Academia.eduAcademia.edu
Arthropods Vol. 12, No. 4, 1 December 2023 International Academy of Ecology and Environmental Sciences Arthropods ISSN 2224-4255 Volume 12, Number 4, 1 December 2023 Editor-in-Chief WenJun Zhang Sun Yat-sen University, China International Academy of Ecology and Environmental Sciences, Hong Kong E-mail: zhwj@mail.sysu.edu.cn, wjzhang@iaees.org Editorial Board Andre Bianconi (Sao Paulo State University (Unesp), Brazil) Anton Brancelj (National Institute of Biology, Slovenia) A. K. Dhawan (Punjab Agricultural University, India) John A. Fornshell (United States National Museum of Natural History, Smithsonian Institution, USA) Oscar E. Liburd (University of Florida, USA) Ivana Karanovic (Hanyang University, Korea) Lev V. Nedorezov (Russian Academy of Sciences, Russia) Enoch A Osekre (KN University of Science and Technology, Ghana) Rajinder Peshin (Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, India) Michael Stout (Louisiana State University Agricultural Center, USA) Eugeny S. Sugonyaev (Russian Academy of Sciences, Russia) Editorial Office: arthropods@iaees.org Publisher: International Academy of Ecology and Environmental Sciences Website: http://www.iaees.org/ E-mail: office@iaees.org Arthropods, 2023, 12(4): 171-192 Article Morphological description of the larval stages of Alpheus lobidens De Haan, 1850 (Crustacea: Decapoda: Caridea: Alpheidae) reared under laboratory conditions Farhana S. Ghory Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan E-mail: farhanaghory@yahoo.com Received 17 March 2023; Accepted 20 April 2023; Published online 5 May 2023; Published 1 December 2023 Abstract The Alpheus lobidens is a widely distributed snapping shrimp that lives on soft and hard bottoms in warm coastal environments (Hamdy and Dorgham, 2018). The berried female of Alpheus lobidens De Haan, 1850 was collected from Buleji (Karachi, Pakistan) and kept in the laboratory. The larvae hatched after 2 days and existed within 7 days at room temperature 23oC - 28oC in filtered seawater with a salinity of 37 - 40 parts per thousand and a pH of 7.5 - 7.8. Artemia nauplii were used to feed the larvae. Two zoeal stages are described, illustrated and compared with those of its congener’s larvae known previously. Keywords Crustacea; Caridea; Alpheidae; Alpheus lobidens larvae. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: arthropods@iaees.org Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction In coastal tropical and subtropical regions, snapping shrimps of the genus Alpheus Fabricius, 1798 inhabit soft and hard bottoms within variable depths in estuaries, mangroves, and coral reefs (Anker et al., 2006). Different types of benthic animals were associated with some Alpheus species (e.g. Anker et al., 2008; Purohit et al., 2014). The global distribution of A lobidens indicates that it can live in diverse ecological environments, including changes in temperature, salinity, water flow, food availability, and other factors (Hamdy and Dorgham, 2018). Its representative exhibits lessepsian migration (Burukovsky et al., 2021). Many inshore marine meroplankton larvae are of the Alpheidae family, but little is known about the larvae. The larvae of alpheid shrimp are poorly studied in Pakistan and its neighbouring waters, despite the fact that many species have been recorded here (Kazmi and Kazmi, 2012). We describe and illustrate in detail the zoeal stages of A. lobidens here. Furthermore, we compare these stages with those of other congeneric species. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 172 2 Materials and Methods 2.1 Study area An ovigerous female of Alpheus lobidens De Haan, 1850 was collected from Buleji near Karachi (Long. 66º49’E, Lat. 24º59’N). It is a rocky ledge located 30 kilometers away from Karachi (Fig. 1). A planktonic sample was taken from Manora Channel (Long. 66o59’E, Lat. 24o 48’N) on 1995 (Fig. 2). Two stations, A and B, 5 kilometers apart were sampled. The samples included four 10 minute tows using Bango net 300 micron mesh size equipped with a flow meter at shallow depth 15’- 20’. Fig. 1 Map showing collection site of Buleji. Fig. 2 Map showing sampling sites (solid circles) of plankton samples. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 173 2.2 Methodology Meteorological parameters, air and water temperature (oC), salinity (o%) , dissolved oxygen (ml/1), pH and tide (m) were noted. We kept the ovigerous female in unfiltered seawater containing 37 - 40 ppt salinity under laboratory conditions at room temperature between 23oC and 28oC until hatching occurred. A total of five beakers were used to separate and divide the newly hatched larvae (ten in each beaker, 500 ml) filled by filtered seawater of the alike salinity and temperature. The mortality rate and next developmental stage of each beaker were assessed daily. The exuviae were preserved and the live larvae were transferred to clean beakers filled with freshly filtered seawater, and at the same time offered newly hatched Artemia nauplii as food. 2.3 Fixation and preservation of material Temporary slides of each stage were made using glycerin and 5% formalin (3 : 1). Measurements of each stage were made with the aid of a micrometer. The total length (TL) was determined by adding the carapace length (CL) (measured from the tip of the rostral spine to the midposterior margin of the telson). Measurements are in millimeter (mm). 2.4 Microscopic observations The specimens were dissected through tungsten needle by using a Nikon binocular microscope (4 x 10/ 21 magnification). Olympus BH2 microscope (1.25 x 10, 20 and 40 magnifications) with Nomarski Differential Interference Contrast (D/C) and camera lucida attachment. The spent female and the remaining larvae were deposited in the Marine Reference Collection and Resource Centre, University of Karachi. Fig. 3 Alpheus lobidens De Haan, 1850. 2.5 Synopsis Alpheus lobidens Tufail and Hashmi (1965) (Zoea I): 278-281 (as Alpheus crassimanus); Jang et al. (1999): 205; Yang et al. (2003) (early zoeas): 15-24. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 174 Table 1 Analyses of Alpheus lobidens De Haan, 1850, larval stages and appearance times. Stage Days Elapsed After Hatching Total Length TL ± SD (mm) Zoea I 2 days 2.59 mm ± 2.89 mm Zoea II 1 day 2.78 mm ± 2.88 mm Zoea III 1 day 2.53 mm ± 2.75 mm Zoea IV 1 day 2.62 mm ± 2.87 mm Zoea V 2 days 2.43 mm± 2.50 mm 2.6 Systematics Class: Malacostraca Order: Decapoda Infraorder: Caridea Dana, 1825 Family: Alpheidae Rafinesque, 1815 Genus: Alpheus Weber, 1795 Alpheus lobidens De Haan, 1850 (Fig. 3) 2.7 Synonymised names Alpheus lobidens De Haan, 1849: 179; Banner & Banner, 1985: 19; Chace, 1988: 34; Hayashi, 1998: 394; Naderloo & Türkay, 2012: 10; Anker & De Grave, 2016: 364. Alpheus lobidens lobidens Banner & Banner, 1974: 430; Banner & Banner, 1978: 223; Banner & Banner, 1982: 252. Alpheus lobidens polynesica Banner & Banner, 1974: 429; Banner & Banner, 1982: 256. Alpheus crassimanus Heller, 1862: 526; 1865: 170; Bate, 1888: 554; de Man, 1902: 880; Kemp, 1915: 299; Barnard, 1950: 756; Johnson, 1962: 53; Banner & Banner, 1966: 138; Johnson, 1979: 36. 2.8 Distribution Eastern and Central Mediterranean and entire Indo-Pacific: Red Sea to Hawaii, Gulf of Oman and Arabian Sea. 2.9 Habitat Typically found in the intertidal and shallow sub tidal areas, usually under rocks and large pieces of coral rubble, muddy intertidal, estuaries and mangroves areas. 3 Results 3.1 Description of the larvae 3.1.1 Zoea I (Fig. 4A – K) Diagnostic Features Carapace (Fig. 4A). - Smooth with a medio-dorsal hump; rostrum broad and distally pointed; eyes stalked. Antennule (Fig. 4B). - Peduncle 2-segmented with 4 and 4 plumodenticulate setae, respectively; endopod present in a form of long plumose seta on distal segment; outer ramus (exopod) with 5 aesthetascs and 1 seta. Antenna (Fig. 4C). - Biramous, peduncle with a distal spine on inner margin; endopod with 2 plumose setae and 1 spine; scaphocerite (exopod) 5-segmented with 2, 3, 1, 1 and 3 setae. Mandible (Fig. 4D). - Well developed. Maxillule (Fig. 4E). - Coxal endite with 2 cuspidate and 1 plumodenticulate seta; basial endite with 2 cuspidate and 1 plumodenticulate seta; endopod with 1 plumodenticulate seta. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 175 Maxilla (Fig. 4F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with 3 + 5 plumodenticulate setae; endopod with 2 plumodenticulate setae; scaphognathite with 4 setae. Maxilliped I (Fig. 4G). - Coxopod naked; basipod with 5 setae; endopod 3-segmented, distal segment with 3 plumodenticulate setae; exopod with 2 terminal and 4 subterminal plumose natatory setae. Maxilliped II (Fig. 4H). - Coxopod naked; basipod with 2 setae; endopd 4-segmented with 1, 0, 0 and 5 (4 setae + 1 spine); exopod with 2 terminal and 4 subterminal plumose natatory setae. Maxilliped III (Fig. 4I). - Coxopod broken; basipod naked; endopod 4-segmented, distal segment with 1 long strong spine with 5 simple setae; exopod 2-segmented with 2 and 4 (2 terminal and 2 subterminal) plumose natatory setae. Pereiopods I-V (Fig. 4J). - Rudimentary. Abdomen (Fig. 4A). - 6-somites. Telson (Fig. 4K). - Triangular, posterior margin with 8 pairs of long plumose setae, uropod rudimentary. Fig. 4 Alpheus lobidens De Haan, 1850. Zoea I: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G - I, maxillipeds I - III; J, pereiopods I - V; K, telson. IAEES www.iaees.org 176 Arthropods, 2023, 12(4): 171-192 3.1.2 Zoea II (Figs. 5A – 6D) Diagnostic Features Carapace (Fig. 5A). - Smooth, rostrum small in size; eyes stalked. Antennule (Fig. 5B). - Peduncle 2-segmented with 3 and 8 plumodenticulate setae, respectively; inner ramus (endopod ) with 1 seta; outer ramus (exopod) with 4 aesthetascs and 1 seta. Antenna (Fig. 5C). - Endopod with 2 plumose setae; scaphocerite with 10 setae. Mandible (Fig. 5D). - Well developed. Maxillule (Fig. 5E). - Coxal endite with 1 cuspidate and 3 plumodenticulate setae; basial endite with 2 cuspidate spines; endopod with 1 plumodenticulate seta. Maxilla (Fig.5F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with 3 + 3 plumodenticulate setae; endopod with 2 plumodenticulate setae; scaphognathite with 5 setae. Maxilliped I (Fig. 5G). - Coxopod broken; basipod with 6 setae; endopod 3-segmented with 1, 0, and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 3 subterminal setae. Maxilliped II (Fig. 5H). - Coxopod broken; basipod with 1 seta; endopd 5-segmented with 1, 0, 0, 1 and 4 (3 setae + 1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 5 subterminal setae. Maxilliped III (Fig. 5I). - Coxopod broken; basipod with 1 setae; endopod 5-segmented with 1, 0, 0, 0 and 4 (3 setae + 1 spine) plumodenticulate setae, respectively; exopod 2-segmented with 3 and 4 (2 terminal and 5 subterminal) plumose natatory setae. Pereiopods I-V (Figs. 6A-C). - Biramous; pereiopod I (Fig. 6A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal plumose natatory setae; pereiopods II-IV (Fig. 6B) rudimentary; pereiopod V (Fig. 6C) 5-segmented terminal segment ending in long strong spine with serrated tip. Abdomen (Fig. 5A). - 5-somites. Telson (Fig. 6D). - Triangular, posterior margin with 8 pairs of long plumose setae, uropod biramous; endopod naked; exopod with 6 long plumose setae. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 177 Fig. 5 Alpheus lobidens De Haan, 1850. Zoea II: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G - I, maxillipeds I - III. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 178 Fig. 6 Alpheus lobidens De Haan, 1850 . Zoea II: A - C pereiopods I - V; D, telson with uropods. 3.1.3 Zoea III (Figs. 7A – 8D) Diagnostic Features Carapace (Fig. 7A). - Smooth, rostrum small in size; eyes stalked. Antennule (Fig. 7B). - Peduncle 2-segmented with 5 and 7 plumodenticulate setae, respectively; inner ramus (endopod ) with 1 plumodenticulate setae; outer ramus (exopod) with 3 aesthetascs and plumodenticulate seta. Antenna (Fig. 7C). - Endopod with 2 plumose setae; scaphocerite with 11 setae. Mandible (Fig.7D). - Well developed. Maxillule (Fig.7E). - Coxal endite with 4 plumodenticulate setae; basial endite with 2 cuspidate spines; endopod with 1 plumodenticulate seta. Maxilla (Fig. 7F). - Coxal endite with 2 plumodenticulate setae; basial endite with 3 + 3 plumodenticulate setae; endopod with 3 plumodenticulate setae; scaphognathite with 5 setae. Maxilliped I (Fig. 7G). - Coxopod with 2 and basipod with 5 plumodenticulate setae; endopod 3-segmented with 1, 0 and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 2 subterminal plumose setae. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 179 Maxilliped II (Fig. 7H). - Coxopod broken; basipod with 3 plumodenticulate setae; endopd 5-segmented with 1, 0, 0, 1 and 4 (3 setae + 1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 5 subterminal setae. Maxilliped III (Fig. 7I). - Coxopod broken; basipod naked; endopod 5-segmented with 0, 0, 0, 2 and 3 (2 setae + 1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 4 subterminal plumose setae. Pereiopods I-V (Figs. 8A-C). - Biramous; pereiopod I (Fig. 8A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal plumose natatory setae; pereiopods II-IV (Fig. 8B) rudimentary; pereiopod V (Fig. 8C) 5-segmented terminal segment ending in long strong spine with serrated tip. Abdomen (Fig. 7A). - 5-somites. Telson (Fig. 8D). - Triangular, posterior margin with 1 pairs of spine and 7 pairs of long plumose setae, uropod biramous; endopod with 2 setae; exopod with 6 setae. Fig. 7 Alpheus lobidens De Haan, 1850. Zoea III: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G - I, maxillipeds I - III. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 180 Fig. 8 Alpheus lobidens De Haan, 1850. Zoea III: A - C pereiopods I - V; D, telson with uropods. 3.1.4 Zoea IV (Figs. 9A – 10D) Diagnostic Features Carapace (Fig. 9A). - Smooth, rostrum small in size; eyes stalked. Antennule (Fig. 9B). - Peduncle 2-segmented with 5 and 5 plumodenticulate setae, respectively; inner ramus (endopod ) with 1 plumodenticulate setae; outer ramus (exopod) with 1 aesthetascs and 2 plumodenticulate seta. Antenna (Fig. 9C). - Endopod with 2 plumose setae; scaphocerite with 13 setae. Mandible (Fig. 9D). - More developed. Maxillule (Fig. 9E). - Coxal endite with 5 plumodenticulate setae; basial endite with 2 cuspidate spines; endopod with 1 plumodenticulate seta. Maxilla (Fig. 9F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with 3 + 4 IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 181 plumodenticulate setae; endopod with 1 plumodenticulate seta; scaphognathite with 6 setae. Maxilliped I (Fig. 9G). - Basipod with 5 plumodenticulate setae; endopod 3-segmented with 1, 0 and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 2 subterminal setae. Maxilliped II (Fig. 9H). - Coxopod broken; basipod with 3 plumodenticulate setae; endopd 5-segmented with 1, 0, 0, 2, 3 and 4 (3 setae + 1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 3 subterminal setae. Maxilliped III (Fig. 9I). - Coxopod broken; basipod with 1 seta; endopod 5-segmented with 0, 0, 0, 2 and 3 (2 setae + 1spine) plumodenticulate setae, respectively; exopod with 2 terminal and 4 subterminal setae. Pereiopods I-V (Figs. 10A-C). - Biramous; pereiopod I (Fig. 10A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal plumose natatory setae; pereiopods II-IV (Fig. 10B) rudimentary; pereiopod V (Fig. 10C) 5-segmented, terminal segment ending in long strong spine with serrated tip. Abdomen (Fig. 9A). - 5- somites. Telson (Fig. 10D). - Posterior margin with 1 pairs of spines and 5 pairs of plumose setae; endopod and exopod with 7-8 setae, respectively. Fig. 9 Alpheus lobidens De Haan, 1850 . Zoea IV: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G - I, maxillipeds I - III. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 182 Fig. 10 Alpheus lobidens De Haan, 1850. Zoea IV: A - C pereiopods I - V; D, telson with uropods. 3.1.5 Zoea V (Figs. 11A – 12E) Diagnostic Features Carapace (Fig. 11A). - Smooth, rostrum small in size with pointed tip; eyes stalked. Antennule (Fig. 11B). - Peduncle 2-segmented with 5 and 8 plumodenticulate setae, respectively; inner ramus (endopod ) with 1 plumodenticulate setae; outer ramus (exopod) with 2 aesthetascs and 1 seta. Antenna (Fig. 11C). - Endopod with 2 plumose setae; scaphocerite with 8 setae. Mandible (Fig. 11D). - More developed. Maxillule (Fig. 11E). - Coxal endite with 4 plumodenticulate setae; basial endite with 2 cuspidate and 1 seta; endopod with 1 plumodenticulate seta. Maxilla (Fig. 11F). - Coxal endite with 2 plumodenticulate setae; basial endite bilobed with 4 + 4 plumodenticulate setae; endopod with 2 plumodenticulate setae; scaphognathite with 6 setae. Maxilliped I (Fig. 11G). - Coxopod broken; basipod with 5 plumodenticulate setae; endopd 3-segmented with 1,0 and 3 plumodenticulate setae, respectively; exopod with 2 terminal and 2 subterminal plumose natatory setae. Maxilliped II (Fig. 11H). - Coxopod broken; basipod with 4 plumodenticulate setae; IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 183 endopd 5-segmented with 1, 0, 0, 2 and 4 (3 setae + 1 spine) plumodenticulate setae, respectively; exopod with 4 terminal plumose natatory setae. Maxilliped III (Fig. 11I). - Coxopod broken; basipod with 1 seta; endopod 5-segmented with 0, 0, 0, 2 and 3 (2 setae + 1 spine) plumodenticulate setae, respectively; exopod with 2 terminal and 4 subterminal plumose natatory setae. Pereiopods I-V (Figs. 12A-C). - pereiopod I (Fig. 12A) with rudimentary endopod; exopod with 2 terminal and 4 subterminal setae; pereiopod II (Fig. 12B) with rudimentary endopod and exopod with 8 setae pereiopods III & IV (Fig. 12B) rudimentary; pereiopod V (Fig. 12C) 5-segmented, terminal segment ending in long strong spine with serrated tip. Abdomen (Fig. 11A). - 5-somites. Telson (Fig. 12E). - Posterior margin with 1 pairs of spine and 4 pairs of setae; endopod and exopod both with 8 setae. Fig. 11 Alpheus lobidens De Haan, 1850. Zoea V: A, entire, lateral view; B, antennule; C, antenna; D, mandible; E, maxillule; F, maxilla, G - I, maxillipeds I - III. IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 184 Fig. 12 Alpheus lobidens De Haan, 1850. Zoea V: A - D pereiopods I - V; E, telson with uropods. 4 Discussion Alpheus sp. exhibit prolonged larval development. While some species of Alpheidae shows abbreviated development. Conspecific individual livings under different environmental conditions produce larvae with vastly different developmental modes (Knowlton, 1973). Brooks and Herrick (1892) claimed that the same species in different localities may produce different types of larvae. Lebour, 1932 and Knowlton, 1973 have been described complete larval development of Alpheus macrocheles and A. heterochaelis respectively, another 23 species (A. normanni by Brooks and Herrick, 1892; A. laevis by Coutiĕre, 1899; A. pacificus and A. lottini by Gurney, 1938; Gohar and Al-Kholy, 1957; A. rapacida and A. strenuous by Prasad and Tampi, 1957, A. rapax and A. ventrosus by Al-Kholy, 1960, A. lobidens by Tufail and Hashmi, 1965 as = Alpheus crassimanus; Jang et al., 1999; A. dentipes by FernándezMuñoz, 1987; A. euphorsyne richardsoni by Yang and Kim 1996, A. brevicristatus by Yang and Kim, 1998; A. heeia by Yang and Kim, 1999; Yang et al., 2003, A. sudara by Yang et al., 2003, A. armillatus by Mossolin et al., 2006, A. albatrossaie by Yang and Kim, 2006; A. estuariensis Pires et al., 2008; Alpheus brasileiro by Pescinelli et al., 2017; Alpheus formosus and Alpheus malleator 2020; A. japonicas, A. digitalis by Yang and Kim, 2022; A. edwardsii by Ghory, 2023) failed to develop in culture attempts and so descriptions of their larval stages are incomplete. The rostrum is present in the A. lobidens (present study) and A. edwardsii, while absent in all other species. The number of setae on the maxillule coxal endite is also diversable: A. estuariensis, A. euphorosyne richardsoni, A. heeia, A. digitalis, A. japonicus and A. brevicristatus, A.albatrossae, A.edwardsii, and A. lobidens (present study), all have three, whereas in A. sudara, A. lobidens and A. heterochaelis they vary from IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 185 1 - 5. As well all A. estuariensis, A. brevicristatus, A. heterochaelis, A. heeia and A.edwardsii have the similar number of spines on the maxillule basal endite and be deficient in setae, although in A. lobidens, A. japonicus, A. digitalis, A. euphorsyne richardsoni and A. sudara have one or two supplementary setae are present. A morphological comparison shows that the first zoeal stage of A. lobidens larvae is similar to that of other Alpheus species (Table 4). Due to this similarity, specific identification may be difficult. In spite of this, there are some differences that could be useful for identification. Larvae caught from plankton are difficult to identify. Comparing larvae reared in laboratory conditions and accompanied by illustrations is the only way to accurately identify such material. Table 2 Comparison between laboratory reared zoea I of Alpheus lobidens (present study) with previously reared zoea I of same species: Zoea I. Characters A. lobidens A. Present study lobidens Tufail & Hashmi A. lobidens Yang & A. lobidens Kim (2002) Yang et al. (2003) (1965) present present absent absent 2-segmented not mentioned unsegmented unsegmented present in a form of lobe long plumose seta present not mentioned long plumose seta exopod 5 aesthetascs + 1 seta 2 setae 3 aesthetascs 3 aesthetascs Antenna: Unsegmented endopod setae + 1 spine setae not mentioned seta and 1 spine exopod 5-segmented with 10 unsegmented with 8 6-segmented with 11 6-segmented with 11 setae setae setae setae coxalendite 3 setae not mentioned 2 setae 4 setae basialendite 2 spines + 1 seta not mentioned 2 setae + 2 spines 4 setae 4 setae 12 setae 3 - 5 setae 5 setae coxopod without setae not mentioned not mentioned 1 seta Basipod 5 setae 3 setae not mentioned 7 setae Endopod 3 setae 4 setae not mentioned 4 setae Rostrum Antennule: peduncle endopod with 2 like 2-segmented endopod present in a form of with 2 unsegmented with 1 Maxillule: setae Maxilla: setae scaphognathite Maxilliped I: setae Maxilliped II: setae 5-segmented with 5-segmented with 1, 0, endopod 0 and 5 setae not mentioned 4-segmented Maxilliped III: developed underdeveloped not mentioned IAEES 1, 0, 1, 3 setae developed www.iaees.org Arthropods, 2023, 12(4): 171-192 186 setae basipod endopod without setae not mentioned not mentioned 1 seta 4-segmented with 0, 0, not mentioned not mentioned 4-segmented with 0, 0, 0, 6 setae 2, 2 setae Telson: setae posterior margin 7 pairs 7 pairs 8 pairs 8 pairs Table 3 Comparison between laboratory reared zoea II – IV and planktonic caught zoea II of Alpheus lobidens. Zoea II. Characters A. lobidens A. A. lobidens lobidens Present study, Present lab. reared planktonic study, Yang et al. (2003) Antennule: setae 2-segmented 2-segmented 2-segmented with 3, 8 setae with 3, 5 setae with 3, 5 setae 4 aesthetascs + 1 seta 2 aesthetascs + 1 seta not mentioned 2 setae 2 setae 3 setae 2 setae 1 + 2 setae 3 setae 3-segmented with 1, 0, 3 3-segmented with 0 ,0, 3 unsegmented with 3 setae endopod setae setae exopod 4 setae 5 setae 4 setae 5-segmented with 1, 0, 0, 1, 4 3-segmented with 0, 2, 3 5-segmented with 1, 0, 0, 1, 3 endopod setae setae setae exopod 7 setae 4 setae not mentioned basipod 1 seta setae absent not mentioned endopod 5-segmented with 1, 0, 0, 0, 4 5-segmented with 1, 0, 0, 1, 3 5-segmented with 0, 0, 0, 2, 2 setae setae setae developed developed underdeveloped peduncle exopod Maxillule: setae basial endite Maxilla: setae endopod Maxilliped I: setae Maxilliped II: setae Maxilliped III: setae Telson: uropod IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 187 Zoea III: Characters A. lobidens Present study, lab. reared A. lobidens Yang et al. (2003) Antennule: setae 2-segmented 2-segmented with 5, 7 setae with 6, 7 setae coxal endite 4 setae 6 setae Basial endite 2 setae 4 setae basial endites 3 + 3 setae 4 + 5 setae scaphognathite 5 setae 7 setae coxopod 2 setae 1 seta basipod 5 setae 7 setae endopod 3-segmented with 1, 0, 3 unsegmented with 3 setae peduncle Maxillule: setae Maxilla: setae Maxilliped I: setae setae exopod 4 setae 4 setae basipod without setae 1 seta endopod 5-segmented with 1, 0, 0, 0, 4 5-segmented with 0, 0, 0, 2, 2 setae setae 8 pairs setae 7 pairs setae 2 setae without setae Maxilliped III: setae Telson: posterior margin Uropod: endopod IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 188 Zoea IV: Characters A. lobidens present study, lab. reared A. lobidens Yang et al. (2003) Antennule: setae 2-segmented 2-segmented with 5, 5 setae with 6, 10 setae coxal endite 5 setae 6 setae basial endite 2 setae 4 setae basial endite 3 + 4 setae 5 + 5 setae endopod 1 seta 3 setae scaphognathite 6 setae 7 setae coxopod 2 setae 1 seta basipod 5 setae 8 setae endopod 3-segmented with 1, 0, 3 unsegmented with 4 setae peduncle Maxillule: setae Maxilla: setae Maxilliped I: setae setae Maxilliped II: setae basipod 3 setae 4 setae without setae 1 seta 7 - 8 setae 11 - 12 setae Maxilliped III: setae basipod Telson: setae uropod endopod and exopod IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 189 Table 4 Comparison of morphological features of first zoeal stage of 11 species belonging to the Alpheidae species (after Ghory, 2023): Zoea I. Characters A.lobiden A.hetero A. A.brevicr A.digitalis A.heeia s, chaelis euphosyne istatus Yang Yang Present Knowlto Richardson Yang study n (1973) i Kim Yang & & & & A.japonicu A.obidens A.sudar A.albatr A.estuari A.edwar s Yang et al. a Yang ossae ensis dsii, (2003) et Yang & Pires Kim al. (2006) (2008) Kim Kim Yang (1998) (1999) Kim (2002) & al. (2003) (1998) et Ghory, (2023) Kim (1996) present absent absent absent Absent absent absent absent absent absent absent present Peduncle 2- unsegme unsegmente unsegme Unsegmen Unsegme unsegment unsegment unsegm unsegme unsegme 3- segment segmente nted d nted ted nted ed ed ented nted nted segmente Rostrum Antennule d d Outer 5 3 3 3 3 3 3 3 3 4 4 1 flagellum aesthetas aesthetas aesthetascs aesthetas aesthetasc aesthetas aesthetascs aesthetascs aesthet aesthetas aesthetas aesthetas cs cs cs s cs ascs cs + 1 cs cs + 1 + 1 seta Antenna seta 4 5 4 3 5 5 4 6 6 seta 5 4 Distal unsegme nted segment Exopodite 10 setae 11 setae 11 setae 11 setae 11 setae 11 setae 11 setae 11 setae 11 11 setae 11 setae 11 setae setae 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta 1 seta Basal 2 spines 2 spines 2 spines + 2 spines 2 spines + 2 spines 2 spines + 2 spines + 1 spine 2 spines 2 spines 2 spines endite + 2 setae 2 setae + + 3 setae 3 setae MaxilluleE ndopodite 1 seta 1 seta 1 seta 2 setae Coxalendite 3 setae 1 seta 3 + 1 seta 3 setae 5 setae 3 setae 3 setae 2 setae 4 2 setae 3 setae setae Maxilla 4 setae Scaphognat 8-10 5 setae 5 setae 5 setae 5 setae 5 setae 5 setae 5 setae 5 setae 5 setae 5 setae setae hite Maxilliped 5- 4- 4- Incomple 4- 4- 3- 4- 4- 3- 4- 5- II:Endopod segmente segmente segmented te segmented segmente segmented segmented segmen segment segmente segmente segment d d ted ed d d Telson 8 pairs 7 pairs 7 pairs 7 pairs 7 pairs 7 pairs IAEES 3 segments 7 pairs 7 pairs d 7 pairs 7 pairs 7 pairs 7 pairs www.iaees.org Arthropods, 2023, 12(4): 171-192 190 References Al-Kholy AA. 1960. Larvae of some macruran Crustacea (from the Red Sea). Publications of Marine Biology Stn. Al Ghardaqa, 11: 73-78 Anker A, Ahyong ST. Noel PY, Palmer AR. 2006. Morphological phylogeny of alpheid shrimps: parallel preadaptation and the origin of a key morphological innovation, the snapping claw. Evolution, 60: 25072528 Anker A, De Grave S. 2016. An updated and annotated checklist of marine and brackish caridean shrimps of Singapore (Crustacea: Decapoda). Raffles Bulletin of Zoology, 34: 343-454 Anker A, Hurt C, Knowlton N. 2008. Revision of the Alpheus formosus Gibbes, 1850 complex, with redescription of A. formosus and description of a new species from the tropical western Atlantic (Crustacea: Decapoda: Alpheidae). Zootaxa, 1707: 1-22 Banner AH, Banner DM. 1966. The alpheid shrimp of Thailand. The Siam Society Monograph Series, 3: 1168 Banner AH, Banner D M. 1974. Contributions to the knowledge of the alpheid shrimp of the Pacific Ocean Part XVII. Additional notes on the Hawaiian alpheids: new species, subspecies, and some nomenclatorial changes. Pacific Science, 28: 423-437 Banner DM, Banner AH. 1982. The alpheid shrimp of Australia. Part III: The remaining alpheids, principally the genus Alpheus and the family Ogyrididae. Records of the Australian Museum, 34: 1-357 Banner DM, Banner AH. 1985. The alpheid shrimp of Indonesia, based upon J. G. De Man's The Decapoda of the Siboga Expedition, Part II. Family Alpheidae (1911). Marine Research in Indonesia, 25: 1-79 Banner DM, Banner AH. 1978. Annotated checklist of alpheid and ogyridid shrimp from the Philippine Archipelago and the South China Sea. Micronesica, 14 (2): 215-257 Brooks WK, Herrick FH. 1892. The embryology and metamorphosis of the Macroura. Series: Memoirs of the National Academy of Sciences, 5: 321-576 Burukovsky RN, Ansari Z, Maghsoodlou A. 2021. Biology of the Shrimp Alpheus lobidens De Haan 1849 (Decapoda: Alpheidae) from the littoral of the Makran Coast, Gulf of Oman, the Arabian Sea. Environmental Science, Biology Bulletin, 48( Suppl. 1): S58-S68 Chace FA Jr. 1988. The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition, 19071910, Part 5: Family Alpheidae. Smithsonian Contributions of Zoology, 466: 1-99 Coutiĕre H. 1899. Les "Alpheidae" morphologie externe et interne, formes larvaires, bionomie. Annales des sciences naturelles. Zoology. 9: 1-56 De Haan W. 1849. Crustacea. In: Fauna Japonica, sive Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava imperium tenent, suscepto, annis 1823-1830 collegit, notis, observationibus et adumbrationibus illustravit P. F. de Siebold. Conjunctis studiis C. J. Temminck et H. Schlegel pro Fertebratis atque W. de Haan pro Invertebratis elaborata Regis aupicus edita. Decas FI. 165-196, Lugduni- Batavorum, Leiden, Netherlands Fernández-Muñoz R, García-Raso JE. 1987. Study of a population of Alpheus dentipes Guerin, 1832 from calcareous bottoms in the southern Spain. Investigaciones Pesqueras, 51(Suppl. 1): 343-359 Ghory FS. 2023. Morphological study of laboratory reared first and second zoeal stages of Alpheus edwarsii (Audouim, 1826)(Crustacea: Decapoda: Caridea: Alpheidae). Arthropods, 12(1): 69-77 Gohar HAF, Al-Kholy AA. 1957. The larvae of four decapod Crustacea (from the Red Sea). Publications of the Marine Biological Station, Al Ghardaqa, 9: 177-2 IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 191 Gurney R. 1938. The larvae of the decapod Crustacea. Palaemonidae and Alpheidae. Great Barrier Reef Exped. Report, 6(1): 1-60 Hamdy R, Dorgham M. 2018. Alpheus lobidens De Haan, 1849 (Decapoda: Alpheidae) as a new record to the Egyptian Mediterranean Coast. Egyptian Journal of Aquatic Biology & Fisheries, 22(5): 473-482 Hayashi KI. 1998. Prawns, shrimps and lobsters from Japan (81). Family Alpheidae - Genus Alpheus. Aquabiology, 118: 390-395 Heller C. 1862. Neue Crustaceen, gesammelt wahrend der Weltumseglung der k. k. Fregatte Novara. Zweiter vorlaufiger Bericht. Ferhandlungen des Kaiserlich-koniglichen Zoologischbotanischen Gesellschaft in Wien, 12: 519-528 Jang JJ, Sheen JH, Shy JY, Yu HP. 1999. Morphological observation on the development of larval Alpheus lobidens (Crustacea: Decapoda) reared in the laboratory. The Annual Meeting of the Fishery Society of Taiwan, Kaohsiung, Taiwan, China Johnson DS. 1962. A synopsis of the Decapoda Caridea and Stenopodidea of Singapore, with notes on their distribution and a key to the genera of Caridea occurring in Malaysian waters. Bulletin of the National Museum Singapore, 30: 44-79 Johnson DS. 1979. Prawns of the Malacca Straits and Singapore waters. Journal of the Marine Biological Association of India, 18: 1-54 Kazmi QB, Kazmi MA. 2012. Biodiversity and Biogeography of Caridean Shrimps of Pakistan. MRC and HEC Publication Knowlton RE. 1973. Larval development of the snapping shrimp Alpheus heterochaelis Say, reared in the laboratory. Journal of Natural History, 7: 273-306 Lebour MV. 1932. The larval stages of the Plymouth Caridea. IV. The Alpheidae. Proceedings of the Zoological Society of London, 463-469 Mossolin EC, Shimizu RM, Bueno SLS. 2006. Population Structure of Alpheus Armillatus (Decapoda: Alpheidae) in São Sebastião and Ilhabela, Southeastern Brazil. Journal of Crustacean Biology, 26(1): 48-54 Naderloo R, Turkay M. 2012. Decapod crustaceans of the littoral and shallow sublittoral Iranian coast of the Persian Gulf: faunistics, biodiversity and zoogeography. Zootaxa, 3374(1): 1-67 Pasinatto K, Mantelatto FL, Terossi M. 2020. First zoeal stage of the snapping shrimps Alpheus formosus Gibbes, 1850 and Alpheus malleator Dana, 1852 (Caridea: Alpheidae), with new characters to the genus. Zootaxa, 4820(3) Pescinelli RA, João AFP, Fernando LM, Rogério CC. 2017. Morphological description of early zoeal stages of Alpheus brasileiro Anker, 2012 reared in the laboratory, including a revision of the larval morphology of the first zoeal stage of the genus Alpheus Fabricius, 1798 (Caridea: Alpheidae). Zootaxa, 4269(2): 265-276 Pires MAB, Abrunhosa FA, Maciel CR. 2008. Early larval development in the laboratory of Alpheus estuariensis (Crustacea: Caridea) from the Amazon Region. Revista Brasileira de Zoologia, 25: 199-205 Prasad RR, Tampi PRS. 1957. Notes on some decapod larvae. Journal of the Zoological Society of India, 9(1): 22-39 Purohit B, Saini D, Soni GM, Trivedi JN, Vachhrajani KD. 2014. First record of two species of snapping shrimp of genus Alpheus from Gujarat. Marine Biological association of India. Marine Ecosystem: Challenges and Opportunities. 