudisson Baudisson Limalam Limalam Banabis Banabis Lakaiang Lakaiang Nusalaman Nusalaman Enuk Enuk Maiom Maiom Nusalik Nusalik Salabiu Salabiu Bangatan East Bangatan East Lemus North Lemus North Limalom Limalom Eusen Eusen Lemus South Lemus South Bangatan North Bangatan North Anelava Anelava Nemto Nemto Nasalik Nasalik Palang Palang Drover Drover Onai Onai Portmor Portmor Pityilu Pityilu 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2 12.1 12.2 13.1 13.2 14.1 14.2 15.1 15.2 16.1 16.2 17.1 17.2 18.1 18.2 19.1 19.2 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 HC DC SC MA TA CA VIS EXP 10 10 30 40 10 10 20 20 2 5 30 30 10 40 5 30 10 10 5 10 10 30 30 80 20 50 20 50 30 50 15 30 1 20 20 50 10 20 20 40 20 30 20 20 20 10 138 5 5 1 1 0 0 0 0 1 1 5 5 1 1 0 10 0 0 0 5 2 5 0 5 0 1 5 5 1 2 0 0 1 5 1 3 1 2 1 1 0 0 1 1 1 0 2 2 2 2 0 1 2 0 0 0 3 1 1 2 10 0 1 0 0 0 1 0 2 3 5 5 2 0 0 0 0 0 0 1 20 30 5 5 3 5 3 10 2 2 2 1 1 2 5 2 20 30 0 0 20 5 10 3 10 5 5 5 5 2 2 1 2 3 2 1 20 20 1 0 3 2 0 0 2 3 5 5 10 10 5 5 2 5 3 2 3 5 10 30 10 10 10 10 10 20 20 20 10 10 10 10 20 10 10 10 20 20 20 5 20 10 10 10 10 5 5 5 10 10 10 5 10 10 10 10 10 10 10 10 10 20 10 10 20 2 5 5 2 0 10 5 20 10 10 10 5 10 10 10 10 10 0 10 10 20 3 2 2 5 10 10 10 20 0 2 10 20 2 5 2 0 10 10 3 2 5 5 20 10 6 7 6 6 4 4 7 8 15 20 8 10 15 15 12 12 12 8 8 10 10 12 5 5 4 8 10 10 15 12 7 7 15 15 4 6 6 6 20 15 6 6 10 8 15 12 2 3 1 2 1 4 2 3 2 4 2 3 2 4 2 3 2 3 2 3 2 3 1 2 1 3 2 3 2 3 1 2 2 4 1 2 1 2 2 3 1 2 2 3 2 4 DIV 106 114 99 102 44 71 121 96 67 81 82 82 104 82 105 98 108 92 78 80 123 94 105 126 97 79 98 85 91 87 116 107 36 68 96 117 63 43 125 145 117 126 126 112 117 87 Location Site name site Manus North Manus North Manus North Manus North Manus SE Manus SE Manus SE Manus SE Buke Buke Buke Buke Buke Buke Buke Buke Kali Kali Kali Kali Kali Kali Kali Kali Kali Kali Ponam Ponam Hinrun Hinrun Momote Momote Momote Lagoon Momote Lagoon Prenpat Prenpat Tawi Tawi Nampom Nampom Anun Anun West of Stone Point West of Stone Point Parinte Parinte Salihau Salihau Moseley (Three Islands) Moseley (Three Islands) Noru (Herengan Islands) Noru (Herengan Islands) 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2 12.1 12.2 13.1 13.2 14.1 14.2 15.1 15.2 16.1 16.2 17.1 17.2 HC DC SC MA TA CA VIS EXP 30 40 40 60 50 70 40 70 30 40 30 50 30 20 40 50 20 30 30 50 20 70 40 40 30 20 139 1 1 0 0 0 0 0 0 0 0 0 0 2 0 2 3 1 0 0 1 0 0 1 1 2 2 2 3 10 20 3 2 5 2 3 5 5 10 2 1 2 2 2 3 2 3 5 20 5 5 10 40 10 3 5 5 10 10 20 10 5 3 10 1 2 1 2 1 10 5 3 2 0 0 5 5 2 5 5 10 10 10 5 10 10 10 5 10 10 10 10 20 10 5 10 10 5 5 10 5 5 5 10 10 10 20 0 5 10 5 0 2 10 20 2 5 10 20 20 20 2 10 20 20 2 0 10 20 3 5 25 20 5 5 25 20 6 6 25 20 5 5 20 20 25 20 8 8 25 20 4 6 35 30 20 12 2 4 2 3 2 3 1 3 2 3 1 3 2 3 2 3 2 3 2 3 1 2 2 3 2 3 DIV 125 146 118 126 134 99 112 95 125 97 76 99 123 83 142 143 120 103 134 103 101 91 144 114 142 89 APPENDIX III. Reef-building (hermatypic) coral species of the Northern Bismarck Sea, 2006, including comparison with Kimbe Bay and the rest of PNG. The list includes confirmed species. Tigak list includes species from Charlie Veron. Zooxanthellate Scleractinia Family Astrocoeniidae Koby, 1890 Genus Acanthastrea Milne Edwards and Haime, 1848 Stylocoeniella armata (Ehrenberg, 1834) Stylocoeniella cocosensis Veron, 1990 Stylocoeniella guentheri Bassett-Smith, 1890 Genus Palauastrea Yabe and Sugiyama, 1941 Palauastrea ramosa Yabe and Sugiyama, 1941 Genus Madracis Milne Edwards and Haime, 1849 Madracis kirbyi Veron and Pichon, 1976 Family Pocilloporidae Gray, 1842 Genus Pocillopora Lamarck, 1816 