Aotearoa New Zealand Pteridophyte (Fern \& Lycophyte) Glossary

A CONTRIBUTION TO THE COMMONWEALTH OF KNOWLEDGE ABOUT OUR NATURAL WORLD

Tmesipteris tannensis chain fern growing epiphytically on a tree fern trunk Leith Saddle Track, Dunedin, New Zealand

NEW ZEALAND /AOTEAROA PTERIDOPHYTE (FERN \& LYCOPHYTE) GLOSSARY

GLOSSARY WITH EXPLANATORY NOTES.

Compiled and composed by lain C. Reid

In memory of Vale John Sawyer (1968-2015) founder of the New Zealand Plant Conservation Network (www.nzpen.org.nz) also the late Finn Bruce, driving force behind establishment of a filmy fern house at the Margie Maddren Fernery and Snow Conservatory (Botanica), Whangarei, Northland, New Zealand, I had the pleasure of searching for 'filmies' upon Maungatapere crater with him, many years ago.

This glossary has been compiled and composed to provide a definition of terms encountered by people studying ferns and the so called fern allies (the lycophytes) and too briefly give their derivation or etymology The latter is sometimes helpful in understanding the first and a whole family of related words. Some of the terms relate to the morphology or anatomy of ferns and fern allies. Other terms relate to the life cycle, ecology, biogeography or taxonomy. Sometimes the derivation is a bit quirky by today's standards, words such as parenchyma, unless you know the history I have aimed for two slightly conflicting goals: one to keep things simple and two: to be comprehensive - like a one stop shop; even though there are a plethora of botanical terms or "jargon" relating to the ferns and fern allies, botany in general. Many are synonyms (often a Greek and Latin version), some terms are archaic or obsolete, so select the ones you like. A favourite mouthful is achloromycoheterotrophic - this is a word you can use to impress people at parties with. There will no doubt be some terms not included, or missed which could be included in future versions. Some of the terms are included to complete a set of related terms and may not be directly fern related or applicable to New Zealand ferns or clubmosses.. Note the appearance of combining forms such as ptero-, morph,-ferous, -colous,-phyll, -phyte, -phore, spore etc. A word in bold indicates it is defined in the glossary.

It does not matter whether you used a technical term like sporangium or its less technical equivalent spore case, leaflet, frondlet or pinna provided you and your audience know what is being referred to. As logician Alfred Korzybski said "the map is not the territory, and the name is not the thing named". Remember as Gregory Bateson quoted in 'Mind and Nature’ said " all information is news of difference", that is ideas are constructs from perceived differences, so we can note the difference between pinnate and bipinnate, megasporangium and microsporangium for instance. If we want to identify a fern or any plant we look for what is distinctive or 'different' about it. Note also the constant relationships between things, such as sporangia and sporophylls. Magnification through hand lens or microscopes may be required to see some features.

I cannot clain originality for the definitions - I have harvested them from multiple sources tweaking them where needed to suit my understanding. I had not initially intended to add illustrations, I am no botanical artist, in fact have zero artistic ability, but illustrations are invaluable for conveying ideas that definitions are inadequate for. I take my hat off to the botanical illustrators of the present and past. I have taken the liberty of adapting illustrations where appropriate. Some will best be replaced, but will suffice in the meantime. All the best with your fern (and lycophyte) studies. I take full responsibility for any errors made.

Information about fern and lycophyte species in New Zealand and etymology of generic and specific names are to found at the New Zealand Plant Conservation Network website https://www.nzpcn.org.nz/ and the Landcare Research New Zealand- site https://www.nzflora.info/publications.html. Appendix 1 is a checklist of New Zealand Ferns and Lycophytes. The most up to date and still available reference book is Brownsey's, although 20+ years old and a few newly described species and recently found to be naturalized species are missed.

Acknowledgements:

The Reid/McNeur and Sinclair family of Dunedin (Robyn, Nicholas, Victoria, Brendan and Lyla).

Content

Glossary
Appendix 1: Checklist of New Zealand Ferns and Lycophytes
Appendix 2: Common name and Scientific Name
References
pages 2-317
pages 317-329
pages 330-341
pages 341-343

Scanned images form G. M. Thomson's 1882 book on New Zealand Ferns pages 344-352
Abbreviations used: L. Latin; Gr. Greek; pl. plural; f. from (derived from); + plus (combined with), spp. species (plural) sp. species (singular) \pm approximately, Ma. million years ago, c. circa.

GLOSSARY

ab- (L. prefix ab-away from) from or out of (antonym ad-)
abaxial (L. prefix ab- away from + axis, axle, pivot) The side or surface of an organ (e.g. leaf), facing away from the axis (e.g. stem or midrib (rachis)) such as the undersurface (dorsal surface) of a frond. Compare adaxial.

> Pyrrosia eleagnifolia General position terms

Diagram from "Plant Life on Banks Peninsula' 2013.
Hugh D. Wilson (author and artist). Manuka Press

Zealandia (Microsorum) pustulata subsp. pustulata showing fronds from adaxial (upper leaf surface) and abaxial (lower leaf surface -bearing sori) aspect Leith Saddle Track, Dunedin (photo lain Reid)

Figure 1 abaxial adaxial
abbreviated (L. ab-from, + brevis shorten) Shortened.
aberrant (L. aberro, go astray; err, f. ab + erro, to wander) Unusual or not typical, differing from the normal form. Abnormal.
abortive (L. abortio, miscarriage, abortion) Barren or imperfectly developed, infertile; applied to spores incapable of germination as is common in the spores of hybrid ferns due to chromosomal incompatibily. Also in the production of megaspores of the four meiospores produced 3 are aborted leaving one as the megaspore.
abrupt (L. abruptus, broken off), Changing suddenly not gradually.
abruptly pinnate (abrupt + pinnate) Where a pinnate leaf is without a odd or terminal leaflet, ending instead in a pair of leaflets. Same as even-pinnate or paripinnate. Compare odd-pinnate, imparipinnate.
abscise (L. abscissus cut off) Shedding of plant parts such as fronds from stipe bases or pinnae from rachises often at a special separation layer either naturally from old age or prematurely from stress. abscission feature of deciduous plants.
acaulescent: (L prefix a- without caulex, stem) Appearing as though without a stem or trunk. Stem abbreviated, short or compact,internodes minimal, maybe partially underground - but not actually absent. Leaves close set.. Basal/radical plants can be so described. Compare: caulescent and acrocaulis.
accessory (accessory f. L. accedere, accessum, to go near) In fern anatomy, a stellar perforation not linked to frond insertion.
accessory buds (accessory f. L. accedere, accessum, to go near + bud (Middle. English budde) Also known as lateral buds, buds that develop in leaf axils on the rhizome.
-aceae Suffix denoting the rank of family in the taxonomic hierarchy e.g. Aspleniaceae (spleenwort family), Dryopteridacea (wood fern family), Lycopodiaceae (club moss family.).
achloromycoheterotrophic (Gr. a- without + chloro- abbreviation of chlorophyll + myco fungus + heterotroph) or simply mycoheterotroph. Plants or plant stages (e.g. gametophytes) that lack chlorophyll and are unable to photosynthesize but instead depend on a mycorrhizal fungus for nourishment. Synonym saprotroph, holosaprophyte. Compare autotroph. See mycorrhiza.
acicular (L. diminutive of acus needle) Needle-shaped, very narrow and sharp-tipped; said of hairs or conifer leaves, such as pine needles.
acidophil/acidophile (L. acid, sour,sharp + Gr. phile, loving) Preferring to grow in an acidic habitat. Synonym oxylophil. Similar to calcifuge and calciphobe (lime-hating). Antonym: basophil.
acostate/ecostate (Gr. a-, or e- ,without, costa, rib) Lacking a midrib or costa. Synonyms enervate and nullinervate. Opposite of costate.
acrocaulis (Gr. . acro-summit, topmost,+ kaulos, a plant stem) With leaves positioned at the apex of the stem as in tree ferns, the nikau palm or cabbage tree. Hence acrocaulescent. Compare Cauline with leaves positioned along the length of the stem and basal/radical or acaulescent with leaves positioned at the base of a stem, near the ground as in a rosette type plant.
acrodromous (Gr. . acro- summit + dromos, running, racecourse) When two or more primary veins or prominent secondary veins run in convergent arches towards the leaf apex. The arches are not recurved at the base as in campylodromous. If the veins reach the apex or close to it are termed perfect, if they fail to reach or get close to the apex are termed imperfect. If these veins run from the base are termed basal and suprabasal if the veins diverge from above the base.

Acrodromous venation (ternate/palmate pattern)

Adapted from "Plant Systematics" 2010. Michael G. Simpson.
Academic Press (Elsevier)

Figure 2 acrodromous venation
acrogens (Gr. . acro- summit, topmost,+gens- f. genos, birth) A fern or other nonflowering plant, with growth from the apex of the plant. (see cryptogam)
acrophore (Gr. . acro- summit, topmost,+ phore f. Gr. phorus, bearing, carrying) Tip bearing- Apical stalk.
acrophyll: (Gr. . acro- summit, topmost, + -phyll f. phullon , a leaf.) A mature or adult frond of a climbing fern, differing from the mature leaves (bathyphylls), lower down the plant. New Zealand examples Rumohra adiantiformis, Blechnum filiforme. See bathyphyll.