163-164, Kochi, India Tufail M, Hashmi, SS. 1965. A contribution to the biology and larval development of the pistol shrimp. Alpheus crassimanus. Pakistan Journal Science and Industrial Research, 7(4): 278-281 IAEES www.iaees.org Arthropods, 2023, 12(4): 171-192 192 Yang HJ, Kim CH. 1996. Zoeal stages of Alpheus euphorosyne richardsoni Yaldwyne, 1971 (Decapoda: Macrura: Alpheidae) reared in the laboratory. Korean Journal of Zoology, 39: 106-114 Yang HJ, Kim CH. 1998. Zoeal stages of Alpheus brevicristatus De Haan, 1849 (Decapoda: Macrura: Alpheidae) with a key to the first zoeal larvae of three Alpheus Species. Korean Journal of Biological Science, 2: 187-193 Yang HJ, Kim CH. 1999. The early zoeal stages of Alpheus heeia Banner & Banner, 1975 reared in the laboratory (Decapoda: Caridea: Alpheidae). Crustaceana, 72(1): 25-36 Yang HJ, Kim CH. 2002. Early zoeas of two snapping shrimps Alpheus digitalis De Haan, 1850 and Alpheus japonicus Miers, 1879 (Decapoda: Caridea: Alpheidae) with notes on the larval characters of the Alpheidae. Korean Journal of Biological Science, 6: 95-105 Yang HJ, Kim W. 2006. First zoeas of Alpheus albatrossae (Decapoda: Caridea: Alpheidae) hatched in the laboratory. Korean Journal of Biological Sciences, 22(2): 189-194 Yang HJ, Kim MJ, Kim CH. 2003. Early zoeas of Alpheus lobidens De Haan, 1850 and Alpheus sudara Banner and Banner, 1996 (Decapoda: Caridea: Alpheidae) reared in the laboratory. Animal Cells and Systems, 7(1): 15-24 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 Article Biodiversity of the spider (Arachnida: Araneae) fauna of Tamil Nadu, India Rajendra Singh Department of Zoology, Deendayal Upadhyaya University of Gorakhpur, Gorakhpur, India E-mail: rsinghgpu@gmail.com; ORCID ID: 0000-0002-7296-9860 Received 29 May 2023; Accepted 10 July 2023; Published online 20 July 2023; Published 1 December 2023 Abstract In this article, an updated catalogue of spider diversity in the Tamil Nadu state of India is presented. A total of 547 species of spiders described under 257 genera representing to 46 families are enlisted that have been described and/or recorded from 33 out of 38 districts of Tamil Nadu, India. Maximum species diversity of spiders was observed in Nilgiris (205 species, 118 genera, 38 families); Salem (168 species, 109 genera, 30 families), Coimbatore (156 species, 92 genera, 27 families); Chennai (131 species, 83 genera, 28 families); Chengalpattu (117 species, 86 genera, 26 families); Kanniyakumari (75 species, 57 genera, 16 families); Dindigul (76 species, 54 genera, 23 families); Theni (61 species, 45 genera, 18 families); Virudhunagar (57 species, 37 genera, 16 families); Thiruvallur (55 species, 43 genera, 15 families) districts and 1-50 species in other districts. Among the families, Salticidae is the most abundant family which comprises 100 species belonging to 59 genera and is distributed in 25 districts of Tamil Nadu followed by Araneidae (77 species, 26 genera, 26 districts), Thomisidae (39 species, 23 genera, 20 districts), Lycosidae (35 species, 10 genera, 20 districts), Theriidae (35 species, 20 genera, 18 districts), Sparassidae (27 species, 6 genera, 23 districts), and Tetragnathidae (25 species, 4 genera, 21 districts). Representation of other families is moderate (10-22 species) to poor (1-9 species). Ten families are represented by single species while 7 families are represented by only 2 species and are distributed in only 1-3 districts. Interestingly, Mimetidae is represented by only 2 species belonging to different genera but is distributed in 20 districts while Eresidae contains only 3 species of a single genus but is also distributed in 20 districts. There is no spider record in 5 districts of Tamil Nadu. Some of the national parks and wildlife sanctuaries, forest areas, agricultural fields, human dwellings etc. particularly in terai region of West Bengal still await intensive and extensive survey programmes to record a near complete spider fauna. Keywords catalogue; faunal distribution; India; spiders; Tamil Nadu. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: arthropods@iaees.org Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences IAEES www.iaees.org 194 Arthropods, 2023, 12(4): 193-250 1 Introduction The spiders (Arthropoda: Chelicerata: Arachnida: Araneae) are an exceedingly precious component of the earth’s ecosystem being predatory consuming mostly insects keeping their population under check and hardly pose any danger to humans (Nyffeler and Birkhofer, 2017). They also serve as ecological indicators owing to their extreme sensitivity against their habitat disturbances (Stojanowska et al., 2020). The order Araneae ranks sixth (51,229 species in 4,329 genera belonging to 132 families, World Spider Catalog, 2023) after the five largest insect orders (Coleoptera, Lepidoptera, Hymenoptera, Diptera, Hemiptera) in terms of species diversity. Despite having very rich biodiversity and a tropical climate with biodiversity hotspots, only 2,344 species described under 596 genera comprising 65 families are recorded in India among which several species seem to be misidentified (Singh and Singh, 2021a). Caleb and Sankaran (2023) listed only 1,940 valid species belonging to 492 genera in 61 families in India. Araneological studies in Tamil Nadu date back to Walckenaer (1837) who described a single species of a wolf spider Lycosa indagatrix from unknown place and Butler (1873) who described an orb-weaver spider, Gasteracantha sororna from Chennai. Later on, Simon (1884a, b, 1885a, b, 1892, 1895a, b, c, 1900a, b) described and recorded 39 species of spiders from Chennai, Coimbatore, Dindigul, Madurai, Nilgiris, Ramanathapuram, Tiruchirappalli and Vellore districts. At the end of nineteenth century and in the beginning of twentieth century, Pocock (1899a, b, 1900, 1901) and Simon (1901, 1902, 1905, 1906a, b) described/recorded at least 45 species and 60 species of spiders, respectively, from different districts of Tamil Nadu. Thereafter, Narayan (1915) described/recorded 4 species of jumping of spiders from Chennai; Gravely (1915, 1921, 1924, 1931, 1935) described/recorded 29 species; Sherriffs (1919, 1927, 1928, 1929, 1931) described/recorded at least 77 species and Reimoser (1934) described/recorded 45 species of spiders from different districts of Tamil Nadu. Then, after almost four decades decades, between the years 1971 to 1999, several workers have extensively and intensively studied the spider fauna of Tamil Nadu and described and/or recorded hundreds of species from different locations in the state (Tikader, 1971, 1977, 1980, 1981, 1982; Brignoli, 1973, 1976, 1980; Platnick. and Shadab, 1974; Wanless, 1978, 1979, 1981; Tikader and Malhotra, 1980; Tikader and Bal, 1981; Levi, 1982; Raven, 1986; Sethi and Tikader, 1988; Kraus and Kraus, 1989; Tikader and Sethi, 1990; Jocqué, 1991; Majumder and Tikader, 1991; Prószyński, 1992a, b; Baehr and Baehr, 1993; Coyle, 1995; Ganesh Kumar and Velusamy, 1996; Ganesh Kumar and Mohanasundaram, 1998; Ganesh Kumar et al., 1999; Sivaperuman and Thiyakesan, 1999; Venkatraman and Kapoor, 1999). Karthikeyani et al. (2017a) were the first to compile the available data till the year 2015 and prepared an annotated checklist of the spider fauna of Tamil Nadu listing 226 species belonging to 120 genera representing 33 families. Subsequently, Caleb and Karthikeyani (2022) listed 283 species belonging to 158 genera representing 33 families without giving their distribution and references and some of the species were described from Puducherry (Indian Territory) and not from Tamil Nadu, for example, Gamasomorpha clypeolaria Simon, 1907 and Plesiophrictus linteatus (Simon, 1891). In the current decades, several workers have extensively and intensively surveyed different districts of Tamil Nadu and recorded additional hundreds of the species of spiders (Caleb, 2020a, b; Kadam and Rajkumar, 2020; Sugumaran et al., 2020; Gupta et al., 2021; Sen and Sureshan, 2021, 2022; Veeramani et al., 2021, 2023; Devika et al., 2022; Gokul et al., 2022; Huber, 2022; Sen et al., 2022; Raja et al., 2023; Sudhin et al., 2023a, b; Sangavi et al., 2023; Veeramani et al., 2023). The perusal of the literature demonstrates that the available information on the species diversity of spiders in Tamil Nadu is scattered and several areas have either not yet been surveyed or little survey works have been conducted for understanding the faunal distribution of the spiders. The objective of this article is to bring together all these information and prepare a reliable update catalogue of all spiders described and/or recorded in Tamil Nadu. IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 195 2 Materials and Methods 2.1 Site description: Tamil Nadu state Tamil Nadu (Latitude: 11° 7’ 37.6428” N; Longitude: 78° 39’ 24.8076” E; area: 1,30,058 km2) is located on the south-eastern coast of the Indian peninsula bordered by Kerala in west, Karnataka in northwest, Andhra Pradesh in north, Bay of Bengal in east and Indian ocean in south and it encircles the union territory of Puducherry (Fig. 1). Tamil Nadu has about 906.9 km coastline. The state is characterized by the green Western Ghats (one of the hotspots of India occupying an area of about 27,069 km2) and the semi-arid Deccan Plateau in the west, the sporadic Eastern Ghats in the north, the broadest part of the Eastern Coastal Plains, and the fertile Kaveri River delta towards the Bay of Bengal in the east. The southernmost tip of the Peninsula is Kanyakumari which is the meeting point of the Lakshadweep Sea, the Gulf of Mannar, and the Indian Ocean. The western, southern, and the north-western parts of Tamil Nadu are hilly with lush green vegetation. The eastern parts are fertile coastal plains and the northern parts are a mix of hills and plains. The high peaks of the mountains of the Western Ghats including the Nilgiri, Anaimalai, and Palni hills have peaks exceeding 2,400 m in elevation. The lower peaks of the Eastern Ghats, the Javadi, Kalrayan, and Shevaroy hills, run through the centre of the region. The Kaveri, the Ponnaiyar, the Palar, the Vaigai, and the Tambraparni are the major rivers that flow eastwards from the inland hills. The total forest area of Tamil Nadu is about 22,844 km2. The central and the south-central regions are arid plains and receive less rainfall than the other regions. The annual rainfall of the state is about 945 mm of which 48% is through the northeast monsoon, and 32% through the southwest monsoon. Basically, Tamil Nadu is an agricultural state and the fifth biggest producer of rice. The Cauvery Delta region is known as the Rice Bowl of Tamil Nadu. Tamil Nadu has 14 Wildlife Sanctuaries, 14 Bird Sanctuaries, 5 National Parks, 4 Tiger Reserves, 4 elephant reserves and 3 Biosphere Reserves. The region also records high floral and faunal diversity. For administration, Tamil Nadu is divided into 38 districts (Fig. 1). Fig. 1 Number of spider species recorded and/or described from different districts of Tamil Nadu state of India. No spider record is available in black shaded districts. IAEES www.iaees.org 196 Arthropods, 2023, 12(4): 193-250 The present checklist is based on the published literature on the spiders described and/or recorded from Tamil Nadu, websites, and the World Spider Catalog (2023) up to May, 25,2023. The specific names of the spiders mentioned therein have been corrected following World Spider Catalog (2023). The checklist includes families, genera and species in alphabetical order. For each species, authority, year and distribution details of the species with are given following relevant references. Species identified only up to the generic level are excluded from this list. The apparently misidentified species are excluded from the list. For synonymy and endemism of valid spider species, World Spider Catalog (2023) should be consulted. In a few cases, the locations (district) of the spider species are corrected, particularly of those spiders that were described and/or recorded during the British period, i.e., before August 15,1947, or before the formation of new districts in the state. 3 Results and Discussion The total number of species recorded in different districts of Tamil Nadu is displayed in Fig. 1 and Table 1 and 2. In the present check list, a total of 547 species of spiders described under 257 genera representing to 46 families were recorded in 33 out of 38 districts of Tamil Nadu (Table 1). The biodiversity of spiders was recorded more in Nilgiris (205 species, 118 genera, 38 families); Salem (168 species, 109 genera, 30 families); Coimbatore (156 species, 92 genera, 27 amilies); Chennai (131 species, 83 genera, 28 families); Chengalpattu (117 species, 86 genera, 26 families); Kanniyakumari (75 species, 57 genera, 16 families); Dindigul (76 species, 54 genera, 23 families); Theni (61 species, 45 genera, 18 families); Virudhunagar (57 species, 37 genera, 16 families); and Thiruvallur (55 species, 43 genera, 15 families) districts as these districts were extensively surveyed for spider fauna by most of the research workers. In other districts, the spider fauna are limited between 1-50 species (Table 1, Fig. 1). Several species recorded in Kanyakumari (Prakash et al., 2023) and Theni (Banu and Kannagi, 2016) districts are apparently misidentified and hence not included in this list. Some of the national parks and wildlife sanctuaries, forest areas, agricultural fields, human dwellings etc., in most of the districtes of Tamil Nadu still await intensive and extensive survey programmes to record a near complete spider fauna. Among the families, Salticidae is the most abundant family which comprises 100 species belonging to 59 genera and is distributed in 25 districts of Tamil Nadu followed by Araneidae (77 species, 26 genera, 26 districts), Thomisidae (39 species, 23 genera, 20 districts), Lycosidae (35 species, 10 genera, 20 districts), Theriidae (35 species, 20 genera, 18 districts), Sparassidae (27 species, 6 genera, 23 districts), and Tetragnathidae (25 species, 4 genera, 21 districts). Representation of other families is moderate (10-22 species) to poor (1-9 species). Ten families are represented by single species while 7 families are represented by only 2 species and are distributed in only 1-3 districts. Interestingly, Mimetidae is represented by only 2 species belonging to different genera but is distributed in 20 districts while Eresidae contains only 3 species of a single genus but is also distributed in 20 districts. There is no spider record in 5 districts of Tamil Nadu (Table 1). A perusal of checklists of the spider fauna of different states of India reveals that the biodiversity of spiders in Tamil Nadu is comparatively higher (Table 3). It ranks fourth in India in the number of species; after Maharashtra, Kerala and West Bengal; first in the number of the genera and the families (Table 3). The spider fauna of Tamil Nadu overlaps the fauna of neighbouring states, such as Kerala (Singh, 2023a), Karnataka (Singh, 2022a) and Andhra Pradesh (Singh and Sharma, 2022a) and several spider species are endemic to Tamil Nadu. IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 197 Table 1 Number of species of spiders in different districts of Tamil Nadu. Districts Families Genera Species Districts Families Genera Species Ariyalur 7 15 17 Ramanathapuram 15 31 37 Chengalpattu 26 86 117 Ranipet 2 2 2 Chennai 28 83 131 Salem 30 109 168 Coimbatore 27 92 156 Sivaganga 0 0 0 Cuddalore 1 1 1 Tenkasi 1 1 1 Dharmapuri 1 1 1 Thanjavur 13 28 42 Dindigul 23 54 76 Theni 18 45 60 Erode 10 18 22 Thiruvallur 15 43 55 Kallakurichi 0 0 0 Thiruvarur 12 28 40 Kanchipuram 7 13 14 Thoothukudi 11 24 31 Kanniyakumari 16 57 75 Tiruchirappalli 15 31 35 Karur 2 2 2 Tirunelveli 16 36 50 Krishnagiri 0 0 0 Tirupathur 1 1 1 Madurai 15 31 36 Tiruppur 11 27 33 Mayiladuthurai 8 20 26 Tiruvannamalai 1 1 1 Nagapattinam 13 23 32 Vellore 5 5 6 Namakkal 4 7 9 Viluppuram 17 26 29 Nilgiris 38 118 205 Virudhunagar 16 37 57 Perambalur 0 0 0 Total 46 257 547 Pudukkottai 0 0 0 Regarding the distribution of spider species in different districts of Tamil Nadu, Plexippus paykulli (Audouin, 1826) was maximally diversified and recorded in 21 districts out of 38 districts of Tamil Nadu followed by Hyllus semicupreus (Simon, 1885) (in 20 districts); Argiope pulchella Thorell, 1881, Hersilia savignyi Lucas, 1836 and Leucauge decorata (Blackwall, 1864) (each in 19 districts); Gasteracantha geminata (Fabricius, 1798) (in 19 districts); Carrhotus viduus (C.L. Koch, 1846) (in 18 districts); Crossopriza lyoni (Blackwall, 1867), Oxyopes javanus Thorell, 1887 and Peucetia viridana (Stoliczka, 1869) (each in 17 districts); Argiope anasuja Thorell, 1887, Cyrtophora cicatrosa (Stoliczka, 1869) and Heteropoda venatoria (Linnaeus 1767) (each in 15 districts); Stegodyphus sarasinorum Karsch, 1892, Pardosa pseudoannulata (Bösenberg and Strand, 1906) and Telamonia dimidiata (Simon, 1899) (each in 14 districts); Neoscona theisi (Walckenaer, 1837) and Tetragnatha javana (Thorell, 1890) (each in 13 districts); Plexippus petersi (Karsch, 1878) (in 12 districts); Hippasa pantherina Pocock, 1899, Menemerus bivittatus (Dufour, 1831), Olios milleti (Pocock, 1901), Oxyopes birmanicus Thorell, 1887, Tetragnatha mandibulata Walckenaer, 1841 and Wadicosa fidelis (O. Pickard-Cambridge, 1872) (each in 11 districts) and other species in 1-10 districts of Tamil Nadu. Few species of spiders, particularly tarantulas (Theraphosidae), are fighting for survival due to loss of their natural habitats at the cost of developmental activities. At least four species of tarantulas are either critically endangered (Rameshwaram ornamental spider, Poecilotheria hanumavilasumica Smith, 2004; Gooty tarantula, Poecilotheria metallica Pocock, 1899), endangered (Salem ornamental spider, Poecilotheria formosa Pocock, 1899) or vulnerable (Mysore ornamental spider, Poecilotheria striata Pocock, 1895) (Siliwal et al., 2008) and warrant their conservation practices. IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 198 Table 2 Number of genera and species of different families of spiders described and/or recorded in Tamil Nadu and India. Families Recorded in Tamil Nadu Recorded in India* 1. Agelenidae 2. Araneidae 3. Barychelidae 4. Cheiracanthiidae 5. Cithaeronidae 6. Clubionidae 7. Corinnidae 8. Ctenidae 9. Deinopidae 10. Dictynidae 11. Eresidae 12. Gnaphosidae 13. Hahniidae 14. Hersiliidae 15. Idiopidae 16. Ischnothelidae 17. Linyphiidae 18. Liocranidae 19. Lycosidae 20. Mimetidae 21. Oecobiidae 22. Oonopidae 23. Oxyopidae 24. Philodromidae 25. Pholcidae 26. Pisauridae 27. Prodidomidae 28. Psechridae 29. Psilodercidae 30. Salticidae 31. Scytodidae 32. Segestriidae 33. Selenopidae 34. Sicariidae 35. Sparassidae 36. Stenochilidae 37. Symphytognathidae 38. Tetrablemmidae 39. Tetragnathidae 40. Theraphosidae 41. Theridiidae 42. Thomisidae 43. Titanoecidae 44. Trachelidae 45. Uloboridae 46. Zodariidae Total Genus 2 26 2 2 1 3 6 2 1 2 1 9 2 3 4 1 8 2 10 2 1 5 3 4 5 7 1 2 1 59 2 2 2 1 6 1 1 1 4 6 20 23 2 2 3 6 257 Species 2 77 4 10 1 9 8 4 1 2 3 14 2 5 7 1 12 11 35 2 1 12 18 7 7 9 1 4 2 100 8 2 3 1 27 1 1 1 25 15 35 39 2 2 6 9 547 Districts 5 26 6 12 1 12 5 3 3 4 20 12 2 19 8 1 6 8 21 20 3 5 22 10 19 9 3 5 1 25 9 3 3 2 23 1 2 1 21 14 18 20 2 3 14 6 33 Genus 6 38 5 2 2 3 7 5 1 5 1 26 3 3 4 2 31 5 21 2 2 14 4 7 7 9 2 2 1 106 2 3 3 1 12 1 1 5 11 11 33 42 3 3 5 10 472 Species 15 196 15 31 4 30 16 21 2 11 5 140 4 12 17 4 66 30 125 3 6 48 88 44 16 19 9 6 2 308 11 10 8 1 88 2 1 10 52 59 92 185 11 6 27 31 1887 *after Caleb and Sankaran (2023) and WSC (2023). IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 199 Table 3 Number of families, genera and species of spider fauna in different states based on published literature. States/Union Territories Families Genera Species Andaman and Nicobar Andhra Pradesh Reference 28 93 141 Singh and Singh, 2022a 33 105 197 Singh and Sharma, 2022a Arunchal Pradesh 20 56 108 Singh and Singh, 2021b Assam 27 136 266 Singh and Singh, 2021b Bihar 21 55 93 Singh and Singh, 2021c Chhattisgarh 21 68 179 Singh and Singh BB, 2021 Goa 23 128 173 Singh and Singh BB, 2022 Gujarat 41 199 533 Singh et al., 2023a Haryana 16 39 59 Singh and Singh, 2021d Himachal Pradesh 22 58 90 Singh and Singh, 2021d Jammu and Kashmir 31 148 252 Singh et al., 2023b Jharkhand 13 27 35 Singh and Singh, 2021c Karnataka 39 194 393 Singh, 2022a Kerala 43 258 606 Singh, 2023a Ladakh 14 34 42 Singh et al., 2023b Lakshadweep 10 19 20 Singh and Singh, 2022b Madhya Pradesh 30 136 336 Singh and Sharma, 2022b Maharashtra 44 247 785 Singh, 2022b Manipur 25 88 142 Singh and Singh, 2021b Meghalaya 29 119 225 Singh and Singh, 2021b Mizoram 18 48 70 Singh and Singh, 2021b Nagaland 5 6 7 Singh and Singh, 2021b Odisha 42 161 264 Singh, 2022c Puducherry 26 76 100 Singh and Singh, 2022b Punjab 19 64 109 Singh and Singh, 2021d Rajasthan 25 89 172 Singh and Singh, 2022c Sikkim 21 55 89 Singh and Singh, 2021b Tamil Nadu 46 257 547 Present study Telangana 21 71 125 Singh and Sharma, 2022c Tripura 16 53 79 Singh and Singh, 2021b Uttar Pradesh 36 146 284 Singh and Singh, 2022b Uttarakhand 45 202 373 Singh and Singh, 2022b West Bengal 39 245 567 Singh, 2023b List of species of spiders (family-wise, species-wise, district-wise) described and/or recorded from different districts of Tamil Nadu are listed below. 3.1 Family: Agelenidae 3.1.1 Agelena inda Simon, 1897 • Coimbatore (Kadam and Rajkumar, 2020); Nilgiris (Sherriffs, 1919) 3.1.2 Agelena satmila Tikader, 1970 IAEES www.iaees.org 200 Arthropods, 2023, 12(4): 193-250 • Coimbatore (Sugumaran et al., 2005); Erode (Sugumaran, 2001); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran, 2001) 3.2 Family: Araneidae 3.2.1 Acusilas coccineus Simon, 1895 • Kanyakumari (Sen et al., 2022) 3.2.2 Anepsion maritatum (O. Pickard-Cambridge, 1877) • Chengalpattu (Caleb, 2020a); Coimbatore (Kadam and Rajkumar, 2020); Kanyakumari (Sen et al., 2022) 3.2.3 Arachnura angura Tikader, 1970 • Coimbatore (Kapoor, 2008) 3.2.4 Araneus bilunifer Pocock, 1900 • Chengalpattu (Pocock, 1900; Caleb, 2020a); Kanchipuram (iNaturalists, 2023); Nilgiris (Sherriffs, 1919) 3.2.5 Araneus cavaticus (Keyserling, 1881) • Tiruppur (Gokul et al., 2022) 3.2.6 Araneus diadematus Clerck, 1757 • Coimbatore (Kapoor, 2008) 3.2.7 Araneus ellipticus (Tikader and Bal, 1981) • Salem (Sangavi et al., 2023) 3.2.8 Araneus marmoreus Clerck, 1757 • Tiruppur (Gokul et al., 2022) 3.2.9 Araneus viridisomus Gravely, 1921 • Chengalpattu (Caleb and Mathai, 2014a; Caleb, 2020a) 3.2.10. Argiope aemula (Walckenaer, 1837) • Chengalpattu (Caleb, 2020a); Coimbatore (Sugumaran et al., 2005; Kapoor, 2008); Erode (Sugumaran, 2001); Kanyakumari (Sen et al., 2022); Nilgiris (Pocock, 1900; Sugumaran, 2001); Ramanathapuram (Siliwal et al., 2008); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Theni (Karthikeyani, 2013); Thiruvallur (Caleb, 2020b); Tiruppur (Gokul et al., 2022) 3.2.11 Argiope anasuja Thorell, 1887 • Chengalpattu (Pocock, 1900; Tikader, 1982; Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Ganesh Kumar and Velusamy, 1996; Kadam and Rajkumar, 2020); Dindigul (Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nilgiris (Pocock, 1900; Sherriffs, 1919; Tikader, 1982); Ramanathapuram (Pocock, 1900; Tikader, 1982; Siliwal et al., 2008); Salem (Sangavi et al., 2023); Thanjavur (Muthukumaravel et al., 2013); Theni (Banu and Kannagi, 2016); Thiruvarur (Raja et al., 2023); Thoothukudi (Tikader, 1982); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi et al., 2013) 3.2.12 Argiope caesarea Thorell, 1897 • Salem (Sangavi et al., 2023) 3.2.13 Argiope catenulata (Doleschall 1859) • Coimbatore (Ganesh Kumar and Velusamy, 1996); Kanyakumari (Prakash et al., 2023); Madurai (Vijaya et al., 2022); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvallur (Caleb, 2020b); IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 201 Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.2.14 Argiope lobata (Pallas, 1772) • Karur (Karthikeyani et al., 2017a); Nagapattinam (Sivaperuman and Thiyakesan, 1999); Salem (Sugumaran et al., 2020) 3.2.15 Argiope luzona (Walckenaer, 1841) • Nagapattinam (Sankari and Thiyagesan, 2010) 3.2.16 Argiope pulchella Thorell, 1881 • Chengalpattu (Caleb, 2020a); Coimbatore (Sugumaran et al., 2005; Kapoor, 2008); Dindigul (Karthikeyani et al., 2017b); Erode (Sugumaran, 2001); Kanchipuram (Raj et al., 2021); Kanyakumari (Sunitha and Miranda, 2011; Sen et al., 2022); Madurai (Vijaya, 2019); Nilgiris (Dharmaraj et al., 2017); Ramanathapuram (Anand et al., 2015); Salem (Sugumaran et al., 2007; Sugumaran et al., 2020); Thanjavur (Muthukumaravel et al., 2013); Theni (Karthikeyani et al., 2017a); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Thoothukudi (Kumar et al., 2013); Tiruchirappalli (Rajendran et al., 2017); Tirunelveli (Thangamari and Vijaya, 2018); Tiruppur (Gokul et al., 2022); Virudhunagar (Vanitha et al., 2009; Vijaya et al., 2018) 3.2.17 Argiope trifasciata (Forsskål, 1775) • Kanyakumari (Prakash et al., 2023) 3.2.18 Argiope versicolor (Doleschall, 1859) • Coimbatore (Kadam and Rajkumar, 2020) 3.2.19 Bijoaraneus mitificus (Simon, 1886) • Coimbatore (Kapoor, 2008); Kanyakumari (Sen et al., 2022); Salem (Sangavi et al., 2023) 3.2.20 Chorizopes calciope (Simon, 1895) • Dindigul (Simon, 1895a) 3.2.21 Chorizopes frontalis O. Pickard-Cambridge, 1871 • Chennai (Sherriffs, 1919); Nilgiris (Simon, 1906a) 3.2.22 Chorizopes sp. • Salem (Sangavi et al., 2023) 3.2.23 Cyclosa bifida (Doleschall, 1859) • Coimbatore (Kapoor, 2008); Kanyakumari (Sen et al., 2022); Madurai (Vijaya, 2019); Nilgiris (Sherriffs, 1919); Salem (Sangavi et al., 2023) 3.2.24 Cyclosa confraga (Thorell, 1892) • Chengalpattu (Caleb, 2020a); Coimbatore (Kapoor, 2008); Nilgiris (Dharmaraj et al., 2018); Ramanathapuram (Siliwal et al., 2008); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.2.25 Cyclosa hexatuberculata Tikader, 1982 • Chengalpattu (Caleb, 2020a); Dindigul (Krishnaveni and Kandeepan, 2018); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.2.26 Cyclosa insulana (Costa, 1834) • Chengalpattu (Sherriffs, 1919); Chennai (Sherriffs, 1919); Coimbatore (Kapoor, 2008); Nilgiris (Sherriffs, IAEES www.iaees.org 202 Arthropods, 2023, 12(4): 193-250 1919); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013) 3.2.27 Cyclosa micula (Thorell, 1892) • Nilgiris (Sherriffs, 1928) 3.2.28 Cyclosa moonduensis Tikader, 1963 • Coimbatore (Kapoor, 2008); Dindigul (Krishnaveni and Kandeepan, 2018) 3.2.29 Cyclosa mulmeinensis (Thorell, 1887) • Coimbatore (Kapoor, 2008); Nilgiris (Sherriffs, 1919); Viluppuram (Simon, 1906a) 3.2.30 Cyclosa neilensis Tikader, 1977 • Chengalpattu (Caleb, 2020a); Coimbatore (Kapoor, 2008); Salem (Sangavi et al., 2023) 3.2.31 Cyclosa quinqueguttata (Thorell, 1881) • Coimbatore (Kapoor, 2008); Nilgiris (Sherriffs, 1919); Thiruvallur (Sherriffs, 1919) 3.2.32 Cyclosa simoni Tikader, 1982 • Coimbatore (Kapoor, 2008); Dindigul (Krishnaveni and Kandeepan, 2018) 3.2.33 Cyclosa spirifera Simon, 1889 • Coimbatore (Kapoor, 2008); Salem (Sangavi et al., 2023) 3.2.34 Cyrtarachne bengalensis Tikader, 1960 • Coimbatore (Sugumaran et al., 2005) 3.2.35 Cyrtophora cicatrosa (Stoliczka, 1869) • Chengalpattu (Pocock, 1900; Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Kadam and Rajkumar, 2020); Dindigul (Umarani and Umamaheswari, 2013); Erode (Karthikeyani et al., 2017a); Kanyakumari (Sen et al., 2022); Nagapattinam (Sankari and Thiyagesan, 2010); Nilgiris (Dharmaraj et al., 2018); Ramanathapuram (Siliwal et al., 2008; Anand et al., 2015); Salem (Karthikeyani et al., 2017a; Sangavi et al., 2023); Theni (Karthikeyani, 2013); Thiruvallur (Sherriffs, 1919; Caleb, 2020b); Thoothukudi (Sahayaraj and Parvathi, 2011; Kumar et al., 2013); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi et al., 2013) 3.2.36 Cyrtophora citricola (Forskal, 1775) • Chengalpattu (Pocock, 1900; Tikader, 1982); Coimbatore (Kadam and Rajkumar, 2020; Devika et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nilgiris (Dharmaraj et al., 2017); Salem (Sugumaran et al., 2020; Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023); Tiruppur (Gokul et al., 2022) 3.2.37 Cyrtophora koronadalensis Barrion and Litsinger, 1995 • Coimbatore (Sugumaran et al., 2005); Nilgiris (Sugumaran et al., 2005); Tirunelveli (Sugumaran et al., 2005); Virudhunagar (Sugumaran et al., 2005) 3.2.38 Cyrtophora moluccensis (Doleschall, 1857) • Coimbatore (Kapoor, 2008); Nilgiris (Pocock, 1900; Dharmaraj et al., 2018); Virudhunagar (Mahalakshmi and Jeyaparvathi, 2014) 3.2.39 Eriovixia excelsa (Simon, 1889) • Chengalpattu (Sherriffs, 1929; Caleb, 2020a); Chennai (Sherriffs, 1929); Coimbatore (Kapoor, 2008); Nilgiris (Simon, 1906a; Sherriffs, 1929); Ramanathapuram (Siliwal et al., 2008); Salem (Sangavi et al., IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 203 2023); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023); Tiruchirappalli (Sherriffs, 1929) 3.2.40 Eriovixia laglaizei (Simon, 1877) • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Kapoor, 2008); Kanyakumari (Sen et al., 2022); Nilgiris (Pocock, 1900; Simon, 1906a; Tikader and Bal, 1981); Salem (Sangavi et al., 2023) 3.2.41 Gasteracantha cancriformis (Linnaeus, 1758) • Chennai (Karthikeyani et al., 2017a); Coimbatore (Kapoor, 2008); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.2.42 Gasteracantha dalyi Pocock, 1900 • Coimbatore (Kapoor, 2008); Salem (Pocock, 1900; Sherriffs, 1929) 3.2.43 Gasteracantha geminata (Fabricius, 1798) • Chengalpattu (Caleb, 2020a); Chennai (Pocock, 1900; Sherriffs, 1919); Coimbatore (Reimoser, 1934; Kadam and Rajkumar, 2020); Dindigul (Umarani and Umamaheswari, 2013); Erode (Sugumaran et al., 2005); Madurai (Vijaya, 2019); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sivaperuman and Thiyakesan, 1999; Sankari et al., 2016); Nilgiris (Pocock, 1900; Tikader, 1982); Ramanathapuram (Pocock, 1900; Siliwal et al., 2008); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Shunmugavelu and Karthikeyani, 2010); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Tiruchirappalli (Rajendran et al., 2017); Tirunelveli (Pocock, 1900; Tikader, 1982); Virudhunagar (Wilson et al., 2014) 3.2.44 Gasteracantha kuhli C. L. Koch, 1837 • Coimbatore (Kapoor, 2008); Thanjavur (Muthukumaravel et al., 2013; Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.2.45 Gasteracantha remifera Butler, 1873 • Coimbatore (Kapoor, 2008); Nilgiris (Karthikeyani et al., 2017a) 3.2.46 Gasteracantha sororna Butler, 1873 • Chennai (Butler, 1873; Pocock, 1900) 3.2.47 Gasteracantha unguifera Simon, 1889 • Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi et al., 2013) 3.2.48 Guizygiella indica (Tikader and Bal, 1980) • Coimbatore (Sugumaran, 2001); Erode (Sugumaran, 2001); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013) 3.2.49 Guizygiella melanocrania (Thorell, 1887) • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919); Salem (Sangavi et al., 2023) 3.2.50 Herennia multipuncta (Doleschall, 1859) • Coimbatore (Dharmaraj et al., 2020a; Kadam and Rajkumar, 2020); Dindigul (Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022); Nilgiris (Pocock, 1900; Tikader, 1982); Salem (Sherriffs, 1919; Sugumaran