Pocillopora ankeli Scheer and Pillai, 1974 Pocillopora damicornis (Linnaeus, 1758) Pocillopora danae Verrill, 1864 Pocillopora elegans Dana, 1846 Pocillopora eydouxi Milne Edwards and Haime, 1860 Pocillopora kelleheri Veron, 2000 Pocillopora meandrina Dana, 1846 Pocillopora verrucosa (Ellis and Solander, 1786) Pocillopora woodjonesi Vaughan, 1918 Genus Seriatopora Lamarck, 1816 Seriatopora aculeata Quelch, 1886 Seriatopora caliendrum Ehrenberg, 1834 Seriatopora dendritica Veron, 2000 Seriatopora guttatus Veron, 2000 Seriatopora hystrix Dana, 1846 Seriatopora stellata Quelch, 1886 Genus Stylophora Schweigger, 1819 Stylophora pistillata Esper, 1797 Stylophora subseriata (Ehrenberg, 1834) Family Acroporidae Verrill, 1902 Genus Montipora Blainville, 1830 Montipora aequituberculata Bernard, 1897 Montipora altasepta Nemenzo, 1967 Montipora angulata (Lamarck, 1816) Montipora australiensis Bernard, 1897 Montipora cactus Bernard, 1897 Montipora calcarea Bernard, 1897 Montipora caliculata (Dana, 1846) Montipora capitata Dana, 1846 Montipora capricornis Veron, 1985 Montipora cebuensis Nemenzo, 1976 Montipora cocosensis Vaughan, 1918 Montipora confusa Nemenzo, 1967 Montipora corbetensis Veron and Wallace, 1984 Montipora crassituberculata Bernard, 1897 Montipora danae (Milne Edwards and Haime, 1851) Montipora deliculata Veron, 2000 Montipora digitata (Dana, 1846) 140 Manus Tigak M/T Kimbe BS PNG • • • U • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • U • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • U • • • U U • • • • • U • • • • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Montipora efflorescens Bernard, 1897 Montipora effusa Dana, 1846 Montipora florida Nemenzo, 1967 Montipora floweri Wells, 1954 Montipora foliosa (Pallas, 1766) Montipora foveolata (Dana, 1846) Montipora friabilis Bernard, 1897 Montipora grisea Bernard, 1897 Montipora hirsuta Nemenzo, 1967 Montipora hispida (Dana, 1846) Montipora hodgsoni Veron, 2000 Montipora hoffmeisteri Wells, 1954 Montipora incrassata (Dana, 1846) Montipora informis Bernard, 1897 Montipora mactanensis Nemenzo, 1979 Montipora malampaya Nemenzo, 1967 Montipora meandrina (Ehrenberg, 1834) Montipora millepora Crossland, 1952 Montipora mollis Bernard, 1897 Montipora monasteriata (Forskäl, 1775) Montipora niugini Veron, 2000 Montipora nodosa (Dana, 1846) Montipora orientalis Nemenzo, 1967 Montipora plawanensis Veron, 2000 Montipora peltiformis Bernard, 1897 Montipora porites Veron, 2000 Montipora samarensis Nemenzo, 1967 Montipora spongodes Bernard, 1897 Montipora spumosa (Lamarck, 1816) Montipora stellata Bernard, 1897 Montipora tuberculosa (Lamarck, 1816) Montipora turgescens Bernard, 1897 Montipora turtlensis Veron and Wallace, 1984 Montipora undata Bernard, 1897 Montipora venosa (Ehrenberg, 1834) Montipora verrucosa (Lamarck, 1816) Montipora verruculosus Veron, 2000 Montipora vietnamensis Veron, 2000 Genus Anacropora Ridley, 1884 Anacropora forbesi Ridley, 1884 Anacropora matthai Pillai, 1973 Anacropora pillai Veron, 2000 Anacropora puertogalerae Nemenzo, 1964 Anacropora reticulata Veron and Wallace, 1984 Anacropora spinosa Rehberg, 1892 Genus Acropora Oken, 1815 Acropora abrolhosensisVeron, 1985 Acropora abrotanoides (Lamarck, 1816) Acropora aculeus (Dana, 1846) Acropora acuminata (Verrill, 1864) Acropora anthocercis (Brook, 1893) Acropora aspera (Dana, 1846) Acropora austera (Dana, 1846) Acropora awi Wallace and Wolstenholme, 1998 Acropora batunai Wallace, 1997 Acropora bifurcata Nemenzo, 1971 Manus • • • • • • • • • U • • • • • • • • • • • U • • • • • • • • • • • • • • • • • U • • • • • • • • • • • • 141 Tigak • • • • • • • • • • • • • U • • • • • U U • • • • • • • • • • • • U • • U M/T • • • • • • • • • • U • • • • • • • • • • • U • • • • • • • • • • • • • • • Kimbe • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • BS • • • • • • • • • • Zooxanthellate Scleractinia Acropora brueggemanni (Brook, 1893) Acropora carduus (Dana, 1846) Acropora caroliniana Nemenzo, 1976 Acropora cerealis (Dana, 1846) Acropora clathrata (Brook, 1891) Acropora cophodactyla (Brook, 1892) Acropora copiosa Nemenzo, 1967 Acropora crateriformis (Gardiner, 1898) Acropora cuneata (Dana, 1846) Acropora cylindrica Veron and Fenner, 2000 Acropora cytherea (Dana, 1846) Acropora dendrum (Bassett-Smith, 1890) Acropora derewanensis Wallace (1997) Acropora desalwii Wallace, 1994 Acropora digitifera (Dana, 1846) Acropora divaricata (Dana, 1846) Acropora donei Veron and Wallace, 1984 Acropora echinata (Dana, 1846) Acropora elegans Milne Edwards and Haime, 1860 Acropora elseyi (Brook, 1892) Acropora exquisita Nemenzo, 1971 Acropora florida (Dana, 1846) Acropora formosa (Dana, 1846) Acropora gemmifera (Brook, 1892) Acropora glauca (Brook, 1893) Acropora globiceps (Dana, 1846) Acropora grandis (Brook, 1892) Acropora granulosa (Milne Edwards and Haime, 1860) Acropora hoeksemai Wallace, 1997 Acropora horrida (Dana, 1846) Acropora humilis (Dana, 1846) Acropora hyacinthus (Dana, 1846) Acropora inermis (Brook, 1891) Acropora insignis Nemenzo, 1967 Acropora irregularis (Brook, 1892) Acropora jacquelineae Wallacew, 1994 Acropora kimbeensis Wallace, 1999 Acropora kirstyae Veron and Wallace, 1984 Acropora latistella (Brook, 1891) Acropora lianae Nemenzo, 1967 Acropora listeri (Brook, 1893) Acropora lokani Wallace, 1994 Acropora longicyathus (Milne Edwards and Haime, 1860) Acropora loripes (Brook, 1892) Acropora lutkeni Crossland, 1952 Acropora microclados (Ehrenberg, 1834) Acropora microphthalma (Verrill, 1859) Acropora millepora (Ehrenberg, 1834) Acropora monticulosa (Brüggemann, 1879) Acropora multiacuta Nemenzo, 1967 Acropora nana (Studer, 1878) Acropora nasuta (Dana, 1846) Acropora navini Veron, 2000 Acropora nobilis (Dana, 1846) Acropora palifera (Lamarck, 1816) Acropora palmerae Wells, 1954 142 Manus • • • • • • Tigak • • • • • • M/T • • • • • • Kimbe • • • • • • • BS • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • U • • • • • • • • • • • • • • • • • U • • • • • • U • • • • • • • U • • • • • • • • • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • U U • • • • • • • • • • • • • • U • • • • • • • • • U • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Acropora paniculata Verrill, 1902 Acropora papillarae Latypov, 1992 Acropora parilis (Quelch, 1886) Acropora pichoni Wallace, 1999 Acropora pinguis Wells, 1950 Acropora plana Nemenzo, 1967 Acropora plumosa Wallace and Wolstenholme, 1998 Acropora polystoma (Brook, 1891) Acropora prostrata (Dana, 1846) Acropora pruinosa (Brook, 1893) Acropora pulchra (Brook, 1891) Acropora rambleri (Bassett-Smith, 1890) Acropora robusta (Dana, 1846) Acropora rosaria (Dana, 1846) Acropora russelli, Wallace, 1994 Acropora samoensis (Brook, 1891) Acropora sarmentosa (Brook, 1892) Acropora secale (Studer, 1878) Acropora sekiseiensis Veron, 1990 Acropora selago (Studer, 1878) Acropora seriata Ehrenberg, 1834 Acropora simplex Wallace and Wolstenholme, 1998 Acropora solitaryensis Veron and Wallace, 1984 Acropora spathulata (Brook, 1891) Acropora speciosa (Quelch, 1886) Acropora spicifera (Dana, 1846) Acropora striata (Verrill, 1866) Acropora subglabra (Brook, 1891) Acropora