Figure 3 acrophyll
acroscopic: (Gr. . acro- summit, topmost, + scopic f. Gr. skopein to look at) Located or directed towards the tip (apex) of a frond, pinna or any organ on which its borne. Compare basiscopic.

bracken, rahurahu, Pteridium esculentum

Figure 4 acroscopic
acrostichoid: (Gr. . acro- summit, topmost, furthest +. stichos, line, row, rank; the fern genus Acrostichium + -oid, resembling) Sporangia not in discrete sori, lines or dots but, singly placed, though crowded and
scattered throughout the underside of the frond,e.g. Leptopteris spp. or lower pinnae of Todea barbara family Osmundaceae. Also lacks indusia so is exindusiate or naked.

Acrostichum aureum

'Australian Ferns and Fern Allies' 1976
D. L. Jone \& S. C. Clemesha
A. H. \& A. W. Reed (Publisher)

Todea barbara A. frond with sporangia confined to the lower pinnae; B. sporangia crowded on the underside of a secondary pinna, not in discrete sori (the acrostichoid pattern)
'New Zealand Ferns and Allied Plants' 2000.
Brownsey, Patrick J. and Smith-Dodsworth, John C.
David Batemen LTD 2000.

Figure 5 acrostichoid
actinodromous (Gr. actino-f. aktis ray + dromos, running, raceway) Leaf venation of the palmate or ternate pattern where three or more primary veins originate at the base of the lamina and run towards the margin. If the veins reach the margin -marginal, if not reticulate and flabellate-fan pattern where three or more primary veins diverge from one point and then branch finely towards the leaf apex.

Adapted from 'Plant Systematics' 2010. Michael G. Simpson Academic Press (Elsevier)

Figure 6 actinodromous venation
actinostelic (Gr. actino-f. aktis ray + stele f. stele pillar) Vascular architecture where the vascular strand has radiating arms (rays). A type of protostele (central vascular cylinder, no pith) found for example in Lycopodium spp. . Figure 208
aculeate (L. aculeatus prickly, aculeus a prickle) Armed with prickles.
acuminate (L. acumen a sharp point) Gradually tapering to a narrow sharp tip with slightly concave margins. Compare with acute which has straight margins.
acute: (L. acutus a sharp angle) Tapering with nearly straight margins (compare acuminate) to a point with an angle less than 90°.
acute-angled (L. acutangulus) Having projecting longitudinal angles that are sharp in contrast to obtuseangled (L. obtusangulus) that are rounded.

Figure 7 acute angled
ad- (L. prefix ad- meaning towards) Face near or at (antonym ab-)
adaxial: (L. prefix ad- towards + axis, axle, pivot) The surface of an organ (e.g. leaf) facing towards the stem or axis. Equals the upper, or ventral surface of a leaf.. Compare abaxial.

Diagram from "Plant Life on Banks Peninsula' 2013.
Hugh D. Wilson (author and artist). Manuka Press

Figure 8 adaxial abaxial
admedial (L. prefix ad- meaning towards+ medial, middle) Towards the middle, e.g. sorus located towards the axis of symmetry of the leaf i.e. close to the midrib or or leaf vein directed towards the axis of symmetry of the leaf (admedially ramified). Opposite exmedial. See soral position.
adnate: (L. prefix ad- + nascor , to be born) To grow attached to a different organ by the whole width, such as a leaflet base to a midrib. New Zealand examples Blechnum colensoi, B. discolour. Compare stalked, sessile, decurrent, surcurrent.
adpressed(L. prefix ad- + premere to press) Variant of appressed. Pressed flat, against a surface.
adventitious (L. adventicius, coming from outside, f. adventus a coming) Structures arising from an unusual place such as roots from stems or leaves, buds at places other than leaf axils. New Zealand example - Asplenium bulbiferum. The lower part of a tree fern trunk is surrounded by a adventitious root mass.
adventive (f. L adventiucus, f adventus, arrival) An introduced species, alien or exotic species, not native. If reproducing successfully in the wild by sexual or asexual means it is said to be naturalized. If a threat to native species is said to be invasive. Compare indigenous and endemic. New Zealand example Dryopteris felix-mas.
aerenchyma (Gr. aer, aeros, air + enchyma see parenchyma) Parenchymatic plant tissues with large intercellular spaces for aeration. More absence of tissues or cells than actual tissue.

The air chamber classes as Aerenchyma 'air tissue' is common in the cortex of the roots and stems of many aquatic plants

Root of Isoetes lacustris in cross section, showing the air chamber and the peripepheral vascular bundle. This anatomy is identical to the lepidodendrid trees of the Carboniferous

Modified from 'A Natural History of Ferns', 2004, Moran, Robbin C. . Timber Press

Figure 9 aerenchyma
aerial (Gr. aer, aeros, air) Applied to plant structures growing above the ground.
aerial roots (Gr. aer, aeros, air + root) Adventitious roots arising from a rhizome and growing in the air, e.g. on the trunks of tree ferns.
aerial stem (Gr. aer, aeros, air + stem) An upright stem arising from a horizontal rhizome. Example: trunk or caudex of a tree fern.
aerophore (Gr. aer, aeros, air + phore f. Gr. phorus, bearing, carrying) Specialized aerating tissue of the frond, provided with abundant stomata, occurring as outgrowths such as lines or swellings along the stipes, rachises, costae, or pinnule bases. Synonym pneumatophore. Only present in ferns, especially Thelypteridaceae and Cyatheaceae..
aerophyte (Gr. aer, aeros, air + phyton a plant) A synonym for epiphyte or perching plant. Example Tmesipteris tannensis.
aff. abbreviation of affinity (L. affinis, neighbouring, related by marriage) A botanical reference used to denote an undescribed species which appears to be related to a described species. A formal tag name if you will.
air chamber Air filled cavity in the root of Isoetes sp. Classes as aerenchyma. Air filled cavities beneath the gametophyte thallus upper epidermis in many Liverworts of the order Marchantiales.
ala, pl. alae (L. ala wing) Wing-like leaf blade extensions, on the side of a stipe, rachis, or costa. Adjective alate. Thin high ridges or wings on a spore wall.

Hymenophyllum australe (syn. H. atrovirens)
showing the narrowly triangular frond and flat wing to the stipe
Artist Tim Galloway 'Ferns and Fern Allies of New Zealand' 2000 ed. Brownsey, Patrick \& Smith-Dodsworth, John C. . Bateman Publishers

Figure 10 alate
-ales Suffix denoting the rank of order in the taxonomic hierarchy, e.g. Salviniales, containing the water fern family Salviniaceae. Order: the taxonomic rank above family. See order, classification.
alate (L. ala wing) Winged, possessing alae. Some fronds and some spores. (fig. 10).
alete (L. aletus) A spore that has lost its tetrad scar(s) or laesura as a result of swelling after tetrad splt up. A monolete spore has a single tetrad scar on its surface, while a trilete spore has a three-pronged (triradiate) scar. The scar may be prominent or barely visible in the latter two cases.
allopatric (Gr. allo- , other +patra fatherland) Occupying different geographic ranges. Compare sympatric.
alpine (L. Alpinus, from Alpes , the Alps). Mountain zone, above the treeline. Subdivided into low and high alpine. Altitudinal stratification term compare, subalpine, montane, lowland, coastal. Alpine plants and lichens grow below the nival zone (permanent snowline) and above the treeline. In New Zealand 3 clubmosses and 15 ferns reach the alpine zone (source: 'Above the Treeline '. a nature guide to alpine New Zealand" revised ed. 2021. Alan Mark. Potton \& Burton Publishers). Isoetes alpina
alternate (L. alternate done by turns, f. alternus every other) Borne singly at different levels on opposite sides in straight lines (distichous) or spiral (helical) pattern e.g. fronds, pinna, pinnules, segments, arising from rachis, costae or midribs) . Compare opposite and subopposite. e.g. Blechnum novae zealandiae.

Paesia scaberula Scented fern, Matata A fern displaying alternate leaflet arrangement (adapted from Brian Molloy)
alternation of generations Reproductive life cycle that requires alternation between two morphologically different generations of the same species, a gametophyte (usually haploid 1 n) and a sporophyte (usually diploid $2 n$). In ferns and lycophytes the gametophyte and sporophyte are independent at maturity. The sporophyte, being the typical fern or clubmoss when mature. The fern or lycophyte gametophyte is also known as the prothallus. Synonym haplodiplontic life cycle, diplohaplontic life cycle or diplobiontic life cycle.

Figure 12 alternation of generations
altitude (middle English from L. altitudo, height depth f. altus high deep.) Height above sea level (metres above sea level (a.s.l.). Altitudinal distribution refers to the range of a species or taxon in relation to altitude. Compare latitudinal distribution - the range of a species or taxon related to latitude.
altitudinal zones: nival, alpine (high \& low), subalpine, montane (upper \& lower), lowland, coastal. Note these zones alter with the macroclimatic effect of latitude and maritime (distance from the sea or continentatlity) influences.