et al., 2007); Tirunelveli (Sugumaran, 2001) 3.2.51 Larinia chloris Audoin (1826) • Chengalpattu (Caleb, 2020a) IAEES www.iaees.org 204 Arthropods, 2023, 12(4): 193-250 3.2.52 Larinia emertoni Gajbe and Gajbe, 2004 • Theni (Karthikeyani, 2013) 3.2.53 Larinia phthisica (L. Koch, 1871) • Kanyakumari (Sen et al., 2022) 3.2.54 Larinioides sp. • Salem (Sangavi et al., 2023) 3.2.55 Macracantha arcuata (Fabricius, 1793) • Coimbatore (Kapoor, 2008); Virudhunagar (Sugumaran et al., 2005) 3.2.56 Macracantha hasselti (C.L. Koch, 1837) • Coimbatore (Sugumaran, 2001; Kapoor, 2008); Dindigul (Umarani and Umamaheswari, 2013); Erode (Sugumaran, 2001); Madurai (Sherriffs, 1929); Nilgiris (Sugumaran, 2001); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Theni (Karthikeyani, 2013); Virudhunagar (Sugumaran, 2001) 3.2.57 Neoscona bengalensis Tikader and Bal, 1981 • Coimbatore (Kadam and Rajkumar, 2020); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b) 3.2.58 Neoscona bihumpi Patel, 1988 • Virudhunagar (Jeyaparvathi, 2014) 3.2.59 Neoscona crucifera (Lucas, 1838) • Salem (Sugumaran et al., 2020); Tiruppur (Gokul et al., 2022) 3.2.60 Neoscona enucleata (Karsch, 1879) • Nilgiris (Sherriffs, 1929) 3.2.61 Neoscona molemensis Tikader and Bal, 1981 • Chengalpattu (Caleb, 2020a); Salem (Sangavi et al., 2023) 3.2.62 Neoscona mukerjei Tikader, 1980 • Chengalpattu (Caleb, 2020a); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Kanchipuram (Raj et al., 2021; Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Ramanathapuram (Siliwal et al., 2008); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013) 3.2.63 Neoscona nautica (L. Koch, 1875) • Ariyalur (Veeramani et al., 2023); Coimbatore (Ganesh Kumar and Velusamy, 1996; Kapoor, 2008); Dindigul (Umarani and Umamaheswari, 2013); Erode (Sugumaran, 2001); Madurai (Vijaya, 2019); Mayiladuthurai (Veeramani et al., 2021); Nilgiris (Sherriffs, 1919); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.2.64 Neoscona punctigera (Doleschall, 1857) • Coimbatore (Kadam and Rajkumar, 2020); Salem (Sangavi et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013; Jeyaparvathi, 2014) 3.2.65 Neoscona theisi (Walckenaer, 1837) • Chennai (Sherriffs, 1919); Coimbatore (Sugumaran, 2001); Dindigul (Umarani and Umamaheswari, 2013); Erode (Sugumaran, 2001); Kanyakumari (Karthikeyani et al., 2017a); Madurai (Vijaya, 2019); Nilgiris (Sherriffs, 1919); Ramanathapuram (Siliwal et al., 2008); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Shunmugavelu and Karthikeyani, 2010; Banu and Kannagi, 2016); Thiruvallur (Caleb, 2020b); IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 205 Thiruvarur (Raja et al., 2023); Virudhunagar (Wilson et al., 2014) 3.2.66 Neoscona vigilans (Blackwall, 1865) • Chengalpattu (Tikader and Bal, 1981; Caleb, 2020a); Chengalpattu (Pocock, 1900); Chennai (Sherriffs, 1919); Nagapattinam (Sugumaran and Duraimurugan, 2019); Nilgiris (Pocock, 1900; Tikader and Bal, 1981); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023) 3.2.67 Neoscona yptinika Barrion and Litsinger, 1995 • Kanyakumari (Sen et al., 2022) 3.2.68 Nephila kuhli (Doleschall, 1859) • Dindigul (Umarani and Umamaheswari, 2013); Nilgiris (Tikader, 1982); Salem (Sugumaran et al., 2007); Thoothukudi (Kumar et al., 2013); Virudhunagar (Vijaya et al., 2018) 3.2.69 Nephila pilipes (Fabricius, 1793) • Chennai (Venkatraman and Kapoor, 1999); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Dindigul (Umarani and Umamaheswari, 2013; Karthikeyani et al., 2017a); Erode (Sugumaran, 2001); Kanyakumari (Sen et al., 2022); Madurai (Vijaya, 2019); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Theni (Shunmugavelu and Karthikeyani, 2010); Tirunelveli (Pocock, 1900); Virudhunagar (Sugumaran, 2001) 3.2.70 Nephilengys malabarensis (Walckenaer, 1841) • Coimbatore (Kadam and Rajkumar, 2020; Devika et al., 2022); Nilgiris (Pocock, 1900; Tikader, 1982); Ramanathapuram (Siliwal et al., 2008) 3.2.71 Parawixia dehaani (Doleschall, 1859) • Chengalpattu (Caleb, 2020a); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020) 3.2.72 Plebs mitratus (Simon, 1895) • Nilgiris (Simon, 1895a; Sherriffs, 1919) 3.2.73 Poltys nagpurensis Tikader, 1982 • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919); Thiruvallur (Caleb, 2020b) 3.2.74 Porcataraneus bengalensis (Tikader, 1975) • Nilgiris (Dharmaraj et al., 2018) 3.2.75 Thelacantha brevispina (Doleschall, 1857) • Chennai (Pocock, 1900; Sherriffs, 1919); Coimbatore (Simon, 1885a); Nilgiris (Dharmaraj et al., 2017); Ramanathapuram (Siliwal et al., 2008); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Tiruppur (Gokul et al., 2022); Vellore (iNaturalists, 2023) 3.2.76 Trichonephila clavata (L. Koch, 1878) • Ramanathapuram (Simon, 1885b) 3.3 Family: Barychelidae 3.3.1 Sason rameshwaram Siliwal and Molur, 2009 • Ramanathapuram (Siliwal and Molur, 2009; Siliwal et al., 2011a) 3.3.2 Sason robustum (Pickard-Cambridge, 1883) • Chengalpattu (Siliwal et al., 2011a); Chennai (Raven, 1986; Siliwal et al., 2011a); Ramanathapuram (Siliwal IAEES www.iaees.org 206 Arthropods, 2023, 12(4): 193-250 et al., 2008); Salem (Raven, 1986) 3.3.3 Tigidia nilgiriensis Sanap, Mirza and Siliwal, 2011 • Nilgiris (Siliwal et al., 2011b) 3.3.4 Tigidia rutilofronis Sanap, Mirza and Siliwal, 2011 • Coimbatore (Siliwal et al., 2011b; Kadam and Rajkumar, 2020) 3.4 Family: Cheiracanthiidae 3.4.1 Cheiracanthium approximatum O. Pickard-Cambridge, 1885 • Coimbatore (Sugumaran, 2001); Namakkal (Gupta et al., 2021); Salem (Sugumaran et al., 2007; Gupta et al., 2021); Virudhunagar (Sugumaran, 2001) 3.4.2 Cheiracanthium conflexum Simon, 1906 • Nilgiris (Simon, 1906a) 3.4.3 Cheiracanthium danieli Tikader, 1975 • Nilgiris (Dharmaraj et al., 2018); Salem (Sangavi et al., 2023) 3.4.4 Cheiracanthium indicum O. Pickard-Cambridge, 1874 • Chennai (Gravely, 1931); Nilgiris (Simon, 1906a) 3.4.5 Cheiracanthium insigne O. Pickard-Cambridge, 1874 • Chennai (Gravely, 1931; Majumder and Tikader, 1991) 3.4.6 Cheiracanthium melanostomum (Thorell, 1895) • Chennai (Gravely, 1931; Majumder and Tikader, 1991); Nilgiris (Dharmaraj et al., 2020b); Salem (Majumder and Tikader, 1991; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvallur (Gravely, 1931); Thiruvarur (Raja et al., 2023) 3.4.7 Cheiracanthium murinum (Thorell, 1895) • Kanyakumari (Sen et al., 2022) 3.4.8 Cheiracanthium triviale (Thorell, 1895) • Chennai (Majumder and Tikader, 1991) 3.4.9 Cheiracanthium trivittatum Simon, 1906 • Viluppuram (Simon, 1906a; Majumder and Tikader, 1991) 3.4.10 Eutichurus chingliputensis Majumder and Tikader, 1991 • Chengalpattu (Majumder and Tikader, 1991); Chennai (Majumder and Tikader, 1991) 3.5 Family: Cithaeronidae 3.5.1 Cithaeron praedonius O. Pickard-Cambridge, 1872 • Ramanathapuram (Simon, 1885b; Platnick, 1991) 3.6 Family: Clubionidae 3.6.1 Clubiona acanthocnemis Simon, 1906 • Nilgiris (Simon, 1906a; Majumder and Tikader, 1991) 3.6.2 Clubiona drassodes O. Pickard-Cambridge, 1874 • Chennai (Majumder, 2005); Coimbatore (Sugumaran, 2001); Erode (Sugumaran, 2001); Kanchipuram (Raj et al., 2021); Nilgiris (Dharmaraj et al., 2018); Salem (Majumder and Tikader, 1991); Thanjavur (Raja et al., IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 207 2023); Thiruvarur (Raja et al., 2023); Tirunelveli (Sugumaran, 2001); Virudhunagar (Vanitha et al., 2009) 3.6.3 Clubiona filicata O. Pickard-Cambridge, 1874 • Chengalpattu (Caleb, 2020a); Chennai (Gravely, 1931) 3.6.4 Clubiona japonicola Bösenberg and Strand, 1906 • Coimbatore (Ganesh Kumar and Velusamy, 1996) 3.6.5 Clubiona nilgherina Simon, 1906 • Nilgiris (Simon, 1906a; Majumder and Tikader, 1991) 3.6.6 Clubiona shillongensis Majumder and Tikader, 1991 • Chennai (Majumder and Tikader, 1991); Nilgiris (Majumder and Tikader, 1991) 3.6.7 Matidia incurvata Reimoser, 1934 • Coimbatore (Karthikeyani et al., 2017a); Dindigul (Reimoser, 1934; Majumder and Tikader, 1991) 3.6.8 Simalio castaneiceps Simon, 1906 • Nilgiris (Simon, 1906a; Majumder and Tikader, 1991) 3.6.9 Simalio percomis Simon, 1906 • Nilgiris (Simon, 1906a; Majumder and Tikader, 1991) 3.7 Family: Corinnidae 3.7.1 Aetius decollatus O. Pickard-Cambridge, 1897 • Chengalpattu (Caleb and Mathai, 2016a; Caleb, 2020a); Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991) 3.7.2 Apochinomma nitidum (Thorell, 1895) • Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991) 3.7.3 Cambalida flavipes (Gravely, 1931) • Chengalpattu (Caleb, 2020a); Nilgiris (Gravely, 1931; Tikader, 1981; Majumder and Tikader, 1991) 3.7.4 Cambalida kambakamensis (Gravely, 1931) • Chengalpattu (Majumder and Tikader, 1991) 3.7.5 Castianeira quadrimaculata Reimoser, 1934 • Theni (Reimoser, 1934) 3.7.6 Castianeira zetes Simon, 1897 • Chennai (Tikader, 1981); Salem (Sangavi et al., 2023) 3.7.7 Coenoptychus pulcher Simon, 1885 • Chengalpattu (Gravely, 1931); Chennai (Gravely, 1931; Majumder and Tikader, 1991); Ramanathapuram (Simon, 1885b; Majumder and Tikader, 1991); Salem (Sangavi et al., 2023); Theni (Reimoser, 1934; Majumder and Tikader, 1991) 3.7.8 Corinnomma severum (Thorell, 1877) • Chengalpattu (Caleb, 2020a); Salem (Sangavi et al., 2023) 3.8 Family: Ctenidae 3.8.1 Acantheis indicus Gravely, 1931 • Nilgiris (Gravely, 1931) IAEES www.iaees.org 208 Arthropods, 2023, 12(4): 193-250 3.8.2 Bowie cochinensis (Gravely, 1931) • Coimbatore (Kadam and Rajkumar, 2020); Dindigul (Reimoser, 1934) 3.8.3 Bowie indicus (Gravely, 1931) • Nilgiris (Gravely, 1931; Tikader and Malhotra, 1981) 3.8.4 Bowie thorelli F. O. Pickard-Cambridge, 1897) • Coimbatore (Reimoser, 1934); Nilgiris (Reimoser, 1934) 3.9 Family: Deinopidae 3.9.1 Asianopis liukuensis (Yin, Griswold and Yan, 2002) • Chengalpattu (Caleb and Mathai, 2014b; Lin et al., 2020); Chennai (Caleb, 2020a); Coimbatore (Kadam and Rajkumar, 2020) 3.10 Family: Dictynidae 3.10.1 Ajmonia marakata (Sherriffs, 1927) • Nilgiris (Sherriffs, 1927) 3.10.2 Dictyna turbida Simon, 1905 • Dindigul (Simon, 1905; Sherriffs, 1927); Nilgiris (Simon, 1905; Sherriffs, 1927); Tiruchirappalli (Sherriffs, 1927) 3.10.3 Dictyna sp. • Salem (Sangavi et al., 2023) 3.11 Family: Eresidae 3.11.1 Stegodyphus pacificus Pocock, 1900 • Coimbatore (Sugumaran, 2001); Erode (Sugumaran, 2001); Nilgiris (Caleb et al., 2016); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Sugumaran, 2001) 3.11.2 Stegodyphus sarasinorum Karsch, 1892 • Chengalpattu (Sherriffs, 1919; Caleb et al., 2016); Coimbatore (Kadam and Rajkumar, 2020; Devika et al., 2022); Dindigul (Karthikeyani et al., 2017b; Umarani and Umamaheswari, 2013); Kanchipuram (iNaturalists, 2023); Kanyakumari (Sunitha and Miranda, 2011); Nagapattinam (Sugumaran and Duraimurugan, 2019); Nilgiris (Sherriffs, 1919; Caleb et al., 2016); Ramanathapuram (Sherriffs, 1919; Siliwal et al., 2008); Salem (Sugumaran et al., 2020; Sangavi et al., 2023); Thanjavur (Muthukumaravel et al., 2013); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013; Caleb et al., 2016); Thiruvallur (Sherriffs, 1919; Caleb, 2020b); Thiruvarur (Raja et al., 2023) 3.11.3 Stegodyphus tibialis (O. Pickard-Cambridge, 1869) • Chengalpattu (Kraus and Kraus, 1989; Caleb et al., 2016); Chennai (Sherriffs, 1919; Phanuel, 1963); Coimbatore (Sugumaran, 2001); Erode (Sugumaran, 2001); Nilgiris (Kraus and Kraus, 1989; Caleb et al., 2016); Tirunelveli (Sugumaran, 2001); Tirupattur (Caleb et al., 2016); Vellore (Kraus and Kraus, 1989); Virudhunagar (Kraus and Kraus, 1989; Caleb et al., 2016) 3.12 Family: Gnaphosidae 3.12.1 Berlandina plumalis (O. Pickard-Cambridge, 1872) • Viluppuram (Simon, 1905) 3.12.2 Callilepis rukminiae Tikader and Gajbe, 1977 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 209 • Karur (Karthikeyani et al., 2017a); Salem (Karthikeyani et al., 2017a) 3.12.3 Drassodes heterophthalmus Simon, 1905 • Viluppuram (Simon, 1905) 3.12.4 Drassodes luridus (O. Pickard-Cambridge, 1874) • Madurai (Caleb et al., 2014a); Theni (Caleb et al., 2014a); Thiruvallur (Caleb et al., 2014a; Caleb, 2020b) 3.12.5 Drassodes sp. • Salem (Sangavi et al., 2023) 3.12.6 Gnaphosa pauriensis Tikader and Gajbe, 1977 • Theni (Karthikeyani, 2013) 3.12.7 Gnaphosa poonaensis Tikader, 1973 • Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.12.8 Micaria dives (Lucas, 1846) • Chennai (Caleb, 2017a); Thiruvallur (Caleb, 2020b) 3.12.9 Poecilochroa tridotus Caleb and Mathai, 2013 • Chengalpattu (Caleb and Mathai, 2013; Caleb, 2020a); Chennai (Caleb and Mathai, 2013) 3.12.10 Poecilochroa sp. • Salem (Sangavi et al., 2023) 3.12.11 Scotophaeus sp. • Salem (Sangavi et al., 2023) 3.12.12 Zelotes ashae Tikader and Gajbe, 1976 • Viluppuram (Karthikeyani et al., 2017a); Virudhunagar (Sugumaran, 2001) 3.12.13 Zelotes maindroni (Simon, 1905) • Viluppuram (Simon, 1905; Tikader, 1982) 3.12.14 Zelotes nilgirinus Reimoser, 1934 • Nilgiris (Reimoser, 1934) 3.12.15 Zelotes tambaramensis Caleb and Mathai, 2013 • Chengalpattu (Caleb and Mathai, 2013; Caleb, 2020a) 3.13 Family: Hahniidae 3.13.1 Hahnia mridulae Tikader, 1970 • Salem (Sangavi et al., 2023) 3.13.2 Scotospilus maindroni (Simon, 1906) • Nilgiris (Simon, 1906a) 3.14 Family: Hersiliidae 3.14.2 Hersilia savignyi Lucas, 1836 • Chengalpattu (Pocock, 1900; Caleb, 2020a); Chennai (Sherriffs, 1919; Baehr and Baehr, 1993; Caleb, 2020b); Coimbatore (Kadam and Rajkumar, 2020); Dindigul (Baehr and Baehr, 1993; Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022); Madurai (Baehr and Baehr, 1993); Mayiladuthurai (Sankari et al., IAEES www.iaees.org 210 Arthropods, 2023, 12(4): 193-250 2014); Nagapattinam (Sivaperuman and Thiyakesan, 1999; Sugumaran and Duraimurugan, 2019); Nilgiris (Pocock, 1900; Dharmaraj et al., 2017); Ramanathapuram (Siliwal et al., 2008); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvarur (Raja et al., 2023); Tiruchirappalli (Baehr and Baehr, 1993); Tirunelveli (Sugumaran, 2001); Tiruppur (Gokul et al., 2022); Vellore (Baehr and Baehr, 1993); Virudhunagar (Sugumaran, 2001; Vijaya et al., 2018) 3.14.2 Hersilia tibialis Baehr and Baehr, 1993 • Chengalpattu (Caleb, 2020a); Chennai (Karthikeyani et al., 2017a); Kanyakumari (Sen et al., 2022); Madurai (Baehr and Baehr, 1993); Nilgiris (Karthikeyani et al., 2017a); Salem (Sangavi et al., 2023); Vellore (Karthikeyani et al., 2017a) 3.14.3 Murricia triangularis Baehr and Baehr, 1993 • Chennai (Baehr and Baehr, 1993) 3.14.4 Neotama punctigera Baehr and Baehr, 1993 • Chennai (Baehr and Baehr, 1993) 3.14.5 Neotama rothorum Baehr and Baehr, 1993 • Dindigul (Baehr and Baehr, 1993) 3.15 Family: Idiopidae 3.15.1 Heligmomerus prostans Simon, 1892 • Dindigul (Simon, 1892; Siliwal et al., 2011a); Nilgiris (Pocock, 1900) 3.15.2 Idiops madrasensis (Tikader, 1977) • Chennai (Siliwal et al., 2011a); Kanyakumari (Tikader, 1977) 3.15.3 Idiops mettupalayam Ganeshkumar and Siliwal, 2013 • Coimbatore (Gupta et al., 2013) 3.15.4 Idiops sp. • Salem (Sangavi et al., 2023) 3.15.5 Scalidognathus montanus (Pocock, 1900) • Salem (Pocock, 1900; Siliwal et al., 2011a) 3.15.6 Scalidognathus nigriaraneus Sanap and Mirza, 2011 • Nilgiris (Sanap and Mirza, 2011; Siliwal et al., 2011a) 3.15.7 Scalidognathus tigerinus Sanap and Mirza, 2011 • Coimbatore (Sanap and Mirza, 2011; Siliwal et al., 2011a) 3.15.8 Titanidiops constructor (Pocock, 1900) • Chengalpattu (Pocock, 1900; Siliwal et al., 2011a; Caleb, 2020a); Salem (Pocock, 1900; Siliwal et al., 2011a); Thiruvallur (Caleb, 2020b) 3.16 Family: Ischnothelidae 3.16.1 Indothele rothi Coyle, 1995 • Dindigul (Coyle, 1995) 3.17 Family: Linyphiidae 3.17.1 Atypena formosana (Qi, 1977) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 211 • Nagapattinam (Sankari et al., 2016); Thanjavur (Jayakumar and Sankari, 2010) 3.17.2 Atypena sp. • Salem (Sangavi et al., 2023) 3.17.3 Caviphantes pseudosaxetorum Wunderlich, 1979 • Dindigul (Tanasevitch, 2011); Nilgiris (Tanasevitch, 2011) 3.17.4 Indophantes pallidus Saaristo and Tanasevitch, 2003 • Nilgiris (Saaristo and Tanasevitch, 2003) 3.17.5 Neriene sp. • Salem (Sangavi et al., 2023) 3.17.6 Oedothorax cunur Tanasevitch, 2015 • Nilgiris (Tanasevitch, 2015) 3.17.7 Oedothorax kodaikanal Tanasevitch, 2015 • Dindigul (Tanasevitch, 2015) 3.17.8 Oedothorax paracymbialis Tanasevitch, 2015 • Nilgiris (Tanasevitch, 2015) 3.17.9 Oedothorax rusticus Tanasevitch, 2015 • Dindigul (Tanasevitch, 2015); Nilgiris (Karthikeyani et al., 2017a) 3.17.10 Oedothorax stylus Tanasevitch, 2015 • Coimbatore (Karthikeyani et al., 2017a) 3.17.11 Paracymboides aduncus Tanasevitch, 2011 • Dindigul (Tanasevitch, 2011) 3.17.12 Paracymboides tibialis Tanasevitch, 2011 • Nilgiris (Tanasevitch, 2011) 3.17.13 Paragongylidiellum caliginosum Wunderlich, 1973 • Coimbatore (Tanasevitch, 2011) 3.18 Family: Liocranidae 3.18.1 Oedignatha carli Reimoser, 1934 • Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991) 3.18.2 Oedignatha dentifera Reimoser, 1934 • Coimbatore (Reimoser, 1934; Majumder and Tikader, 1991) 3.18.3 Oedignatha escheri Reimoser, 1934 • Dindigul (Karthikeyani et al., 2017a); Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991) 3.18.4 Oedignatha lesserti Reimoser, 1934 • Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991) 3.18.5 Oedignatha microscutata Reimoser, 1934 • Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991); Thiruvallur (Caleb, 2020b) 3.18.6 Oedignatha scrobiculata Thorell, 1881 IAEES www.iaees.org 212 Arthropods, 2023, 12(4): 193-250 • Chengalpattu (Caleb, 2020a); Chennai (Gravely, 1931; Majumder and Tikader, 1991) 3.18.7 Oedignatha tricuspidata Reimoser, 1934 • Coimbatore (Reimoser, 1934; Majumder and Tikader, 1991); Nilgiris (Reimoser, 1934; Majumder and Tikader, 1991) 3.18.8 Oedignatha uncata Reimoser, 1934 • Dindigul (Reimoser, 1934); Nilgiris (Majumder and Tikader, 1991) 3.18.9 Oedignatha sp. • Salem (Sangavi et al., 2023) 3.18.10 Sphingius barkudensis Gravely, 1931 • Chennai (Majumder and Tikader, 1991) 3.18.11 Sphingius caniceps Simon, 1906 • Chennai (Gravely, 1931; Majumder and Tikader, 1991); Viluppuram (Simon, 1906a; Majumder and Tikader, 1991) 3.18.12 Sphingius nilgiriensis Gravely, 1931 • Nilgiris (Gravely, 1931; Majumder and Tikader, 1991) 3.18.13 Sphingius sp. • Salem (Sangavi et al., 2023) 3.19 Family: Lycosidae 3.19.1 Arctosa indica Tikader and Malhotra, 1980 • Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.19.2 Arctosa lesserti Reimoser, 1934 • Nilgiris (Reimoser, 1934) 3.19.3 Crocodilosa leucostigma (Simon, 1885) • Chengalpattu (Gravely, 1924); Chennai (Gravely, 1924); Thiruvallur (Gravely, 1924) 3.19.4 Draposa amkhasensis (Tikader and Malhotra, 1976) • Theni (Karthikeyani, 2013) 3.19.5 Draposa atropalpis (Gravely, 1924) • Chengalpattu (Caleb, 2020a); Chennai (Gravely, 1924; Kronestedt, 2010); Dindigul (Umarani and Umamaheswari, 2013); Nilgiris (Gravely, 1924; Tikader and Malhotra, 1980) 3.19.6 Draposa lyrivulva (Bösenberg and Strand, 1906) • Chengalpattu (Gravely, 1924; Tikader and Malhotra, 1980); Chennai (Gravely, 1924; Kronestedt, 2010); Nilgiris (Reimoser, 1934); Thiruvallur (Tikader and Malhotra, 1980; Caleb, 2020b); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.19.7 Draposa oakleyi (Gravely, 1924) • Nilgiris (Gravely, 1924; Tikader and Malhotra, 1980; Kronestedt, 2010) 3.19.8 Evippa sp. • Salem (Sangavi et al., 2023) 3.19.9 Geolycosa carli (Reimoser, 1934) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 213 • Nilgiris (Reimoser, 1934) 3.19.10 Hippasa agelenoides (Simon, 1884a) • Chennai (Sherriffs, 1919); Coimbatore (Dharmaraj et al., 2020a); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Nilgiris (Tikader and Malhotra, 1980; Dharmaraj et al., 2018); Salem (Sangavi et al., 2023); Tiruppur (Gokul et al., 2022) 3.19.11 Hippasa deserticola Simon, 1889 • Dindigul (Umarani and Umamaheswari, 2013; Krishnaveni and Kandeepan, 2018) 3.19.12 Hippasa holmerae Thorell, 1895 • Dindigul (Krishnaveni and Kandeepan, 2018); Salem (Sangavi et al., 2023) 3.19.13 Hippasa loundesi Gravely, 1924 • Salem (Tikader and Malhotra, 1980); Theni (Karthikeyani, 2013); Virudhunagar (Karthikeyani et al., 2017a) 3.19.14 Hippasa lycosina Pocock, 1900 • Coimbatore (Saranya et al., 2019); Dindigul (Umarani and Umamaheswari, 2013); Nilgiris (Tikader and Malhotra, 1980) 3.19.15 Hippasa madraspatana Gravely, 1924 • Chengalpattu (Caleb, 2020a); Chennai (Gravely, 1924; Tikader and Malhotra, 1980); Dharmapuri (Tikader and Malhotra, 1980); Dindigul (Umarani and Umamaheswari, 2013); Salem (Sangavi et al., 2023) 3.19.16 Hippasa olivacea (Thorell, 1887) • Virudhunagar (Jeyaparvathi et al., 2013; Mahalakshmi and Jeyaparvathi, 2014) 3.19.17 Hippasa pantherina Pocock, 1899 • Chengalpattu (Sherriffs, 1919; Caleb, 2020a); Coimbatore (Simon, 1885a; Pocock, 1900; Tikader and Malhotra, 1980); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Nilgiris (Pocock, 1900; Sherriffs, 1919; Tikader and Malhotra, 1980); Ramanathapuram (Simon, 1885b; Tikader and Malhotra, 1980); Thanjavur (Raja et al., 2023); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Tiruchirappalli (Tikader and Malhotra, 1980) 3.19.18 Lycosa barnesi Gravely, 1924 • Coimbatore (Saranya et al., 2019); Salem (Sangavi et al., 2023) 3.19.19 Lycosa bistriata Gravely, 1924 • Chengalpattu (Caleb, 2020a); Chennai (Tikader and Malhotra, 1980); Salem (Sangavi et al., 2023); Tiruppur (Gokul et al., 2022) 3.19.20 Lycosa chaperi Simon, 1885 • Chennai (Sherriffs, 1919); Coimbatore (Karthikeyani et al., 2017a) 3.19.21 Lycosa geotubalis Tikader and Malhotra, 1980 • Coimbatore (Ganesh Kumar and Velusamy, 1996) 3.19.22 Lycosa indagatrix Walckenaer, 1837 • Chengalpattu (Pocock, 1900; Caleb, 2020a); Chengalpattu (Tikader and Malhotra, 1980); Chennai (Sherriffs, 1919); Coimbatore (Simon, 1885a); Salem (Tikader and Malhotra, 1980); Tamil Nadu (Walckenaer, 1837); Thiruvallur (Sherriffs, 1919) 3.19.23 Lycosa mahabaleshwarensis Tikader and Malhotra, 1980 IAEES www.iaees.org 214 Arthropods, 2023, 12(4): 193-250 • Theni (Karthikeyani, 2013) 3.19.24 Lycosa phipsoni Pocock, 1899 • Kanyakumari (Sen et al., 2022); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.19.25 Lycosa tista Tikader, 1970 • Theni (Karthikeyani, 2013); Salem (Sangavi et al., 2023) 3.19.26 Pardosa heterophthalma (Simon, 1898) • Madurai (Tikader and Malhotra, 1980) 3.19.27 Pardosa mukundi Tikader and Malhotra, 1980 • Dindigul (Umarani and Umamaheswari, 2013) 3.19.28 Pardosa pseudoannulata (Bösenberg and Strand, 1906) • Chengalpattu (Gravely, 1924); Chennai (Gravely, 1924; Tikader and Malhotra, 1980); Coimbatore (Ganesh Kumar and Velusamy, 1996; Saranya et al., 2019); Madurai (Vijaya et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016; Sugumaran and Duraimurugan, 2019); Nilgiris (Gravely, 1924; Dharmaraj et al., 2018); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Thanjavur (Jayakumar and Sankari, 2010); Thiruvallur (Caleb, 2020b); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.19.29 Pardosa pusiola (Thorell, 1891) • Dindigul (Reimoser, 1934); Nilgiris (Reimoser, 1934) 3.19.30 Pardosa sumatrana (Thorell, 1890) • Chennai (Karthikeyani et al., 2017a); Dindigul (Umarani and Umamaheswari, 2013); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Nilgiris (Tikader and Malhotra, 1980; Dharmaraj et al., 2018); Salem (Tikader and Malhotra, 1980; Sangavi et al., 2023) 3.19.31 Pardosa vagula (Thorell, 1890) • Coimbatore (Reimoser, 1934); Dindigul (Reimoser, 1934); Nilgiris (Reimoser, 1934) 3.19.32 Trochosa punctipes (Gravely, 1924) • Chengalpattu (Gravely, 1924) 3.19.33 Trochosa sp. • Salem (Sangavi et al., 2023) 3.19.34 Wadicosa fidelis (O. Pickard-Cambridge, 1872) • Chengalpattu (Caleb, 2020a); Chennai (Caleb, 2020b); Coimbatore (Saranya et al., 2019; Ranjith et al., 2022); Dindigul (Umarani and Umamaheswari, 2013); Nilgiris (Karthikeyani et al., 2017a); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvallur (Tikader and Malhotra, 1980); Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.19.35 Wadicosa quadrifera (Gravely, 1924) • Chengalpattu (Gravely, 1924; Tikader and Malhotra, 1980); Chennai (Gravely, 1924); Coimbatore (Kadam and Rajkumar, 2020); Sangavi et al., 2023; Thiruvallur (Gravely, 1924; Tikader and Malhotra, 1980); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 215 3.20 Family: Mimetidae 3.20.1 Melaenosia pustulifera Simon, 1906 • Viluppuram (Simon, 1906a) 3.20.2 Mimetus indicus Simon, 1906 • Nilgiris (Simon, 1906a) 3.21 Family: Oecobiidae 3.21.1 Oecobius putus O. Pickard-Cambridge, 1876 • Chengalpattu (Caleb, 2020a); Thiruvallur (Caleb, 2020b) 3.21.2 Oecobius sp. • Salem (Sangavi et al., 2023) 3.22 Family: Oonopidae 3.22.1 Aprusia kerala Grismado and Deeleman, 2011 • Dindigul (Grismado, 2023) 3.22.2 Aprusia rothorum Grismado, 2023 • Dindigul (Grismado, 2023) 3.22.3 Brignolia cardamom Platnick, Dupérré, Ott and Kranz-Baltensperger, 2011 • Dindigul (Platnick et al., 2011); Theni (Platnick et al., 2011) 3.22.4 Brignolia kodaik Platnick, Dupérré, Ott and Kranz-Baltensperger, 2011 • Dindigul (Platnick et al., 2011) 3.22.5 Brignolia kumily Platnick, Dupérré, Ott and Kranz-Baltensperger, 2011 • Theni (Platnick et al., 2011) 3.22.6 Brignolia nilgiri Platnick, Dupérré, Ott and Kranz-Baltensperger, 2011 • Nilgiris (Platnick et al., 2011) 3.22.7 Brignolia parumpunctata (Simon, 1893) • Madurai (Platnick et al., 2011) 3.22.8 Brignolia rothorum Platnick, Dupérré, Ott and Kranz-Baltensperger, 2011 • Dindigul (Platnick et al., 2011) 3.22.9 Brignolia valparai Platnick, Dupérré, Ott and Kranz-Baltensperger, 2011 • Coimbatore (Platnick et al., 2011) 3.22.10 Gamasomorpha taprobanica Simon, 1893 • Nilgiris (Simon, 1905) 3.22.11 Pelicinus madurai Platnick, Dupérré, Ott, Baehr and Kranz-Baltensperger, 2012 • Madurai (Platnick et al., 2012) 3.22.12 Prethopalpus madurai Baehr, 2012 • Madurai (Baehr et al., 2012) 3.23 Family: Oxyopidae 3.23.1 Hamataliwa sp. IAEES www.iaees.org 216 Arthropods, 2023, 12(4): 193-250 • Salem (Sangavi et al., 2023) 3.23.2 Oxyopes ashae Gajbe, 1999 • Kanyakumari (Sen et al., 2022) 3.23.3 Oxyopes bharatae Gajbe, 1999 • Theni (Karthikeyani, 2013) 3.23.4 Oxyopes birmanicus Thorell, 1887 • Chennai (Sherriffs, 1919); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Kanchipuram (Raj et al., 2021); Nagapattinam (Sugumaran and Duraimurugan, 2019); Nilgiris (Dharmaraj et al., 2018); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvarur (Raja et al., 2023); Tiruchirappalli (Gokulapriya et al., 2021); Tirunelveli (Thangamari and Vijaya, 2018); Virudhunagar (Jeyaparvathi et al., 2013) 3.23.5 Oxyopes hindostanicus Pocock, 1901 • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919; Caleb, 2020b); Coimbatore (Reimoser, 1934); Kanyakumari (Sen et al., 2022); Nilgiris (Sherriffs, 1919; Caleb, 2019); Salem (Sugumaran et al., 2020); Theni (Karthikeyani, 2013; Banu and Kannagi, 2016); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.23.6 Oxyopes javanus Thorell, 1887 • Ariyalur (Veeramani et al., 2023); Coimbatore (Ganesh Kumar and Velusamy, 1996; Kadam and Rajkumar, 2020); Erode (Sugumaran, 2001); Kanchipuram (Raj et al., 2021; Sen et al., 2022); Madurai (Vijaya et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Nilgiris (Vinothkumar, 2012); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Thanjavur (Raja et al., 2023) ; Theni (Karthikeyani, 2013); Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tiruchirappalli (Rajendran et al., 2017; Gokulapriya et al., 2021); Tirunelveli (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Virudhunagar (Vanitha et al., 2009) 3.23.7 Oxyopes lepidus (Blackwall, 1864) • Nilgiris (Reimoser, 1934) 3.23.8 Oxyopes lineatipes (C. L. Koch, 1847) • Coimbatore (Sugumaran, 2001); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Salem (Sugumaran et al., 2007); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Sugumaran, 2001) 3.23.9 Oxyopes quadridentatus Thorell, 1895 • Nilgiris (Dharmaraj et al., 2018) 3.23.10 Oxyopes rufisternis Pocock, 1901 • Chennai (Sherriffs, 1919); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023); Virudhunagar (Jeyaparvathi, 2014) 3.23.11 Oxyopes shweta Tikader, 1970 • Chennai (iNaturalists, 2023); Coimbatore (Kadam and Rajkumar, 2020; Devika et al., 2022); Dindigul (Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016; Sugumaran and Duraimurugan, 2019); Nilgiris (Dharmaraj et al., 2017); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvarur (Raja et al., 2023) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 217 3.23.12 Oxyopes sunandae Tikader, 1970 • Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013) 3.23.13 Peucetia ananthakrishnani Murugesan, Mathew, Sudhikumar, Sunish, Biju and Sebastian, 2006 • Coimbatore (Murugesan et al., 2006) 3.23.14 Peucetia graminea Pocock, 1900 • Chennai (Sherriffs, 1919); Nilgiris (Sherriffs, 1919); Salem (Sugumaran et al., 2020) 3.23.15 Peucetia jabalpurensis Gajbe and Gajbe, 1999 • Kanyakumari (Sen et al., 2022) 3.23.16 Peucetia latikae Tikader, 1970 • Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi et al., 2013) 3.23.17 Peucetia pawani Gajbe, 1999 • Kanyakumari (Sen et al., 2022) 3.23.18 Peucetia viridana (Stoliczka, 1869) • Chengalpattu (Pocock, 1900; Caleb, 2020a); Chennai (Simon, 1884a; Caleb, 2020b); Coimbatore (Reimoser, 1934; Ganesh Kumar and Velusamy, 1996); Erode (Sugumaran, 2001); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Nilgiris (Karthikeyani et al., 2017a; Dharmaraj et al., 2018); Ramanathapuram (Siliwal et al., 2008); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tiruchirappalli (Rajendran et al., 2017); Tirunelveli (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Virudhunagar (Vanitha et al., 2009; Wilson et al., 2014) 3.24 Family: Philodromidae 3.24.1 Philodromus bhagirathai Tikader, 1966 • Chennai (Tikader, 1971); Kanyakumari (Sen et al., 2022) 3.24.2 Philodromus pali Gajbe and Gajbe, 2000 • Theni (Karthikeyani, 2013) 3.24.3 Psellonus planus Simon, 1897 • Ariyalur (Veeramani et al., 2023); Kanyakumari (Sen et al., 2022); Thiruvallur (Caleb, 2020b) 3.24.4 Psellonus sp. • Salem (Sangavi et al., 2023) 3.24.5 Thanatus elongatus (Tikader, 1960) • Chengalpattu (Caleb, 2020a); Kanyakumari (Sudhin et al., 2022) 3.24.6 Tibellus jabalpurensis Gajbe and Gajbe, 1999 • Theni (Karthikeyani, 2013) 3.24.7 Tibellus pateli Tikader, 1980 • Coimbatore (Karthikeyani et al., 2017a) 3.24.8 Tibellus vitilis Simon, 1906 • Nilgiris (Simon, 1906a); Viluppuram (Simon, 1906a) IAEES www.iaees.org 218 Arthropods, 2023, 12(4): 193-250 3.25 Family: Pholcidae 3.25.1 Artema atlanta Walckenaer, 1837 • Chengalpattu (Pocock, 1900; Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Simon, 1885a); Kanyakumari (Sen et al., 2022); Nagapattinam (Sivaperuman and Thiyakesan, 1999); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013); Tiruchirappalli (Rajendran et al., 2017); Tirunelveli (Sugumaran, 2001); Viluppuram (Karthikeyani et al., 2017a) 3.25.2 Belisana dodabetta Huber, 2005 • Nilgiris (Huber, 2005) 3.25.3 Crossopriza lyoni (Blackwall, 1867) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Pocock, 1900; Caleb, 2020a); Chennai (Pocock, 1900; Huber, 2022); Coimbatore (Devika et al., 2022; Huber, 2022); Dindigul (Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022); Madurai (Huber, 2022); Nagapattinam (Sivaperuman and Thiyakesan, 1999); Nilgiris (Karthikeyani et al., 2017a); Ramanathapuram (Huber, 2022); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013); Thiruvallur (Caleb, 2020b); Thoothukudi (Kumar et al., 2013); Tirunelveli (Thangamari and Vijaya, 2018); Vellore (Huber, 2022); Viluppuram (Karthikeyani et al., 2017a); Virudhunagar (Vijaya et al., 2018) 3.25.4 Pholcus alagarkoil (Huber, 2011) • Madurai (Huber, 2011); Virudhunagar (Huber, 2011) 3.25.5 Pholcus fragillimus Strand, 1907 • Salem (Huber, 2011); Theni (Huber, 2011); Tiruchirappalli (Huber, 2011); Virudhunagar (Huber, 2011) 3.25.6 Pholcus phalangioides (Fuesslin, 1775) • Chengalpattu (Caleb, 2020a); Coimbatore (Sugumaran, 2001); Dindigul (Karthikeyani et al., 2017a); Kanyakumari (Sen et al., 2022); Nilgiris (Simon, 1905); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013); Thoothukudi (Kumar et al., 2013); Tiruchirappalli (Karthikeyani et al., 2017a) 3.25.7 Smeringopus pallidus (Blackwall, 1858) • Chennai (Sherriffs, 1919) 3.25.8 Smeringopus sp. • Salem (Sangavi et al., 2023) 3.26 Family: Pisauridae 3.26.1 Dendrolycosa gitae (Tikader, 1970) • Coimbatore (Kadam and Rajkumar, 2020); Nilgiris (Dharmaraj et al., 2018); Theni (Karthikeyani, 2013) 3.26.2 Dolomedes fimbriatus (Clerck, 1757) • Coimbatore (Ganesh Kumar et al., 1999) 3.26.3 Eucamptopus coronatus Pocock, 1900 • Tirunelveli (Pocock, 1900; Tikader and Malhotra, 1976) 3.26.4 Euprosthenops ellioti (O. Pickard-Cambridge, 1877) • Chengalpattu (Pocock, 1900); Chennai (Sherriffs, 1919); Coimbatore (Kadam and Rajkumar, 