subulata (Dana, 1846) Acropora tenella (Brook, 1892) Acropora tenuis (Dana, 1846) Acropora turaki Wallace, 1994 Acropora tutuilensis Hoffmeister, 1925 Acropora valenciennesi (Milne Edwards and Haime, 1860) Acropora valida (Dana, 1846) Acropora vaughaniWells, 1954 Acropora verweyi Veron and Wallace, 1984 Acropora walindii Wallace, 1999 Acropora wallaceae Veron, 1990 Acropora willisae Veron and Wallace, 1984 Acropora yongei Veron and Wallace, 1984 Genus Astreopora Blainville, 1830 Astreopora cuculata Lamberts, 1980 Astreopora expansa Brüggemann, 1877 Astreopora gracilis Bernard, 1896 Astreopora incrustans Bernard, 1896 Astreopora listeri Bernard, 1896 Astreopora macrostoma Veron and Wallace, 1984 Astreopora moretonensis Veron and Wallace, 1984 Astreopora myriophthalma (Lamarck, 1816) Astreopora ocellata Bernard, 1896 Astreopora randalli Lamberts, 1980 Astreopora scabra Lamberts, 1982 Astreopora suggesta Wells, 1954 Family Euphilliidae Veron, 2000 143 Manus • • Tigak • • M/T • • Kimbe • BS • • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • U • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Genus Euphyllia Dana, 1846 Euphyllia ancora Veron and Pichon, 1979 Euphyllia cristata Chevalier, 1971 Euphyllia divisa Veron and Pichon, 1980 Euphyllia glabrescens (Chamisso and Eysenhardt, 1821) Euphyllia paraancora Veron, 1990 Euphyllia paradivisa Veron, 1990 Euphyllia yaeyamensis (Shirai, 1980) Genus Catalaphyllia Wells, 1971 Catalaphyllia jardinei (Saville-Kent, 1893) Genus Plerogyra Milne Edwards and Haime, 1848 Plerogyra simplex Rehberg, 1892 Plerogyra sinuosa (Dana, 1846) Genus Physogyra Quelch, 1884 Physogyra lichtensteini (Milne Edwards and Haime, 1851) Family Oculinidae Gray, 1847 Genus Galaxea Oken, 1815 Galaxea acrhelia Veron, 2000 Galaxea astreata (Lamarck, 1816) Galaxea cryptoramosa Fenner and Veron, 2000 Galaxea fascicularis (Linnaeus, 1767) Galaxea horrescens (Dana, 1846) Galaxea longisepta Fenner & Veron, 2000 Galaxea paucisepta Claereboudt, 1990 Family Siderasteridae Vaughan and Wells, 1943 Genus Pseudosiderastrea Yabe and Sugiyama, 1935 Pseudosiderastrea tayami Yabe and Sugiyama, 1935 Genus Psammocora Dana, 1846 Psammocora contigua (Esper, 1797) Psammocora digitata Milne Edwards and Haime, 1851 Psammocora explanulata Horst, 1922 Psammocora haimeana Milne Edwards and Haime, 1851 Psammocora nierstraszi Horst, 1921 Psammocora obtusangula (Lamarck, 1816) Psammocora profundacella Gardiner, 1898 Psammocora superficialis Gardiner, 1898 Genus Coscinaraea Milne Edwards and Haime, 1848 Coscinaraea columna (Dana, 1846) Coscinaraea crassa Veron and Pichon, 1980 Coscinaraea exesa (Dana, 1846) Coscinaraea monile (Foskål, 1775) Coscinaraea wellsi Veron and Pichon, 1980 Family Agariciidae Gray, 1847 Genus Agaricia Lamarck, 1801 Genus Pavona Lamarck, 1801 Pavona bipartita Nemenzo, 1980 Pavona cactus (Forskål, 1775) Pavona clavus (Dana, 1846) Pavona decussata (Dana, 1846) Pavona duerdeni Vaughan, 1907 Pavona explanulata (Lamarck, 1816) Pavona frondifera (Lamarck, 1816) Pavona maldivensis (Gardiner, 1905) Pavona minuta Wells, 1954 Pavona varians Verrill, 1864 144 Manus Tigak M/T Kimbe BS PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • U • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Pavona venosa (Ehrenberg, 1834) Genus Leptoseris Milne Edwards and Haime, 1849 Leptoseris amitoriensis Veron, 1990 Leptoseris explanata Yabe and Sugiyama, 1941 Leptoseris foliosa Dineson, 1980 Leptoseris gardineri Horst, 1921 Leptoseris hawaiiensis Vaughan, 1907 Leptoseris incrustans (Quelch, 1886) Leptoseris mycetoseroides Wells, 