Fig. 5.2. Relative upper limits of common plants, mainly woody, on maritime slopes near western coasts (left). These limits define belts that decrease in altitude with increasing latitude (right).
Numbers represent the following summits.

1. Mataraua Forest
716 m
2. Mt Te Aroha 953 m
3. Mt Taranaki 2518 m
. Paparoa Range
1501 m
3497 m
1853 m 676 m
4. Auckland Island 668 m
5. Campbell Island 569 m
6. Macquarie Island
434 m
'Vegetation of New Zealand" 1991. Peter Wardle. The Blackburn Press.

Vegetation profiles from Mt Taranaki, showing diminishing stature and reducing number of tiers with increasing altitude and exposure (Clarkson 1986). Only major species shown. Abbreviations Be, Brachyglottis eleagnifolia (leatherwood), Dc, Dacrydium cupressineum (rimu), Df, Dracophyllum filifolium (inaka); Ed, Elaeocarpus dentatus (hinau), GI, Griselinia littoralis (broadleaf),; Lb, Libocedrus bidwillii (mountain cedar); Mr, Metrosideros robusta (northern rata); Nc, Nestegis cunninghamii (black maire); Pc, Podocarpus cunninghamii (Hall's totara); Pf, Prumnopitys ferruginea (miro); Wr, Weinmannia racemosa (kamahi)
adapted from 'Vegetation of New Zealand' 1991. Peter Wardle. The Blackburn Press

Figure 13 altitudinal zonation
amphibious (Gr. amphi- both f. amphoos around or both sides + bios life) Plant capable of growing equally well on land or water, e.g. Pilularia novae-zealandiae.
amphiphytic (Gr. amphi- both f. amphoos around or both sides + phyton plant) Growing in mud either seasonally wet or permanently wet. See amphibious.
amphistomatic (Gr. amphi- both f. amphoos around or both sides + stoma mouth) With stomata on both upper and lower leaf surfaces.

Anabaena azollae. Cyanobacterium symbiotically associated with the water ferns Azolla sp. Known to be a nitrogen fixer.
anadromous (Gr. ana- up, upwards + dromous racecourse,run) When the first branch (basal) of a frond, or segment, is given off (runs) towards the apex of the lamina, pinna or pinnule; or a vein of a primary pinna is produced on side facing towards the frond apex,e.g. Hymenophyllum, Polystichum spp. Opposite of catadromous.

Figure 14 anadromous
analogous variation (Gr. analogia f. ana according too $+\operatorname{logos}$, ratio + variation) Features with similar functions or which appear similar, but which have developed independently in unrelated taxonomic groups in response to a similar way of life. Examples include leafy structures such as microphylls(lycophylls), megaphylls(euphylls), phyllodes, phylloclades, and phyllids (moss \& liverwort leaves). Compare homologous and convergent evolution
anastomose (Gr. anastamoo ana- up, upwards + stoma mouth furnish with a mouth or outlet) Interconnected or joined veins, framing a mouth shape - the enclosed areoles. Hence anastomosing or anastomising. The result is network or reticulate venation. Opposite of free veins.
ancient rafters An informal biogeographical term for members of the New Zealand flora and fauna present since before Zealandia (continent comprising present day New Zealand and New Caledonia) separated from Gondwana (Eastern Australia, Antarctica) circa 80million years ago. New Zealand biogeographer C.A. Fleming used the term archaic endemics (ancient + endemic) in part for this biota plus very early drifters.. The more formal term vicarience is used for this geological separation of ancestral populations. New Zealand animal example Tuatara, plant example kauri Agathis australis. Drifters are the informal term for biota (plants, animals etc) that have arrived by dispersal, after geological separation. The debate then becomes did this or that taxa attain its current distribution (or historical distribution in the case of fossil taxa) largely by vicarience (rafting) or dispersal (drifting).
anemochory (+ -chore f. khoreo, to move) Dispersal of seed, spores and other propagules by wind.
angle of divergence The angle a secondary vein leaves a primary vein or a tertiary vein leaves a secondary vein. May be termed acute, obtuse or perpendicular depending on the angle.
angulate (L. angularis, from angulus angle) Having sharp corners or angles such as a stem which is not round.
anisophyllous (Gr. anisos, f. a- , not + isos equal +-phylous f.-phyllos, f. Gr. phyllon leaf) Bearing leaves of unequal size at any one point along a branch. Synonym heteromorphic. Compare isophyllous.

Selaginella krausiana portion of sporophyte African clubmoss - exotic lycophyte in New Zealand from Cronquist

Figure 15 anisophyllous
anisosporous (Gr. anisos, f. a- , not + isos equal + spora, seed) - Bearing spores of unequal size: megaspores and microspores in one sporangium. Contrast heterosporous- bearing spores of unequal size: megaspores and microspores in seperate sporangia (hence megasporangium \& microsporangium) and homosporous or isosporous bearing one type of spore. Anispory was common in the Devonian but is rare in living species of plant.
anisotomous (Gr. anisos, from an- not +isos equal ;+ tomous cut, divided) Dichotomy resulting in unequal branching. Opposite of isotomous.
anisovalvate (aniso-not equal f. New Latin anis-from Gr. anisos, from a- not +isos equal + valvate f. valae folding doors) When the two valves in a sporangium are unequal in size. Compare isovalvate.
annual (L. annualis, within a year) A plant completing its life cycle within 12 months. Compare perennial. Annual fern Anogramma leptophylla.
annular (L annulus or annulus, a ring) Forming a ring.

annular

spiral

scalariform

reticulate

pitted

Patterns of wall thickening in tracheids and vessel elements (conducting cells of the xylem) (from 'Modern Plant Biology' 1972. Howard J. Dittmer. Publisher: Van Norstran Reinhold Company)

Figure 16 annular
annulate Having an annulus.
annulus (L annulus or annulus, a ring) A crest, partial or complete ring of dead, water-filled, thick-walled cells on the sporangium (spore case or capsule) - part of the catapult mechanism for the release of spores. Has been likened to a bow - the spores then being the arrows. Usually associated with the stomium - thin walled cells where dehiscence (splitting) occurs. A novel feature of leptosporangiate ferns - bar the highly modified water ferns (Salviniales). Synonym ring cells.

Eusporangiate ferns (and all other vascular plants) plus the aforementioned water ferns lack this feature.

 Dennstaedtiaceae
Annulus oblique, narrow
Dehiscence (Opening) horizontally Modified from Smith

Adiantum spp. Pteridaceae
Annulus vertical, incomplete
(interrupted by stalk and stomium-
lip cells)
Dehiscence (opening) horizontally

Leptosporangiate Ferns- Leptosporangium morphology

Figure 17 annulus
anomalous Greek anōmalos (from an-not + homalos , even) abnormal form.
anterior (L. ante-before) On the frond side of an organ away from the axis.
antheriogens (antheridium + Gr. gens, bear, produce) Plant hormones released by a bisexual gametophyte causing nearby immature gametophytes to develop antheridia that produce sperm. Once an egg cell is fertilized, the gametophyte stops production of antheridiogen and neighbouring functionally
unisexual male gametophytes can then become female or bisexual by developing archegonia (structures that produce eggs). This prevents the chance of gametophytic selfing.
antheridiophore (antheridium + phore, to carry, bear) In ferns with filamentous gametophytes e.g. filmy ferns, the branch that bears antheridia only. In contrast to the archegoniophore - the branch that bears archegonia only.
antheridium pl. antheridia. ("Little anther" from Gr. anthros flower+ idium diminutive ending). The male sex organ - a small spherical structure, borne on the underside of a gametophyte (prothallus), producing flagellate sperm.. Compare archegonia the female sex organ. See gametophyte diagram.

Antheridia (male gametangia)

Modified from 'Plant Systematics' 2019. Simpson, Michael G..
Academic Press (Elsevier)
Figure 18 antheridia
antherozoid (Gr. antheros, flowery + zoion, animal +-oid resembling) A male gamete or sperm. Synonym spermatozoid.
antrorse (L antero- front + -orsus f. introrsus contraction of introversus f. intro- + versus turned.) Bent and directed towards the apex. Compare retrorse.
apex, pl. apexes (L. apex, a tip, point or extremity) The tip, free end or distal end of an organ (e.g. stem, blade tip, pinna or ultimate segment) hence apical. The opposite of base: the lowermost or attached end of an organ.
aphlebiae (Gr. a-without + phlebos, veins "without veins") A term applied to the basal pair or pairs of pinnules (pinnae) of some species of tree-ferns which are reduced and finely divided.
apical (L apex, a tip, point, or extremity) Located at the apex. Related distal . Opposite basal.
apical branching (apical + branching) Is a type of branching where a meristem at the tip of the shoot (or root) splits in two and divides to continue growth of the axis in a forked or bifurcate manner. Dichotomous
(dicho- two) branching is a form where the meristem splits in two and if it divides equally produces the dichotomous or forking branching pattern also known as isotomous (iso- equal). This pattern is found in early land plants of the protracheophye, and tracheophye clades and in living plants such as Psilotum nudum and Lycopodium spp. In the lycophytes the roots also exhibit dichotomous or dichopodial branching. Anisotomous (aniso- unequal) branching results when one of the pair of apical meristems is suppressed becoming a lateral branch and the other dominates (overtops), becoming the lead apical axis (monopodium:- a single dominant stem). The pseudomonopodial is an extreme form of anisotomous branching. Selaginella exhibits anisotomous branching, while Equisetium, some lycophytes, the extinct "trimerophytes" (ancestors of ferns and seed plants) and othe extinct Devonian plants followed the pseudomonopodial pattern. In true monopodial - a single apical meristem divides to form the vertical axis; lateral branches develop from seperate lateral meristems acropetally. Sympodial modifies the monopodial system, when the apical meristem aborts or changes direction and the immediate proximal lateral bud continues the original direction of growth (upwards, or sideways as in a rhizome). The growth is thus derived from multiple separate apical meristems. Apical branching is therefore a feature of dichotomous, anisotomous and pseudomonopodial branching, but not monopodial or sympodial growth. See also telome theory.