2020) 3.26.5 Nilus albocinctus (Doleschall, 1859) • Virudhunagar (Jeyaparvathi et al., 2013; Mahalakshmi and Jeyaparvathi, 2014) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 219 3.26.6 Nilus phipsoni (F. O. Pickard-Cambridge, 1898) • Chennai (Sherriffs, 1919) 3.26.7 Perenethis sindica (Simon, 1897) • Viluppuram (Simon, 1906) 3.26.8 Perenethis venusta L. Koch, 1878 • Kanyakumari (Sen et al., 2022) 3.26.9 Polyboea vulpina Thorell, 1895 ; Coimbatore (Kapoor, 2008); Kanyakumari (Sen et al., 2022); Tirunelveli (Sen and Sureshan, 2021) 3.27 Family: Prodidomidae 3.27.1 Zimiris doriae Simon, 1882 • Chennai (Sherriffs, 1919); Ramanathapuram (Simon, 1884b) 3.27.2 Zimiris sp. • Salem (Sangavi et al., 2023) 3.28 Family: Psechridae 3.28.1 Fecenia protensa Thorell, 1891 • Dindigul (Bayer, 2012); Nilgiris (Levi, 1982; Dharmaraj et al., 2018) 3.28.2 Psechrus crepido Bayer, 2012 • Tiruchirappalli (Bayer, 2012) 3.28.3 Psechrus hartmanni Bayer, 2012 • Kanyakumari (Bayer, 2012; Sen et al., 2022) 3.28.4 Psechrus torvus (O. Pickard-Cambridge, 1869) • Coimbatore (Kapoor, 2008); Coimbatore (Bayer, 2012); Dindigul (Reimoser, 1934; Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022) 3.29 Family: Psilodercidae 3.29.1 Althepus incognitus Brignoli, 1973 • Nilgiris (Brignoli, 1973) 3.29.2 Althepus pictus Thorell, 1898 • Nilgiris (Reimoser, 1934) 3.30 Family: Salticidae 3.30.1 Aelurillus kronestedti Azarkina, 2004 • Chengalpattu (Caleb et al., 2015); Chennai (Karthikeyani et al., 2017a; Caleb, 2020b) 3.30.2 Aelurillus sp. • Salem (Sangavi et al., 2023) 3.30.3 Afraflacilla sp. • Salem (Sangavi et al., 2023) 3.30.4 Asemonea tenuipes (O. Pickard-Cambridge, 1869) • Ramanathapuram (Simon, 1885b) IAEES www.iaees.org 220 Arthropods, 2023, 12(4): 193-250 3.30.5 Bavia sexpunctata (Doleschall, 1859) • Nilgiris (Reimoser, 1934) 3.30.6 Bianor balius Thorell, 1890 • Chengalpattu (Caleb, 2020a); Chennai (Karthikeyani et al., 2017a); Coimbatore (Reimoser, 1934); Thiruvallur (Caleb, 2020b) 3.30.7 Brettus adonis Simon, 1900 • Chengalpattu (Caleb, 2020a) 3.30.8 Brettus anchorum Wanless, 1979 • Nilgiris (Wanless, 1979) 3.30.9 Brettus cingulatus Thorell, 1895 • Ariyalur (Veeramani et al., 2023); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Kanyakumari (Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Tiruchirappalli (Simon, 1900a; Wanless, 1979) 3.30.10 Bristowia gandhii Kanesharatnam and Benjamin, 2016 • Thiruvallur (Caleb, 2020b) 3.30.11 Carrhotus silanthi Caleb, 2020 • Chengalpattu (Caleb et al., 2020) 3.30.12 Carrhotus viduus (C. L. Koch, 1846) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1931); Coimbatore (Devika et al., 2022); Dindigul (Karthikeyani et al., 2017a); Kanchipuram (Raj et al., 2021); Madurai (Karthikeyani et al., 2017a); Namakkal (Gupta et al., 2021); Nilgiris (Dharmaraj et al., 2018); Salem (Gupta et al., 2021; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani and Kannan, 2013; Caleb, 2016a); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013) 3.30.13 Chalcotropis pennata Simon, 1902 • Ariyalur (Veeramani et al., 2023); Kanyakumari (Sen et al., 2022); Madurai (Simon, 1902); Tiruchirappalli (Karthikeyani et al., 2017a) 3.30.14 Chrysilla volupe (Karsch, 1879) • Chengalpattu (Caleb and Mathai, 2014c; Caleb, 2020a); Chennai (Caleb and Mathai, 2014c; Caleb, 2020b); Salem (Sangavi et al., 2023); Tiruppur (Gokul et al., 2022) 3.30.15 Cocalus sp. • Chengalpattu (Caleb, 2016d) 3.30.16 Colaxes nitidiventris Simon, 1900 • Tiruchirappalli (Simon, 1900b; Benjamin, 2004) 3.30.17 Colopsus manu (Caleb, Christudhas, Laltanpuii and Chitra, 2014) • Chengalpattu (Caleb et al., 2014b; Caleb, 2020a); Chennai (Karthikeyani et al., 2017a) 3.30.18 Curubis erratica Simon, 1902 • Chennai (Caleb, 2016b); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b) 3.30.19 Cyrba ocellata (Kroneberg, 1875) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 221 • Chengalpattu (Caleb, 2020a); Coimbatore (Simon, 1885a); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b) 3.30.20 Epeus indicus Prószyński, 1992 • Coimbatore (Srikumar et al., 2018); Kanyakumari (Sen et al., 2022) 3.30.21 Epocilla aurantiaca (Simon, 1885) • Coimbatore (Srikumar et al., 2018); Ramanathapuram (Simon, 1885b); Salem (Sangavi et al., 2023) 3.30.22 Evarcha flavocincta (C. L. Koch, 1846) • Ariyalur (Veeramani et al., 2023); Mayiladuthurai (Veeramani et al., 2021) 3.30.23 Harmochirus brachiatus (Thorell, 1877) • Nilgiris (Reimoser, 1934) 3.30.24 Harmochirus exaggeratus Caleb and Mathai, 2015 • Chengalpattu (Caleb and Mathai, 2015; Caleb, 2020a); Chennai (Karthikeyani et al., 2017a) 3.30.25 Harmochirus zabkai Logunov, 2001 • Chengalpattu (Caleb, 2020a); Chennai (Logunov, 2001); Madurai (Logunov, 2001); Salem (Logunov, 2001) 3.30.26 Hasarius adansoni (Audouin, 1826) • Chengalpattu (Caleb, 2020a); Chennai (iNaturalists, 2023); Coimbatore (Simon, 1885a); Kanyakumari (Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Ramanathapuram (Simon, 1885b); Salem (Sangavi et al., 2023); Theni (Banu and Kannagi, 2016); Thiruvallur (Caleb, 2020b); Virudhunagar (Jeyaparvathi, 2014; Wilson et al., 2014) 3.30.27 Hindumanes karnatakaensis (Tikader and Biswas, 1978) • Ariyalur (Veeramani et al., 2023) 3.30.28 Hyllus semicupreus (Simon, 1885) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1931); Coimbatore (Devika et al., 2022); Dindigul (Umarani and Umamaheswari, 2013); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014); Namakkal (Gupta et al., 2021); Nilgiris (Dharmaraj et al., 2018); Ramanathapuram (Simon, 1885b); Salem (Gupta et al., 2021; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Tiruvannamalai (iNaturalists, 2023); Virudhunagar (Jeyaparvathi et al., 2013; Mahalakshmi and Jeyaparvathi, 2014) 3.30.29 Icius alboterminus (Caleb, 2014) • Chennai (Caleb, 2014; Caleb, 2020b) 3.30.30 Icius kumariae Caleb, 2017 • Chennai (Caleb, 2017b); Thiruvallur (Caleb, 2020b) 3.30.31 Indopadilla insularis (Malamel, Sankaran and Sebastian, 2015) • Kanyakumari (Sen et al., 2022) 3.30.32 Jerzego bipartitus (Simon, 1903) • Chennai (Wanless, 1981) 3.30.33 Langona albolinea Caleb and Mathai, 2015 IAEES www.iaees.org 222 Arthropods, 2023, 12(4): 193-250 • Chengalpattu (Caleb et al., 2015; Caleb, 2020a); Chennai (Karthikeyani et al., 2017a) 3.30.34 Langona davidi (Caleb, Mungkung and Mathai, 2015) • Chengalpattu (Caleb et al., 2015; Caleb, 2020a) 3.30.35 Langona tigrina (Simon, 1885) • Chengalpattu (Caleb, 2020a); Coimbatore (Simon, 1885a) 3.30.36 Langona sp. • Salem (Sangavi et al., 2023) 3.30.37 Marengo sachintendulkar Malamel, Prajapati, Sudhikumar and Sebastian, 2019 • Kanchipuram (Malamel et al., 2019) 3.30.38 Maripanthus sp. • Salem (Sangavi et al., 2023) 3.30.39 Menemerus bivittatus (Dufour, 1831) • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1931); Coimbatore (Simon, 1885a; Kadam and Rajkumar, 2020); Kanyakumari (Prakash et al., 2023); Nilgiris (Reimoser, 1934; Dharmaraj et al., 2018); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Banu and Kannagi, 2016); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.30.40 Menemerus fulvus (L. Koch, 1878) • Salem (Sangavi et al., 2023) 3.30.41 Mogrus fabrei Simon, 1885 • Ramanathapuram (Simon, 1885b) 3.30.42 Myrmaplata plataleoides (O. Pickard-Cambridge, 1869) • Chengalpattu (Caleb, 2016c; Caleb, 2020a); Coimbatore (Ganesh Kumar and Mohanasundaram, 1998; Devika et al., 2022); Kanchipuram (iNaturalists, 2023); Kanyakumari (Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Salem (Sugumaran et al., 2007); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.30.43 Myrmarachne kuwagata Yaginuma, 1967 • Thiruvallur (Caleb, 2016c; Caleb, 2020b) 3.30.44 Myrmarachne laeta (Thorell, 1887) • Chennai (Narayan, 1915) 3.30.45 Myrmarachne markaha Barrion and Litsinger, 1995 • Coimbatore (Sugumaran, 2001); Salem (Sugumaran et al., 2007); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran, 2001) 3.30.46 Myrmarachne melanocephala MacLeay, 1839 • Chengalpattu (Caleb, 2016a; Caleb, 2020b); Chennai (Caleb, 2016c); Coimbatore (Kadam and Rajkumar, 2020; Devika et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b); Tiruppur (Gokul et al., 2022) 3.30.47 Myrmarachne prava (Karsch, 1880) • Chennai (Caleb, 2016c); Thiruvallur (Caleb, 2016c; Caleb, 2020b) 3.30.48 Myrmarachne ramunni Narayan, 1915 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 223 •` Chennai (Narayan, 1915; Caleb, 2016c; Caleb, 2020b); Nilgiris (Dharmaraj et al., 2018); Thiruvallur (Caleb, 2016c) 3.30.49 Myrmarachne roeweri Reimoser, 1934 • Nilgiris (Reimoser, 1934) 3.30.50 Myrmarachne tristis (Simon, 1882) • Chennai (Narayan, 1915) 3.30.51 Myrmarachne uniseriata Narayan, 1915 • Chennai (Narayan, 1915) 3.30.52 Nepalicius nepalicus (Andreeva, Hęciak and Prószyński, 1984) • Nilgiris (Prószyński, 1992a) 3.30.53 Okinawicius modestus (Simon, 1885) • Ramanathapuram (Simon, 1885b) 3.30.54 Onomastus indra Benjamin, 2010 • Dindigul (Benjamin, 2010) 3.30.55 Onomastus patellaris Simon, 1900 • Dindigul (Simon, 1900a); Tiruchirappalli (Karthikeyani et al., 2017a) 3.30.56 Padillothorax casteti (Simon, 1900) • Tiruchirappalli (Simon, 1900b) 3.30.57 Panysinus grammicus Simon, 1902 • Dindigul (Simon, 1902) 3.30.58 Pellenes iva Caleb, 2018 • Thiruvallur (Caleb and Kumar, 2018; Caleb, 2020b) 3.30.59 Phaeacius fimbriatus Simon, 1900 • Kanyakumari (Sen et al., 2022) 3.30.60 Phanuelus gladstone Caleb and Mathai, 2015 • Chengalpattu (Caleb et al., 2015; Caleb, 2020a); Chennai (Karthikeyani et al., 2017a) 3.30.61 Phidippus bengalensis Tikader, 1977 • Dindigul (Umarani and Umamaheswari, 2013); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.30.62 Phidippus yashodharae Tikader, 1977 • Nilgiris (Dharmaraj et al., 2018) 3.30.63 Phintella accentifera (Simon, 1901) • Madurai (Simon, 1901) 3.30.64 Phintella coonooriensis Prószyński, 1992 • Nilgiris (Prószyński, 1992a) 3.30.65 Phintella indica (Simon, 1901) • Tiruchirappalli (Prószyński, 1992b); Virudhunagar (Jeyaparvathi, 2014) 3.30.66 Phintella nilgirica Prószyński, 1992 • Nilgiris (Prószyński, 1992a) IAEES www.iaees.org 224 Arthropods, 2023, 12(4): 193-250 3.30.67 Phintella platnicki Sudhin, Sen and Caleb, 2023 • Salem (Sudhin et al., 2023a) 3.30.68 Phintella vittata (C. L. Koch, 1846) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Caleb, 2020a); Coimbatore (Dharmaraj et al., 2020a; Kadam and Rajkumar, 2020); Kanyakumari (Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b) 3.30.69 Phintelloides jesudasi (Caleb and Mathai, 2014) • Chengalpattu (Caleb, 2020a); Chennai (Karthikeyani et al., 2017a); Thiruvallur (Caleb and Mathai, 2014c) 3.30.70 Phlegra dhakuriensis (Tikader, 1974) • Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.30.71 Phlegra prasanna Caleb and Mathai, 2015 • Chengalpattu (Caleb et al., 2015; Caleb, 2020a); Chennai (Karthikeyani et al., 2017a) 3.30.72 Pilia escheri Reimoser, 1934 • Nilgiris (Reimoser, 1934) 3.30.73 Pilia saltabunda Simon, 1902 • Dindigul (Simon, 1902) 3.30.74 Piranthus casteti Simon, 1900 • Tiruchirappalli (Karthikeyani et al., 2017) 3.30.75 Plexippus paykulli (Audouin, 1826) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Sherriffs, 1931; Caleb, 2020a); Chennai (Sherriffs, 1931); Coimbatore (Reimoser, 1934; Ganesh Kumar and Velusamy, 1996); Dindigul (Umarani and Umamaheswari, 2013); Kanchipuram (iNaturalists, 2023); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Veeramani et al., 2021); Nagapattinam (Sankari et al., 2016); Namakkal (Gupta et al., 2021); Nilgiris (Dharmaraj et al., 2017); Ramanathapuram (Simon, 1885b; Siliwal et al., 2008); Salem (Gupta et al., 2021; Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013; Banu and Kannagi, 2016); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.30.76 Plexippus petersi (Karsch, 1878) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Caleb, 2020a); Chennai (iNaturalists, 2023); Coimbatore (Devika et al., 2022); Nagapattinam (Sankari et al., 2016); Namakkal (Gupta et al., 2021); Nilgiris (Dharmaraj et al., 2018); Salem (Gupta et al., 2021; Sangavi et al., 2023); Theni (Banu and Kannagi, 2016; Karthikeyani, 2013); Thiruvallur (Caleb, 2020b); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.30.77 Plexippus redimitus Simon, 1902 • Chennai (Sherriffs, 1931) 3.30.78 Portia fimbriata (Doleschall, 1859) • Nilgiris (Dharmaraj et al., 2018); Virudhunagar (Jeyaparvathi et al., 2013) 3.30.79 Portia labiata (Thorell, 1887) • Nilgiris (Wanless, 1978) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 225 3.30.80 Proszynskia diatreta (Simon, 1902) • Chennai (Caleb and Mathai, 2014c; Caleb, 2020b); Tiruchirappalli (Simon, 1902; Caleb and Mathai, 2014c) 3.30.81 Pseudicius sp. • Salem (Sangavi et al., 2023) 3.30.82 Rhene flavicomans Simon, 1902 • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1931); Coimbatore (Kadam and Rajkumar, 2020) 3.30.83 Rhene flavigera (C. L. Koch, 1846) • Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nilgiris (Dharmaraj et al., 2018); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.30.84 Rhene histrio (Thorell, 1891) • Vellore (Thorell, 1891) 3.30.85 Rhene rubrigera (Thorell, 1887) • Nilgiris (Sherriffs, 1931) 3.30.86 Rudakius ludhianaensis (Tikader, 1974) • Thiruvallur (Caleb et al., 2019; Caleb, 2020b) 3.30.87 Siler semiglaucus (Simon, 1901) • Kanyakumari (Sen et al., 2022) 3.30.88 Stenaelurillus arambagensis (Biswas and Biswas, 1992) • Salem (Sangavi et al., 2023); Thiruvarur (Sudhin et al., 2023b) 3.30.89 Stenaelurillus jagannathae Das, Malik and Vidhel, 2015 • Coimbatore (Devika et al., 2022) 3.30.90 Stenaelurillus lesserti Reimoser, 1934 • Chengalpattu (Caleb and Sanap, 2016; Caleb, 2020a); Coimbatore (Reimoser, 1934); Nilgiris (Reimoser, 1934); Tirunelveli (Caleb and Sanap, 2016) 3.30.91 Stenaelurillus megamalai Sudhin, Sen and Caleb, 2023 • Theni (Sudhin et al., 2023a) 3.30.92 Stenaelurillus metallicus Caleb and Mathai, 2016 • Chengalpattu (Caleb and Mathai, 2016b; Caleb, 2020a) 3.30.93 Synagelides lehtineni Logunov and Hereward, 2006 • Coimbatore (Nataraj et al., 2017); Nilgiris (Logunov and Hereward, 2006) 3.30.94 Telamonia dimidiata (Simon, 1899 • Ariyalur (Veeramani et al., 2023); Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1931); Coimbatore (Srikumar et al., 2018; Devika et al., 2022); Dindigul (Umarani and Umamaheswari, 2013); Kanchipuram (Raj et al., 2021); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014; Veeramani et al., 2021); Ramanathapuram (Siliwal et al., 2008; Anand et al., 2015); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Theni (Banu and Kannagi, 2016; Karthikeyani, 2013); Thiruvallur (Caleb, 2020b); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.30.95 Telamonia elegans (Thorell, 1887) • Chengalpattu (Sherriffs, 1931) IAEES www.iaees.org 226 Arthropods, 2023, 12(4): 193-250 3.30.96 Telamonia festiva Thorell, 1887 • Ariyalur (Veeramani et al., 2023); Mayiladuthurai (Veeramani et al., 2021) 3.30.97 Telamonia formosa (Simon, 1902) • Chennai (Sherriffs, 1931) 3.30.98 Telamonia hasselti (Thorell, 1878) • Chennai (Sherriffs, 1931) 3.30.99 Thiania bhamoensis Thorell, 1887 • Salem (Sugumaran et al., 2007); Virudhunagar (Jeyaparvathi et al., 2013; Wilson et al., 2014) 3.30.100 Thyene calebi (Kanesharatnam and Benjamin, 2018) • Chennai (Karthikeyani et al., 2017a); Sangavi et al., 2023; Thiruvallur (Caleb and Mathai, 2014c) 3.30.101 Thyene imperialis (Rossi 1846) • Chengalpattu (Caleb, 2020a); Namakkal (Gupta et al., 2021); Salem (Gupta et al., 2021; Sangavi et al., 2023); Thiruvallur (Caleb, 2020b); Tiruppur (Gokul et al., 2022) 3.30.102 Viciria minima Reimoser, 1934 • Coimbatore (Dharmaraj et al., 2020a); Nilgiris (Reimoser, 1934) 3.31 Family: Scytodidae 3.31.1 Dictis striatipes L. Koch, 1872 • Chengalpattu (Caleb, 2020a); Nilgiris (Reimoser, 1934) 3.31.2 Scytodes alfredi Gajbe, 2004 • Theni (Karthikeyani, 2013) 3.31.3 Scytodes fusca Walckenaer, 1837 • Chennai (Brignoli, 1976); Namakkal (Sampathkumar et al., 2022); Salem (Sangavi et al., 2023); Tiruppur (Gokul et al., 2022) 3.31.4 Scytodes gilva (Thorell, 1887) • Chennai (Sherriffs, 1919) 3.31.5 Scytodes pallida Doleschall, 1859 • Salem (Sangavi et al., 2023) 3.31.6 Scytodes propinqua Stoliczka, 1869 • Namakkal (Gupta et al., 2021); Nilgiris (Simon, 1905); Salem (Gupta et al., 2021); Viluppuram (Simon, 1905) 3.31.7 Scytodes thoracica (Latreille, 1802) • Salem (Sangavi et al., 2023) 3.31.8 Scytodes univittata Simon, 1882 • Ramanathapuram (Simon, 1885b) 3.32 Family: Segestriidae 3.32.1 Ariadna nebulosa Simon, 1906 • Madurai (Simon, 1906a) 3.32.2 Segestria inda Simon, 1906 • Dindigul (Simon, 1906a); Viluppuram (Simon, 1906a) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 227 3.33 Family: Selenopidae 3.33.1 Makdiops nilgirensis (Reimoser, 1934 • Nilgiris (Reimoser, 1934; Crews and Harvey, 2011) 3.33.2 Makdiops shevaroyensis (Gravely, 1931) • Salem (Gravely, 1931; Sankaran et al., 2022) 3.33.3 Selenops radiatus Latreille, 1819 • Cuddalore (Gravely, 1931); Nilgiris (Sherriffs, 1919) 3.33.4 Selenops sp. • Salem (Sangavi et al., 2023) 3.34 Family: Sicariidae 3.34.1 Loxosceles rufescens (Dufour, 1820 • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919); Salem (Sangavi et al., 2023) 3.35 Family: Sparassidae 3.35.1 Gnathopalystes flavidus (Simon, 1897) • Chengalpattu (Caleb, 2020a); Chennai (Gravely, 1931); Ramanathapuram (Tikader and Sethi, 1990); Salem (Sangavi et al., 2023); Tiruchirappalli (Pocock, 1900; Tikader and Sethi, 1990) 3.35.2 Heteropoda bhaikakai Patel and Patel, 1973 • Dindigul (Umarani and Umamaheswari, 2013); Salem (Sangavi et al., 2023) 3.35.3 Heteropoda fabrei Simon, 1885 • Ramanathapuram (Simon, 1885b; Pocock, 1900); Tiruchirappalli (Pocock, 1900) 3.35.4 Heteropoda hampsoni Pocock, 1901 • Nilgiris (Pocock, 1901) 3.35.5 Heteropoda lentula Pocock, 1901 • Tirunelveli (Pocock, 1901) 3.35.6 Heteropoda leprosa Simon, 1884 • Nilgiris (Gravely, 1931); Salem (Sangavi et al., 2023) 3.35.7 Heteropoda malitiosa Simon, 1906 • Nilgiris (Simon, 1906a) 3.35.8 Heteropoda nilgirina Pocock, 1901 • Kanyakumari (Sen et al., 2022); Nilgiris (Pocock, 1901; Reimoser, 1934); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.35.9 Heteropoda phasma (Simon, 1897) • Salem (Sugumaran et al., 2020) 3.35.10 Heteropoda sexpunctata Simon, 1885 • Chengalpattu (Gravely, 1931); Chennai (Sherriffs, 1919; Gravely, 1931); Coimbatore (Reimoser, 1934); Nilgiris (Reimoser, 1934); Ranipet (Sethi and Tikader, 1988); Viluppuram (Simon, 1906a) 3.35.11 Heteropoda venatoria (Linnaeus 1767) • Ariyalur (Veeramani et al., 2023); Chengalpattu (Caleb, 2020a); Chennai (Gravely, 1931; Sethi and Tikader, IAEES www.iaees.org 228 Arthropods, 2023, 12(4): 193-250 1988); Coimbatore (Sugumaran et al., 2006; Kadam and Rajkumar, 2020); Erode (Sugumaran, 2001); Kanyakumari (Sunitha and Miranda, 2011; Sen et al., 2022); Mayiladuthurai (Veeramani et al., 2021); Nagapattinam (Sivaperuman and Thiyakesan, 1999); Nilgiris (Sherriffs, 1919; Gravely, 1931; Dharmaraj et al., 2017); Ramanathapuram (Siliwal et al., 2008); Salem (Sugumaran et al., 2007; Sugumaran et al., 2020); Theni (Karthikeyani and Kannan, 2012); Tirunelveli (Sugumaran, 2001); Tiruppur (Gokul et al., 2022); Virudhunagar (Sugumaran, 2001) 3.35.12 Martensopoda minuscula (Reimoser, 1934) • Dindigul (Reimoser, 1934); Nilgiris (Reimoser, 1934) 3.35.13 Olios bhavnagarensis Sethi and Tikader, 1988 • Salem (Sangavi et al., 2023) 3.35.14 Olios gravelyi Sethi and Tikader, 1988 • Salem (Sangavi et al., 2023) 3.35.15 Olios hampsoni (Pocock, 1901) • Coimbatore (Sugumaran et al., 2005); Erode (Sugumaran, 2001); Nilgiris (Pocock, 1901; Sethi and Tikader, 1988); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran et al., 2005) 3.35.16 Olios lamarcki (Latreille, 1806) • Chengalpattu (Pocock, 1900; Gravely, 1931); Chennai (Sherriffs, 1919; Gravely, 1931); Coimbatore (Simon, 1885a; Pocock, 1900); Kanyakumari (Sen et al., 2022); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2018); Tiruppur (Gokul et al., 2022); Viluppuram (Simon, 1906a) 3.35.17 Olios milleti (Pocock, 1901) • Chengalpattu (Gravely, 1931; Sethi and Tikader, 1988); Chennai (Gravely, 1931); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Kanchipuram (Raj et al., 2021); Kanyakumari (Sen et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sugumaran and Duraimurugan, 2019); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Theni (Karthikeyani, 2013); Tiruppur (Gokul et al., 2022); Virudhunagar (Jeyaparvathi et al., 2013) 3.35.18 Olios obesulus (Pocock, 1901) • Chennai (Gravely, 1931; Sethi and Tikader, 1988) 3.35.19 Olios punctipes Simon, 1884 • Dindigul (Umarani and Umamaheswari, 2013); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011); Virudhunagar (Jeyaparvathi, 2014) 3.35.20 Olios rotundiceps (Pocock, 1901) • Nilgiris (Pocock, 1901) 3.35.21 Olios senilis Simon, 1880 • Tiruchirappalli (Sethi and Tikader, 1988) 3.35.22 Olios tarandus (Simon, 1897) • Chennai (Sherriffs, 1919) 3.35.23 Olios tener (Thorell, 1891) • Chennai (Gravely, 1931) 3.35.24 Olios wroughtoni (Simon, 1897) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 229 • Salem (Sangavi et al., 2023) 3.35.25 Thelcticopis ajax Pocock, 1901 • Nilgiris (Pocock, 1901) 3.35.26 Thelcticopis maindroni Simon, 1906 • Nilgiris (Simon, 1906a) 3.35.27 Thelcticopis rufula Pocock, 1901 • Dindigul (Reimoser, 1934); Nilgiris (Pocock, 1901) 3.36 Family: Stenochilidae 3.36.1 Stenochilus hobsoni O. Pickard-Cambridge, 1871 • Viluppuram (Platnick. and Shadab, 1974) 3.37 Family: Symphytognathidae 3.37.1 Iardinis mussardi Brignoli, 1980 • Coimbatore (Brignoli, 1980); Madurai (Lopardo and Hormiga, 2015) 3.38 Family: Tetrablemmidae 3.38.1 Tetrablemma brignolii Lehtinen, 1981 • Nilgiris (Lehtinen, 1981; Sankaran and Sebastian, 2016) 3.39 Family: Tetragnathidae 3.39.1 Leucauge celebesiana (Walckenaer, 1841) • Dindigul (Umarani and Umamaheswari, 2013); Chennai (Sherriffs, 1919); Nilgiris (Pocock, 1900; Tikader, 1982) 3.39.2 Leucauge decorata (Blackwall, 1864) • Chengalpattu (Gravely, 1921; Caleb, 2020a); Chennai (Karthikeyani et al., 2017a; Caleb, 2020b); Coimbatore (Ganesh Kumar and Velusamy, 1996; Kadam and Rajkumar, 2020); Dindigul (Karthikeyani et al., 2017a; Krishnaveni and Kandeepan, 2018); Erode (Sugumaran, 2001); Kanyakumari (Sen et al., 2022); Madurai (Vijaya, 2019; Vijaya et al., 2022); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Nilgiris (Gravely, 1921); Salem (Gravely, 1921; Sugumaran et al., 2007); Thanjavur (Raja et al., 2023); Theni (Shunmugavelu and Karthikeyani, 2010; Banu and Kannagi, 2016); Thiruvarur (Raja et al., 2023); Thoothukudi (Kumar et al., 2013); Tiruchirappalli (Gravely, 1921; Rajendran et al., 2017); Tirunelveli (Sugumaran, 2001); Tiruppur (Gokul et al., 2022); Virudhunagar (Vanitha et al., 2009) 3.39.3 Leucauge ditissima (Thorell, 1887) • Nilgiris (Sherriffs, 1919) 3.39.4 Leucauge dorsotuberculata Tikader, 1982 • Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.39.5 Leucauge fastigata (Simon, 1877) • Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Dindigul (Umarani and Umamaheswari, 2013); Erode (Sugumaran, 2001); Kanyakumari (Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Salem (Sugumaran et al., 2007); Tirunelveli (Sugumaran, 2001); Virudhunagar (Mahalakshmi and Jeyaparvathi, 2014) IAEES www.iaees.org 230 Arthropods, 2023, 12(4): 193-250 3.39.6 Leucauge granulata (Walckenaer, 1837) • Chennai (Sherriffs, 1919); Nilgiris (Sherriffs, 1919) 3.39.7 Leucauge tessellata (Thorell, 1887) • Coimbatore (Kapoor, 2008); Kanyakumari (Sen et al., 2022) 3.39.8 Mesida culta (O. Pickard-Cambridge, 1869) • Coimbatore (Kapoor, 2008); Nilgiris (Reimoser, 1934) 3.39.9 Tetragnatha andamanensis Tikader, 1977 • Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.39.10 Tetragnatha ceylonica O. Pickard-Cambridge 1869 • Chengalpattu (Pocock, 1900); Chennai (Sherriffs, 1919; Caleb, 2020b); Nilgiris (Simon, 1906a; Sherriffs, 1919) 3.39.11 Tetragnatha cochinensis Gravely, 1921 • Nilgiris (Gravely, 1921; Sherriffs, 1928); Salem (Sangavi et al., 2023); Tiruchirappalli (Gravely, 1921) 3.39.12 Tetragnatha fletcheri Gravely, 1921 • Coimbatore (Srikumar et al., 2018) 3.39.13 Tetragnatha geniculata Karsch, 1892 • Chennai (Sherriffs, 1919; Gravely, 1921); Nilgiris (Sherriffs, 1919; Gravely, 1921) 3.39.14 Tetragnatha hasselti birmanica Sherriffs, 1919 • Chennai (Sherriffs, 1919) 3.39.15 Tetragnatha hasselti Thorell, 1890 • Kanyakumari (Sen et al., 2022) 3.39.16 Tetragnatha isidis (Simon, 1880) • Nilgiris (Reimoser, 1934) 3.39.17 Tetragnatha javana (Thorell, 1890) • Chengalpattu (Gravely, 1921); Coimbatore (Ganesh Kumar and Velusamy, 1996); Kanyakumari (Sen et al., 2022); Nagapattinam (Sankari et al., 2016); Nilgiris (Gravely, 1921; Vinothkumar, 2012; Dharmaraj et al., 2018); Salem (Sangavi et al., 2023); Thanjavur (Jayakumar and Sankari, 2010); Thanjavur (Raja et al., 2023); Theni (Banu and Kannagi, 2016); Thiruvallur (Caleb, 2020b); Thiruvarur (Raja et al., 2023); Tiruchirappalli (Rajendran et al., 2017); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran, 2001) 3.39.18 Tetragnatha keyserlingi Simon, 1890 • Salem (Sangavi et al., 2023) 3.39.19 Tetragnatha mandibulata Walckenaer, 1841 • Chengalpattu (Gravely, 1921; Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Ganesh Kumar and Velusamy, 1996; Kadam and Rajkumar, 2020); Kanyakumari (Sen et al., 2022); Nagapattinam (Jayakumar et al., 2017); Nilgiris (Sherriffs, 1919; Gravely, 1921; Dharmaraj et al., 2018); Salem (Sugumaran et al., 2020; Sangavi et al., 2023); Thanjavur (Jayakumar et al., 2017; Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvallur (Caleb, 2020b); Thiruvarur (Jayakumar et al., 2017; Raja et al., 2023) 3.39.20 Tetragnatha sutherlandi Gravely, 1921 • Tiruchirappalli (Gravely, 1921) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 231 3.39.21 Tetragnatha vermiformis Emerton, 1884 • Chennai (Gravely, 1921) 3.39.22 Tetragnatha viridorufa Gravely, 1921 • Chengalpattu (Gravely, 1921); Nilgiris (Dharmaraj et al., 2018); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.39.23 Tylorida marmorea (Pocock, 1901) • Nilgiris (Sherriffs, 1919; Sankaran et al., 2017) 3.39.24 Tylorida striata (Thorell, 1877) • Ariyalur (Veeramani et al., 2023); Mayiladuthurai (Veeramani et al., 2021); Salem (Sangavi et al., 2023) 3.39.25 Tylorida ventralis (Thorell, 1877) • Chennai (Majumder, 2005); Nilgiris (Dharmaraj et al., 2018); Salem (Sangavi et al., 2023) 3.40 Family: Theraphosidae 3.40.1 Annandaliella pectinifera Gravely, 1935 • Coimbatore (Gravely, 1935; Siliwal et al., 2011a) 3.40.2 Haploclastus cervinus Simon, 1892 • Dindigul (Simon, 1892; Siliwal et al., 2011a); Nilgiris (Karthikeyani et al., 2017a) 3.40.3 Haploclastus nilgirinus Pocock, 1899 • Coimbatore (Kadam and Rajkumar, 2020); Nilgiris (Pocock, 1899a; Moinudheen et al., 2017) 3.40.4 Haploclastus tenebrosus Gravely, 1935 • Madurai (Gravely, 1935; Siliwal et al., 2011a) 3.40.5 Haploclastus validus (Pocock, 1899) • Dindigul (Reimoser, 1934); Nilgiris (Reimoser, 1934) 3.40.5 Haploclastus sp. • Salem (Sangavi et al., 2023) 3.40.6 Neoheterophrictus madraspatanus (Gravely, 1935) • Chengalpattu (Gravely, 1935; Siliwal et al., 2011a); Chennai (Gravely, 1935; Siliwal et al., 2011a) 3.40.7 Plesiophrictus fabrei (Simon, 1892) • Madurai (Simon, 1892; Pocock, 1900; Siliwal et al., 2011a) 3.40.8 Plesiophrictus millardi Pocock, 1899 • Tiruppur (Gokul et al., 2022) 3.40.9 Plesiophrictus nilagiriensis Siliwal, Molur and Raven, 2007 • Coimbatore (Siliwal et al., 2007; Siliwal et al., 2011a); Nilgiris (Karthikeyani et al., 2017a) 3.40.10 Poecilotheria formosa Pocock, 1899 • Madurai (Kishore and Roopha, 2022); Salem (Pocock, 1899b; Siliwal et al., 2008) 3.40.11 Poecilotheria hanumavilasumica Smith, 2004 • Ramanathapuram (Smith, 2004; Siliwal et al., 2008) 3.40.12 Poecilotheria metallica Pocock, 1899 • Chennai (Pocock, 1900); Nilgiris (Pocock, 1900); Viluppuram (Raman et al., 2019) IAEES www.iaees.org 232 Arthropods, 2023, 12(4): 193-250 3.40.13 Poecilotheria regalis Pocock, 1899 • Coimbatore (Molur et al., 2004; Siliwal et al., 2008); Erode (Molur et al., 2004); Nilgiris (Pocock, 1899b; Molur et al., 2004); Ranipet (Pocock, 1899b); Tenkasi (Pocock, 1900); Tiruppur (Molur et al., 2004) 3.40.14 Poecilotheria striata Pocock, 1895 • Coimbatore (Molur et al., 2003; Siliwal et al., 2011a); Nagapattinam (Sugumaran and Duraimurugan, 2019); Nilgiris (Siliwal et al., 2008; Siliwal et al., 2013); Ramanathapuram (Gravely, 1915) 3.40.15 Sahydroaraneus collinus (Pocock, 1899) • Salem (Pocock, 1899a; Siliwal et al., 2011a) 3.41 Family: Theridiidae 3.41.1 Achaearanea durgae Tikader, 1970 • Salem (Sangavi et al., 2023) 3.41.2 Argyrodes argentatus O. Pickard-Cambridge, 1880 • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Salem (Sangavi et al., 2023); Thiruvallur (Caleb, 2020b) 3.41.3 Argyrodes argyrodes (Walckenaer, 1837) • Chennai (Sherriffs, 1927) 3.41.4 Argyrodes fissifrons O. Pickard-Cambridge, 1869 • Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020) 3.41.5 Argyrodes flavescens O. Pickard-Cambridge, 1880 • Salem (Sangavi et al., 2023) 3.41.6 Argyrodes projeles Tikader, 1970 • Theni (Karthikeyani, 2013) 3.41.7 Ariamnes flagellum (Doleschall, 1857) • Coimbatore (Kapoor, 2008) 3.41.8 Chikunia nigra (O. Pickard-Cambridge, 1880) • Coimbatore (Srikumar et al., 2018); Kanyakumari (Sen et al., 2022) 3.41.9 Chrysso angula (Tikader, 1970) • Coimbatore (Kapoor, 2008); Kanyakumari (Sen et al., 2022); Nilgiris (Dharmaraj et al., 2018); Salem (Sangavi et al., 2023) 3.41.10 Chrysso urbasae (Tikader, 1970) • Coimbatore (Kapoor, 2008); Nilgiris (Dharmaraj et al., 2018); Salem (Sugumaran et al., 2007) 3.41.11 Coleosoma floridanum Banks, 1900 • Salem (Sangavi et al., 2023) 3.41.12 Euryopis episinoides (Walckenaer, 1847) • Salem (Sangavi et al., 2023) 3.41.13 Latrodectus geometricus C. L. Koch, 1841 • Coimbatore (Kadam and Rajkumar, 2020); Tiruppur (Gokul et al., 2022) 3.41.14 Latrodectus hasselti Thorell, 1870 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 233 • Coimbatore (Ganesh Kumar and Siliwal, 2005); Madurai (Roopha et al., 2021); Salem (Sugumaran et al., 2020); Thoothukudi (Sahayaraj and Parvathi, 2011); Tirunelveli (Sahayaraj and Parvathi, 2011) 3.41.15 Meotipa argyrodiformis (Yaginuma, 1952) • Coimbatore (Srikumar et al., 2018); Nagapattinam (Sankari and Thiyagesan, 2010); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran, 2001) 3.41.16 Meotipa multuma Murthappa, Malamel, Prajapati, Sebastian and Venkateshwarlu, 2017 • Chengalpattu (Caleb, 2020a) 3.41.17 Meotipa picturata Simon, 1895 • Nilgiris (Simon, 1895b; Kulkarni et al., 2017) 3.41.18 Moneta grandis Simon, 1905 • Nilgiris (Simon, 1905) 3.41.19 Nihonhimea brookesiana (Barrion and Litsinger, 1995) • Coimbatore (Ganesh Kumar and Siliwal, 2007) 3.41.20 Nihonhimea indica (Tikader, 1977) • Coimbatore (Sugumaran, 2001); Erode (Sugumaran, 2001); Nilgiris (Sugumaran, 2001); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran, 2001 3.41.21 Nihonhimea mundula (L. Koch, 1872) • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1919); Coimbatore (Kapoor, 2008); Nilgiris (Sherriffs, 1919); Salem (Sugumaran et al., 2007) 3.41.22 Parasteatoda tepidariorum (C. L. Koch, 1841) • Chennai (Sherriffs, 1919); Nilgiris (Sherriffs, 1919) 3.41.23 Phoroncidia maindroni (Simon, 1905) • Nilgiris (Simon, 1905) 3.41.24 Phoroncidia septemaculeata O. Pickard-Cambridge, 1873 • Kanchipuram (Nafin et al., 2019) 3.41.25 Phylloneta impressa (L. Koch, 1881) • Salem (Sangavi et al., 2023) 3.41.26 Rhomphaea projiciens O. Pickard-Cambridge, 1896 • Chengalpattu (Caleb, 2020a) 3.41.27 Steatoda rufoannulata (Simon, 1899) • Nilgiris (Simon, 1905) 3.41.28 Theridion leucophaeum Simon, 1905 • Chengalpattu (Sherriffs, 1927); Chennai (Sherriffs, 1927); Viluppuram (Simon, 1905; Prasad et al., 2019) 3.41.29 Theridion maindroni Simon, 1905 • Nilgiris (Simon, 1905; Prasad et al., 2019); Theni (Karthikeyani, 2013) 3.41.30 Theridion manjithar Tikader, 1970 • Nilgiris (Karthikeyani, 2013; Dharmaraj et al., 2018) 3.41.31 Theridion melanostictum O. Pickard-Cambridge, 1876 IAEES www.iaees.org 234 Arthropods, 2023, 12(4): 193-250 • Salem (Sangavi et al., 2023) 3.41.32 Theridion nilgherinum Simon, 1905 • Nilgiris (Simon, 1905; Prasad et al., 2019) 3.41.33 Theridula gonygaster (Simon, 1873) • Salem (Sangavi et al., 2023) 3.41.34 Thwaitesia sp. • Salem (Sangavi et al., 2023) 3.41.35 Tomoxena dives Simon, 1895 • Tiruchirappalli (Simon, 1895b) 3.42 Family: Thomisidae 3.42.1 Amyciaea forticeps (O. Pickard- Cambridge, 1873) • Coimbatore (Kadam and Rajkumar, 2020); Kanyakumari (Sen et al., 2022); Salem (Sangavi et al., 2023) 3.42.2 Angaeus pentagonalis Pocock, 1901 • Nilgiris (Pocock, 1901) 3.42.3 Bomis calcuttaensis Biswas and Mazumder, 1981 • Kanyakumari (Sen et al., 2022) 3.42.4 Bomis khajuriai Tikader, 1980 • Chengalpattu (Caleb, 2020a) 3.42.5 Camaricus formosus Thorell, 1887 • Kanyakumari (Sen et al., 2022); Theni (Karthikeyani, 2013) 3.42.6 Diaea pougneti Simon, 1885 • Coimbatore (Simon, 1885a) 3.42.7 Dietopsa castaneifrons (Simon, 1895) • Dindigul (Simon, 1895c) 3.42.8 Dietopsa parnassia (Simon, 1895) • Nilgiris (Simon, 1906a) 3.42.9 Epidius parvati Benjamin, 2000 • Kanyakumari (Sen et al., 2022) 3.42.10 Henriksenia hilaris (Thorell, 1877) • Chengalpattu (Caleb, 2020a); Viluppuram (Simon, 1906a) 3.42.11 Heriaeus chareshi Sen and Sureshan, 2022 • Kanyakumari (Sen and Sureshan, 2022; Sen et al., 2022) 3.42.12 Holopelus malati Simon, 1895 • Tiruchirappalli (Simon, 1895c) 3.42.13 Indoxysticus minutus (Tikader, 1960) • Chengalpattu (Caleb, 2020a); Coimbatore (Kadam and Rajkumar, 2020); Kanyakumari (Sen et al., 2022); Salem (Sangavi et al., 2023); Theni (Karthikeyani, 2013) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 235 3.42.14 Lycopus trabeatus Simon, 1895 • Dindigul (Simon, 1895c); Madurai (Simon, 1895c); Nilgiris (Simon, 1906a); Tiruchirappalli (Simon, 1895c) 3.42.15 Lysiteles catulus Simon, 1895 • Dindigul (Simon, 1895c; Sherriffs, 1929); Madurai (Sherriffs, 1929); Tiruchirappalli (Simon, 1895c); Viluppuram (Sherriffs, 1929) 3.42.16 Oxytate chlorion (Simon, 1906) • Madurai (Sherriffs, 1929); Nilgiris (Simon, 1906a; Sherriffs, 1929) 3.42.17 Oxytate virens (Thorell, 1891) • Coimbatore (Srikumar et al., 2018; Kadam and Rajkumar, 2020); Nagapattinam (Sugumaran and Duraimurugan, 2019); Salem (Karthikeyani et al., 2017a) 3.42.18 Ozyptila theobaldi Simon, 1885 • Coimbatore (Simon, 1885a); Viluppuram (Simon, 1906a) 3.42.19 Pagida salticiformis (O. Pickard-Cambridge, 1883) • Chengalpattu (Caleb, 2020a) 3.42.20 Runcinia escheri Reimoser, 1934 • Kanyakumari (Tikader, 1971); Nilgiris (Reimoser, 1934; Tikader, 1980) 3.42.21 Runcinia insecta (L. Koch, 1875) • Chengalpattu (Caleb, 2020a); Coimbatore (Ganesh Kumar and Velusamy, 1996); Salem (Sangavi et al., 2023) 3.42.22 Runcinia roonwali Tikader, 1965 • Salem (Sangavi et al., 2023) 3.42.23 Strigoplus netravati Tikader, 1963 • Kanyakumari (Sen et al., 2022) 3.42.24 Synema decoratum Tikader, 1960 • Chengalpattu (Caleb, 2020a) 3.42.25 Talaus opportunus (O. Pickard-Cambridge, 1873) • Nilgiris (Simon, 1906a) 3.42.26 Thomisus andamanensis Tikader 1980 • Kanyakumari (Sen et al., 2022) 3.42.27 Thomisus beautifularis Basu, 1965 • Coimbatore (Ganesh Kumar and Velusamy, 1996); Erode (Sugumaran, 2001); Nilgiris (Sugumaran, 2001); Salem (Sugumaran et al., 2007; Sangavi et al., 2023); Tirunelveli (Sugumaran, 2001); Virudhunagar (Sugumaran, 2001) 3.42.28 Thomisus granulifrons Simon, 1906 • Viluppuram (Simon, 1906a) 3.42.29 Thomisus laglaizei Simon, 1877 • Chennai (Sherriffs, 1929) 3.42.30 Thomisus leucaspis Simon, 1906 • Dindigul (Simon, 1906a); Madurai (Simon, 1906a); Nilgiris (Karthikeyani et al., 2017a); Viluppuram (Simon, IAEES www.iaees.org 236 Arthropods, 2023, 12(4): 193-250 1906a) 3.42.31 Thomisus lobosus Tikader, 1965 • Coimbatore (Kadam and Rajkumar, 2020; Devika et al., 2022); Dindigul (Karthikeyani et al., 2017a); Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Theni (Karthikeyani, 2013); Thiruvarur (Raja et al., 2023) 3.42.31 Thomisus projectus Tikader, 1960 • Kanyakumari (Sen et al., 2022) 3.42.32 Thomisus pugilis Stoliczka, 1869 • Chengalpattu (Caleb, 2020a); Chennai (Sherriffs, 1929); Coimbatore (Ganesh Kumar and Velusamy, 1996); Mayiladuthurai (Sankari et al., 2014); Nagapattinam (Sankari et al., 2016); Namakkal (Gupta et al., 2021); Salem (Gupta et al., 2021); Tiruppur (Gokul et al., 2022) 3.42.33 Thomisus rigoratus Simon, 1906 • Coimbatore (Dharmaraj et al., 2020a); Madurai (Simon, 1906a); Nilgiris (Simon, 1906a; Sherriffs, 1929); Viluppuram (Simon, 1906a) 3.42.34 Thomisus spectabilis (Doleschall, 1859) • Nilgiris (Reimoser, 1934) 3.42.35 Thomisus telanganaensis Pravalikha and Srinivasulu, 2015 • Kanyakumari (Sen et al., 2022) 3.42.36 Tmarus fasciolatus Simon, 1906 • Nilgiris (Simon, 1906a; Sherriffs, 1929); Viluppuram (Simon, 1906a; Sherriffs, 1929) 3.42.37 Tmarus kotigeharus Tikader, 1963 • Kanyakumari (Sen et al., 2022) 3.42.38 Tmarus soricinus Simon, 1906 • Nilgiris (Simon, 1906a; Sherriffs, 1929) 3.42.39 Xysticus sp. • Salem (Sangavi et al., 2023) 3.43 Family: Titanoecidae 3.43.1 Anuvinda escheri (Reimoser, 1934) • Nilgiris (Reimoser, 1934) 3.43.2 Pandava ganesha Almeida-Silva et al., 2010 • Chennai (Almeida-Silva et al., 2010) 3.44 Family: Trachelidae 3.44.1 Trachelas oreophilus Simon, 1906 • Viluppuram (Simon, 1906a; Majumder and Tikader, 1991) 3.44.2 Utivarachna fronto (Simon, 1906) • Nilgiris (Simon, 1906a); Tiruchirappalli (Simon, 1906a; Majumder and Tikader, 1991) 3.45 Family: Uloboridae 3.45.1 Philoponella hilaris (Simon, 1906) IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 237 • Dindigul (Sherriffs, 1928); Madurai (Simon, 1906b); Nilgiris (Simon, 1906b); Tiruchirappalli (Sherriffs, 1928) 3.45.2 Philoponella sp. • Salem (Sangavi et al., 2023) 3.45.3 Uloborus bigibbosus Simon, 1905 • Chennai (Sherriffs, 1927); Thoothukudi (Kumar et al., 2013) 3.45.4 Uloborus danolius Tikader, 1969 • Dindigul (Umarani and Umamaheswari, 2013); Salem (Sangavi et al., 2023); Ramanathapuram (Siliwal et al., 2008) 3.45.5 Uloborus jabalpurensis Bhandari and Gajbe, 2001 • Theni (Karthikeyani, 2013) 3.45.6 Uloborus krishnae Tikader, 1970 • Salem (Sangavi et al., 2023); Thanjavur (Raja et al., 2023); Thiruvarur (Raja et al., 2023) 3.45.7 Zosis geniculata (Olivier, 1789) • Chengalpattu (Sherriffs, 1927); Chennai (Sherriffs, 1919); Coimbatore (Kapoor, 2008; Kadam and Rajkumar, 2020); Nilgiris (Sherriffs, 1919); Salem (Sugumaran et al., 2007); Thiruvallur (Sherriffs, 1919) 3.46 Family: Zodariidae 3.46.1 Asceua cingulata (Simon, 1905) • Chennai (Sankaran, 2023); Salem (Sangavi et al., 2023) 3.46.2 Capheris escheri Reimoser, 1934 • Dindigul (Reimoser, 1934) 3.46.3 Capheris nitidiceps Simon, 1905 • Nilgiris (Simon, 1905) 3.46.4 Cryptothele collina Pocock, 1901 • Chennai (Karthikeyani et al., 2017a); Nilgiris (Pocock, 1901) 3.46.5 Hermippus cruciatus Simon, 1905 • Viluppuram (Simon, 1905) 3.46.6 Mallinella nilgherina (Simon, 1906) • Nilgiris (Simon, 1906a; Dankittipakul et al., 2012b); Salem (Sangavi et al., 2023) 3.46.7 Mallinella redimita (Simon, 1905) • Viluppuram (Simon, 1905) 3.46.8 Suffasia tigrina (Simon, 1893) • Dindigul (Simon, 1905; Jocqué, 1991); Tiruchirappalli (Jocqué, 1991); Nilgiris (Simon, 1905) 3.46.9 Tropizodium poonaense (Tikader, 1981) • Salem (Sangavi et al., 2023) IAEES www.iaees.org 238 Arthropods, 2023, 12(4): 193-250 Acknowledgements The author wishes to thank Dr. Theo Blick, Board Member of World Spider Catalog, Heidloh, Hummeltal, Germany for providing valuable information on the distribution of spiders in India. References Almeida-Silva LM, Griswold CE, Brescovit AD. 2010. Revision of the Asian spider genus Pandava Lehtinen (Araneae: Titanoecidae): description of five new species and first record of Titanoecidae from Africa. Zootaxa, 2630: 30-56. doi:10.11646/zootaxa.2630.1.2 Anand M, Karthikeyani R, Prasanna J, Muthuchelian K, Daniel BA. 2015. Invertebrate diversity and community livelihood activities at Chinnapallam village, Gulf of Mannar - a preliminary survey. Zoo’s Print, 30(6): 1-3 Baehr M, Baehr B. 1993. The Hersiliidae of the Oriental Region including New Guinea. Taxonomy, phylogeny, zoogeography (Arachnida, Araneae). Spixiana, 19(Suppl.): 1-96 Baehr BC, Harvey MS, Burger M, Thoma M. 2012. The new Australasian goblin spider genus Prethopalpus (Araneae, Oonopidae). Bulletin of the American Museum of Natural History, 369: 1-113. doi:10.1206/763.1 Banu AS, Kannagi SA. 2016. Spider faunal diversity in paddy field (Oryza sativa) ecosystem at Uthamapalayam in Theni district. World Journal of Pharmaceutical Research, 5(7): 591-599. doi: 10.20959/wjpr20167-5898 Bayer S. 2012. The lace-sheet-weavers-a long story (Araneae: Psechridae: Psechrus. Zootaxa, 3379: 1-170. doi:10.11646/zootaxa.3379.1.1 Benjamin SP. 2004. Taxonomic revision and phylogenetic hypothesis for the jumping spider subfamily Ballinae (Araneae, Salticidae). Zoological Journal of the Linnean Society, 142: 1-82. doi:10.1111/j.10963642.2004.00123.x Benjamin SP. 2010. Revision and cladistic analysis of the jumping spider genus Onomastus (Araneae: Salticidae). Zoological Journal of the Linnean Society, 159(3): 711-745. doi:10.1111/j.10963642.2009.00580.x Brignoli PM. 1973. Un nuovo Althepus dell'India meridionale (Arachnida: Araneae: Ochyroceratidae). Revue Suisse de Zoologie, 80: 587-593 Brignoli PM. 1976. On some recent papers about Indian spiders. Bulletin of the British Arachnological Society, 3(8): 211-213 Brignoli PM. 1980. On few Mysmenidae from the Oriental and Australian regions (Araneae). Revue Suisse de Zoologie, 87: 727-738 Butler AG. 1873. A monographic list of the species of Gasteracantha or crab-spiders, with descriptions of new species. Transactions of the Entomological Society of London, 1873: 153-180 Caleb JTD. 2014. A new species of Phintella Strand (Araneae: Salticidae) from India. Munis Entomology and Zoology, 9(2): 605-608 Caleb JTD. 2016a. New data on the jumping spiders (Araneae: Salticidae) from India. Arthropoda Selecta, 25(3): 271-277. doi:10.15298/arthsel.25.3.06 Caleb JTD. 2016b. A discovery and redescription of Curubis erratica Simon, 1902 (Araneae: Salticidae) from India. Arthropoda Selecta, 25(2): 207-211. doi:10.15298/arthsel.25.2.07 Caleb JTD. 2016c. Taxonomic notes on some ant-mimicking jumping spiders (Araneae: Salticidae) from India. Arthropoda Selecta, 25(4): 403-420. doi:10.15298/arthsel.25.4.09 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 239 Caleb JTD. 2016d. First record of the genus Cocalus C.L. Koch, 1846 (Araneae: Salticidae) from India. Peckhamia, 135(1): 1-4 Caleb JTD. 2017a. First record of Micaria dives (Lucas, 1846) (Araneae: Gnaphosidae) from India.Indian Journal of Arachnology, 6(2017): 51-54 Caleb JTD. 2017b. Jumping spiders of the genus Icius Simon, 1876 (Araneae: Salticidae) from India, with a description of a new species. Arthropoda Selecta, 26(4): 323-327. doi:10.15298/arthsel.26.4.07 Caleb JTD. 2018. Redescription of the tropical huntsman spider Olios lamarcki (Latreille, 1806) (Aranei: Sparassidae). Arthropoda Selecta, 27(4): 339-343. doi:10.15298/arthsel.27.4.10 Caleb JTD. 2019. What is in a name? The birthright of Oxyopes nilgiricus Sherriffs, 1955 (Araneae: Oxyopidae). Journal of Threatened Taxa, 11(7): 13947 Caleb JTD. 2020a. Spider (Arachnida: Araneae) fauna of the scrub jungle in the Madras Christian College campus, Chennai, India. Journal of Threatened Taxa, 12(7): 15711-15766. doi:10.11609/jott.5758.12.7.15711-15766 Caleb JTD. 2020b. Spiders (Arachnida: Araneae) from the vicinity of Araabath Lake, Chennai, India. Journal of Threatened Taxa, 12(1): 15186-15193. doi: 10.11609/jott.5393.12.1.15186-15193 Caleb JTD, Karthikeyani R. 2020. JoTT Checklist of the spiders of Tamil Nadu (v1.0), 10 February 2020. https://threatenedtaxa.org/index.php/JoTT/checklists/spiders/TamilNadu. Caleb JTD, Kumar V. 2018. Pellenes iva sp. n. (Araneae: Salticidae) with a distinct M-shaped central epigynal pocket from India. Halteres, 9: 6-11 Caleb JTD, Mathai MT. 2013. New species of Poecilochroa Westring and Zelotes Gistel (Araneae: Gnaphosidae) from Tamil Nadu, India. Indian Journal of Arachnology, 2(2): 1-6 Caleb JTD, Mathai MT. 2014a. Record of Araneus viridisomus Gravely, 1921 (Araneae: Araneidae) from Tamil Nadu, India. Indian Journal of Arachnology, 3(2): 1-5 Caleb JTD, Mathai MT. 2014b. A new species of Deinopis MacLeay (Araneae: Deinopidae) from India. Indian Journal of Arachnology, 3(1): 1-7 Caleb JTD, Mathai MT. 2014c. Description of some interesting jumping spiders (Araneae: Salticidae) from South India. Journal of Entomology and Zoology Studies, 2(5): 63-71 Caleb JTD, Mathai MT. 2015. Description of a new species of Harmochirus Simon (Araneae: Salticidae) from South India. Munis Entomology and Zoology, 10(1): 117-121 Caleb JTD, Mathai MT. 2016a. A new jumping spider of the genus Stenaelurillus Simon, 1886 from India (Araneae: Salticidae: Aelurillina. Zootaxa, 4103(2): 185-188. doi:10.11646/zootaxa.4103.2.10 Caleb JTD, Mathai MT. 2016b. Extended boundaries of the ant mimicking swift spider genus Aetius decollates Pickard-Cambridge, 1896 (Araneae: Corinnidae). Indian Journal of Arachnology, 5: 36-41 Caleb JTD, Sanap RV. 2016. Lessert’s rainbow spider, Stenaelurillus lesserti Reimoser (Araneae: Salticidae: Aelurillina) from new localities in South India. Acta Arachnologica, 65(2): 83-87. doi:10.2476/asjaa.65.83 Caleb JTD, Sankaran PM. 2023. Araneae of India-Spider Diversity of India, version 2023. https://indianspiders.in/ retrieved on July 10, 2023 Caleb JTD, Karthikeyani R, Muthuchelian K. 2014a. Description of Drassodes luridus O.P.Cambridge (Araneae: Gnaphosidae): First record from Tamil Nadu, India. Journal of Entomology and Zoology Studies, 2(4): 135-138 Caleb JTD, Christudhas A, Laltanpuii K, Chitra M. 2014b. New species of Hyllus C.L.Koch (Araneae: Salticidae) from India. Munis Entomology and Zoology, 9(2): 634-637 Caleb JTD, Mungkung S, Mathai MT. 2015. Four new species of jumping spider (Araneae: Salticidae: Aelurillinae) with the description of a new genus from South India. Peckhamia, 124(1): 1-18 IAEES www.iaees.org 240 Arthropods, 2023, 12(4): 193-250 Caleb JTD, Karthikeyani R, Muthuchelian K. 2016. Social spiders (Araneae: Eresidae: Stegodyphus) in Tamil Nadu, India. International Journal of Applied Bioresearch, 27: 4-6 Caleb JTD, Prajapati DA, Ali PA. 2019. Redescription of Rudakius ludhianaensis (Tikader, 1974) (Aranei: Salticidae), with notes on its synonymy and distribution. Arthropoda Selecta, 28(3): 417-423. doi:10.15298/arthsel.28.3.06 Caleb JTD, Bera C, Acharya S. 2020. New species and synonymies in the genus Carrhotus Thorell, 1891 from India (Aranei: Salticidae: Salticini. Arthropoda Selecta, 29(1): 51-66. doi:10.15298/arthsel.29.1.04 Coyle FA. 1995. A revision of the funnelweb mygalomorph spider subfamily Ischnothelinae (Araneae, Dipluridae). Bulletin of the American Museum of Natural History, 226: 1-133 Crews SC, Harvey MS. 2011. The spider family Selenopidae (Arachnida, Araneae) in Australasia and the Oriental region. ZooKeys, 99: 1-103. doi:10.3897/zookeys.99.723 Dankittipakul P, Jocqué R, Singtripop T. 2012. Systematics and biogeography of the spider genus Mallinella Strand, 1906, with descriptions of new species and new genera from Southeast Asia (Araneae, Zodariidae). Zootaxa, 3369: 1-327, 3395: 46. doi:10.11646/zootaxa.3369.1.1 Devika M, Mohamed Ibrahim N, Begam JA, Goldin Q. 2022. Diversity and feeding habits of spiders across habitats in Coimbatore district. Indian Journal of Ecology, 49(1): 217-221. doi: 10.55362/IJE/2022/3506 Dharmaraj J, Gunasekaran C, Rajkumar V, Chinnaraj P. 2017. Diversity of spiders (Arachnida: Araneae) in Nilgiris, Tamilnadu. International Journal of Advanced Research in Biological Sciences, 4(5): 143-147 Dharmaraj J, Gunasekaran C, Rajkumar V. 2018. Diversity and plethora of spider fauna at different habitats of the Nilgiris, Tamilnadu south India. International Journal of Recent Scientific Research, 9(3A): 2463424637. doi: 10.24327/ijrsr.2018.0903.1698 Dharmaraj J, Gunasekaran C, Rajkumar V, Paul CA. 2020a. Spiders controlling mosquitoes (Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi): a comprehensive research. International Journal of Mosquito Research, 7(1): 51-55 Dharmaraj J, Gunasekaran C, Rajkumar V, Paul CA. 2020b. The first report of the Cheiracanthium melanostomum (Thorell, 1895) from the Nilgiris, Tamil Nadu, India. Acta Entomology and Zoology, 1(1): 44-45. doi: 10.33545/27080013.2020.v1.i1a. Ganesh Kumar M, Mohanasundaram M. 1998. A new species of ant-like spider from cotton fields of Tamil Nadu (Araneae: Salticidae). Zoos’ Print Journal, 13(11): 27-28 Ganesh Kumar M, Siliwal M. 2005. Range extension of Latrodectus hasselti Thorell, 1870 (Araneae: Theridiidae). Zoos’ Print Journal, 20(11): 2072 Ganesh Kumar M, Siliwal M. 2007. First record of Achaearanea brookesiana Barrion and Litsinger, 1995 (Araneae: Theridiidae) from mainland India. Zoos’ Print Journal, 22: 2926-2928 Ganesh Kumar M, Velusamy R. 1996. Composition of spider in rice ecosystem of Tamil Nadu. Madras Agricultural Journal, 83(7): 448-451 Ganesh Kumar M, Sugumaran MP, Sivasubramanian K, Nagamani B. 1999. Studies on the ecology of the Raft Spider Dolomedes fimbriatus (Dol.) (Araneae: Pisauridae) in the rice fields of Coimbatore. Zoos’ Print Journal, 14(6): 45-46 Gokul PS, Tamizhselvi N, Muthukumar P. 2022. Seasonal abundance, ecology and distribution of spider diversity in a semi-urban residential colony at Udumalpet, Tamil Nadu, India. International Journal of Entomology Research, 7(10): 125-129 Gokulapriya G, Chandrasekaran M, Indhumathi K, Soundararajan RP, Yasodha P. 2021. Diversity and population dynamics of insect predatory fauna in the brinjal ecosystem under IPM and non-IPM situations. Journal of Biological Control, 35(3): 161-170, 2021, doi: 10.18311/jbc/2021/28638 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 241 Gravely FH. 1915. Notes on Indian mygalomorph Spiders. Records of the Indian Museum, Calcutta, 11: 257287 Gravely FH. 1921. Some Indian spiders of the subfamily Tetragnathinae. Records of the Indian Museum, Calcutta, 22: 423-459 Gravely FH. 1924. Some Indian spiders of the family Lycosidae). Records of the Indian Museum, Calcutta, 26: 587-613 Gravely FH. 1931. Some Indian spiders of the families Ctenidae, Sparassidae, Selenopidae and Clubionidae). Records of the Indian Museum, Calcutta, 33: 211-282 Gravely FH. 1935. Notes on Indian mygalomorph spiders. II. Records of the Indian Museum, Calcutta, 37: 6984. doi:10.3406/bsef.1932.14406 Grismado CJ. 2023. Goblin spiders from India: description of new species of the genera Paramolotra Tong and Li, and Aprusia Simon, and the female of Aprusia kerala Grismado and Deeleman (Araneae: Oonopidae). Revista del Museo Argentino de Ciencias Naturales, Nueva Serie, 25(1): 121-123. doi:10.22179/REVMACN.25.807 Gupta A, Sampathkumar M, Mohan M, Shylesha AN, Venkatesan T, Shashank PR, Dhanyakumar O, Ramkumar P, Sakthivel N, Geetha B. 2021. Assessing adverse impact of the native biological control disruptors in the colonies of the recent invasive pest Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae) in India. Global Ecology and Conservation, 32: e01878. doi: 10.1016/j.gecco.2021.e01878 Gupta N, Ganeshkumar M, Das SK, Siliwal M. 2013. Three new species of Idiops Perty, 1833 (Araneae: Idiopidae) from India. Zootaxa, 3635: 237-250. doi:10.11646/zootaxa.3635.3.3 Huber BA. 2005. High species diversity, male-female coevolution, and metaphyly in Southeast Asian pholcid spiders: the case of Belisana Thorell 1898 (Araneae, Pholcidae). Zoologica, 155: 1-126 Huber BA. 2011. Revision and cladistic analysis of Pholcus and closely related taxa (Araneae, Pholcidae). Bonner Zoologische Monographien, 58: 1-509 Huber BA. 2022. Revisions of Holocnemus and Crossopriza: the spotted-leg clade of Smeringopinae (Araneae, Pholcidae). European Journal of Taxonomy, 795: 1-241. doi:10.5852/ejt.2022.795.1663 iNaturalist. 2023. https://www.inaturalist.org/check_lists. Retrieved on May 20, 2023 Jayakumar S, Sankari A. 2010. Spider population and their predatory efficiency in different rice establishment techniques in Auduthurai, Tamil Nadu. Journal of Biopesticides, 3(1): 20-27. Jayakumar S, Paramanandham J, Duraimurugan V, Sankari A, Ramya A, Sathiskumar S, Durga A. 2017. Study on web-site attributes and predatory efficiency of dark tetragnathid spider in Point Calimere Wildlife and Bird Sanctuary. International Letters of Natural Sciences, 62: 11-19. doi:10.56431/p-a9wk60 Jeyaparvathi S. 2014. Population dynamics of spiders in Ayya Naddar Janaki Ammal College Campus, Virudhunagar district, Tamil Nadu, India. Journal of Zoology Studies, 1(1): 1-4 Jeyaparvathi S, Baskaran S, Bakavathiappan G. 2013. Population dynamics of spiders in selected cotton fields of Virudhunagar district, Tamil Nadu, India. Munis Entomology and Zoology, 8(2): 560-570 Jocqué R. 1991. A generic revision of the spider family Zodariidae (Araneae). Bulletin of the American Museum of Natural History, 201: 1-160 Kadam G, Rajkumar M. 2020. Exploring the “tigers of microhabitat” in SACON campus. SACON News, 17(4): 6-10 Kapoor V. 2008. Effects of rainforest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. Journal of Insect Conservation, 12: 53-68. doi: 10.1007/s10841-006-9062-5. IAEES www.iaees.org 242 Arthropods, 2023, 12(4): 193-250 Karthikeyani R. 2013. Biodiversity of spiders (Araneae) in Kumbakarai Falls, Periyakulam Taluk, Theni District, Tamil Nadu, South India. PhD thesis, Madurai Kamaraj University, Madurai, India Karthikeyani R, Kannan S. 2012. Diversity and bio-control potential of huntsman spider Heteropoda venatoria (Linnaeus) (Araneae: Sparassidae). Journal of Bioscience Research, 3(4): 240-244 Karthikeyani R, Kannan S. 2013. A new Plexippus spider from the western Ghats, Kumbakarai Falls, Theni District, Tamil Nadu, south India (Arachnida: Araneae: Salticidae). Indian Journal of Arachnology, 2(2): 42-46 Karthikeyani R, Caleb JTD, Gajbe UA, Muthuchelian K. 2017a. Checklist of spiders (Arachnida: Araneae) of the State of Tamil Nadu, India. Munis Entomology and Zoology, 12(1): 180-193 Karthikeyani R, Divya A, Mathavan T, Mohamed Asath R, Milton Franklin Benial A, Muthuchelian. 2017b. Structural and optical studies on selected social and orb-web spider silks. Spectrochimica Acta Part A, 170: 111-116 Kishore R, Roopha PD. 2022. Rediscovery of endangered Salem ornamental tarantula Poecilotheria formosa Pocock, 1899 (Aranae: Theraphosidae) from Southern Eastern Ghats of Tamil Nadu, India. International Journal of Entomology Research, 7(5): 1-4 Kraus O, Kraus M. 1989. The genus Stegodyphus (Arachnida, Araneae): sibling species, species groups, and parallel origin of social living. Verhandlungen des Naturwissenschaftlichen Vereins, 30: 151-254 Krishnaveni K, Kandeepan C. 2018. Biomonitoring of diversity and compostition of spider collection at Sirumalai hills, Dindigul district, Tamil Nadu. International Journal of Zoology Studies, 3(1): 44-47 Krishnaveni K, Kandeepan C. 2019. Diversity and structure of spider assemblages in Sirumalai hills, Dindigul district, Tamil Nadu. International Journal of Life Sciences Research, 7(3): 61-66 Kronestedt T. 2010. Draposa, a new wolf spider genus from South and Southeast Asia (Araneae: Lycosidae). Zootaxa, 2637: 31-54. doi:10.11646/zootaxa.2637.1.2 Kulkarni S, Vartak A, Deshpande V, Halali D. 2017. The spiny theridiid genus Meotipa Simon, 1895 in India, with description of a strange new species with translucent abdomen and a phylogenetic analysis about the genus placement (Araneae, Theridiidae). Zootaxa, 4291(3): 504-520. Kumar IV, Veni T, Mohanraj J. 2013. Spider fauna of betelvine agro-ecosystem in Aattur, Tuticori District, Tamil Nadu, India. International Journal of Pharmaceutical Research and Bio-Sciences, 2(4): 139-151 Lehtinen PT. 1981. Spiders of the Oriental-Australian region. III. Tetrablemmidae, with a world revision. Acta Zoologica Fennica, 162: 1-151. Levi HW. 1982. The spider genera Psechrus and Fecenia (Araneae: Psechridae). Pacific Insects, 24: 114-138 Lin YJ, Shao L, Hänggi A, Caleb JTD, Koh JKH, Jäger P, Li SQ. 2020. Asianopis gen. nov, a new genus of the spider family Deinopidae from Asia. ZooKeys, 911: 67-99. doi:10.3897/zookeys.911.38761 Logunov DV. 2001. A redefinition of the genera Bianor Peckham and Peckham, 1885 and Harmochirus Simon, 1885, with the establishment of a new genus Sibianor gen. n. (Aranei: Salticidae). Arthropoda Selecta, 9: 221-286 Logunov DV, Hereward J. 2006. New species and synonymies in the genus Synagelides Strand in Bösenberg and Strand, 1906 (Araneae: Salticidae). Bulletin of the British Arachnological Society, 13: 281-292 Lopardo L, Hormiga G. 2015. Out of the twilight zone: phylogeny and evolutionary morphology of the orbweaving spider family Mysmenidae, with a focus on spinneret spigot morphology in symphytognathoids (Araneae, Araneoidea. Zoological Journal of the Linnean Society 173(3): 527-786. doi:10.1111/zoj.12199 Mahalakshmi R, Jeyaparvathi S. 2014. Diversity of spider fauna in the cotton field of Thailakulam, Virudhunagar district, Tamil Nadu, India. The Journal of Zoology Studies, 1(1): 12-18 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 243 Majumder SC. 2005. Studies on some spiders from eastern coastal region of India. Memoirs of the Zoological Survey of India, 20(3): 1-57 Majumder SC, Tikader BK. 1991. Studies on some spiders of the family Clubionidae from India. Records of the Zoological Survey of India, Occasional Paper, 102: 1-175 Malamel JJ, Prajapati DA, Sudhikumar AV, Sebastian PA. 2019. Two new species of the tribe Ballini Banks, 1892 from India (Araneae: Salticidae). Arthropoda Selecta, 28(3): 424-434. doi:10.15298/arthsel.28.3.07 Moinudheen N, Jeyabalan D, Arockianadhan AS. 2017. Sighting of nilgiri large burrowing spider Haploclastus nilgirinus Pocock, 1899 from Nilgiris, Western Ghats, India. Indian Journal of Arachnology, 6(1): 30-33 Molur S, Daniel BA, Siliwal M. 2003. Distribution, status and effect of trade on large-bodied (Mygalomorph) spiders of the genus Poecilotheria and other theraphosid spiders in India. Final Report. Wildlife Information Liaison Development (WILD) Society. Coimbatore, Tamil Nadu, India Molur S, Daniel BA, Siliwal M. 2004. Distribution of the regal parachute spider Poecilotheria regalis Pocock, 1899. Zoos’ Print Journal, 19(10): 1665-1667 Murugesan S, Mathew MJ, Sudhikumar AV, Sunish E, Biju CR, Sebastian PA. 2006. A new species of green lynx spider of the genus Peucetia Thorell (Araneae: Oxyopidae) from Tamil Nadu, India. Entomon, 31: 287-292 Muthukumaravel K, Amsath A, Raja RB. 2013. A preliminary investigation of spider fauna in associated mangroves of Muthupet at Adirampattinam coast, Tamil Nadu, India. International Journal of Pure and Applied Zoology, 19(1): 304-309 Nafin KS, Sumesh NV, Sudhin PP, Sudhikumar AV. 2019. Redescription and new records of Phoroncidia septemaculeata O. Pickard-Cambridge 1873 from India (Araneae: Theridiidae). Zootaxa, 4691(2): 188-194. doi:10.11646/zootaxa.4691.2.9 Narayan K. 1915. Notes on ant-like spiders of the family Attidae in the collection of the Indian Museum. Records of the Indian Museum, Calcutta, 11: 393-406 Nataraj P, Karthikeyani, SP, Gunasekaran C, Dharmaraj J. 2017. A study on diversity of spider fauna in Maruthamalai Foot Hills, Western Ghats, South India. In: Mainstreaming Biodiversity for Sustainable Development 2017 (Cheruvat D, Nilayangode P, Oommen OV, eds). 127-135, Kerala State Biodiversity Board, Thiruvananthapuram, India Nyffeler M, Birkhofer K. 2017. An estimated 400-800 million tons of prey are annually killed by the global spider community. Science Nature, 104: 30. doi:10.1007/s00114-017-1440-1 Phanuel GJ. 1963. Stegodyphus tibialis (Cambridge) (Family Eresidae: Araneida) from Madras. Journal of the Madras University, Section B, 33(3): 305-310 Platnick NI. 1991. A revision of the ground spider family Cithaeronidae (Araneae, Gnaphosoidea. American Museum Novitates, 3018: 1-13 Platnick NI, and Shadab MU. 1974. A revision of the spider family Stenochilidae (Arachnida, Araneae). American Museum Novitates, 2556: 1-14 Platnick NI, Dupérré N, Ott R, Kranz-Baltensperger Y. 2011. The goblin spider genus Brignolia (Araneae, Oonopidae). Bulletin of the American Museum of Natural History, 349: 1-131. doi:10.1206/743.1 Platnick NI, Dupérré N, Ott R, Baehr BC, Kranz-Baltensperger Y. 2012. The goblin spider genus Pelicinus (Araneae, Oonopidae), Part 1. American Museum Novitates, 3741: 1-43. doi:10.1206/3741.2 Pocock RI. 1899a. Diagnoses of some new Indian Arachnida. Journal of the Bombay Natural History Society, 12: 744-753 IAEES www.iaees.org 244 Arthropods, 2023, 12(4): 193-250 Pocock RI. 1899b. The genus Poecilotheria: its habits, history and species. Annals and Magazine of Natural History, 3(13): 82-96, pl. 7. doi:10.1080/00222939908678082 Pocock RI. 1900. The Fauna of British India including Ceylon and Burma Arachnida. Taylor and Francis London, UK. doi:10.5962/bhl.title.48423 Pocock RI. 1901. Descriptions of some new species of spiders from British India. Journal of the Bombay Natural History Society, 13: 478-498. Prakash SS, Mergin NS, Jebisha J, Punitha A, Anitha C. 2023. Biodiversity of spiders in Kanyakumari district, Tamilnadu, India. Biological Forum - An International Journal, 15(2): 312-322 Prasad P, Tyagi K, Caleb JTD, Kumar V. 2019. A new species of the cob web spider genus Theridion from India (Araneae: Theridiidae). Ecologica Montenegrina, 26: 108-117. doi:10.37828/em.2019.26.7 Prószyński J. 1992a. Salticidae (Araneae) of the Old World and Pacific Islands in several US collections. Annales Zoologici, Warszawa, 44: 87-163 Prószyński J. 1992b. Salticidae (Araneae) of India in the collection of the Hungarian National Natural History Museum in Budapest. Annales Zoologici, Warszawa, 44: 165-277 Raj RA, Cijomol PJ, Maruthirajan A, Stephenraj D, Muthukumar S. 2021. Spider diversity in mulberry cultivation in Kanchipuram district, Tamil Nadu, India. International Journal of Entomology Research, 6(4): 6-10 Raja RB, Muthukumaravel K, Selvan KM, Pradhoshini KP, Ahmed MS, Musthafa MS, Burgos-Aceves MA, Faggio C. 2023. Seasonal variation in spider abundance in Muthupet mangroves, South East coast of Tamilnadu, India. Environmental Monitoring and Assessment (preprint), https://doi.org/10.21203/rs.3.rs2628940/v1 Rajendran R, Kaliyaperumal S, Periyasamy K. 2017. Diversity and distribution of spider (Araneae) in different ecosystem of Puthanampatti, Tiruchirappalli district, Tamil Nadu, South India. International Journal of Scientific and Engineering Research, 8(10): 1056-1060 Raman K, Vimalraj S, Krishnakumar BM, Balachandran N, Tomar A. 2019. Range extension of the Gooty Tarantula Poecilotheria metallica (Araneae: Theraphosidae) in the Eastern Ghats of Tamil Nadu, India. Journal of Threatened Taxa, 11(10): 14373-14376 Ranjith M, Bajya DR, Ramya RS. 2022. Abundance and composition of arthropods in sugarcane (Saccharum officinarum) ecosystem. Indian Journal of Agricultural Sciences, 92(11): 1386-1390. doi:10.56093/ijas.v92i11.108405 Raven RJ. 1986. A revision of the spider genus Sason Simon (Sasoninae, Barychelidae, Mygalomorphae) and its historical biogeography. Journal of Arachnology, 14: 47-70 Reimoser E. 1934. Araneae aus Süd-Indien. Revue Suisse de Zoologie, 41: 465-511 Roopha PD, Kishore R, Joshua D, Charles AA, Vimal NP. 2021. Record of the redback spider from the Eastern Ghats of Tamil Nadu. Bugs R All No. 207, Zoos’ Print, 36(10): 15-18 Saaristo MI, Tanasevitch AV. 2003. A new micronetid spider genus from the Oriental Region (Aranei: Linyphiidae: Micronetinae). Arthropoda Selecta, 11: 319-330 Sahayaraj K, Parvathi SJ. 2011. Distribution and diversity of spiders in agroecosystems of Tirunelveli and Thoothukudi districts of Tamil Nadu, India. Bugs R All, 17: 10-12 Sampathkumar M, Reang B, Caleb JTD, Mahendiran G, Shaw SS. 2022. The spitting spider, Scytodes fusca Walckenaer (Araneae, Scytodidae): Its distribution in South India and natural history notes. Journal of Entomological Research, 46(2): 347-350. doi 10.5958/0974-4576.2022.00063.9 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 245 Sanap RV, Mirza ZA. 2011. Two new trapdoor spider species of the genus Scalidognathus Karsch, 1891 (Araneae: Idiopidae) from the southern western Ghats of India. Acta Zoologica Lituanica, 21: 96-102. doi:10.2478/v10043-011-0019-x Sangavi D, Anisha PS, Vinothini G, Nathan PT. 2023. Diversity of spiders (Arachnida: Araneae) in natural and altered ecosystems in Salem district, Tamil Nadu, India. Journal of Animal Diversity, 5(1): 113-126. http://dx.doi.org/10.52547/JAD.2023.5.1.8 Sankaran PM. 2023. Taxonomic notes on the ant-eating spider genera Asceua Thorell, 1887 and Cydrela Thorell, 1873 from India, with comment on Indian species of Euryeidon Dankittipakul and Jocqué, 2004 (Araneae: Zodariidae). Zootaxa 5296(3): 381-405. doi:10.11646/Zootaxa.5296.3.4 Sankaran PM and Sebastian PA. 2016. A checklist of Indian armored spiders (Araneae, Tetrablemmidae) with the description of a new species from the Western Ghats. Zootaxa, 4084(3): 443-450. doi:10.11646/zootaxa.4084.3.9 Sankaran PM, Malamel JJ, Joseph MM, Sebastian PA. 2017. On the genus Tylorida Simon, 1894 with the first record of the genus Atelidea Simon, 1895 from India (Araneae: Tetragnathidae, Leucauginae). Zootaxa, 4353(2): 294-326. doi:10.11646/zootaxa.4353.2.3 Sankaran PM, Kadam G, Sudhikumar AV, Tripathi R. 2022. First record of Siamspinops Dankittipakul and Corronca, 2009 from India, first description of the female of Makdiops shevaroyensis (Gravely, 1931), and a catalogue of Indian selenopid fauna (Araneae, Selenopidae). Zootaxa, 5194(1): 109-121. doi:10.11646/Zootaxa.5194.1.6 Sankari A, Thiyagesan K. 2010. Population and predatory potency of spiders in brinjal and snakegourd. Journal of Biopesticide, 3(1): 28-32 Sankari A, Thiyagesan K, Baskaran N, Jayakumar S. 2014. Influence of plant structure on the spider density and diversity in garden. Conference: Modern Trends Biodiversity Conservation and its Sustainable Use. Volume 1, 73-87, Periyar Govt. Arts College, Cudalore, Tamil Nadu, India Sankari A, Thiyagesan K, Jayakumar S, Baskaran N. 2016. Guild structure of spider (Araneae) in vegetable field. In: Perspective on Biodiversity of India. Volume II Part 1 (Bijukumar A, Pradeep NS, Ajit Kumar KG, Rajendran PG, eds). 