1954 Leptoseris papyracea (Dana, 1846) Leptoseris scabra Vaughan, 1907 Leptoseris solida (Quelch, 1886) Leptoseris striata (Fenner & Veron 2000) Leptoseris tubulifera Vaughan, 1907 Leptoseris yabei (Pillai and Scheer, 1976) Genus Coeloseris Vaughan, 1918 Coeloseris mayeri Vaughan, 1918 Genus Gardineroseris Scheer and Pillai, 1974 Gardineroseris planulata Dana, 1846 Genus Pachyseris Milne Edwards and Haime, 1849 Pachyseris foliosa Veron, 1990 Pachyseris gemmae Nemenzo, 1955 Pachyseris involuta (Studer, 1877) Pachyseris rugosa (Lamarck, 1801) Pachyseris speciosa (Dana, 1846) Family Fungiidae Dana, 1846 Genus Cycloseris Milne Edwards and Haime, 1849 Cycloseris colini Veron, 2000 Cycloseris costulata (Ortmann, 1889) Cycloseris curvata (Hoeksema, 1989) Cycloseris cyclolites Lamarck, 1801 Cycloseris erosa (Döderlein, 1901) Cycloseris patelliformis (Boschma, 1923) Cycloseris sinensis Milne Edwards and Haime, 1851) Cycloseris somervillei (Gardiner, 1909) Cycloseris tenuis (Dana, 1846) Cycloseris vaughani (Boschma, 1923) Genus Diaseris Diaseris fragilis Alcock, 1893 Genus Cantharellus Hoeksema and Best, 1984 Cantharellus jebbi Hoeksema, 1993 Cantharellus nuomeae Hoeksema & Best, 1984 Genus Helliofungia Wells, 1966 Heliofungia actiniformis Quoy and Gaimard, 1833 Genus Fungia Lamarck, 1801 Fungia concinna Verrill, 1864 Fungia danai Milne Edwards and Haime, 1851 Fungia fralinae Nemenzo, 1955 Fungia fungites (Linneaus, 1758) Fungia granulosa Klunzinger, 1879 Fungia gravis Nemenzo, 1955 Fungia horrida Dana, 1846 Fungia klunzingeri Döderlein, 1901 Fungia moluccensis Horst, 1919 Fungia paumotensis Stutchbury, 1833 145 Manus • M/T • Kimbe • BS • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • U • • • • • • • • • • • • • • • • • • • U • • • • • • • • U • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • U U • • • • • • Tigak • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Fungia repanda Dana, 1846 Fungia scabra Döderlein, 1901 Fungia scruposa Klunzinger, 1879 Fungia scutaria Lamarck, 1801 Fungia spinifer Claereboudt and Hoeksema, 1987 Fungia taiwanensis Hoeksema and Dai, 1991 Genus Ctenactis Verrill, 1864 Ctenactis albitentaculata Hoeksema, 1989 Ctenactis crassa (Dana, 1846) Ctenactis echinata (Pallas, 1766) Genus Herpolitha Eschscholtz, 1825 Herpolitha limax (Houttuyn, 1772) Herpolitha weberi Horst, 1921 Genus Polyphyllia Quoy and Gaimard, 1833 Polyphyllia novaehiberniae (Lesson, 1831) Polyphyllia talpina (Lamarck, 1801) Genus Sandalolitha Quelch, 1884 Sandalolitha dentata (Quelch, 1886) Sandalolitha robusta Quelch, 1886 Genus Halomitra Dana, 1846 Halomitra clavator Hoeksema, 1989 Halomitra pileus (Linnaeus, 1758) Genus Zoopilus Dana, 1864 Zoopilus echinatus Dana, 1846 Genus Lithophyllum Rehberg, 1892 Lithophyllon lobata Hoeksema, 1989 Lithophyllon mokai Hoeksema, 1989 Lithophyllon undulatum Rehberg, 1892 Genus Podabacia Milne Edwards and Haime, 1849 Podabacia crustacea (Pallas, 1766) Podabacia motuporensis Veron, 1990 Family Pectinidae Vaughan and Wells, 1943 Genus Echinophyllia Klunzinger, 1879 Echinophyllia aspera (Ellis and Solander, 1788) Echinophyllia echinata (Saville-Kent, 1871) Echinophyllia echinoporoides Veron and Pichon, 1979 Echinophyllia orpheensis Veron and Pichon, 1980 Echinophyllia patula (Hodgson and Ross, 1982) Genus Echinomorpha Veron, 2000 Echinomorpha nishihirea (Veron, 1990) Genus Oxypora Saville-Kent, 1871 Oxypora crassispinosa Nemenzo, 1979 Oxypora glabra Nemenzo, 1959 Oxypora lacera Verrill, 1864 Genus Mycedium Oken, 1815 Mycedium elephatotus (Pallas, 1766) Mycedium robokaki Moll and Best, 