Stem branching Patterns: Apical branching :Dichotomous (isotomous), Anisotomous, Pseudmonopodial Lateral branching: Monopodial, Sympodial.
Figure 19 apical branching
apical notch (apical + notch) Having an apical cleft.
apical projection or process Typically an extension of the mid vein (costa) of a leaf. See apiculate, aristate, cirrhose, mucronate, mucronulate and spinose or pungent.
apiculate (L apex, a tip, point, or extremity) Ending abruptly in a small sharp tip (apiculus).
apiculus: adj. apiculate. (L. diminutive of apex, a tip, point, or extremity) A small abrupt flexible point at the apex of a pinna, pinnule or ultimate segment.
apogamous (Gr. apo- away from + -gamos marriage) Producing sporophytes directly from the gametophyte (prothallus) by asexual budding rather than by sexual fertilization of egg by sperm . Juvenile sporophytes that develop by apogamy tend to develop a leaf first, wheras sporelings that develop from fertilization the root appears first.
apogamy The state of being apogamous - vegetatively producing sporophytes from the tissue of gametophytes without fertilization. Opposite of syngamy -fusion of sex cells (gametes).
apolar (a-, without + polar f. L. polus, f. Gr. polos, pivot, axis), Without poles
apomict (Gr. apo-away from + mixis mixing) The development of a sporophyte from a viable spore that results from vegetative cells rather than a gametes or an unfertilized egg.. Fertilization (mixing) does not take place.
apopmorphy (Gr. apo- away from + + -morphos, f. morphe, shape.) A derived condition or character state, representing an evolutionary novelty -descent with modification. Synapomorphy is an apomorphy shared (syn- together + apomorphy) by two or more taxa in whose common ancestor the derived condition arose. Compare plesiomorphy and symplesiomorphy. See also primitive.
apospory (Gr. apo-away from + spora seed) The formation of the gametophyte (prothallus) directly from the sporophyte without the production and germination of spores produced by meiosis (meiospores). As a result the gametophyte has the same chromosome number diploid (2 n) as the sporophyte. A form of vegetative or asexual reproduction. Compare apogamy -producing sporophytes from a gametophyte without fertilization.
appressed (ad- + premere to press) Pressed closely and flatly to a surface. See orientation.

Figure 20 appressed
approximate (L. approximatus, past participle of approximare to come near, f. ad-+ proximare to come near) Close together but not touching, united or overlapping. Compare confluent, connivent, contiguous, distant and remote. Applied to leaf or leaflet spacing etc.
aquatic (L. aquatilis growing in water f. aqua water) A plant growing wholly or partially submerged or floating in water. See hydrophyte and hygrophyte. Examples: Isoetes alpina, I. kirkii, Azolla filiculoides.Compare terrestrial, amphibious and epiphyte.
aquatic systems Lakes, large ponds, tarns, rivers and streams, in which the substrate is immersed most or all of the time.
arachnoid (Gr. arachne spiderweb,spider + -oid, resembling) Entangled and hairy like a cobweb. See hairiness terms.
arapod forest (f. conifer families Arauacariaceae and Podocarpaceae) or Kauri-Podocarp forest - forest including kauri Agathis australis family Araucariaceae and Podocarp trees such as rimu, totatara, miro, matai, kahikatea, manao and the celery pines (sometimes included in Podocarpaceae or kept separate in Phyllocladaceae) intermixed. The two conifer families form a clade- are closely related, Podocarpaceae appearing in the Triassic period, kauri in the Jurassic period and they have coexisted since then.
arborescent (L. arbor, tree) Becoming tree-like. Applied to tree ferns.
arbuscular mycorrhiza (arbuscule+ mycorrhiza) Group of symbiotic fungi that grow inside the cortex cells and intercellular spaces of roots. Often form arbuscules which see. About 80% of species also form vescicles within the colonized root. The hypha (fungal filaments) are largly aseptate -lack cross walls (septa) -only forming cross walls at branch points. Classes as a Endomycorrhiza (inside +mycorrhiza).
arbuscule (L. arbuscula, little tree). Branched tree-like structure that promotes nutrient exchange between endommycorrhizal fungi and their host plant. See arbuscular mycorrhiza.
arched curved or bowed. Synonym arcuate. See also campto- and campylodromous venation.
archegonial cushion (Archegonium +cushion) Area of gametophyte (prothallus) tissue that is more than one cell thick and accomidates the archegonia (female sex organs).
archegoniophore (archegonium + -phore, to carry, bear) In ferns with branched filamentous gameotophytes, e.g. filmy ferns, a branch that bears archegonia only in contrast to the antheridiophore the branches that bear antheridia only.
archegonium: pl. archegonia. (Gr. archegonos,originator f. archein , to begin + gonos procreation) The usually flask shaped, female sex organ borne on the underside of the gametophyte (prothallus). Produces a female gamete (egg) at the bottom, reached by the flagellated sperm by swimming down the neck. Chemical attractants are involved in this, derived from the breakdown of neck canal cells. The egg cell is surrounded immediately by sterile cells called the venter (belly) and the neck cells forming the neck above. Immediately above the egg is the ventral canal cell followed by several neck canal cells which latter disintegrate. The archegonium may be stalked or embedded in the parent gametophyte.The egg when fertilised is the zygote, which develops as the sporophyte. The sporophyte therefore always develops beside the gametophyte and is partly parasitic on the gametophyte for a short time, until it develops chlorophyll and its own root system. Compare antheridium the male sex organ. Both archegonia and antheridia are minute structures.

Archegonia (female gametangia)

Modified from 'Plant Systematics' 2019. Simpson, Michael G..
Academic Press (Elsevier)
Figure 21 archegonia
archesporial cell (Gr. archein to begin + spore cell) The mother cell that divides by meiosis to produce all the spores in a sporangium.
archesporium (Gr. archein to begin + sporangium) The region of the sporangium capsule that contains the sporogenous cells -spore mother cells giving rise to spores (after undergoing meiosis) and in some cases tapetal cells.
arcuate (L. arcus a bow) Curved or arched like a bow.
areole (L. areole small open space diminutive of area little beds in a garden) The spaces enclosed by veins with reticulate, anastomosing or network venation pl. areoles. In some cases a secondary areole is formed within a primary areole. Synonym lacuna. See venation.
aristate (L. aristatus f. arista a beard of grain) Having a stiff bristle or awn like tip. Long slender extensions of leaf tips.
armed Bearing spines or prickles or other projections such as teeth or cilia that are usually sharp.
arthrophytan (f. Arthrophyta, f. Gr. arthon, joint + phyta plant) The horsetails and their extinct relatives Equisetales) synonym equisetoid (L. horsetail genus Equistum + oid, like). Pertaining to a horsetail like feature e.g. sporangiophore.
articulate (Latin articulates jointed, distinct f. articulus a knot or joint) Jointed, having a swollen or knotty area in leaves, leaflets or stems. E.g. horsetails Equisetum spp.
ascendina (L. ad- + scandere to climb) Slopina or curvina upwards similar to assurgent. See orientation.

Figure 22 ascending
asexual reproduction Reproduction by vegetative means without the fusion of sex cells, e.g. bulbils of Asplenium bulbiferum... also called vegetative reproduction - only mitotic cell division involved. In the ferns and lycophytes spore production may be considered asexual as well. Opposite sexual reproduction. See apogamy, apospory.
asperous (L. asper rough) Rough to touch. Doodia aspera Prickly rasp fern.
asplenoid (f. genus Asplenium + -oid, resembling) Having a similar arrangement of sori to Asplenium, with the elongate sporangia confined to a single side of each vein. Also implying related to Asplenium.
assurgent (L. ad- + surgere to rise) Curving or growing upwards (similar to ascending). See orientation.
athyroid (f. fern Athyrium spp. + -oid resembling) Having a similar arrangement of sori to the fern Athyrium spp. The elongate sorus hooking over the vein tip or wrapping around the vein in a j or horseshoe shape. Also implying related to Athyrium.
attenuate (L. attenuatus, diminished) Tapering narrowly and concavely to a long point at either extremity (apex or base) applied to leaves, leaflets (pinnae) etc.
auricle:. adj. auriculate. (L. auricular, diminutive of auris ear) An ear shaped lobe or projection at the base of blade, pinna, pinnule or pinnulet, e.g. Phyllitis scolopendrium, Ptisana salicina.