414-419, Centre for Innovation in Science and Social Action, Thiruvananthapuram, India Saranya VSL, Samiayyan K, Prema MS. 2019. Diversity of predatory spider fauna in maize ecosystem. Journal of Biological Control, 33(1): 27-35 Sen S, Sureshan PM. 2021. New record of nursery web spider, Polyboea vulpina Thorell, 1895 (Araneae: Pisauridae) from India with a key to Indian species. Romanian Journal of Biology-Zoology, 65(1-2, 2020): 55-59 Sen S, Sureshan PM. 2022. First report of the genus Heriaeus Simon, 1875 (Araneae: Thomisidae) from India with the description of a new species from Western Ghats. Proceedings of the Entomological Society of Washington, 123(4): 847-851. doi:10.4289/0013-8797.123.4.847 Sen S, Sudhin PP, Bera C, Jwala R, Subramanian KA, Sureshan PM. 2022. Spiders (Arachnida: Araneae) of Kanyakumari Wildlife Sanctuary, Tamil Nadu, India. Records of Zoological Survey of India, 122(2): 187197. doi: 10.26515/rzsi/v122/i2/2022/170243 Sethi VD, Tikader BK. 1988. Studies on some giant crab spiders of the family Heteropodidae from India. Records of the Zoological Survey of India, Miscellaneous Publications, Occasional Paper, 93: 1-94 Sherriffs WR. 1919. A contribution to the study of south Indian Arachnology. Annals and Magazine of Natural History, (9)4: 220-253. doi:10.1080/00222931908673888 IAEES www.iaees.org 246 Arthropods, 2023, 12(4): 193-250 Sherriffs WR. 1927. South Indian arachnology. Part II. Annals and Magazine of Natural History, 9-19(13): 533-542. doi:10.1080/00222932708655528 Sherriffs WR. 1928. South Indian Arachnology. Part III. Annals and Magazine of Natural History, 10(2): 177192. doi:10.1080/00222932808672866 Sherriffs WR. 1929. A contribution to the study of South Indian Arachnology IV. Annals and Magazine of Natural History, 10 (2): 233-246. doi:10.1080/00222932908673046 Sherriffs WR. 1931. South Indian Arachnology. Part V. Annals and Magazine of Natural History, 10: 537-546. doi:10.1080/00222933108673344 Sherriffs WR. 1951. Some oriental spiders of the genus Oxyopes. Proceedings of the Zoological Society of London, 120: 651-677 Shunmugavelu M, Karthikeyani R. 2010. Spider fauna of the family Araneidae from Kumbakarai falls, Theni District, Tamil Nadu, South India. Proceedings of the Zoological Society India, 9(2): 25-31 Siliwal M, Molur S. 2009. A new species of the genus Sason (Araneae: Barychelidae) from Rameshwaram Island, Tamil Nadu, India. Zootaxa, 2283: 60-68. doi:/10.11646/zootaxa.2283.1.6 Siliwal M, Molur S, Raven R. 2007. A new species of the genus Plesiophrictus (Araneae: Theraphosidae: Ischnocolinae) from western Ghats, India. Zoos’ Print Journal, 22: 2853-2860 Siliwal M, Molur S, Daniel BA. 2008. Status and conservation of tarantulas in selected hot specks of southern India. Wildlife Information Liaison Development (WILD) Society, Coimbatore, Tamil Nadu. Report submitted to Fauna and Flora International, UK Siliwal M, Molur S, Raven R. 2011a. Mygalomorphs of India: An overview. ENVIS Bulletin: Arthropods and their Conservation in India, 14(1): 175-188 Siliwal M, Gupta N, Sanap RV, Mirza ZA, Raven R. 2011b. First record of the genus Tigidia Simon, 1892 (Araneae: Barychelidae) from India with description of three new species from the western Ghats, India. Journal of Threatened Taxa, 3: 2229-2241. doi:10.11609/JoTT.o2874.2229-41 Siliwal M, Gupta N, Molur S. 2013. The striated parachute spider Poecilotheria striata Pocock, 1895 (Araneae: Theraphosidae): a note on taxonomy, distribution and conservation status. Journal of Threatened Taxa, 5: 4630-4640. doi:10.11609/jott.o2956.4630-40 Simon E. 1884a. Arachnides recueillis en Birmanie par M. le chevalier J. B. Comotto et appartenant au Musée civique d'histoire naturelle de Gènes. Annali del Museo Civico di Storia Naturale di Genova, 20: 325-372 Simon E. 1884b. Descriptions de quelques arachnides des genres Miltia E. S. et Zimiris E. S. Annales de la Société Entomologique de Belgique, 28(C.R.): 139-142 Simon E. 1885a. Matériaux pour servir à la faune arachnologiques de l'Asie méridionale.III.Arachnides recueillis en 1884 dans la presqu'île de Malacca, par M.J.Morgan.IV.Arachnides recueillis à Collegal, district de Coimbatoore, par M.A.Theobald G.R. Bulletin de la Société Zoologique de France, 10: 436-462 Simon E. 1885b. Matériaux pour servir à la faune arachnologiques de l'Asie méridionale.I.Arachnides recueillis à Wagra-Karoor près Gundacul, district de Bellary par M.M.Chaper.II.Arachnides recueillis à Ramnad, district de Madura par M.l'abbé Fabre. Bulletin de la Société Zoologique de France 10: 1-39 Simon E. 1892. Histoire naturelle des araignées.Deuxième édition, tome premier.Roret, Paris, France Simon E. 1895a. Histoire naturelle des araignées. Deuxième édition, tome premier. 761-1084, Roret, Paris, France Simon E. 1895b. Etudes arachnologiques. 26e. XLI. Descriptions d'espèces et de genres nouveaux de l'ordre des Araneae. Annales de la Société Entomologique de France, 64: 131-160 Simon E. 1895c. Descriptions d'arachnides nouveaux de la famille des Thomisidae).Annales de la Société Entomologique de Belgique, 39: 432-443 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 247 Simon E. 1900a. Etudes arachnologiques. 30e Mémoire. XLVII. Descriptions d'espèces nouvelles de la famille des Attidae). Annales de la Société Entomologique de France, 69: 27-61 Simon E. 1900b. Descriptions d'arachnides nouveaux de la famille des Attidae). Annales de la Société Entomologique de Belgique, 44: 381-407 Simon E. 1901. Histoire naturelle des araignées. Deuxième édition, tome second. 381-668, Roret, Paris, France. doi:10.5962/bhl.title.51973 Simon E. 1902. Description d'arachnides nouveaux de la famille des Salticidae (Attidae) (suite). Annales de la Société Entomologique de Belgique, 46: 24-56, 363-406 Simon E. 1905. Arachnides (1re partie. In: Voyage de M.Maurice Maindron dans l'Inde méridionale. 7e Mémoire. Annales de la Société Entomologique de France, 74: 160-180 Simon E. 1906a. Arachnides (2e partie. In: Voyage de M. Maurice Maindron dans l'Inde méridionale. 8e Mémoire. Annales de la Société Entomologique de France, 75: 279-314 Simon E. 1906b. Etude sur les araignées de la section des cribellates. Annales de la Société Entomologique de Belgique, 50: 284-308 Singh BB, Singh R. 2021. Checklist of spider diversity of Chhattisgarh (Araneomorphae: Araneae: Arachnida). Journal of Applied Biosciences, 47(1-2): 52-61 Singh R. 2022a. An updated checklist of spider fauna (Arachnida: Araneae) in different districts of Karnataka state, India. Serket, 18(4): 451-499 Singh R. 2022b. An updated checklist of spider (Arachnida: Araneae) fauna of Maharashtra state, India. International Journal on Biological Sciences, 13(1): 14-74 Singh R. 2022c. An updated checklist of spiders (Arachnida: Araneae) of Odisha state, India. Arthropods, 11(4): 186-214 Singh R. 2023a. An updated checklist of the spider fauna (Arachnida: Araneae) in different districts of Kerala state of India. Serket, 19(3): 267-318 Singh R. 2023b. An updated checklist of the spider (Arachnida: Araneae) fauna of West Bengal, India. Munis Entomology and Zoology, 18(2): 1448-1503 Singh R, Sharma A. 2022a. Diversity of spider fauna (Arachnida: Araneae) in different districts of Andhra Pradesh, India. Serket, 18(3): 356-377 Singh R, Sharma A. 2022b. An updated checklist of spider (Araneomorphae: Araneae: Arachnida) diversity of Madhya Pradesh, India. International Journal of Zoological Investigations, 8(1): 191‒218. doi: 10.33745/ijzi.2022.v08i01.024 Singh R, Sharma A. 2022c. Diversity of spider (Araneae: Arachnida) fauna in different districts of Telangana state, India. Munis Entomology and Zoology, 17(2): 1375-1384 Singh R, Singh BB. 2022. An updated checklist of spiders (Arachnida: Araneae) of Goa, India. International Journal of Biological Innovations, 4(1): 51‒63. doi: 10.46505/IJBI.2022.4105 Singh R, Singh G. 2021a. Faunal diversity of orb-weaver spiders (Araneidae: Araneomorphae: Araneae: Arachnida) in India. International Journal of Biological and Environmental Investigations, 1(2): 62-133. doi: 10.33745/ijbei.2021.v01i02.001 Singh R, Singh G. 2021b. An updated checklist of spiders (Arachnida: Araneae) in Northeast India. Serket, 18(1): 91‒144 Singh R, Singh G. 2021c. Faunal diversity of spiders (Chelicerata: Araneae) in Bihar and Jharkhand, India. International Journal of Biological Innovations, 3(2): 382-391. doi: 10.46505/IJBI.2021.3220 Singh R, Singh G. 2021d. Updated checklist of spider diversity (Arachnida: Araneae) in Haryana, Himachal IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 248 Pradesh, Punjab, Chandigarh and Delhi (India). Serket, 18(2): 199-228 Singh R, Singh G. 2022a. Updated checklist of spider diversity (Arachnida: Araneae) in three union territories of India: Andaman and Nicobar Islands, Puducherry and Lakshadweep Islands. Munis Entomology and Zoology, 17(2): 878-901 Singh R, Singh G. 2022b. Faunal diversity of spiders (Chelicerata: Araneae) in Uttar Pradesh and Uttarakhand, India. Arthropods, 11(1): 18-55 Singh R, Singh G. 2022c. An updated checklist of spiders (Arachnida: Araneae) of Rajasthan, India. Journal of Animal Diversity, 4 (2): 76-90. doi: 10.52547/JAD.2022.4.2.3 Singh R, Khan AA, Khan AA. 2023a. An updated checklist of the spider fauna (Arachnida: Araneae) in different districts of Gujarat state, India. Serket, 19(2): 140-196. Singh R, Khan AA, Mushtaq T, Khan AA. 2023b. Updated checklist of spider diversity (Arachnida: Araneae) in two Union Territories of northwest India: Jammu and Kashmir and Ladakh. International Journal of Zoological Investigations, 9(1): 8-29. doi: 10.33745/ijzi.2023.v09i01.002 Sivaperuman C, Thiyakesan K. 1999. A report on spiders of Mannampandal area of Nagapattinam District, Tamil Nadu with a note on its web pattern. Zoos’ Print Journal, 14(10): 128-129 Smith AM. 2004. A new species of the arboreal theraphosid, genus Poecilotheria, from southern India (Araneae, Mygalomorphae, Theraphosidae) with notes on its conservation status. Journal of the British Tarantula Society, 19: 48-61 Srikumar KK, Smitha S, Kumar BS, Radhakrishnan B. 2018. Intraguild predation of green lacewing larvae (Neuroptera: Chrysopidae) on spider eggs and spiderlings. Journal of Threatened Taxa 10(8): 1213312136; doi: 10.11609/jott.2555.10.8.12133-12136 Stojanowska A, Rybak J, Bożym M, Olszowski T, Bihałowicz J.S. 2020. Spider webs and lichens as bioindicators of heavy metals: a comparison study in the vicinity of a Copper Smelter (Poland. Sustainability, 1219(8066): 1-13. doi:10.3390/su12198066 Sudhin PP, Sen S, Caleb JTD. 2022. Taxonomic notes on the placement of Tibellus elongatus Tikader, 1960 and Apollophanes bangalores Tikader, 1963 (Araneae: Philodromidae). Zootaxa, 5182(3): 288-296. doi:10.11646/Zootaxa.5182.3.6 Sudhin PP, Sen S, Caleb JTD. 2023a. New species and records in the genus Phintella Strand, 1906 (Araneae: Salticidae: Chrysillini) from India. Arthropoda Selecta, 32(1): 80-88. doi:10.15298/arthsel.32.1.07 Sudhin PP, Sen S, Caleb JTD. 2023b. Two new Stenaelurillus species (Araneae, Salticidae, Aelurillina) from Western Ghats, India. Zoosystematics and Evolution, 99(1): 123-133. doi: 10.3897/zse.99.97985 Sugumaran MP. 2001. Biodiversity of spiders in Western Ghats of Tamil Nadu. Ph. D. thesis, Tamil Nadu Agricultural University, Coimbatore, India Sugumaran MP, Ganeshkumar M, Ramasamy K. 2005. Biodiversity of spiders in Western Ghats of Tamil Nadu. Entomon, 30(2): 157-163 Sugumaran MP, Ganeshkumar M, Ramasamy K. 2006. Life table studies of some spiders from Western Ghats. Zoos’ Print Journal, 21(6): 2296-2297 Sugumaran MP, Soundararajan RP, Lakshamanan V. 2007. Spider fauna in the horticultural crops of Yercaud hills. Zoos’ Print Journal, 22(6): 2721-2722 Sugumaran MP, Duraimurugan B. 2019. Arthropod diversity in horticultural ecosystems in Keelaiyur block, Nagapattinam District, Tamil Nadu. Indian Journal of Ecology, 46(4): 889-891 Sugumaran MP, Goveanthan AS, Gudimetha GK. 2020. Arthropod diversity in horticultural and silvicultural crops of Yercaud Hills. International Journal of Current Microbiology and Applied Sciences, 9(11): 17241728. doi: 10.20546/ijcmas.2020.911.205 IAEES www.iaees.org Arthropods, 2023, 12(4): 193-250 249 Sunitha S, Miranda M. 2011. Distribution of spiders of Kanyakumari with special reference to Heteropoda venatoria, Argiope pulchella and Stegodyphus sarasinorum. Uttar Pradesh Journal of Zoology, 31(1): 109114. https://mbimph.com/index.php/UPJOZ/article/view/444 Tanasevitch AV. 2011. Linyphiid spiders (Araneae, Linyphiidae) from Pakistan and India. Revue Suisse de Zoologie, 118: 561-598. doi:10.5962/bhl.part.117817 Tanasevitch AV. 2015. Notes on the spider genus Oedothorax Bertkau, 1883 with description of eleven new species from India (Linyphiidae: Erigoninae. Revue Suisse de Zoologie, 122(2): 381-398 Thangamari B, Vijaya P. 2018. The effect of insecticides on spiders in groundnut field Kadayanallur, Tirunelveli district. Indian Journal of Applied Research, 8(12): 8-9 Thorell T. 1891. Spindlar från Nikobarerna och andra delar af södra Asien. Kongliga Svenska VetenskapsAkademiens Handlingar, 24(2): 1-149 Tikader BK. 1971. Revision of Indian crab spiders (Araneae: Thomisidae). Memoirs of the Zoological Survey of India, 15(8): 1-90 Tikader BK. 1977. Studies on some mygalomorph spiders of the families Ctenizidae and Theraphosidae from India. Journal of the Bombay Natural History Society, 74: 306-319 Tikader BK. 1980. Fauna of India, Aranae, Vol. 1, Part 1: Thomisidae (Crab-spiders), Zoological Survey of India, Kolkata, India Tikader BK. 1981. Studies on spiders of the genus Castianeira Keyserling (Family: Clubionidae) from India. Bulletin of the Zoological Survey of India, 4: 257-265 Tikader BK. 1982. The Fauna of India, Spiders: Araneae, Part 1 Family Araneidae (= Argiopidae) Typical Orb-Weavers, pp.1-293; Part 2 Family Gnaphosidae). 295-536, Zoological Survey of India, Kolkata, India Tikader BK, Bal A. 1981. Studies on some orb-weaving spiders of the genera Neoscona Simon and Araneus Clerck of the family Araneidae (=Argiopidae) from India. Records of the Zoological Survey of India, Occasional Paper, 24: 1-60 Tikader BK, Malhotra MS. 1976. Redescription of type specimens of the species Eucamptopus coronatus Pocock and Euprosthenops ellioti (Cambridge) (family: Pisauridae) with critical notes. Journal of the Bombay Natural History Society, 73: 539-543 Tikader BK, Malhotra MS. 1980. Fauna of India, Aranae, Vol. 1, Part 2 Lycosidae (Wolf-spiders). 248-447, Zoological Survey of India, Kolkata, India Tikader BK, Malhotra, M.S. 1981. Revision of spiders of the genus Ctenus Walckenaer from India (Araneae: Ctenidae). Records of the Zoological Survey of India, 79: 105-124 Tikader BK, Sethi VD. 1990. Studies of some giant crab spiders of the family Heteropodidae from India. Part II. Records of the Zoological Survey of India, 87: 165-186 Umarani S, Umamaheshwari S. 2013. Diversity of spider fauna at different sites in Palani Hills, Dindigul district, Tamilnadu, SouthIndia. International Journal of Advanced Biological Research, 3(4): 535-539 Vanitha K, Sivasubramanian P, Kavitharaghavan Z, Vijayaraghavan C, Samiayyan K. 2009. Prey preference, cross predation and impact of some cultural practices on spiders and their abundance in cotton. Karnataka Journal of Agricultural Science, 22(3-Spl. Issue): 548-551 Veeramani A, Gayathri R, Ravichandran S, Sivaperuman C. 2021. Spider’s assemblage in the Cauvery Delta Region, Tamil Nadu, India. Journal of Emerging Technologies and Innovative Research, 8(8): a970-a980 Veeramani A, Abinaya D, Ennavan V, Bhuvaneshwaran N, Ravichandran S, Pazhanisamy S. 2023. Assemblage of spiders diversity - an agent of biological control of agricultural pests. Journal of Applied Entomologist, 3(1): 1-6 Venkatraman VS, Kapoor V. 1999. Spotting of giant wood spider (Nephila maculata) in the Guindy National IAEES www.iaees.org 250 Arthropods, 2023, 12(4): 193-250 Park, Chennai. Zoos’ Print Journal, 14(6): 44 Vijaya P. 2019. Diversity of spiders in the Bhendi agro ecosystem of Kallanthari, Madurai district, Tamil Nadu, South India. International Multidisciplinary Innovative Research Journal, 3(2): 20-25 Vijaya P, Mareeswari K, Rani SU. 2018. Biodiversity of spiders aranea in V.V.V. college campus in Virudhunagar district, Tamil Nadu, south India. International Journal of Entomology Research, 3(2): 104106 Vijaya P, Murugalakshmi KR, Karthick N. 2022. Feeding ecology of spiders in rice ecosystem at Alagar Hill, Melur Taluk, Madurai district, Tamil Nadu, India. International Journal of Pharmacy and Biological Sciences, 12(1): 158-162. doi:10.21276/ijpbs.2022.12.1.19 Vinothkumar B. 2012. Diversity of spider fauna in upland rice agroecosystem at Gudalur valley in Tamilnadu. Journal of Biological Control, 26(3): 222-229 Walckenaer CA. 1837. Histoire naturelle des insectes. Aptères. Tome premier. Roret, Paris, France. doi:10.5962/bhl.title.61095 Wanless FR. 1978. A revision of the spider genus Portia (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zool.), 34: 83-124 Wanless FR. 1979. A revision of the spider genus Brettus (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zool.), 35(2): 183-190 Wanless F R. 1981. A revision of the spider genus Hispo (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zool.), 41: 179-198 Wilson JJ, Ramakrishnan R, Pavaraj M, Sevarkodiyone SP. 2014. A study on the age-wise and seasonal distribution of spider fauna in the paddy and maize field (Athikulam, Virudhunagar district, Tamil Nadu, India). World Journal of Zoology, 9(1): 13-18. doi: 10.5829/idosi.wjz.2014.9.1.82266 World Spider Catalog. 2023. World Spider Catalog. Version 24. Natural History Museum Bern, online at http://wsc.nmbe.ch. Accessed on 10 July, 2023. doi: 10.24436/2 IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 Article Adulticidal, ovicidal and repellent potencies of Alchornea cordifolia (Schum. & Thonn.) in the management of the malaria vector Anopheles gambiae (Diptera: Culicidae) Charles Kwesi Koomson Department of Integrated Science Education, Faculty of Science Education, University of Education, Winneba, Ghana E-mail: ckkoomson@uew.edu.gh Received 17 June 2023; Accepted 25 July 2023; Published online 20 August 2023; Published 1 December 2023 Abstract Malaria, which is transmitted by the mosquito Anopheles gambiae, has long been a major public health concern in the tropics. Chemicals used to control A. gambiae have caused significant harm to the environmental and non-target organisms. Furthermore, these mosquitoes have demonstrated a high level of resistance. This study evaluated the adulticidal, ovicidal and repellent potencies of leaf extracts of Alchornea cordifolia against A. gambiae. It was observed that 5 mg/ml of the leaf extract induced about 94% mortality in the adult A. gambiae, 0.8 gm/cm3 of the leaf extract repelled 95% of the mosquitoes within 15 minutes and 0.6 mg/ml of the leaf extract completely inhibited hatching of mosquito ova. Evidently, A. cordifolia leaf extracts showed a good efficacy in the management of A. gambiae in this study. More research is needed to determine its mode of action, synergism with other products, and efficacy in actual field conditions. Keywords Alchornea cordifolia; Anopheles gambiae; adulticidal; repellency; ovicidal, management. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: arthropods@iaees.org Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction The most important arthropod vector for medicinal purposes is the mosquito (Taubes, 1997). These dreadful insects are responsible for one of the greatest vector-borne diseases in the world, affecting the socio-economic status of many countries (Taubes, 1997) by exacting enormous toll in lives, in medical cost, and in days of labour lost (Lambert, 2009). In 2015, 90% of the malaria cases were reported in the sub-Saharan Africa and 92% of deaths were reported worldwide (Krishnappa et al., 2012). Mosquito management is necessary to check the propagation of mosquito-borne diseases that in turn mend the quality of the environment and public health (Ghosh et al., 2012). Mosquito management programmes depend on a routine of chemical insecticides. These repeated uses of synthetic insecticides in mosquito management have destroyed natural ecosystems, environmental pollution, development of resistance and IAEES www.iaees.org 252 Arthropods, 2023, 12(4): 251-259 insect resurgence (DeSilva, 1997). These synthetic insecticides also cause serious health problems to applicators such as breathing problems, asthma, eye irritation, headache, sneezing and toxicity to the nervous and reproductive systems (Sharma, 2001). This has necessitated the need to research into environmentally safe, biodegradable and inexpensive indigenous vector management methods that can be employed by poor resource people. The search for new management agents from natural products such as plant secondary metabolites have gained prominence among scientists in developing countries with a strong herbal tradition and large number of plants that have insecticidal properties (Komalamisra et al., 2005). Plant phytochemicals have the potency to act as larvicides, pupicides, adulticides, repellency and ovicides (Panneerselvam et al., 2012). Extracts of the flora may be a better choice to control populations of mosquito since they contain a variety of phytochemicals that are easily degradable and suitable for applications in their natural breeding environment (Rawani et al., 2013). One of such natural plants is Alchornea cordifolia which is an important medicinal plant in African traditional medicine and much pharmacological research has been carried out into its antibacterial, antifungal, cytotoxic, hypotensive and antiprotozoal properties, as well as its anti-inflammatory activities, with significant positive results (Agbor, 2004). Extracts of the leaves have been found to be very effective in controlling the larvae and pupae of the Anopheles gambiae (Koomson et al., 2022). This current research is aimed at assessing the adulticidal, ovicidal and repellency potency of the plant leaf extracts in the management of this dreadful malaria vector. 2 Materials and Methods 2.1 Location The research was carried out at the Biology Education Department laboratory of the University of Education, Winneba, Central Region, Ghana, at a temperature of 30±2oC and 75±5% relative humidity. The period of study was from February 2023 to May 2023. 2.2 Collection and rearing of mosquito ova and adults Mosquito baits, consisting of shallow containers with a large surface area were established under a partial shade in an open field around the South Campus of the University of Education, Winneba. A clean transparent white bucket was filled with rainwater to mimic mosquito natural breeding environment and to attract adult female for oviposition. Ten grams (10 g) of yeast (Bakers’ yeast) were sprinkled on the surface of the water and allowed to decompose slowly to nourish the developing larvae. Wild mosquitoes were allowed to freely visit the baits and to lay eggs. The water was monitored for 3–5 days for the development of the egg and first instar larva. These larvae were taken into the laboratory. In the laboratory, the larvae were identified into species level using the morphological keys (Gillies et al., 1968). The Anopheles larvae were separated from the mixed culture and transferred into another plastic container containing rainwater. The Anopheles larvae were further nurtured to adult after eleven days. Some of the adults were used for the tests on the adults, repellency and others were made to lay eggs for test on the mosquito ova. 2.3 Collection and preparation of plant materials A. cordifolia plants were collected from the Gomoa Otapirow area of the Central Region of Ghana. Leaves were separated from the plant, rinsed in clean water to remove sand and other impurities, air dried at room temperature in the laboratory for 15 days, after which, ground into very fine powder using an electric blender. The powders were further sieved to pass through 1 mm2 perforations. The powders were packed in plastic containers with tight lids to ensure that the active ingredients are not lost and stored in the laboratory prior to use. IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 253 2.4 Extraction of plant materials The extraction was carried out in the Chemistry Education laboratory of the University of Education, Winneba. About 400 g of A. cordifolia powders were soaked separately in an extraction bottle containing 500 ml of absolute n-hexane for 3 days. The mixture was stirred occasionally with a glass rod and extraction was terminated after 3 days. Filtration was carried out using a double layer of Whatman No. 1 filter papers and solvent evaporated using a rotary evaporator at 30 to 40oC with rotary speed of 3 to 6 rpm for 8 hours (Udo, 2011). The resulting extracts were air dried in order to remove traces of solvent. The extracts were kept in labelled plastic bottles till when needed. 2.5 Preparation of standard stock solution Standard stock solutions were prepared by dissolving 4 g of the crude extracts in 1 litre of water. From these stock solutions, different concentrations of A. cordifolia were prepared and these aqueous solutions were used for the various experiments. 2.6 Bioassay 2.6.1 Adulticidal bioassay The bioassay was performed using adult stages of A. gambiae following the protocol of WHO (1981). with slight modifications. Different concentrations such as 1 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, and 5 mg/ml of A. cordifolia leaf extract were used for the adulticidal activity. According to Dua et al., 2008, mentioned dose were spread on filter papers (size 12 cm  15 cm). In the control set up, only distilled water applied on filter papers were used. Twenty-five adult female mosquitoes (blood starving 2-5 days old mosquitoes and glucose fed) were used for the bioassay. At first, they were smoothly moved into an elastic holding tube. Inside the tube they were kept for an hour for the acclimatization and after that they exposed to the treated paper (filter paper) for an hour. After the contact hour, adult female mosquitoes remain positioned inside the elastic holding tube and seized for 24 hours to recover. On the mesh screen a cotton plug drenched with 10% starch solution remained positioned for the feeding purpose. Mortality of mosquitoes was observed after the 24 h recovery period. Abbott's formula (Abbott, 1925) used for the correction of the percent mortality. 2.6.2 Ovicidal bioassay For the ovicidal activity, slightly modified method of Su and Mulla (1998) was performed. The eggs of A. gambiae laid during the experimental period were collected.Various concentrations of the leaf extracts ranging from 0.3 mg/ml to 0.6 mg/ml were used.The ova (100) were exposed to eachconcentration of the leaf extracts. After treatment, theova from each concentration were individually transferred todistilled water cups for hatching assessment after counting theova under microscope. Each experiment was replicated sixtimes along with appropriate control. The hatch rates wereassessed 48 h post-treatment by the following formula. mortality (%) = No. hatched larvae × 100 / Total No. eggs 2.6.3 Repellent activity Test of repellency of A. cordifolia leaf extract of leaves of plant was tested by the author himself. Repellent activity was implemented by using the methodology of Murugan et al. (2007). Three to five (3-5) days old blood starving female A. Gambiae numbering one hundred (100) were introduced in a mesh cage having dimension 45 cm × 30 cm × 45 cm. The hands were properly cleaned with water. 25 cm3 area on the dorsal side of the skin on each arm was used for the experiment, and the rest of the part of the skin was covered with rubber gloves. The leaf extracts was applied with a concentration of 0.8 mg/cm3 in the uncovered part of the hand. For control, water was used.Repellency against A. gambiaewas tested between the hours of 16:00 to 18:00. Both the control arms and tested arms were inserted inside the mesh cage. The assessment was carried out by placing the processed arms and control arms in the similar cage for 120 minutes and the number of IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 254 mosquitoes that bit the hand were noted every 15 minutes. The following formula calculated the percentage of repellency. Repellency (%) = [ (Ta-Tb) / Ta] × 100 where Ta denotes the number of mosquito bites in the control set, and Tb indicates the number of mosquito bites in the tested set. 2.7 Statistical analysis The hatching rate and percentage of mortality data were subjected to a One-way analysis of variance (ANOVA) to compare the means. A post hoc test - Duncan test of multiple comparisons - was used to determine the significant differences between the treatments. Probit analysis was used to determine lethal dosages causing 50% (LC50) and 90% (LC90) mortality. All statistical analyses were done using the SPSS (Statistical Package of Social Sciences) software version 22. Results with P<0.05 were considered to be statistically significant. 