1984 Mycedium mancaoi Nemenzo, 1979 Genus Pectinia Oken, 1815 Pectinia alcicornis (Saville-Kent, 1871) Pectinia ayleni (Wells, 1935) Pectinia elongata Rehberg, 1892 Pectinia lactuca (Pallas, 1766) Pectinia maxima (Moll and Borel Best, 1984) Pectinia paeonia (Dana, 1846) 146 Manus • • • • • Tigak • • • • • • M/T • • • • • • Kimbe • • • • • BS • • • • • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Pectinia pygmaeus Veron, 2000 Pectinia teres Nemenzo and montecillo, 1981 Family Merulinidae Verrill, 1866 Genus Hydnophora Fischer de Waldheim, 1807 Hydnophora exesa (Pallas, 1766) Hydnophora grandis Gardiner, 1904 Hydnophora microconos (Lamarck, 1816) Hydnophora pilosa Veron, 1985 Hydnophora rigida (Dana, 1846) Genus Paraclavarina Veron, 1985 Paraclavarina triangularis (Veron & Pichon, 1980) Genus Merulina Ehrenberg, 1834 Merulina ampliata (Ellis and Solander, 1786) Merulina scabricula Dana, 1846 Genus Scapophyllia Milne Edwards and Haime, 1848 Scapophyllia cylindrica Milne Edwards and Haime, 1848 Family Dendrophylliidae Gray, 1847 Genus Turbinaria Oken, 1815 Turbinaria frondens (Dana, 1846) Turbinaria irregularis, Bernard, 1896 Turbinaria mesenterina (Lamarck, 1816) Turbinaria patula (Dana, 1846) Turbinaria peltata (Esper, 1794) Turbinaria radicalis Bernard, 1896 Turbinaria reniformis Bernard, 1896 Turbinaria stellulata (Lamarck, 1816) Family Mussidae Ortmann, 1890 Genus Blastomussa Wells, 1961 Genus Micromussa Veron, 2000 Micromussa amakusensis (Veron, 1990) Micromussa minuta (Moll and Borel-Best, 1984) Genus Acanthastrea Milne Edwards and Haime, 1848 Acanthastrea brevis Milne Edwards and Haime, 1849 Acanthastrea echinata (Dana, 1846) Acanthastrea faviaformis Veron, 2000 Acanthastrea hemprichii (Ehrenberg, 1834) Acanthastrea hillae Wells, 1955 Acanthastrea lordhowensis Veron & Pichon, 1982 Acanthastrea regularis Veron, 2000 Acanthastrea rotundoflora Chevalier, 1975 Acanthastrea subechinata Veron, 2000 Genus Lobophyllia Blainville, 1830 Lobophyllia corymbosa (Forskål, 1775) Lobophyllia dentatus Veron, 2000 Lobophyllia diminuta Veron, 1985 Lobophyllia flabelliformis Veron, 2000 Lobophyllia hataii Yabe and Sugiyama, 1936 Lobophyllia hemprichii (Ehrenberg, 1834) Lobophyllia pachysepta Chevalier, 1975 Lobophyllia robusta Yabe and Sugiyama, 1936 Lobophyllia serratus Veron, 2000 Genus Symphyllia Milne Edwards and Haime, 1848 Symphyllia agaricia Milne Edwards and Haime, 1849 Symphyllia hassi Pillai and Scheer, 1976 Symphyllia radians Milne Edwards and Haime, 1849 147 Manus U • • M/T U • Kimbe • • BS • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Tigak • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Symphyllia recta (Dana, 1846) Symphyllia valenciennesii Milne Edwards and Haime, 1849 Genus Scolymia Haime, 1852 Scolymia australis (Milne Edwards and Haime, 1849) Scolymia vitiensis Brüggemann, 1878 Genus Australomussa Veron, 1985 Australomussa rowleyensis Veron, 1985 Genus Cynarina Brüggemann, 1877 Cynarina lacrymalis (Milne Edwards and Haime, 1848) Family Faviidae Gregory, 1900 Genus Caulastrea Dana, 1846 Caulastrea curvata Wijsmann-Best, 1972 Caulastrea echinulata (Milne Edwards and Haime, 1849) Caulastrea furcata Dana, 1846 Genus Favia Oken, 1815 Favia danae Verrill, 1872 Favia favus (Forskål, 1775) Favia helianthoides Wells, 1954 Favia laxa (Klunzinger, 1879) Favia lizardensis Veron and Pichon, 1977 Favia maritima (Nemenzo, 1971) Favia marshae Veron, 2000 Favia matthai Vaughan, 1918 Favia maxima Veron, Pichon & Wijsman-Best, 1972 Favia pallida (Dana, 1846) Favia rosaria Veron, 2000 Favia rotumana (Gardiner, 