Ptisana (Marattia) salicina rhizome
From 'Australian Ferns And Fern Allies' 1976.
Jones, D. L. and Clemesha, S. C..
A. H. \& A. W. Reed

Figure 23 auricle Ptisana
austral- or australo- (L australis southern) Of southern distribution or range. Particularly of the Southern Hemisphere. Compare boreal -northern. Doodia australis.
austral element (Antarctic, Subantartic, Fuegian, Antarcto-Tertiary in part)- Biogeographers term for fauna and flora related to taxa from other southern lands-divided into a Palaeoaustral element - distinct and distantly related to taxa from other southern (Gondwana) lands, and either vicariants (ancient rafters) or early dispersers (drifters) and a Neoaustral element -closely related to overseas taxa and geologically recent dispersalists.

Australian element - Biogeographers term for fauna and flora of relatively recent arrival from Australia. Not or barely distinct from their Australian relatives. Late West Wind drifters and recent drifters, vagrants. Species shared with Australia may fall into this category.
autochory (+ -chore f. khoreo, to move) Dispersal by parent plant. Usually referring to plants that sow their own seeds; plants such as peanut or groundnut Arachis hypogaea, and Cymbalaria muralis. Vegetative propagation could be seen as a asexual version of autochory. Asplenium bulbiferum (bulbils), Lycopodium australianum (bulbils), Dicksonia squarrosa (stolons). Gynochory (Gr. gune, women +-chore f. khoreo, to move) is dispersal by a motile female.
autotrophic. Gr. autos, self, + trophe, food) Able to generate its own nourishment as in green plants by photosynthesis - hence photoautotrophic. Opposite of heterotrophic (Gr. hetero- other + trophe, food). All fern and lycophyte sporophytes are photoautotrophic and most gametophytes as well. But some have subterranean mycoheterotrophic gametophyes.
awn / arista A stiff bristle like projection.
awned: bearing awns, synonym aristate.
auxin (Gr auxein to increase) A growth regulating substance controlling many growth processes in plants. A type of plant hormone.
axil (Gr. axilla armpit) The upper angle formed by a leaf or leaflet with the stem (rhizome) or rachise (midrib). Of coarse armpits face downwards so you have to imagine someone doing a handstand. In
lycophytes the sporangia are borne singly in the axils of specialized leaves called sporophylls which may be grouped together in stobili (cones, spikes or clubs), in true ferns the sporangia are borne on the lower surface of the leaf or at the margins.

Flowering Plant (Angiosperm) stem
FIGURE 24 AXIL
axillary Borne within the axil. The sporangia of lycophytes are borne in the axils of leaves, bracts or sporophylls and are hence axillary, the sporophylls often aggregated into cones (stobili).

Position of Sporangia in Various species of Lycopodium
Figure 25 axillary
axillary leaves Leaves borne in the axils of branches, as in heterosporous species of Selaginella.
axis (L. axis axis or pivot) The central longitudinal support in plant anatomy such as a stem, stipe, midrib, rachis, costa.
baculate (Latin baculum stick, rod, staff, sceptre, cudgel) Of a spore, having pillar-like processes, rods or bacula, always longer than broad and higher than $1 \mu \mathrm{~m}$.
baculum/bacula (Latin baculum stick, rod, staff, sceptre, cudgel) Pillar or rod-like processes higher than broad; rod or rodlet. Synonym columnella. Spore/pollen ornamentation -rod diameter approximately the same throughout.
barachory (Gr. baros, weight + -chore f. khoreo, to move) Dispersal of seed and other propagules by own weight. Synonym clitochory (Gr. clito- close + -chore f. khoreo, to move).

Baragwananathia (The name derives from William Baragwanath who discovered the first specimens of the type species, Baragwanathia longifolia, at Thomson River (Victoria, Australia).) The oldest identifiable fossil lycopod (Lycopodiophyta) . The plant bore spirally arranged microphylls with sporangia in the leaves (sporophylls) placed towards the end of the stem. The species Baragwanathis brevifolia has been dated to the lower Pridoli epoch (late Silurian Period) about 422 million years ago.

barren frond See sterile frond, trophophyll or vegetative frond.

basal (base f. Gr basis foundation) At the base, point of attachment, similar to proximal. Opposite apical.
basal /radical (L. radix, root) Leaf architecture: With leaves positioned at the base of a stem as in a rosette type plant. Tufted or caespitose ferns. The term acaulis can be applied as the stem is condensed, so as to appear lacking. Compare cauline with leaves positioned along the length of the stem as in a creeping or climbing fern and acrocaulis with leaves positioned at the apex of the stem as in tree ferns.
Leaf venation -where primary veins originate from the leaf base (just above the petiole if petiolate, or from stem attachment area if sessile). Suprabasal means the veins branch from a point above this.
base frond A frond designed to capture litter. Synonyms mantle frond, shield frond, e.g. Platycerium sp .
basiscopic (Gr basis foundation + skopein to look at) Located towards the base of a structure-. "base looking". Compare acroscopic.
basifixed (base f. Gr basis foundation + fixed) Attached at base.
basipetalous (Gr. basis foundation + -petal f. L. pet(ere) to seek "Base seeking") Maturing in succession from the apex to the base, hence with the oldest tissue or organs at the apex. Compare acropetal.
basophil /basophile (Chemistry base + any of a class of generally water-soluble compounds, having bitter taste, that turn red litmus blue, and react with acids to form salts. + phile, loving) -Preferring a basic (alkaline) habitat. Similar to calciphil. Opposite acidophilic, oxylophil, calcifuge,calciphobe.
bast bundles (peripheral strands). (old English bast bark from which ropes were made) Bundles of thick walled cells that occur parallel to the midrib in Isoetes.
bathyphyll (Gr. bathos depth +-phyllos, f. phyllon leaf) The mature basal fronds, of some climbing ferns that are usually smaller than those on the higher parts of the fern, e.g. Blechnum filiforme and Rumohra adiantiformis. Compare acrophyll.
beech/tawhai forest Forest type in New Zealand dominated by members of the southern beech family, Nothofagaceae: five species Fuscospora fusca (red beech), F. truncata (hard beech), F. solanderi (black beech), F. cliffortioides (mountain beech), and Lophozonia menziesii (silver beech) the last two often reach and form the treeline. Formerly they were all included in the genus Nothofagus. A type of broadleaf/hardwood forest (trees that are flowering plants or angiosperms).
bicolorous (L. bis twice +colourous coloured) Having two distinct colours. Similar term bifacial. Compare concolourous. The silver tree fern Cyathea dealbata has distinctly coloured lower and upper leaf surfaces.
biconic (L. bis twice + conic f. Gr. konos, cone) Having two, cone-shaped organs on a common axis with their apices as if two cones were placed base to base, e.g. the synangia of Tmesipteris tannensis. Compare testiculate.
bi-convex (L. bis twice + convex f. L. comvexsus, com- + vehere, to carry) Bulging outwards on both sides. As in lenticular.
bicrenate (L. bis twice + crenate f. crena notch) Crenate (scalloped) with the lobes themselves crenate.
bifacial (L. bis, twice+ facia, face) When the opposite surfaces are different in colour as for some leaves, e.g. Cyathea dealbata. See bicolorous.
bifarious (L. bis, twice + farius, f. fariam ranked in a row or line) In two rows, equivalent to biseriate. Compare unifarious/uniseriate and multifarious/multiseriate.
bifid (L. bis twice +-fid f. findere to split, cleave) or 2-fid, deeply notched for more than half its length. Schizaea bifida.

Figure 26 bifid
biflagellate (L. bis twice + flagellum a whip) Possessing two flagella, such as some sperm cells (antherozoids or spermatozoids). Compare multiflagellate.

Figure 27 biflagellate and multiflagellate
bifoliar (L. bis twice + foliola leaflet) With two leaflets arising from the same point.
bifurcate (L. bis twice + furcate forked f. furca a two pronged fork) Forked ,divided into two parts (dichotomous). If evenly divided isotomous, if unevenly divided anisotomous. Platycerium bifurcatum

bifurcate or dichotomous branching

Figure 28 bifurcate
bilateral (L. bis twice + lateralis, belonging to the side f. latus side) Having two sides symmetrical about a central axis. Also another term for monolete spores.
bilobed (L. bis twice +Gr lobos lobe of ear or of liver, the pod of a leguminous plant) Bearing two lobes.

Bilobed "Two-Lobed"

Figure 29 bilobed
bilocular (L. bis twice + locus place, -loculus a small place) 2-locular, containing two cavities (locules). Such as the synangium of Tmesipteris.
binomial (L. bis twice + -nominus named binominus having two names) The two names that form the scientific or botanical name of a plant comprising first the generic name followed by the species name (specific epithet), e.g. Adiantum cunninghamii . A third name (trinomial) is added if a subspecies or variety is involved, e.g. Dicranopteris linearis var. linearis. The names are put in italics in print or underlined if handwritten with the genus name only having a capital letter. See nomenclature.
biogeography (Gr. bios, life + geography) The study of the geographical distribution of organisms. The branch dealing with plants phytogeography.
biota (Gr. bios, life) General term for all the living organisms (flora and fauna) of a given area.
bipartite (L. bis twice +partitus: f. partio, I share, part) Divided in two parts at the apex.