3 Results The mortality rates of the adults increased by the increase in toxicity of theA. cordifolia leaf extract with the 1 mg/ml concentration giving a 13% mortality and the 5 mg/ml concentration inducing the highest mortality of 94% after 24 hours (Table 1 and Fig. 1). Table 1 Adulticidal activity of A. cordifolia leafon adults of A. gambiae. Concentration (mg/ml) Mean mortality (%) after 24 hrs. 1.0 13.2±0.33 2.0 17.6±3.2 3.0 42.4±3.3 4.0 67.8±3.4 5.0 94.3±3.3 Control 0.47±0.16 LC50 value (mg/ml) 2.774 Fig. 1 Effect of A. cordifolia leaf extract on the mortality of adult A. gambiae. IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 255 From Table 2 and Fig. 2, it can be observed that all the concentrations of the leaf extracts used hadovicidal activities on the ova of A. gambiae. Complete ovicidalactivity occurred with the highest concentration of 0.6 mg/ml. Table 2 Mean hatching rate of A. gambiae ova exposed to A. cordifolia leaf extracts. Concentration (mg/ml) Mean Hatching Rate ± SD 0.3 21.04 ± 4.89b 0.4 18.97 ± 2.76b 0.5 14.09 ± 2.75b 0.6 0.00 ± 0.00a Control 56.34 ± 10.47c Results with same letters in the column are not significantly different (P<0.05). Fig. 2 Effect of A. cordifolia leaf extract on the hatching rate of A. gambiae ovids. The biting repellency of adult A. gambiae wasobserved at a concentration of 0.8 gm/cm3 (Table 3) with the highest repellent activity of A. cordifolia leaf extract observed within 15 minutes with only five bites in the processed hand which represents 95% repellency. IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 256 Table 3 Repellent activity of A. cordifolia leaf extract against A. gambiae. Mosquito repellent Concentration product Leaf extracts of A. 0.8 gm/cm3 Observation time (4 Total No. No. bites in the pm - 6 pm) mosquitoes treated arm (%) 15 min 05 95 30 min 11 89 22 78 90 min 38 62 120 min 46 54 60 min 100 Repellancy cordifolia 4 Discussion Resistance of vector mosquitos to chemical insecticides has necessitated the need to the development of new insecticides (Gope and Rawani, 2022). There is a prompt awareness going on about the need to use natural, eco-friendly compounds such as plants for malaria vector management (Karmakar et al., 2023). Different plant species have been identified to contain various phytochemical constituents which are in form of secondary metabolites majorly for the protection of the plants (Egunjobi and Okoye, 2020). Various constituents such as saponins, phenols, alkaloids, flavonoids, terpenoids among others have been extracted from plants(Egunjobi and Okoye, 2020). These secondary metabolites exert varieties of physiological activity on pests, including larvicidal, pupicidal, adulticidal, ovicidal, repellent, etc. (Rawani et al., 2013). The study revealed that the plant extracts induced complete ovicidal activity. The complete ovicidal activity might be as a result of the plant extract being able to block the micropyle region of the egg, thereby preventing the exchange of gases, which eventually killed the embryo in the egg. The disturbance with egg cytoplasm was reflected in the form of dead eggs with black spot stage due to the arrest of further development of embryo inside the egg (Agwu et. al., 2018). The number of eggs hatched into larvae was also found to be concentration dependent. The trend of hatching rate was inversely proportional to increase concentration ranges (Ateyim et al., 2022). The increase in the phytochemical constituents present in high concentrations of the plant extract played a remarkable role. Hence, the ability to inhibit hatching was accompanied by an increase in concentration (Egunjobi and Okoye, 2020). Consequently, as the concentration increases, the ovicidal potential of the extract also increases, resulting in an inverse proportionality between the percent hatchability of the eggs and the concentration of extract (Egunjobi and Okoye, 2020). Similar findings have been documented in Boswellia dalzielii leaf extractsagainst Anopheles species (Younoussa et al., 2016). In current study, the plant extracts showed high adult mortality after 24 hours with the 5 mg/ml concentration producing the highest mortality of 94%. Thus, the entomocidal activityof the plant extract increased with increasing concentrations. Hence, the percent mortality and toxicity data is in accordance to theprevious findings of Odeyemi (2005), Sagheer et al. (2013) and Sultana et al. (2016) that the plant extracts becomemore toxic with increased dose and exposure time. Insecticidal property of the leaf extractcouldbe linked to it chemical constituents. The presence of thesephytochemical alters some biochemical functions oforganisms. Man (2013) reported that increase mortalityof A. gambiae rate which was reported in a studycould be attributed to phytochemical content of the leafextract. Studies have also shown that high dose of flavonoidwhich is common in leaves alters the normal body functioning of insects (Ileke et al., 2014). The study on repellent activity of extract of leaves showed 95% repellency from biting of A. gambiae when tested at concentration of 0.8 g/cm2 applied on the uppermost surface of the hand within 15 minutes of IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 257 application.Many plant extracts and essential oils with highvolatility, such as alkanes, terpenoids, alcohols, andaldehydes are repellent to mosquitoes for periodsranging from 15 min to 10 hours (Rozendaal, 1997). A recent study revealed that A. gambiae is able to detect plant molecules by olfactory neurons in the antenna controlled by the TRPA1 gene, activated directly by the molecule with high potency (Kwon et al., 2010). These molecules interfere with olfactory receptors of mosquitoes (Alayo et al., 2015), and thus repel the mosquitoes. 5 Conclusion Plant-based, environmentally friendly insecticides have grown in popularity in recent years.Because of their target specificity and readily biodegradable properties, they are nontoxic to other organisms.The findings of this current research indicate that extracts of leaves of A. cordifolia can serve as an effective adulticide, ovicidal and repellent agent against A. gambiae. It is profitable because it is native, easily degradable, and safe in comparison to synthetic chemical insecticides, which are hazardous to the environment as well as toxic to human and animal health, and its inclusion in an integrated mosquito pest management program is highly recommended. More research is needed to determine its mode of action, synergism with other products, and efficacy in actual field conditions. Acknowledgements The author is very grateful to Miss Harriet Bempong and Mr, Joseph Asare Bediako, Laboratory Technicians at the Biology Education Department at the University of Education, Winneba for their immense help during the research. References Abbott WS. 1987. A Method of computing the effectiveness of an Insecticide. Journal of the American Mosquito Control Association, 3(2): 302-303 Agbor AG, Talla L, Ngogang JY. 2004. The antidiarrhoeal activity of Alchornea cordifolia leaf extract. Phytothera Research, 18(11): 873-876 Agwu JE, Odo GE, Ekeh F, Uwagbae M, Ngwu G, Ehilegbu C. 2018. Bioefficacy of Duranta erecta leaf extract on yellow fever and dengue vector, Aedes aegypti Linn. in Nigeria, Journal of Medicinal Plants Research, 12(11): 124–132 Alayo M, Femi-Oyewo M, Bakre L, Fashina A. 2015. Larvicidal potential and mosquito repellent activity of Cassia mimosoides extracts. Southeast Asian Journal of Tropical Medicine and Public Health, 46: 596-601 Ateyim TSS, Foko GA, Baudelaire E, Dicko, A, Djieukap N L, Akono NP, Antonio-Nkondjio CTJL, AwonoAmbene HP. 2022. Egg hatching reduction and larval mortality induced by essential oil and extracts of Petroselinum crispum (Parsley) leaves in the Anopheles coluzzii malaria vector species. Journal of Environmental Science and Public Health, 6(2): 145-157 DeSilva D, Hemingway J, Ranson H, Vaughan A. 1997. Resistance to insecticides in insect vectors of disease: est alpha 3, a novel amplified esterase associated with amplified est beta 1 from insecticide resistant strains of the mosquito Culex quinquesfasciatus. Experimental Parasitology, 87(3): 253-259 Dua VK, Alam MF, Pandey AC, Rai S, Chopra AK. Kaul VK. 2008. Insecticidal activity of Valeriana jatamansi (Valerianaceae) against mosquitoes.J.of the American Mosquito Control Association, 24(2): 315-318 Egunjobi FB. Okoye IC. 2020. Ovicidal and larvicidal activities of ethanolic leaf extracts of three botanicals against the malaria vector—Anopheles Gambiae, International Annals of Science, 9(1): 111–121 IAEES www.iaees.org 258 Arthropods, 2023, 12(4): 251-259 Ghosh A, Chowdhury N, Chandra G. 2012. Plant extracts as potential mosquito larvicides. The Indian Journal of Medical Research, 135(5): 581-598 Gillies, MT, De Meillon B. 1968. The anophelinae of Africa South of the Sahara. South African Institute for Medicinal Research, 54: 1-343 Gope A, Rawani A. 2022. Evaluation of mosquitocidal potency of leaves and fruits extracts of Phyllanthus acidus L. against filarial vector Culex quinquefasciatus Say. International Journal of Mosquito Research, 9(4): 49-56 Ileke KD. Afolabi OJ, Ogungbite OC, Olagunju JO, Akanbi OM. 2014. Mosquitocidal activity of Anacardium occidentale, Afromomum melegueta, Garcina kola and Citrus sinensis against the developmental stages of mosquito, Anopheles gambiae Giles. Journal of Stored Products and Postharvest Research, 4: 21-26 Karmakar P, Chakraborty S, Khanrah J, Rawani A. 2023. Evaluation of larvicidal, pupicidal and adulticidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Journal of Applied Entomologist, 3(1): 26-33 Komalamisra N, Trongtokit Y, RongsriyamY, Apiwathnasorn C. 2005. Screening for larvicidal activity in some Thai plants against four mosquito vector species. The Southeast Asian Journal of tropical Medicine and Public Health, 36(6): 1412-1422 Koomson CK, Owusu-FordjourC, Darku A. 2022. Larvicidal and pupicidal potential of Alchornea cordifolia (Schum. & Thonn.) leaf extract on the malaria vector Anopheles gambiae (Diptera: culicidae). International Journal of Mosquito Research, 9(1): 56-60 Krishnappa K, Dhanasekaran S, Elumalai K. 2012. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). Asian Pacific Journal of Tropical Medicine, 5(8): 598-604 KwonY, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM. 2010. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Current Biology, 20: 1672-1678 Lambert PH. 2005. Malaria: past and present. http://nobelprize.org/medicine/educational Man NC. 2013. Phytochemical analysis of leaves of Chromolaena odorata. International Journal of Scientific and Research Publication, 3: 1-2 Murugan K, Mahesh KP, Kovendan K, Amerasan D, Subrmaniam HJS. 2012. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research,111(4): 1757-1769 Odeyemi OO. Ashamo MO. 2005. Efficacy of neem plant (Azadirachta indica) extracts in the control of Trogoderma granarium, apest of stored groundnuts. Journal of Plant Dispersal and Protection, 112(6): 586–593. Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P. 2012. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitology Research, 111(6): 2241-2251 Rawani A, Ghosh A, Chandra G. 2013. Mosquito larvicidal and antimicrobial activity of synthesized nanocrystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropical, 128(3): 613-622 Rozendaal JA. 1997. Vector Control. World Health Organization, Geneva, Switzerland Sagheer M, Mansoor-ul-Hasan HUR, Ahmad FZ. Tarar A. 2013. Screening of some medicinal plant extracts for toxic andrepellent potential against adult stage of rust red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). International Journal of Bioscience 3: 273–279 Sharma P, Mohan L, Dua KK, Srivastava CN. 2011. Status of carbohydrate, protein and lipid profile in the IAEES www.iaees.org Arthropods, 2023, 12(4): 251-259 259 mosquito larvae treated with certain phytoextracts. Asian Pacific Journal of Tropical Medicine, 4(4): 301304. Su T, Mulla MS. 1998. Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). Journal of American Mosquito Control Association, 14: 204-209 Sultana K. Zahoor MK. Sagheer M. Nasir S, Zahoor MA. Jabeen F, Riaz B. 2016.Insecticidal activity of weed plants, Euphorbia prostrata and Chenopodiastrum murale against stored grain insectpest Trogoderma granarium Everts, 1898 (Coleoptera: Dermestidae). Turkury Journal of Entomology, 40(3): 291–301 Taubes G. 1997. A Mosquito Bites Back. New York Times Magazine, August 24: 40-46 Udo IO. 2011. Potentials of Zanthoxylum xanthoxyloides (LAM.) for the control of stored product insect pests. Journal of Stored Products and Postharvest Research, 2: 40-44 World Health Organization. 1981. Instructions for determining the susceptibility resistance of mosquito larvae to insecticides. WHO/ VBCX, 81: l-6 Younoussa L, Nukenine EN, Esimone CO. 2016. Toxicity of Boswellia dalzielii (Burseraceae) leaf fractions against immature stages of Anopheles gambiae (Giles) and Culex quinquefasciatus (Say) (Diptera: Culicidae). International Journal of Insect Science, 8: 23-31 IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 Article Research on sea spiders (Chelicerata; Pycnogonida) in the era of single-ship oceanographic voyages (1870-1915) John A. Fornshell Department of Invertebrate Zoology, United States National Museum of Natural History, Smithsonian Institution, Washington DC, 20746 USA E-mail: johnfornshell@hotmail.com Received 6 August 2023; Accepted 20 August 2023; Published online 31 August 2023; Published 1 December 2023 Abstract The study of pycnogonid diversity and biogeography began in the late nineteenth century with a series of 13 single ship cruises between 1870 and 1915. The rapid expansion of research on sea spiders was made possible by the availability of research ships with powered winches or capstans and the wealth either private or governmental necessary to fund major oceanographic research expeditions. The 13 ships and cruise dates were Voringen (1875), HMS Challenger (1873-1876), Blake (1875-1878), Willem Barents (1878 and 1879), Ingolf (1895-1896), George W. Elder (1899), Southern Cross (1899-1900), Siboga (1899-1900), RRS Discovery (1901-1904), Scotia (1902-1904), Albatross (1900 & 1906), Terra Nova (1910-1914) and Aurora (1911-1914). The results of these cruises identified 13 families of Pycnogonida. Modern taxonomic systems based in part on molecular traits still recognize 10 of the original families recognized by the scientists who analyzed the collections of the earlier workers. Their distribution in the Arctic, Antarctic, Tropical and Boreal seas was established. The vertical abundance and distribution of seven families of Pycnogonida was elucidated from the results of the HMS Challenger expedition. Keywords benthic fauna; biogeography; Pycnogonida; sea spiders. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: arthropods@iaees.org Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction The Pycnogonida Latreille, 1810 were first described in the scientific literature in the first decade of the nineteenth century (Latreille, 1810). Their distribution and diversity were not well studied before the 1880s. The biogeography and taxonomic richness of Pycnogonida in the World Oceans was revealed by a series of scientific expeditions conducted between 1870 and 1915. In this paper we attempt to document the process and major factors which resulted in this rapid increase of our understanding of the diversity and biogeography of sea spiders. The advancement of science is in part a series of trends, initiated by the development of and/or the IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 261 availability of innovative technologies. One such trend was the rapid expansion of data relating to the benthic fauna and flora made possible by the availability of seagoing ships with steam powered winches or capstans which could be used to haul bottom dredges and large plankton nets for the collection of marine animals from the world’s oceans. A second factor was the financial capacity and willingness of individuals and governments to fund basic research projects on a large scale. These two factors made possible a series of single ship research expeditions spanning the world’s oceans. This era of single ship research expeditions between 1870 and 1915 led to a rapid growth in our knowledge of marine benthic fauna (Wöst, 1964). Much was learned about marine animals and algae from the collections of these cruises. In this survey, we will focus on the contributions to the study of marine chelicerates, specifically sea spiders (Chelicerata; Pycnogonida). The contributions of 13 oceanic collecting expeditions from 1870 to 1915 are examined to illuminate their contributions to the study of the sea spiders (Wöst, 1964; Nelson, 1971; Rice, 1986). The results of these cruises were published between 1881 and 1949. The scientific findings of the following research ship cruises are included in this study: (1) The Norwegian Voringen (1875) (Lead Scientist G. O. Sars); (2) The British HMS Challenger (1873-1876) (Capt. G. S. Nares/ Lead scientist C. W. Thomson); (3) The Coast Survey Steamer Blake (1875-1878) (lead scientist L. Agassiz); (4) The Dutch Willem Barents (1878 and 1879) (Captain A. De Bruyne, Schiffs-Lieutenant der Nieder Ländischeu Marine); (5) The Danish Ingolf (1895-1896); (6) The privately funded American George W. Elder (1899); (7) The privately funded British Southern Cross (1899-1900) (Capt. W. Colbeck/ zoologist Nicolai Hanson); (8) The Dutch Siboga (1899-1900); (9) The British RRS Discovery (1901-1904) (Capt. R. F. Scott and lead scientist P. P. C. Hoek); (10) The United Kingdom Scotia (1902-1904) (Capt. T. Robertson/ lead scientist W. Spiers); (11) The U. S. Fish Commission Albatross (1900 and 1906) (One of the first ships built in America specifically for Oceanographic Research); (12) The British Terra Nova (1910-1914); and (13) The Australian Aurora (1911-1914) (Capt. J. K. Davis/Lead scientist D. Mawson) (Sars, 1891; Hoek, 1881a, 1881b; Meinert, 1899; Cole, 1904; Hedgepeth, 1948, 1949; Nelson, 1971; Rice, 1986). The Naval vessels HMS Challenger, William Barents and Siboga, were used on three of the expeditions. Government owned and or funded ships, Voringen, Blake, Ingolf, RRS Discovery, Scotia, Albatross, Terra Nova, and Aurora were used on eight of the expeditions. Two of the expeditions, George W. Elder and Southern Cross, were funded by scientifically minded wealthy individuals. Three of these ships, Albatross, Blake and RRS Discovery were among the first ships specifically constructed for research (Table 1). The scientific findings of these cruises were not in many cases published in the scientific literature until many years after the end of the cruise. For example, the results of Coast Survey Steamer Blake (1875-1878) were published in 1949, 71 years after the end of the cruise and the U. S. Fish Commission Albatross (1900 and 1906) results were published in 1948, 42 years after the end of the expedition. The results and analysis being conducted and reported by the Smithsonian Institution curator, Joel Hedgepeth (Hedgepeth, 1948, 1949). In other cruises, The British Southern Cross (1899-1900), and The Dutch Willem Barents (1878 and 1879), the time from completion of the field work to publication was as little as two years (Hoek, 1881b; Hodgson, 1902). The results of The British HMS Challenger (1873-1876) were analyzed and published by Hoek five years after the end of the cruise (Hoek, 1881a). In this study the cruises will be taken up in order of the date of publication of the results, and not the cruise dates themselves. Hoek (1881a) analyzed the worldwide collections brought back by HMS Challenger (1873-1876) which included 410 specimens representing 7 families, 8 genera and 42 species (See Tables 2-4). As can be seen the Pycnogonida were found most often in the upper 915 m. Also known as the euphotic zone. The frequency of occurrence decreased to less than one third on the continental rise. There is a second peak of frequency of IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 262 occurrence at 3660 m to 5500 m, that is, the depth range of the abyss. They are least abundant at Hadal depths (≥6000 m). The Pycnogonida, thus display a bimodal peak abundance on the continental shelf and on the abyssal plane (Table 2). This was the only research cruise which produced a significant data set based on depth for collections in the North and South Atlantic, Southern Ocean and North Pacific Ocean (Hoek, 1881a). Table 1 A Chronological listing of the research cruises. Nationality Date(s) Ship Geographic Region Publication _________________________________________________________________________________________ Norwegian 1875 Voringen North-Atlantic, North Sea, Barents Sea and Kara Seas 1891 British U.S.A. Dutch 1873-1876 1875-1878 1878 & 1879 World Cruise-Shallow-Abyss N. W. Atlantic and Caribbean N. Atlantic & Arctic Oceans, North Sea & Barents Sea Ingolf Davis Strait, Iceland, Jan Mayan, Faroe Islands & Kara Sea. George W. Elder Coastal Alaska, Coastal Siberia Southern Cross Southern Ocean Siboga 8° S to 6°N& 110°E to133° E East Indies Islands RRS Discovery Southern Ocean Scotia Southern Ocean Danish 1895-1896 U.S.A. British Dutch 1899 1899-1900 1899-1900 British British 1901-1904 1902-1904 U. S. A. (1900 & 1906) Albatross Australia British (1910-1914) (1910-1914) HMS Challenger Blake Williem Barents Aurora Terra Nova Japanese coastal waters, Kamchatka Peninsula Southern Ocean Ross Sea 1881 1948 1881 1899 1904 1902 1908 1907 1908 1949 1938 1915 Hoek (1881a) also provided a depth range for the species in the HMS Challenger collections (Table 3). The members of the Family Ammotheidae were confined to shallow waters. Members of the Family Ascorhynchidae were found from the shore to 5351 m, that is intertidal to the upper part of the abyss. Members of the Family Phoxichilidiidae ranged in depth from 12 m to 3567 m, from the continental shelf to the abyss. The Family Pallenidae was limited to 69 m to 219 m, the continental shelf to the upper shelf break. Members of the families Nymphonidae and Colossendeidae are found from the continental shelf to the abyss. IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 263 Table 2 The families, genera, and species from HMS Challenger. Families Genera and species _________________________________________________________________________________________ Ascorhynchidae genus Ascorhynchus-2 species. Ammotheidae genus Disccoarachne-1 species, genus Dicoarachne (Tanystylum)-1 species. Colossendeidae genus Colossendeis-8 species. Nymphonidae genus Nymphon-16 species. Pallenidae genus Pallene-4 species. Phoxichilididae genus Phoxichilidium-8 species. Pycnogonidae genus Pycnogonum-2 species. _____________________________________________________________________________ Table 3 Number of specimens as a function of depth in the HMS Challenger samples (Hoek, 1881b). Number of specimens Depth Range _________________________________________________________________________________________ 99 0 to 914 m 30 915 m to 1830 m (Continental Rise) 47 1831 m to 2750 m 47 2751 m to 3660 m 93 3660 m to 4575 m 83 4575 m to 5500 m 11 5599 m to 8368 m _________________________________________________________________________________________ In the same year as the publication of the HMS Challenger expedition results, Hoek also published his analysis of the collections returned by the two cruises of the Willem Barents in the years 1878 and 1879 (Hoek, 1881b). As in the case of the HMS Challenger results Hoek did not actually participate as a member of the scientific party on the Willem Barents. This work includes specimens from the Willem Barents (1878 and 1879) as well as reports from earlier cruises. Hoek’s list of species which came from Sub-Arctic North American coast to the Arctic Ocean, and the Barents Sea is given in Table 5. The collections included 6 families, 8 genera and 25 species (Table 5) (Hoek, 1881b). Sars (1891) described the collections from the Norwegian North-Atlantic Expedition (1876-1878) on the steamer Voringen. This publication includes the Pycnogonida collected in the named expedition plus specimens collected from the Kara Sea by the Nordenskjold Expedition of 1875 (Sars, 1891). The Atlantic specimens are from the Northeastern Atlantic (60°N to 80°N and 15° W to 38°E), northern part of the North Sea and Barents Sea. All the collections analyzed by Sars are arctic specimens. He noted that the Pycnogonida from his collections were typically larger than those from the Mediterranean Sea reported by Dohrn (1881). Sars (1891) reported 7 families, 13 genera and 51 species. The family Nymphonidae accounted for 25 of the 51 species found in his collections (See Table 6). Specimens from the Russian owned Arctic Ocean archipelago known as Franz-Josef Land (Centered at IAEES www.iaees.org 264 Arthropods, 2023, 12(4): 260-275 81°N 55°E) collected by Mr. S.W. Bruce on an unnamed vessel were described by Carpenter (1898). The specimens reported from Franz-Josef Land are listed in Table 7. The collections included 3 families, 3 genera and 11 species. The Danish Ingolf Expedition (Fig. 1) consisting of two voyages in 1895 and 1896, included collections made in the Davis Strait between Greenland and Canada, the coastal waters of Iceland, Jan Mayan Island, the Faroe Islands, and the far Western Kara Sea (Table 8). Four families, 9 genera and 33 species are reported including 8 new to science. The contribution to new taxa is small, but the increase in geographic distribution is significant (Table 8) (Meinert, 1899). The Southern Cross (Fig. 2) Expedition, also named the British Antarctic Expedition, 1899-1900 was privately funded by Sir George Newness. The expedition leader was Carsten Egeberg Borchgrevink, and the ship’s captain was William Colbeck (Rice, 1986). This cruise produced only one pycnogonid species, Nymphon australe Hodgson, 1902 in the family Nymphonidae (Hodgson, 1902). It should be noted that N. austral is a common species with a circumpolar distribution in the Antarctic seas. This expedition was a precursor to the much more ambitious and productive expeditions to the Antarctic in the first decades of the twentieth century. Pycnogonida were collected from the northern pacific on a steam ship named the George W. Elder (Cole, 1904). This vessel was chartered by Edward Harriman for a privately funded expedition of two months duration starting May 31, 1899. Harriman, a railroad tycoon, brought twenty-six experts along including two photographers, an artist, and a writer. The expedition studied the coastal waters of Alaska and the East coast of Siberia. One hundred and eight specimens of pycnogonids were collected including 3 families, 10 genera and 25 species (see Table 9). In the years 1901 to 1904 Robert Falcon Scott led an expedition to the Antarctic to locate the South Magnetic pole, which at that time was located on the Antarctic continent west of The Ross Sea and South of Australia (Hodgson, 1902, 1907; Rice, 1986). The expedition party included the biologist T. V. Hodgson, who collected pycnogonids from the sea near the RRS Discovery (Fig. 3). During the expedition, the ship was frozen in from the austral autumn of 1902 until being cut free in the summer of 1904 (Hodgson, 1908; Rice, 1986). Hodgson’s analysis of his collections from the Ross Sea on RRS Discovery included 10 families, 22 genera and 67 species (see Table 10). These also included collections from the Southern Cross Expedition (Table 10). In addition to the taxa listed in Table 10, two genera Austrodecus-1 species, and not Austrodecus-1 species, are not currently recognized in World Register of Marine Species WoRMS (Hodgson, 1902, 1908; WoRMS Editorial Board, 2023). The Siboga (Fig. 4) Expedition (March 7, 1899 to February 27, 1900) (Captain Gustaaf Frederik Tydeman was in command) surveyed benthic and planktonic flora and fauna in the East Indies (8°S to 6°N and 110°E to 133°E including the coastal waters of the Dutch owned islands in this area, Java, Sumbawa, Flores, Soemba, Timer, Roma, Boeroe, Ceram, Misroi, New Guinea, Soela Eilanden, Celebes, Tawi, Soeloe, and Borneo (Lowman, 1908; van Aken, 2005). IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 265 Table 4 the depth distribution of Families, genera and species of the Pycnogonida from HMS Challenger and the paddle steamer Knight Errant (Hoek, 1881b). Shore Family Ammotheidae Tanystylum brevipes Hoek. Shore Family Ascorhynchoidea Hannonia typica Hoek. 12 to 36 m Family Phoxichilidiidae Phoxichilidium Fluminense Kröyer. 33 to 219 m Family Nymphonidae Nymphon brachyrhynchus Hoek. 46 to 219 m Family Nymphonidae Nymphon fuseum Meirs. 69 m Family Ascorhynchidae Ascorhynchus minutus Hoek. 69 Family Pallenidae Pallene longuida Hoek. 69 m Family Pallenidae Pallene laevis Hoek. 69 to 219 m Family Pallenidae Pallene australiensis Hoek. 82, 101, 320 m Family Phoxichilidiidae Phoxihilidium patagonicum Hoek. 97 m Family Pycnogonidae Pycnogonium litoralae Hoek. 101, 128, 219 m Family Colossendeidae Colossendeis Megalonyx Hoek. 151 m Family Nymphonidae Nymphon brevicollum Hoek. 151 to 987 m Family Nymphonidae Nymphon grossipes Hoek. 219 m Family Colossendeidae Colossendeis robusta Hoek. 274 m Family Ascorhynchidae Ascorhynchus orthorhynchus Hoek. 653 to 988 m Family Nymphonidae Nymphon robustum Hoek. 732 to 2926 m Family Colossendeidae Colossendeis leptorhynchus Hoek. 942, 969, 988 m Family Nymphonidae Nymphon strömii Kröyer. 988 m Family Nymphonidae Nymphon macronyx G. O. Sars. 988 m Family Colossendeidae Colossendeis proboscidea Sab., sp. 1097 m Family Phoxichilidiidae Phoxichilidium patagonicum var. elagans, Hoek. 1097 m Family Phoxichilidiidae Phoxichilidiium insigne Hoek. 1280 m Family Pallenidae Oorhynchus aucklandia Hoek. 1509 m Family Nymphonidae Nymphon pcrliicidnm Hoek. 2012 m Family Nymphonidae Nymphon lonijicoxa Hoek. 2012 m Family Nymphonidae Nymphmi compadum Hoek. 2286 m Family Colossendeidae Colossendeis minuta Hoek. 5215 m Family Ascorhynchidae Ascorhynchus glaber Hoek. 2515 to 2926 m Family Nymphonidae Nymplion hamatum Hoek. 3064 m Family Colossendeidae Colosaendeis gigas Hoek. 3064 m Family Colossendeidae Colossendeis gracilis Hoek. 2926 to 3567 m Family Phoxichilidiidae Phoxichilidium pilosiim Hoek. 3064 m Family Nymphonidae Nymphon meridionale Hoek. 3064 m Family Phoxichilidiidae Phoxichilidium oscitans Hoek 3429 M Family Phoxichilidiidae Phoxichilidium mollissimnm Hoek. 3951 m Family Nymphonidae Nymphon procerum Hoek. 4070 m Family Nymphonidae Nymphon longicollum Hoek. 4070 m Family Colossendeidae Colossendeis media Hook. 4847 m Family Colossendeidae Colossendeis hrevipes Hoek. _____________________________________________________________________________ IAEES www.iaees.org 266 Arthroppods, 2023, 12((4): 260-275 Fig. 1 Thee Danish Ingolff used in studyiing the fauna inn the seas betw ween Canada annd Greenland ass well as the faauna of Iceland.. Pycnogoniida. From The Danish Ingolff Expedition 3,, Buscano Lun na (F. Duyer), Printers P to the Crown (1899)), Copenhagen,, Denmark. Fig. 2 Thhe Southern Crross on the Derrwent River. Unknown U autho or. From the Sttate Library off Tasmania - Im mage Number:: AUTAS0001126071802. IAEES www.iaees.org w Arthroppods, 2023, 12((4): 260-275 267 m the Williem Baarents (Hoek, 11882b). Taable 5 The families, genera, annd species from Familiess Gen nera and speccies ____________________________________________________ __________________________________ __________ Ascorhynnchidae genuus Ascorhynchus-1 speciess, genus Zetess-1 species. Colossenndeidae genuus Colossendeeis-2 species,, Pallenidaae genuus Pallene-4 species. s Nymphonidae genuus Nymphon-13 species. genuus Phoxichilid dium-2 speciees, genus Phooxichilus-1 sp pecies. Phoxichiilidiidae Pycnogonidae genuus Pycnogonu um-1 species.. e leaad scientist was w Max Webbber. It should also be notted that this vvessel’s surveey was one off The expedition the mostt thorough samplings s off tropical forrms and prod duced many families andd genera. Only the RRSS Discoverry, Albatross, and Blake coollections in the Ross Seaa, the coastal waters of Jappan and the western w Northh Atlantic respectively exceeded it inn terms of nuumber of families and geneera (Lowmann, 1908; Hedg gepeth, 1948,, T collectionns from 323 stations whiich included 8 families 15 genera andd 62 species are listed inn 1949). The (Table 111) (Lowman, 1908; van Aken, A 2005). The Scottish Nattional Antarcctic Expeditioon was cond ducted on the auxiliary bbarque-rigged d steam shipp S The Sco otia was under the comm mand of Captain Thomass Scotia frrom 1902 too 1904 in thee Waddell Sea. Robertsoon and the exxpedition leadd scientist waas William Sp piers Bruce. The collectioons included pycnogonidss from 8 faamilies, 19 geenera and 73 species (Tablle 12) (Hodgson, 1908; Riice, 1986). Fig. 3 Thee RRS Discovery ry in Australia inn the 1920s. Soource: John Oxlley Library, Staate Library of Q Queensland. Black and white negative Number: N 1304944. IAEES www.iaees.org w 268 Arthroppods, 2023, 12((4): 260-275 Fig. 4 Thee Dutch cruiser Siboga as she appeared a in 18999. From Lowm man, J. C. C. 19008. Die Pantopooden Der Sibog ga Expedition. Buchhanddlung und druckkerei vormals E. J. Brill, Leidenn. The Terra T Nova (C Captain M. Mackay M in com mmand) transsported Robeert Falcon Scoott to West Victoria V Land,, Antarcticca. This was Scott’s unsucccessful and fatal attempt to be the firsst to reach the South Geog graphic Pole.. The Terrra Nova trannsported Scoott’s team to the Antarcttic continent in the austrral summer of 1910 andd recoveredd the survivoors in the auustral summerr of 1913 (C Calman, 19155; Rice, 19866). The collections of thee Terra Noova Expeditioon, 1910 to 1913, 1 came almost a exclussively from the t Ross Sea.. The only ex xception wass one speccimen (Colosssendeis megaalonyx Hoekk, 1881) from m the Falklannd Islands. Thhe collection ns (Table 13)) included 7 families, 11 genera andd 42 species (C Calman, 1915 5; Rice, 19866). Table 6 Thhe families, geneera, and speciess from the Voringen (Sars, 18991). Familiess Gen nera and speccies ____________________________________________________ __________________________________ __________ Ammothheidae genuus Ammothea a-2 species. Colossenndeidae genuus Colossendeeis-2 species.. Eurycydaae genuus Eurycyde-1 1 species, gennus Ascorhynncus-1 speciess. Nymphonidae genuus Nymphon-19 species, geenus Chaetonnymphon-5 sp pecies, genus Boreeonymphon-1 1 species. Pallenidaae genuus Pallene-2 species, s genuus Pseudopalllene-2 species, genuus Cordylochele-3 species. Phoxichiilidae genuus Phoxichilid dum-1 speciees, genus Anopplodactylus-2 2 species. Pycnogonidae genuus Pycnogonu um-2 species.. IAEES www.iaees.org w Arthropods, 2023, 12(4): 260-275 