1899) Favia rotundata Veron, Pichon & Wijsman-Best, 1972 Favia speciosa Dana, 1846 Favia stelligera (Dana, 1846) Favia truncatus Veron, 2000 Favia veroni Moll and Borel-Best, 1984 Genus Barabattoia Yabe and Sugiyama, 1941 Barabattoia amicorum (Milne Edwards and Haime, 1850) Barabattoia laddi (Wells, 1954) Genus Favites Link, 1807 Favites abdita (Ellis and Solander, 1786) Favites acuticulis (Ortmann, 1889) Favites bestae Veron, 2000 Favites chinensis (Verrill, 1866) Favites complanata (Ehrenberg, 1834) Favites flexuosa (Dana, 1846) Favites halicora (Ehrenberg, 1834) Favites micropentagona Veron, 2000 Favites paraflexuosa Veron, 2000 Favites pentagona (Esper, 1794) Favites russelli (Wells, 1954) Favites spinosa (Klunzinger, 1879) Favites stylifera (Yabe and Sugiyama, 1937) Favites vasta (Klunzinger, 1879) Genus Goniastrea Milne Edwards and Haime, 1848 Goniastrea aspera Verrill, 1905 Goniastrea australensis (Milne Edwards and Haime, 1857) Goniastrea deformis Veron, 1990 Goniastrea edwardsi Chevalier, 1971 148 Manus • • Tigak • • M/T • • Kimbe • • BS • • PNG • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • U • • • • • • • U U • • • • • • U • • • • • • U • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Goniastrea favulus (Dana, 1846) Goniastrea minuta Veron, 2000 Goniastrea palauensis (Yabe and Sugiyama, 1936) Goniastrea pectinata (Ehrenberg, 1834) Goniastrea ramosa Veron, 2000 Goniastrea retiformis (Lamarck, 1816) Genus Platygyra Ehrenberg, 1834 Platygyra acuta Veron, 2000 Platygyra contorta Veron, 1990 Platygyra daedalea (Ellis and Solander, 1786) Platygyra lamellina (Ehrenberg, 1834) Platygyra pini Chevalier, 1975 Platygyra ryukyuensis Yabe and Sugiyama, 1936 Platygyra sinensis (Milne Edwards and Haime, 1849) Platygyra verweyi Wijsman-Best, 1976 Platygyra yaeyemaensis Eguchi and Shirai, 1977 Genus Australogyra Veron & Pichon, 1982 Australogyra zelli (Veron & Pichon, 1977) Genus Oulophyllia Milne Edwards and Haime, 1848 Oulophyllia bennettae (Veron & Pichon, 1977) Oulophyllia crispa (Lamarck, 1816) Oulophyllia levis Nemenzo, 1959 Genus Leptoria Milne Edwards and Haime, 1848 Leptoria irregularis Veron, 1990 Leptoria phrygia (Ellis and Solander, 1786) Genus Montastrea Blainville, 1830 Montastrea annuligera (Milne Edwards and Haime, 1849) Montastrea colemani Veron, 2000 Montastrea curta (Dana, 1846) Montastrea magnistellata Chevalier, 1971 Montastrea multipunctata Hodgson, 1985 Montastrea salebrosa (Nemenzo, 1959) Montastrea valenciennesi (Milne Edwards and Haime, 1848) Genus Plesiastrea Milne Edwards and Haime, 1848 Plesiastrea versipora (Lamarck, 1816) Genus Oulastrea Milne Edwards and Haime, 1848 Oulastrea crispata (Lamarck, 1816) Genus Diploastrea Matthai, 1914 Diploastrea heliopora (Lamarck, 1816) Genus Leptastrea Milne Edwards and Haime, 1848 Leptastrea aequalis Veron, 2000 Leptastrea bewickensis Veron & Pichon, 1977 Leptastrea inaequalis Klunzinger, 1879 Leptastrea pruinosa Crossland, 1952 Leptastrea purpurea (Dana, 1846) Leptastrea transversa Klunzinger, 1879 Genus Parasimplastrea Sheppard, 1985 Genus Cyphastrea Milne Edwards and Haime, 1848 Cyphastrea agassizi (Vaughan, 1907) Cyphastrea chalcidium (Forskål, 1775) Cyphastrea decadia Moll and Best, 1984 Cyphastrea japonica Yabe and Sugiyama, 1932 Cyphastrea microphthalma (Lamarck, 1816) Cyphastrea ocellina (Dana, 1864) Cyphastrea serailia (Forskål, 1775) Genus Echinopora Lamarck, 1816 149 Manus Tigak • M/T • • • • • • • • • • • • • • • • • Kimbe • • • • BS • • • • • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Zooxanthellate Scleractinia Echinopora