Bipartite
(Parted in two)

Figure 30 bipartite
bipinnate (L. bis twice + pinna feather) Twice pinnately divided or 2-pinnate, e.g. Blechnum fraseri. With primary and secondary leaflets. The primary leaflet is called a pinna; the secondary leaflet is called a pinnule or secondary pinna.

[^0]bipinnatifid (L. bis twice +pinna feather+ - fid f. findere to split, cleave) Pinnate with the pinnae (1° leaflets) deeply notched (-fid) or partially divided (cleft). Sinus depth $1 / 4$ to $1 / 2$ distance to midrib. Nearly bipinnate. Synonym bipinnately cleft or pinnate-pinnatifid. Sometimes bipinnatifid is used more broadly to cover the next two terms. See pinnatifid.
bipinnatilobate (L. bis twice + pinna feather+ -fid f. findere to split, cleave) Pinnate with the pinnae (1° leaflets) shallowly notched (-fid) or partially divided. Sinus depth $1 / 8$ to $1 / 4$ distance to midrib. Synonym bipinnately cleft or pinnate-pinnatifid
bipinnatipartite (L. bis twice + pinnatipartite) Pinnate with the pinnae(1° leaflets) deeply but partially divided. Sinus depth $1 / 2$ to $3 / 4$ distance to midrib.Synonym bipinnately parted or . pinnate-pinnatipartite Sometimes covered by the term bipinnatifid broad sense. See pinnatipartite.
bipinnatisect (L. bis twice + pinnatisect) Pinnate with the pinnae (1° leaflets) very deeply but partially divided. Sinus depth $3 / 4$ to circa 1 distance to midrib. Synonym bipinnately divided or pinnate-pinnatisect. Sometimes covered by the term bipinnatifid broad sense. See pinnatisect.

Figure 32 degrees of leaf or frond division in ferns
bipolar (L. bis twice + polos, axis, pivot) Plants with a true root system, as opposed to adventitious rhizoids or roots., Growing from both ends of the axis - stem and root. They possess separate stem and root apical meristems. Compare monopolar - growing from a single point. Note some angiosperms begin life as bipolar seedlings but become secondarily monopolar as the true root arrests development and adventious roots (from the stem) take over.
biramous (L. bis twice + ramus, branch) Branching in two. Cladose (branching) hairs that form two branches, which maybe equal or unequal. See dichotomous.

Biramous hairs
Figure 33 biramous
bisculptate (L. bis twice + sculptate carved) Of spores, with two different elements in the ornamentation, which cover the entire surface, as in the spores of some species of Pyrrosia.
biseriate (L. bis twice + series , to connect) Arranged in two rows or whorls. Said of a hair (trichome) which is multicellular with the cells arranged in two rows.

Figure 34 biseriate
biserrate (L. bis twice + serra saw) With the teeth of serrate margins themselves serrate.
bisexual (L. bis twice + sexualis f. sexus f secare to divide (i.e. male and female) Both male and female sexes present in individual plant body. In ferns and lycophytes, a prothallus (gametophyte) that bears both archegonium (the female sex organ) and antheridia (the male sex organ) and therefore produces both male and female gametes. Such a prothallus or gametophyte is therefore also monoecious ("one-housed").
bivalvate (L. bis twice - bivalvis two valved) Having two valves, as in the two-flapped indusium of Hymenophyllum spp. .
blade The flat expanded leafy part of a frond above the stipe (petiole), or a lycophyll leaf (which is sessile) also known as lamina. The blade may be simple or divided (compound).
bloom A waxy, powdery surface secretion.
bog Habitat with waterlogged vegetation, open, often Sphagnum moss dominated, acidic and nutrient-poor (ombro-trophic or oligotrophic), water largely derived from rainfall and relatively stationary. A subcategory of mire (any wetland, whether swamp or bog with substantial peat. In bogs, only a few well-adapted plants can grow. These include bog pine (Halocarpus bidwillii), umbrella fern (Gleichenia dicarpa), sundew (Drosera sp.), and sphagnum moss (Sphagnum sp.). Decomposition in bogs is slow and incomplete which leads to the formation of peat. Compare fen and swamp.
boreal (L. borealis northern) Northern, of northern distribution or native to Northern Hemisphere. Particularly of the northern coniferous forest (taiga). Opposite of austral.
botanical region A floristic geographic region such as the New Zealand botanical region with the native flora indigenous or endemic found there.
brachyblast (Gr. brachy short + blast bud, sprout) A short lateral branch.
branch A division or subdivision of an axis (e.g. stem).
branching patern (rachis):

PINNATE BRANCHING PATTERNS

branches opposite

branches subopposite

branches alternate
leaflets not shown
DICHOTOMOUS BRANCHING PATTERN

Figure 35 branching pattern
bristle: A stiff hair (seta) which is more than one cell thick at the base. See seta, setaceous.
broad-leaf forest Forest dominated by flowering plant trees or angiosperms other than beech trees, also known as hardwood forest. Trees include southern \& northern rata, tawa, taraire, kamahi, towai, puriri, rewarewa, hinau, kohekohe, kanuka. Compare beech forest, arapod forest, kauri forest, kauri/podocarp/broad-leaf forest, podocarp forest, mixed beech/podocarp/broad-leaf forest.
brochidiodromous (Gr. brochido, noose, loop + dromos, running, racecourse) A type of pinnate, camptodromous venation in which secondary veins do not terminate at the margin, but instead form a loop near the margin, joining other more distal, secondary veins. (leaf venation).

4 mm

Zealandia pustulata subsp. pustulata syn. Microsorum diversifolium

Betty Dallas Duncan artist

Dendroconche scandens

syn. Microsorum scandens

Clade Eupolypod I ferns with weak brochiodromous venation
Note continuous wavy vein near and parallel to margin

Areoles present with free

 included veinlets

Brochiodromous 2° veins form a series of loops and don't reach the margin

Diagrams from 'Ferns and Allied Plants of Victoria, Tasmania and South Australia' 1986
Betty Dallas Duncan \& Golda Isaac. Melbourne University Press.
Figure 36 brochiodromous venation
bryophytes (Gr. bryon moss + phyton a plant) The mosses (musci), liverworts and hornworts nonvascular land plants that reproduce by spores and have a conspicuous and persistent independent gametophyte and a dependent sporophyte that is unbranched and with a single apical case. Comprising three separate phyla or evolutionary lines known as Bryophyta (Mosses, or Musci), Marchantiophyta (liverworts or Hepaticae) and Anthocerotophyta (Hornworts). Note "bryophytes" is a collective informal name for the mosses, liverworts and hornworts, while the formal name Bryophyta applies only to the mosses. All three lineages lack vascular tissue containing lignin and branched sporophytes bearing multiple sporangia (polysporangiate condition). The prominence of the gametophyte in the life cycle is also a shared feature of the three bryophyte lineages (extant vascular plants are all sporophyte dominant). The mosses and a majority of the liverworts are leafy (phyllid bearing), while many liverworts and all hornworts are thalloid. Frequent growing companions of ferns. The earliest embryophytes - plants where the egg is fertilized and remains in the archegonia, grows into a multicellular embryo and then into the plant-like sporophyte which when mature sheds spores. The three bryophyte lines plus the vascular plants (Tracheophytes) comprise the clade embryophyta, = land plants. The vascular plants evolved from an
unknown "bryophyte" ancestor possibly close to the hornwort clade.

Figure 37 Monophyletic Bryophyte phyllogeny

Figure 38 Polyphyletic bryophyte phylogeny
bud An undeveloped shoot; in ferns often used as an alternative to bulbil or bulblet, that is capable of growing into a new fern plant. Forms from secondary meristematic tissue that develops into a new plant. See asexual reproduction.

Characteristic leaf growth of forked ferns (Gleicheniaceae). A fiddlehead arises from a creeping rhizome (A); a resting bud forms at the apex while two pinnae develop beneath it (B); the pinnae unfurl (C); the bud resumes growth (D); the bud rests and another pair of pinnae develop beneath it (E); the pinnae unfurl (F); the process repeats itself (G). By this intermittant growth, the leaves of some forked ferns can reach 65 feet $(\mathbf{2 0 ~ m})$ in leangth, supporting their weight by reclining on surrounding vegetation.
'A Natural History of Ferns' 2004. Robbin C. Moran. Timber Press

Figure 39 bud
bulbiferous (L. bulbus a modified bud, usually underground +-fer bearing f. ferre to carry) Bearing bulbils (bulblets or buds), e.g. Asplenium bulbiferum, Polystichum proliferum. A form of asexual/vegetative reproduction.
bulbil or bulblet A small bulb or bud borne on the lamina; a mode of vegetative (asexual) reproduction. Synonym: pikopiko. Example Asplenium bulbiferum.

Bulbils or plantlets growing on a frond of Asplenium bulbiferum.
'FERNS' A COMPREHENSIVE GUIDE TO GROWING FERNS FOR THE HOME GARDENER'1994. Gilean Dunk. Angus \& Robertson (publisher)
Figure 40 bulbil
bullate: (L. bulla bubble) Having a blistered or puckered surface. Lophomyrtus bullata a native shrub with blistered leaves.
buoancy hair/floatation hair A modified hair (trichome) - looped and united at the apices forming a cage like or egg-whisk like structure that aids flotation in some of the water ferns. Salvinia sp. Essentially stellate but with the arms curving upwards and fusing at the tip. (I confess I made up this term, but it seemed appropriate).