269 Table 7 Thefamilies, genera, and species of the Pycnogonida from Franz-Josef Land (Carpenter, 1898). Families Genera and species _________________________________________________________________________________________ Colossendeidae Anomorayncrus-1 species. Nymphonidae Nymphon-9 species. Pallenidae Pseudopallene-1 species. _____________________________________________________________________________ Table 8 The families, genera, and species of the Pycnogonida from the Danish INGOLF (Meinert, 1899). Families Genera and species _________________________________________________________________________________________ Ascorhynchidae genus Ascorhynchus-1 species. Colossendeidae genus Colossendeis-5 species. Nymphonidae genus Nymphon-17 species, genus Paranymphon-1 species. genus Pallene-3 species; Cordylochele-2 species, genus Pseudopallene-1 species, genus Pallenopsis-2 species. Pycnogonidae genus Pycnogonum-1 species. Chronologically the last scientific expedition included in this study was the Australian Antarctic Expedition from 1911-1914. The scientific results of this expedition were published twenty-four years after the completion of the collecting voyage (Gordon, 1938). This expedition was organized and led by D. Mawson, who was transported from Australia to Antarctica on the barque-rigged auxiliary stemmer Aurora where he intended to explore the region of Antarctic claimed by Australia from Cape Adare westward to Gaussberg. At the same time, the Aurora cruised along the Antarctic coast making biological collections and oceanographic observations (Gordon, 1938; Rice, 1986). The collections on this research project came from Commonwealth Bay, King George Land and Macquari Land. Pycnogonida from 6 families, 11 genera and 37 species were included in the collections of the Australian Antarctic Expedition. The genus Colossendeis is represented by11 species, one of which is new (Table 14). The genus Ammothea, represented by 6 species is the second most diverse genus. Alexander Agassiz an Ichthyologist and the son of the Harvard University naturalist, Jean Louis Randolph Agassiz, was the lead scientist on a research cruise to study the western North Atlantic Ocean Atlantic [20° N to 40°N and 30°W to 90° W] in the 1870s on the Coast and geodetic Survey steamer Blake (Hedgepeth, 1948). IAEES www.iaees.org 270 Arthropods, 2023, 12(4): 260-275 Table 9 The families, genera, and species from the George W. Elder (Cole, 1904). Families Genera and species _________________________________________________________________________________________ Ammotheidae Ammothea-4 species, genus Achelia-4 species, Ammothella-4 species, Tanystylum-2 species, Clotenia-1 species, Lecythorhynchus-2 species. Phoxichilidiidae Phoxichilidium-5 species, Holosoma-1 species, Anoplodactylus-1 species. Pycnogonidae Pycnogonum-1 species. Table 10 The families, genera, and species of Pycnogonida from the RRS Discovery. Families Genera and species ________________________________________________________________________________________ Ammotheidae Ammothiea-7 species, Achelia-3 species, Austroaptus-2 Astrodecus-1 species, Austroraptus-1 species. Callipallenidae Pseudopallene-2 species. Colossendeidae Colossendeis-10 species, genus Colossendeis-4 species. Endeidae Endeis-1 species. Pallenidae Austropallene-3 species. Pallenopsidae Pallenopsis-4 species. Nymphonidae Nymphon-9 species, Chaetonymphon-4 species, Pentanymphon-1 species, Leionymphon-5 species. Phoxichilidae Pallenopsis-4 species, Phoxichilidium-1 species Phoxichilus-1 species. Pycnogonidae Pycnogonium-1 species. Rhynchothoracidae genus Rhynchothorax-1 species. The Pycnogonids collected by Agassiz were archived in the U. S. National Museum of Natural History (NMNH). Some seventy years later Joel Hedgepeth, a Curator at the NMNH analyzed the collections (Hedgepeth, 1948). The collections of the Blake made between 1875 to 1878 came from the western North Atlantic and the Western Tropical Atlantic, Gulf of Mexico and Hudson’s Bay (Table 15). A total of 8 families, 24 genera and 74 species were reported (Hedgepeth, 1948). In the years 1900 and 1906 the U.S. Commission of Fish and Fisheries (a predecessor of the National Marine Fisheries Service) Steamer Albatross, collected samples of the marine life in the coastal waters of Japan, the Kamchatka Peninsula, the Sea of Japan (East Sea), and Russian coastal waters (Table 16). As in the case of the collections made by the steamer Blake in the 1880s, the pycnogonid specimens were archived in the National Museum of Natural History (NMNH) in Washington, DC. Joel Hedgepeth, a curator of the NMNH who did not participate in the cruise analyzed the collections. This publication appeared 43 years after the date of the last collections of sea spiders in Japanese waters. A total of 9 families, 23 genera and 71 species were reported (Table 16) (Hedgepeth, 1949). It was, however, along with the brief publication by Cole (1904) one of the earliest English language publications on the Pycnogonida in the Western Pacific Ocean (Hedgepeth, 1949). IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 271 Table 11 The families, genera, and species of Pycnogonida from the Dutch gunboat Siboga (Lowman, 1908; Van Akin, 2005). Families Genera and species ________________________________________________________________________________________ Ammotheidae Nymphopsis-3 species, Scipiolous-1 species, Ammothea-5 species, Cilunculus-2 species. Ascorhynchidae Ascorhyncus-5 species. Callipallenidae Parapallene-10 species. Colossendeidae Colossendeis-5 species, Eurycyde-2 species, Rhopalorhynchus-1 species. Pallenidae Pallene-6 species. Pallenopsidae Pallenopsis-6 species. Phoxichilidiidae Phoxichilidium-2 species, genus Phoxichilus-3 species Anoplodactylus-6 species. Pycnogonidae Pycnogonum-5 species. Table 12 The families, genera, and species of Pycnogonida from the Scotia (Hodgson, 1908). Families Genera and species _________________________________________________________________________________________ Ammotheidae Nymphopsis-3 species, Scipiolous-1 species, Ammothea-5 species, Cilunculus-2 species. Ascorhynchidae Ascorhyncus-5 species. Callipallenidae Parapallene-10 species. Colossendeidae Colossendeis-5 species, Eurycyde-2 species, Rhopalorhynchus-1 species. Pallenidae Pallene-6 species. Pallenopsidae Pallenopsis-6 species. Phoxichilidiidae Phoxichilidium-2 species, Phoxichilus-3 species, Anoplodactylus6 species. Pycnogonidae Pycnogonum-5 species. 2 Discussion The results from the era of single ship research projects established a framework on which our current knowledge is based. Research on taxonomic diversity and biogeography of the Pycnogonida continues to this day and much has been learned since 1949 when the last analysis of the earlier data was published. The taxonomy of the Pycnogonida was developed to include 13 families based solely on external morphology. This we should remember was state-of-the-art taxonomy in the period1870 to 1948. Navigation was at best good to a few nautical miles under ideal conditions, so geographic distribution was rarely better than to a regional sea or an island (Table 17). In the course of describing the specimens collected by the thirteen cruises covered in this report, biologists proposed thirteen families in the Order Pycnogonida Latreille, 1810. Ten families, Ammotheidae Dohrn 1881, IAEES www.iaees.org 272 Arthropods, 2023, 12(4): 260-275 Ascorhynchidae Hoek 1881, Colossendeidae Hoek, 1881, Callipallenidae Hilton 1942, Endeidae Norman, 1908, Nymphonidae Wilson 1878, Pallenopsidae Fry 1978, Phoxichilidiidae Sars 1891, Pycnogonidae Wilson 1881, and Rhynchothoracidae Thompson 1909 are recognized by twenty-first century researchers who employ external morphology as well as molecular data such as mitochondrial DNA and Cladistics (Table 17) (Arango and Wheeler, 2007; WoRMS Editorial Board, 2023). Table 13 The families, genera, and species of Pycnogonida from the Tera Nova (Calman, 1915). Families Genera and species _________________________________________________________________________________________ Ammotheidae Ammothea-1 species, Achelia-3 species, Pallenopsis-4 species, Phoxichilidiwn-1 species, Austroraptus-1 species, Tanystylum-12 species. Austrodecidae Austrodecus-1 species, Ascorhynchus-1 species, Rhyncothorax-1 species. Callipallenidae Pallene-1 species, Pseudopallene-2 species, Pallenopsis-7 species. Colossendeidae Colossendeis-4 species, Decolopoda-3 species Austroraptuspolaris-2 species, Austrodecus-1 species, Rhynchothorax-1species. Endeidae Phoxichilus-1 species. Nymphonidae Pentanymphon-1 species, Nymphon-15 species. Pycnogonidae Pycnogonum-4 species, Chetonymplicn-6 species, Chmtonymphon-2 species, Pentanymphon-1 species, Leionymphmi-8 species, Chsetonymplicn-6 species,Austropallene-3 species, Phoxichilidium-1 species, Endeis-1 species. Phoxichilidae Anoplodactylus-2 species. Table 14 The families, genera, and species from the Aurora (Gordon, 1938). Families Genera and species _________________________________________________________________________________________ Ammotheidae Ammothea-6 species, Achelia-4 species, Austroraptus-2 species. Colossendeidae Colossendeis-11 species (One new to science). Endeidae Endeis-1 species. Nymphonidae Pentanymphon-1 species, Nymphon-2 species, Heteronymphon-1 species. Phoxichilidae Austropallene-3 species. Phoxichilidiidae Pallenopsis-5 species (One new to science), Phoxichilidium-1 species. IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 273 Table 15 The Families, genera and species of Pycnogonida from the Coast and Geodetic Survey vessel Blake (Hedgepeth, 1949). Families Ammotheidae Colossendeidae Endeidae Nymphonidae Pallenidae Phoxichilidiidae Pycnogonidae Tanystylidae Genera and Species Achelia-5 species, Ammothella-2 species, Nymphopsis-2 species, Paranymphon-1 species, Ascorhynchus-4 species, Eurycyde-1 species, Ephyrogymna-1 species, Heterofragilia-1 species, Calypsopyenon-1 species. Colossendeis-6 species, Pentaclossendeis-1 species. Endeis-1 species. Nymphon-13 species. Callipallene-4 species, Pseudopallene-1 species, Cordylochele-2 species, Pallenopsis-4 species, Pigrogromitus-1 species. Phoxichilidium-1 species, Halosoma-1 species, Anaplodactylus-15 species. Pycnogonum-3 species, Pentapycnon-1 species. Tanystylum-2 species. Table 16 The families, genera, and species of Pycnogonida from the Fisheries Biology Research Ships Albatross (Hedgepeth, 1948). Families Genus and species ________________________________________________________________________________________ Amotheidae Achelia-8 species, Ammothella-2 species. Ascorhynchidae Ascorhynchus-6 species, genus Nymphonella-1 species; Nymphopsis-1 species, Cilunculus-1 species, Cilunculus-1 species. Colossendeidae Colossendeis-7 species. Endeidae Endeis-1 species. Nymphonidae Nymphon-20 species. Pallenidae Callipallene-1 species, Pallenopsis-3 species, Decachela-1 species, Callipallene-2 species, Propallene-1 species, Pallenopsis-4 species, Decachda-1 species (2 species in this family were new to science). Phoxichilidiidae Phoxichilidium-1 species, Anoplodactylus-2 species, Halosoma-1 species, Pycnosoma-1 species. Pycnogonidae Pycnogonum-5 species (Hedgepeth, 1949). Tanystylidae Tanystylium-1 species. ________________________________________________________________________________________ Three additional families Tanystylidae (Hedgepeth, 1949), Pallenidae (Hoek, 1881b), and Eurycydae (Sars, 1891) were also proposed, but are not now recognized as valid taxa (Arango and Wheeler, 2007; WoRMS Editorial Board, 2023). The Tanystilidae are now included in the Ammotheidae, the Pallenidae are now included in the Callipallenidae, and the Eurycydae are now in the family Ascorhynchidae (WoRMS Editorial Board, 2023). Two families, Phoxichilidiidae, and Colossendeidae are found in all seas and both coastal and abyssal depths. The families Callipallenidae, Endeidae, Pallenopsidae, Rhynchothoracidae, and were absent from the IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 274 collections made by HMS Challenger thus their vertical distribution had not been documented by the early twentieth century. Table 17 Summarizing the geographic distribution of thirteen Pycnogonid families originally described from the 13 cruises included in this review. The Asterix indicates the family is currently recognized as valid in WoRMS. Family Arctic Boreal Tropical Abyss Continental Shelf Seas Seas Sea ________________________________________________________________________________________ Ammotheidae* X X X X X Ascorhynchidae* X X X X Callipallenidae* X Colossendeidae* X X X X X X Endeidae* X X Eurycydae X Nymphonidae* X X X X X Pallenidae X X X X X X Pallenopsidae* X Pycnogonidae* X X X X X Phoxichilidiidae* X Antarctic X X X X X Rhynchothoracidae* X Tanystylidae X _____________________________________________________________________________________ The Family Nymphonidae are cold water animals being found in all seas except the shallow tropical waters. They make-up a sizable portion of the Pycnogonida in Arctic and Antarctic areas (Tables 2-4). The sampling techniques and survey areas covered by each cruise in this history were too varied to allow any meaningful comparisons to be made on relative geographic abundance. Only the HMS Challenger data on vertical abundance and occurrence allow any such conclusions to be drawn (Table 1 and 3). The Laptev Sea. East Siberian Sea, Chukchi Sea. the Pacific west coast of North America, south of Alaska, Central America, and the West Coast of South America were not sampled during this epoch of single ship expeditions. The HMS Challenger transited the Pacific principally north of the equator from Japan to Hawaii and south through the Polynesian Islands of the central Southeast Pacific. References Arango CP, Wheeler WC. 2007. Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics, 23: 255–293 Van Aken HM. 2005. Dutch Oceanographic research in Indonesia on colonial times. Oceanography, 1(18): 3041 Calman WT. 1915. Natural History Report Terra Nova Expedition: Pycnogonida. Natural History Report, Zoology, 3: 1-74 IAEES www.iaees.org Arthropods, 2023, 12(4): 260-275 275 Carpenter GH. 1998. On Pantopoda collected by Mr. W.S. Bruce in the neighborhood of Franz-Joseph Land. Journal of the Linnean Society, 26: 626-634 Cole LJ. 1904. Pycnogonida of the west coast of North America. Harriman Alaska Series, 10: 247-298 Dohrn A. 1881. Die Pantopoden des Golfes von Neapel und der Angrenzenden Meeres Abschnitte. Fauna und Flora des Golfes von Neapel und der Angrenzenden Meeres-Abschnitte, 3: 1-252 Gordon L. 1938. Pycnogonida: Australian Antarctic Expedition 1911-1914. Scientific Reports Series CZoology and Botany, 2: 1-42 Hedgepeth JW. 1948. The Pycnogonida of the Western North Atlantic and the Caribbean. Proceedings of the United States National Museum. 97 (3216): 157–342, National Museum, Washington DC, USA Hedgepeth JW. 1949. Report on the Pycnogonida collected by the Albatross in Japanese waters 1900 and 1906. From the Proceedings of the United States National Museum, 98(3231): 233-321, National Museum, Washington DC, USA Hodgson TV. 1902. Crustacea (Pycnogonida). Report on the collections of natural history made in the Antarctic Regions during the voyage of the “Southern Cross”. British Museum, London, UK Hodgson TV. 1908. Pycnogonida. Natural History Reports of the National Antarctic Expedition 1901-1904. 3: 1-72 Hoek PPC. 1881a. Report on the Pycnogonida, dredged by H. M. S. Challenger during the years 1873-1876. In: Report of the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-1876 Zoology X; Editor Thomson, C. Wyville (John Murry, ed) Her Majesty’s Printing Office, London, England Hoek PPC. 1881b. The Pycnogonida dredged during the cruise of the Willem Barents in the years 1878 and 1870. Niederland Archive fur Zoology, Supplement 1: 1-28 Latreille, PA. 1810. Considérations générales sur l'ordre naturel des animaux composant les classes des crustacés, des arachnides, et des insectes ; avec un tableau méthodique de leurs genres, disposés en familles. - pp. 1-444. Paris. (Schoell) Lowman, JCC. 1908. Die Pantopoden Der Siboga Expedition. Buchandlun und druckerei vormals, E. J. Brill Leiden, Denmark Meinert, F. 1899. Pycnogonida. In: The Danish Inglof – Expedition 3. Buscano Luna (Duyer F, ed.) Printers to the Crown, Copenhagen, Denmark Nelson, SB. 19771. Oceanographic Ships Fore and Aft. Office of the Oceanographer of the U.S. Navy, Government Printing Office, Washington DC, USA Norman, AM. 1908 Podosomata (Pycnogonida) of temperate Atlantic and Arctic Oceans. Journal of The Linnean Society, 30: 198-238 Rice AL. 1986. British Oceanographic Vessels 1800-1950. The Ray Society, London, England Sars GO. 1891. Pycnogonidea. Norwegian North-Atlantic Exped., 1876-1878. Grondahl & Sons 6 (Zool. 20), Christiana, Norway pp 1-163. Wilson, EB. 1880. Report on the Pycnogonida of New England and Adjacent waters. Report U.S. Fisheries Commission, USA Wöst G. 1964. The major deep-sea expeditions and research vessels 1873-1960. In: A Contribution to the History of Oceanography. Contribution No. 79 of Lamont Geological Observatory, Columbia University. 3-61, Palisades, New York, USA WoRMS Editorial Board. 2023. World Register of Marine Species. Available from https://www.marinespecies.org.at VLIZ. doi:10.14284/170 IAEES www.iaees.org Arthropods, 2023, 12(4): 276-280 Article A new record of Allamanda cathartica Linn., 1771 (Angiosperms: Apocynaceae) as a host plant of weaver ant, Oecophylla smaragdina Fab., 1775 (Hymenoptera: Formicidae) Pawan U. Gajbe, Vaishali H. Badiye Department of Zoology, Shri Mathuradas Mohota College of Science, Nagpur-440024, Maharashtra, India E-mail: pugajbe@mohotasci.edu.in Received 10 October 2023; Accepted 25 October 2023; Published online 3 November 2023; Published 1 December 2023 Abstract The weaver ant species, Oecophylla smaragdina Fab., 1775 is found in the tropical regions of Asia, Australia, and western Pacific islands. It is arboreal in habit and constructs leaf nests in the upper canopy of trees. The interactions between O. smaragdina and its host plant can be considered a type of mutualism, as both are benefitted. Many plant species including seven species of family Apocynaceae have been recorded as the host plants of O. smaragdina. In the present study, we have added golden trumpet, Allamanda cathartica Linn., 1771, an ornamental plant belonging to family Apocynaceae to the list of plant species that host O. smaragdina ants. Keywords ant-plant interactions; Asian weaver ant; edible insect; myrmecophily. Arthropods ISSN 2224­4255 URL: http://www.iaees.org/publications/journals/arthropods/online­version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E­mail: arthropods@iaees.org Editor­in­Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences 1 Introduction The weaver ant Oecophylla smaragdina Fabricius, 1775 (Fig. 1a) is an insect species belonging to subfamily Formicinae in family Formicidae of order Hymenoptera. These ants are arboreal and are among the most dominant and important ants in tree canopies of the humid tropics of South-East Asia, Australia and western Pacific islands (Blüthgen and Fiedler, 2002). Weaver ants build large distinctive nest structures in trees by binding together bunches of leaves using a silk-like substance secreted by the larvae. Groups of Oecophylla workers hold the leaves together while other workers move the silk-producing larvae back and forth across the gap, effectively weaving the leaves together (Wetterer, 2017). These ants are a valued resource in some Southeast Asian countries since they are edible (Sribandit et al., 2008). These ants are also consumed by indigenous people in different states of India (Jena et al., 2020). These ants prey on other insects and are able to protect a variety of terrestrial plants against pest insects (Offenberg et al., 2006). As theses ants protect the host plants from phytophagous insect attacks, they have been used for biological control in the tropics (Tsuji et IAEES www.iaees.org Arthropods, 2023, 12(4): 276-280 277 al., 2004). The relatively greater efficiency of O. smaragdina as a biological control agent is associated with its actively dispersive predatory behaviour (Way and Khoo, 1991). In India, these ants are found on a number of plant species, but the most preferred host is mango, Mangifera indica (Jena et al., 2020). Here, we are reporting Allamanda cathartica Linn., 1771 (Fig. 1b) as a host plant of O. smaragdina. Fig. 1a-d (a) Oecophylla smaragdina workers (b) Allamanda cathartica plant (c) O. smaragdina leaf nest on A. cathartica (d) A smaller weaver ant nest on A. cathartica. IAEES www.iaees.org 278 Arthropods, 2023, 12(4): 276-280 2 Materials and Methods The present study was conducted in September 2023 in S.M.M. College of Science Campus in Nagpur city. Nagpur (C. 21.1498°N 79.0806°E) is located in the central region of India. The climate of Nagpur is tropical wet and dry, with dry conditions dominating most of the year. The monsoon rains last from June to September and the average annual rainfall is 1064 mm. May is the hottest month and July is the rainiest month in Nagpur (Anon., 2023). During a survey of weaver ant nests in our college garden, we found a few weaver ant nests on an A. cathartica plant. These nests were studied and then photographed with a digital camera. The plant species was identified with the help of the guide on family Apocynaceae by Morillo and Liede-Schumann, 2021. 3 Results We observed three weaver ant nests on the A. cathartica plant studied. This particular plant grew to a height of about 20 feet from the ground and the weaver ant nests were constructed in its upper branches. As O. smaragdina leaf nests have previously not been reported on A. cathartica, this is the first record of this plant species being used as a host by weaver ants. The ant nests observed on A. cathartica were smaller in comparison to the ant nests observed on a mango tree in the same garden. Out of the three leaf nests observed on A. cathartica, the larger nest had a width of about 12 cm (Fig. 1c), whereas, the other two nests were smaller having a width of about 7.5 cm (Fig. 1d). The leaves of A. cathartica are arranged in whorls of five and these whorls are separated from each other on the stem, hence the small size of the leaf nests. O. smaragdina ants are highly territorial and aggressively defend a resource-based territory (Newey et al., 2010). We found that even gently touching the leaf nest caused worker ants to rapidly come out of the nest and actively look for the intruder. 4 Discussion Weaver ant Oecophylla smaragdina, native to Asia, has been recorded on 175 plant species in 46 families, while the related species Oecophylla longinoda, native to Africa, has been recorded on 66 plant species in 34 families (Lim et al., 2008). Apocynaceae is a pantropical family of trees, shrubs, lianas, and herbs, generally found below 2500 m elevation and represented in the Neotropics by about 100 genera and 1600 species (Morillo and Liede-Schumann, 2021). O. smaragdina has been reported on the following host plants of family Apocynaceae: Alstonia actinophylla, Dyera costulata, Ichnocarpus frutescens, Melodinus australis, Plumeria obtusa, Wrightia laevis, and Wrightia pubescens (Lim et al., 2008). Allamanda cathartica belongs to family Apocynaceae and is commonly known as golden trumpet, common trumpetvine, and yellow allamanda. A. cathartica is a native of South America (Petricevich and Abarca-Vargas, 2019). It is found in many tropical regions including India (Prabhadevi et al., 2012) and its neighbouring countries, which include Bangladesh, Nepal (Mahbubur Rahman and Akter, 2015), Myanmar, Pakistan (Hameed et al., 2014), Sri Lanka (Rifnas et al., 2020) and China (Li et al., 2014). This plant species is widely cultivated in the tropics because of its beautiful yellow flowers (Morillo and Liede-Schumann, 2021). Besides being economically important as an ornamental plant, A. cathartica has also emerged as a source of traditional medicine used for human health, since the extracts and active substances isolated from it have been found to have multiple pharmacological activities (Petricevich and Abarca-Vargas, 2019). The extract from A. cathartica flowers has been used to synthesize silver nanoparticles (Karunakaran et al., 2016). Ant-plant interactions have mainly been considered as a protection mutualism where ants increase plant performance through protection from herbivory (Pinkalski et al., 2016). In a mangrove forest, it was found that on trees with O. smaragdina ants, there was less herbivory on leaves close to ant nests compared to other leaves on the trees (Offenberg et al., 2006). In our study too, we found that there were no other insects visible IAEES www.iaees.org Arthropods, 2023, 12(4): 276-280 279 near the ant nests on the A. cathartica plant. These ants may provide their host plant with a significant source of nitrogen albeit a substantial amount of carbon is consumed from the host plant (Pinkalski et al., 2016). The evolution of territorial behaviour requires that the benefits of territoriality outweigh the costs, which are primarily those of territorial defense against encroaching neighbors or against floaters seeking to establish their own territory (Newey et al., 2010). It is possible that these ants on account of their aggressive nature may also have a negative effect on the visiting rate of pollinator insects of the host plants (Tsuji et al., 2004). Acknowledgements We are thankful to the Principal, S.M.M. College of Science Nagpur for facilities. References Anon. 2023. District Nagpur. https://nagpur.gov.in/geography-climate/ Blüthgen N, Fiedler K. 2002. Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. Journal of Animal Ecology, 71(5): 793-801. doi:10.1046/j.1365-2656.2002.00647.x Hameed A, Nawaz G, Gulzar T. 2014. Chemical composition, antioxidant activities and protein profiling of different parts of Allamanda cathartica. Natural Product Research, 28(22): 1-6. doi:10.1080/14786419.2014.923997 Jena S, Das SS, Sahu HK. 2020. Traditional value of red weaver ant (Oecophylla smaragdina) as food and medicine in Mayurbhanj district of Odisha, India. International Journal for Research in Applied Science and Engineering Technology, 8(5): 936-946. Karunakaran G, Jagathambal M, Gusev A, Kolesnikov E, Mandal AR, Kuznetsov. 2016. Allamanda cathartica flower's aqueous extract-mediated green synthesis of silver nanoparticles with excellent antioxidant and antibacterial potential for biomedical applicationtsov. MRS Communications, 6(1): 41-46. doi:10.1557/mrc.2016.2 Li AN, Li S, Li HB, Xu DP, Xu XR, Chen F. 2014. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. Journal of Functional Foods, 6(1): 319-330. doi: 10.1016/j.jff.2013.10.022 Lim GT, Kirton LG, Salom SM, Kok LT, Fell RD, Pfeiffer DG. 2008. Host plants and associated trophobionts of the weaver ants Oecophylla spp. (Hymenoptera: Formicidae). CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3: 035. doi: 10.1079/PAVSNNR20083035 Mahbubur Rahman AHM, Akter M. 2015. Taxonomy and traditional medicinal uses of Apocynaceae (Dogbane) family of Rajshahi district, Bangladesh. Research & Reviews: Journal of Botanical Sciences, 4(3): 1-12 Morillo G, Liede-Schumann S. 2021. Guide to the genera of lianas and climbing plants in the neotropics: Apocynaceae. Available online at https://naturalhistory.si.edu/sites/default/files/media/file/apocynaceae.pdf Newey PS, Robson SKA, Crozier RH. 2010. Weaver ants Oecophylla smaragdina encounter nasty neighbors rather than dear enemies. Ecology, 91(8): 2366-2372. doi: 10.1890/09-0561.1 Offenberg J, Havanon S, Aksornkoae S, Macintosh DJ, Nielsen MG. 2016. Observations on the ecology of weaver ants (Oecophylla smaragdina Fabricius) in a Thai mangrove ecosystem and their effect on herbivory of Rhizophora mucronata Lam. Biotropica, 36(3): 344-351. doi: 10.1111/j.17447429.2004.tb00326.x Petricevich VL, Abarca-Vargas R. 2019. Allamanda cathartica: A review of the phytochemistry, pharmacology, toxicology, and biotechnology. Molecules, 24: 1238. doi: 10.3390/molecules24071238 IAEES www.iaees.org 280 Arthropods, 2023, 12(4): 276-280 Pinkalski C, Damgaard C, Jensen K-MV, Peng R, Offenberg J. 2016. Macronutrient exchange between the Asian weaver ant Oecophylla smaragdina and their host plant. Ecosystems, 19: 1418-1428. doi: 10.1007/s10021-016-0013-z Prabhadevi V, Sathish Sahaya S, Johnson M, Venkatramani B, Janakiraman N. 2012. Phytochemical studies on Allamanda cathartica L. using GC–MS. Asian Pacific Journal of Tropical Biomedicine, 2(2): S550-S554. doi: 10.1016/S22 Rifnas LM, Vidanapathirana NP, Silva TD, Dahanayake N, Subasinghe S et al. 2020. Effects of gamma radiation on morphology, survival and growth of Allamanda cathartica plants at different maturity. National Symposium on Floriculture Research (NaSFloR), Dec 2020, Peradeniya, Sri Lanka Sribandit W, Wiwatwitaya D, Suksard S, Offenberg J. 2008. The importance of weaver ant (Oecophylla smaragdina Fabricius) harvest to a local community in Northeastern Thailand. Asian Myrmecology, 2: 129-138 Tsuji K, Hasyim A, Nakamura H, Nakamura K. 2004. Asian weaver ants, Oecophylla smaragdina, and their repelling of pollinators. Ecological Research, 19: 669-673. doi: 10.1111/j.1440-1703.2004.00682.x Way MJ, Khoo KC. 1991. Colony dispersion and nesting habits of the ants, Dolichoderus thoracicus and Oecophylla smaragdina (Hymenoptera: Formicidae), in relation to their success as biological control agents on cocoa. Bulletin of Entomological Research, 81(3): 341-350. doi: 10.1017/S0007485300033629 Wetterer JK. 2017. Geographic distribution of the weaver ant Oecophylla smaragdina. Asian Myrmecology, 9: e009004. doi: 10.20362/am.009004 IAEES www.iaees.org Arthropods Arthropods play the role of both pests and beneficial organisms. Some arthropods are important crop pests but others are natural enemies. Some arthropods are important health pests but many crustaceans are important food sources of humankinds. Arthropods govern the structures and functions of natural ecosystems, but are always ignored by researchers. On the global scale, the surveys of mammals, birds and vascular plants were relatively perfect because they were economically important and easily surveyed. However, arthropods, despite their ecological and economical importance, have not yet been fully surveyed and recorded due to their difficulties to be sampled. The research on arthropods must be further promoted. The journal, Arthropods, aims to provide a public and appropriate platform for the publication of studies and reports on arthropods. Arthropods (ISSN 2224-4255) is an international open access (BOAI definition), open peer reviewed online journal (users are free to read, download, copy, distribute, print, search, or link to the full texts of the articles) devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al.), conservation, molecular biology, biochemistry, physiology, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems) and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and includes all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc.) of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to Arthropods must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc.) on a specific topic, or submissions of a conference for publication of special issue. Editorial Office: arthropods@iaees.org Publisher: International Academy of Ecology and Environmental Sciences Address: Unit 3, 6/F., Kam Hon Industrial Building, 8 Wang Kwun Road, Kowloon Bay, Hong Kong E-mail: office@iaees.org Arthropods ISSN 2224-4255 Volume 12, Number 4, 1 December 2023 Articles Morphological description of the larval stages of Alpheus lobidens De Haan, 1850 (Crustacea: Decapoda: Caridea: Alpheidae) reared under laboratory conditions Farhana S. Ghory 171-192 Biodiversity of the spider (Arachnida: Araneae) fauna of Tamil Nadu, India Rajendra Singh 193-250 Adulticidal, ovicidal and repellent potencies of Alchornea cordifolia (Schum. & Thonn.) in the management of the malaria vector Anopheles gambiae (Diptera: Culicidae) Charles Kwesi Koomson 251-259 Research on sea spiders (Chelicerata; Pycnogonida) in the era of single-ship oceanographic voyages (1870-1915) John A. Fornshell 260-275 A new record of Allamanda cathartica Linn., 1771 (Angiosperms: Apocynaceae) as a host plant of weaver ant, Oecophylla smaragdina Fab., 1775 (Hymenoptera: Formicidae) Pawan U. Gajbe, Vaishali H. Badiye 276-280 IAEES http://www.iaees.org/