gemmacea Lamarck, 1816 Echinopora hirsutissima Milne Edwards and Haime, 1849 Echinopora horrida Dana, 1846 Echinopora lamellosa (Esper, 1795) Echinopora mammiformis (Nemenzo, 1959) Echinopora pacificus Veron, 1990 Echinopora taylorae (Veron, 2000) Family Trachyphyllidae Verrill, 1901 Genus Trachyphyllia Milne Edwards and Haime, 1848 Trachyphyllia geoffroyi (Audouin, 1826) Family Poritidae Gray, 1842 Genus Porites Link, 1807 Porites annae Crossland, 1952 Porites aranetai Nemenzo, 1955 Porites attenuata Nemenzo 1955 Porites australiensisVaughan, 1918 Porites cumulatus Nemenzo, 1955 Porites cylindrica Dana, 1846 Porites deformis Nemenzo, 1955 Porites densa Vaughan, 1918 Porites evermanni Vaughan, 1907 Porites flavus Veron, 2000 Porites heronensis Veron, 1985 Porites horizontalata Hoffmeister, 1925 Porites latistellata Quelch, 1886 Porites lichen Dana, 1846 Porites lobata Dana, 1846 Porites lutea Milne Edwards & Haime, 1851 Porites mayeri Vaughan, 1918 Porites monticulosa Dana, 1846 Porites murrayensis Vaughan, 1918 Porites myrmidonensis Veron, 1985 Porites negrosensis Veron, 1990 Porites nigrescens Dana, 1846 Porites rugosa Fenner & Veron, 2000 Porites rus (Forskål, 1775) Porites solida (Forskål, 1775) Porites stephensoni Crossland, 1952 Porites tuberculosa Veron, 2000 Porites vaughani Crossland, 1952 Genus Goniopora Blainville, 1830 Goniopora albiconus Veron, 2000 Goniopora burgosi Nemenzo, 1955 Goniopora columna Dana, 1846 Goniopora djiboutiensis Vaughan, 1907 Goniopora eclipsensis Veron and Pichon, 1982 Goniopora fruticosa Saville-Kent, 1893 Goniopora lobata Milne Edwards and Haime, 1860 Goniopora minor Crossland, 1952 Goniopora palmensis Veron and Pichon, 1982 Goniopora pandoraensis Veron and Pichon, 1982 Goniopora pendulus Veron, 1985 Goniopora planulata (Ehrenberg, 1834) Goniopora somaliensis Vaughan, 1907 Goniopora stokesi Milne Edwards and Haime, 1851 150 Manus • M/T • • • • • • • Kimbe • • • • • • BS • • • • • • • PNG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U • • U • U U U • • • • U Tigak • • • • • • • • • • • • • • • • • • U • • U • • • U • U • • • • • • U • • • • • • • • • • • • • • • • • • • • • • U • • • • • • • • • • U • • U • • • • • • • • • U • • • • • • • • • • U • • • • • • • • • Zooxanthellate Scleractinia Goniopora stutchburyi Wells, 1955 Goniopora tenella (Quelch, 1886) Goniopora tenuidens (Quelch, 1886) Genus Alveopora Blainville, 1830 Alveopora allingi Hoffmeister, 1925 Alveopora catalai Wells, 1968 Alveopora fenestrata (Lamarck, 1816) Alveopora marionensis Veron & Pichon, 1982 Alveopora spongiosa Dana, 1846 Alveopora tizardi Bassett-Smith, 1890 Alveopora verrilliana Dana, 1872 TOTAL Unconfirmed Manus • U • Tigak • U • M/T • U • • • • • Possible new species Acropora plating Manus Acropora branching Manus Acropora side corymbose Manus Anacropora smooth Manus Pectinia large pygmeus Manus Monitpora plate Manus • • • • • • 151 BS • PNG • • • • • • • • • • • • • • • 510 • • • • • • • 408 20 452 27 390 478 • 403 40 Kimbe • • • • • • • • The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy’s Pacific Island Countries Program supports marine and terrestrial conservation projects in Melanesia and Micronesia including Papua New Guinea, Solomon Islands, Republic of Palau, Federated States of Micronesia, Republic of the Marshall Islands, U.S. Territory of Guam and the Commonwealth of the Northern Mariana Islands. Indo-Pacific Resource Centre 51 Edmondstone Street South Brisbane, QLD 4101 Australia Melanesia Program Office Suite 7 Monian Haus-Nita Street Tabari Place- Boroko Papua New Guinea