Buoyancy or flotation hair of the aquatic fern

Salvinia molesta

Looped egg-whisk or egg-beater-like
Figure 41 buoancy hair
caducous (L. caducus, tending to fall) Shed easily.
caespitose (L. caespes, turf) Growing in a tuft or tussock. In general ferns of this habit are simply called tufted.

Cainnozoic/ Cenozoic era (Gr. kainos,new + zōion animal + -ic.) The geological time era beginning at end of the Cretaceous period 65 million years ago upto 10,000 years ago including the Tertiary (now Paleogene and Neogene periods) and Quaternary periods.
calcareous (L. calx, lime or chalk)) An area rich in lime (Calcium carbonate), as in soil derived from limestone.
calcicole (L. calx, lime or chalk + -cole, inhabitant) A plant preferring to grow in lime-rich (calcareous) soil. Synonym calciphil/calciphile. Antonym calcifuge/cacliphobe.
calcifuge ((L. calx , lime or chalk + fugere to flee) A lime-hating plant, e.g. Cryptogramma crispa. Synonym calciphobe, oxylophil, acidophilic.. Antonym calciphil.
calciphil or calciphile (L. calx , lime or chalk + Gr. philos loving) A lime-loving plant, e.g. Adiantum capillus-veneris. Synonym basophil -preferring a basic habitat. Opposite calcifuge, calciphobe, oxylophil, acidophilic..
calciphobe (L. calx, lime or chalk +) A plant that wont grow in calcium rich habitats Synonym calcifuge oxylophil, acidophilic.. Opposite calciphile.
cambium (L. cambiare, to exchange) A meristem that gives rise to parallel rows of cells, commonly applied to the 'twin cams' - the vascular cambium -which produces wood and the cork cambium or phellogen which produces bark. Responsible for secondary growth in many seed plants, but rare in extant ferns and lycophytes. In the stems of the fern Botrychium cambium adds secondary vascular tissue to the primary and it also has periderm. While the aquatic lycophyte Isoetes has a cambium-like layer in the corm that increases its girth.
camptodromous (Gr. kampe, to bend, L. campto-, bent, curved f. kamptos, flexible + dromos, running, racecourse) "bent running veins". Pinnate leaf venation in which secondary veins do not reach the margin. Includes brochidiodromous, eucamptodromous, cladodromous, reticulodromous.

Cladodromous
Secondary veins branch toward margin
"branch running" "net running"

Pinnate Camptodromous Venation (Secondary veins do not reach margin)

(penninerved = pinnate pattern) "bent running vein" same etymology as campylodromous

Figure 42 camptodromous venation
campylodromous (Gr. kampylos, bent + dromos, running, racecourse) "bent running veins" .Leaf venation where several primary veins run in prominent, recurved arches from the base towards the leaf apex. In acrodromous the arches are not recurved at the base. Note the etymology is allied to camptodromous.

campylodromous
'bent running vein'

Figure 43 campylodromous venation
canescent (L. canescens, f. canus ,white, hoary) With a dense covering of short, grey or white hairs, e.g. Hymenophyllum malingii.
canopy (Gr. kanopeion, a cover over a bed to keep off gnats or mosquitos) (1.) Uppermost layer of foliage in a forest. Forest emergents are the tallest trees and rise above the average canopy height (forest stratification). (2.) The leafy portion of a tree fern.
capillary (L capillus hair) Hair-like. More delicate than filamentous.
capitate (L. capitatus, headed, f. capit-, caput head) Said of hairs, having a rounded apical cell (head).

Two forms of gland headed hairs
Figure 44 capitate
Carboniferous Period (L. carbō ,coal + ferō ,bear, carry- refers to the many coal beds formed globally during that time). The chronostratigraphic (geological) time period from the end of the Devonian Period 358.9 million years ago (Mya), to the beginning of the Permian Period, 298.9 million years ago.

Figure 45 Carboniferous Period

Psaronius a Carboniferous Marratoid fern circa 360 (Ma) grew in Lepidodendron swamp forest

Adapted from 'The Evolution of Plants' 2014 (2nd ed.). K. J. Willis and J. C. McElwain. Oxford University Press

Figure 46 Carboniferous fern (Psaronius)
carinal canal (L. carinalf. carina, hull or keel, half of a nutshell) A canal beneath a stem ridge (the keel) associated with a vascular bundle. Compare vallecular canal. See carinate.

Equisetum sp. C.S. stem -note three longitudinal cavities (canals)

Modified form 'Morphology of Plants and Fungi' 4th ed. 1980
Harold C. Bold, Constantine Alexopoulous, Theodore Delevoras
Harper International Edition

Figure 47 carinal canal

Cross section of Equisetum stem. A. diagram showing arrangment of stem tissues x 70. B. elarged view showing details of cellular structure x 400 . Note three types of longitudinal cavities: central canal, vallecular canal and carinal canal.

Adapted from: Weir, T. Elliot, Stocking, C. Ralph, Barbour, Michael G., Rost, Thomas L. 1982.
Botany An Introduction To Plant Biology. John Wiley\& Sons
Figure 48 carinal canal, vallecular canal \& central canal Equisetum
carinate (L. carinatus f. carina, hull or keel, half of a nutshell) Bearing a keel on the lower surface or keeled. Sharply folded in the middle producing the shape of a boat keel. Bearing a ridge.

carinate

Figure 49 carinate
cartilaginous (L. cartilago, gristle) Hard and tough but flexible ,like cartilage or gristle.
castaneous (L. castanea, chestnut) Deep reddish brown or chestnut coloured.
catadromous (Gr. kata, down + dromos run, running, raceway - running down) Tending downward, applied to a type of venation in which the first set of veins in each segment of the frond develops from the basiscopic (basal/lower) side of the midrib, and in leaf architecture to first lobe or segment of a pinna arising acroscopically in compound leaves, e.g. Cyathea dealbata, Lastreopsis spp. Opposite anadromous. See illustration below.

Anadromous Pattern

Figure 50 catadromous

Anadromous branching patterm first leaflet born on apical facing side of pinnae.

Catadromous branching pattern first leaflet born on base facing side of frond or pinnae.

Note pattern repeated for different divisions of the frond
Figure 51 catadromous venation \& branching
catadromic branching (Gr. kata: down, against; dromos: raceway,run) Where the first branch of a segment is given off towards the base of the lamina, pinna or pinnule. Opposite of anadromic branching.
catenate (L. catena, chain) United or linked as in a chain.Such as catenate hairs.

Figure 52 catenate or chain-like hair
cathetogyrates (Gr. kathetếr, surgical instrument for emptying the bladder, f. kathiēmi, to descend, let down + gyros a circular motion,) A informal synonym for the Polypodiales which are unique in bearing sporangia with a vertical annulus interrupted by the stalk and stomium. These sporangial characters were used by Johann Jakob Bernhardi (1806) to define a group of ferns he called the "Cathetogyratae"; the Pteridophyte Phylogeny Group has suggested reviving this name as the informal term cathetogyrates, to replace the ambiguously circumscribed term "polypods" when referring to the Polypodiales. The sporangia (cathetogyrate) are born on stalks 1-3 cells thick and are often long-stalked.
cauda (L. cauda, tail) A narrow tail-like appendage. adj. caudate. With a tail-like appendage.
caudex pl. caudices (L. caudex, trunk or stem of tree) The erect trunk-like rhizome, of tree ferns. Or the small erect fern rhizome e.g. Diploblechnum fraseri sometimes called a miniature tree fern.

Dicksonia squarrosa wheki, or Harsh-Leaved Tree Fern

"A Book of Ferns' 1959. Greta Stephenson (Cone), Pauls Book Arcade; Hamilton, New Zealand

Figure 53 caudex (trunk)
caulescent: (Gr. kaulos, a plant stem) Developing an aerial stem or trunk. Compare acaulescent. cauline (Gr. kaulos, a plant stem) With leaves positioned along the length of the stem. The leaves separated by elongated internodes. Compare basal/radical with leaves positioned at the base of a stem
as in a rosette type plant, where the stem may not be evident and hence the term acauline applied or acrocaulis with leaves positioned at the apex of the stem as in tree ferns.
central canal. The large centrally located air space in the stem of Equisetium .
cell types Plants cells can be broadly categorized into three types with a bit of license: namely :
parenchyma (including meristematic cells), collenchyma (partly lignified) and sclerenchyma (strongly or completely lignified cells including fibres, sclereids \& vascular or conducting cells:- tracheids(xylem), vessel elements (xylem), and sieve cells or elements (phloem). Photosynthetic cells with chloroplasts are called chlorenchyma. The three cells types are distributed amongst the three tissue systems: dermal, ground (fundamental) and vascular (conductive). Meristematic cells are the young actively dividing cells whose daughter cells mature as one of the three cell types depending on cell fate.

Cenozoic/ Cainnozoic Era (Greek kainós 'new' + zoî́, life). The geological time era beginning at end of the Cretaceous period 66 million years ago upto 10,000 years ago including the Tertiary (now Paleogene and Neogene periods) and Quaternary periods. New Zealand (and Zealandia) had seperated fully from Gondwana by the start of this period. The modern flora of New Zealand evolved. Important events include the "Oligocene drowning", the Kaikoura orogeny (rise of the Southern Alps), Southern Ocean develops, spots of volcanism and the Quaternary ice ages.

Geological Timescale

ceraceous (L. cera, wax) Waxy.
ceriferous (L. cera , wax + ferre , to carry) Wax-producing.
cernuous (L. cernus, inclined forwards) Nodding or drooping. Lycopodium cernuum.
chaff (old English ceof, husks of corn, as threshed or winnowed:cut hay and straw) A term sometimes used for masses of thin, dry scales hence chaffy. Equivalent to scurfy..
chainlike Multicellular, or uniseriate hairs with adjaceant cells, often with thick end walls, flattened at right angles to each other forming chainlike hairs (catenate hairs).
chamaephyte (Gr. chamae, ground + phyte, plant) A perennial plant less than 25 cm tall, having buds at or just above ground level from Danish botanist Raunkiers classification system. A low growing ground fern, e.g. Hymenophyllum bivalve. See hemicryptophyte, cryptophyte, phanerophyte.
channelled Deeply grooved longitudinally. See sulcate.

Figure 54 channeled
chartaceous (L. charta, a sheet of paper made from papyrus) Thin and papery and often with a brownish green colouration, said of scales etc.
chasmocolous (L. chasma f. Gr. khasma , abyss, cleft + colous living or growing in or on, f. -cola, inhabitant) Growing in cracks or crevices, e.g. Grammitis gunnii. Similar to rupestral etc.
chasmophyte (L. chasma f. Gr. khasma, abyss, cleft + Gr. phyton, plant) A plant rooting in rock crevices of cliff-faces, gorges etc. A chasmocolous plant. Similar to cremnophilous and cremnophyte.
chelanthoid (like Cheilanthes (fern genus)) Mostly drought resistant (xeromorphic) ferns belonging to the subfamily Cheilanthoideae within the family Pteridaceae. Cheilanthes distans, C. sieberi.
chlorophyll (Gr. chloros , green + phyllon, leaf) Pigment(s) constituting the green colouring matter of plants and absorbing radiant energy in photosynthesis. adj. chlorophyllous.
chlorophyllous (Gr. chloros , green + phyllon, leaf) Containing chlorophyll, the green pigment for photosynthesis in plants. Opposite achlorophyllous - lacking chlorophyll.
chromosome ((Gr. chroma, colour + soma, body) Structure that carries the genes in a linear order ; in eukaryotes (plants, animals,fungi, protists), chromosomes are found in the nucleus and become visible only during cell division. Chromosome number (n) characteristic for species and may be haploid (n) as in gametophytes or diploid $(2 n)$ as in the sporophytes and triploid (3n) or polyploid ($x ? n$) in hybrids.
ciliate (L. f. cil , eyelash) Fringed with fine hairs (cilia) often on the margins of scales.Notogrammitis ciliata syn. Grammitis ciliata.
cilium, pl. cilia (L. f. cil , eyelash) Minute, hair-like process. Ciliate - bearing cilia.
circinate (L. circo, circino to turn round)) Coiled from the apex downwards, as in young fern fronds. The koru,fiddlehead, monkey tail or crozier pattern of leaf vernation.
circinate vernation (circinate + vernation) The circinate pattern of leaf development. The majority of ferns follow this pattern as do two cycad genera. The koru,fiddlehead, monkey tail or crozier pattern of leaf vernation. See also non-circinnate or erect vernation
circumaustral (L. circum, around + austral, southern) In biogeography, distributed around the southern hemisphere particularly the colder southern regions. Compare circumboreal. See austral and boreal.
circumboreal (L. circum, around + borealis northern) In biogeography distributed around the northern hemisphere particularly the colder northern regions. Compare circumaustral. See boreal and austral.
clade (Gr. klados; branch, shoot) A a group of closely related organisms - a monophyletic group or lineage. The taxa share a common ancestor. Classification gives a formal rank name to the clades e.g. family or genus. However some clades are informal such as the two filmy fern clades, sister groups in the family Hymenophyllaceae referred to as the "trichomanoid" clade (including Trichomanes) and the "hymenophylloid" clade" (including Hymenophyllum). See monophyletic.
cladodromous (Gr. klados; branch, shoot + dromos, running, racecourse) A form of pinnate, camptodromous leaf venation in which the secondary veins do not terminate at the margin and branch towards and near the margin. A study by Tan and Buoy indicated that many ferns belonging to the polypod clade Eupolypod I had cladodromous venation this group included Davalia sp, Nephrolepis sp..
cladose hairs (Gr. klados; branch, shoot + hairs) Hairs or trichomes that branch. See biramous, dendritic and stellate hairs.
class The taxonomic rank above and which includes orders (which include Families) in classification. Ending -opsida, e.g. Psilopsida (fork ferns), Lycopsida (club mosses, spike mosses and quillworts), Equisetopsida (Horsetails), Filicopsida (True Ferns). See classification.
classification Organisms are grouped with related organisms descended from a common ancestor and ranked according to the degree of relatedness. The groups are either given a formal rank name, such as species, genus, family or an informal clade name. Informal clades can be squeezed in between formal ranks. Below is a table of the taxonomic hierarchy with examples from the fern group of plants.

clathrate (L. clathratus fitted with bars as in a lattice) Lattice-like (clathroid) as in the scales of Asplenium spp. the cell walls are thickened or darkened, giving a lattice-like appearance. Pierced with holes, like a lattice.
clava pl. clavae (L. clava, a club, knotty branch) Club-shaped, spore wall ornament or a hair with the greatest diameter less than the height, the diameter greatest at the top, less at the bottom.
clavate (L. clava, a club, knotty branch) With clavae,club-shaped (claviform) elements or hairs.. Terete/cylindrical with gradually tapering and thickened and rounded end.
claviform (L. clava, a club, knotty branch) Club-shaped (clavate). Terete/cylindrical with gradually tapering and thickened and rounded end.
cleft Deeply cut, with sinuses extending from $1 / 4$ to $1 / 2$ the distance to the central axis (e.g. midrib). Leaf division term. See-fid, pinnatifid, palmatifid.
climbing fern/clubmoss A fern or lycophyte that climbs over other plants with the help of a slender, elongate rhizome (bearing roots) e.g. Blechnum filiforme or elongate rhachis (rootless) with twinning leaves, e.g. Lygodium, See also liane.
clone (Gr. klon, shoot)) A group of vegetatively propagated and therefore genetically identical plants derived from a single individual; in nature a form of asexual reproduction that can be achieved by longcreeping rhizomes, gemmae, budding, etc.
close Closely spaced, nearly touching; said of hairs, scales, stipes, pinnae, or segments. Synonym close-set. Opposite of distal or remote.
close-set Set very close or touching. Said of leaves, leaflets, hairs, scales etc. See close.
climate zone In New Zealand ranges from subtropical (Kermadec Islands), warm temperate (Northern lowland NZ -coastal extends the warm temperate zone further south, cool temperate and cold temperate (subantarctic islands). Latitude and altitude and proximity to sea, ocean currents combine to influence this. Alpine resembles arctic or antarctic climate. Montane will be cool to cold temperate. While geothermal areas introduce a tropical or subtropical element.
clustered Fronds clustered at the tips of rhizomes. See close-set.
coalescent (Gr. koinos, shared in common + L. alescere , to grow up) Separate organs united by growth.
coenopteridian (f. fossil fern genus Coenopteris) Venation pattern in which there is a single unbranched midrib in each undivided frond or segment of a divided frond. Example

Hymenophyllum cupressiforme
Coenopteridian Venation
Drawing Tim Galloway in 'New Zealand Ferns and Allied Plants'
(2000) P.J. Brownsey \& J. C. Smith-Dodsworth; Bateman

Figure 55 Coenopteridian venation (Mettenius)
coenosorus pl. coenosori (Gr. koinos, shared in common + L. sorus, f. Gr soros , heap) An extended sorus or a combination of sori which have united/fused with contiguous sori so as to appear as one. Also known as a fusion-sorus. Example Lindsaea spp., Blechnum spp., Pteris spp., Pyrosia eleagnifolia etc.
-cola, -colous (L. -cola, inhabitant, colous living or growing in or on. L. cola, inhabitant f. colere or coloreto, to live in a place, to inhabit) Suffix meaning living in or on habitat denoted by prefix e.g. saxicolous, growing on rock or terricolous, growing in earth (soil). Compare -philous.
collenchyma (Gr. kola, glue + enchyma, to pour in f. parenchyma) A cell type with unevenly thickened primary walls (thickening usually occurs in the corners) usually elongate with chisel-shaped interlocking ends ; important support tissue in primary growth- young stems and leaves. Often photosynthetic as well, hence may class as chlorenchyma. Modified from the parenchyma cell type, but not as modified as sclerenchyma. Like parenchyma they are not lignified.
columella (diminutive of L. columna a pillar or column) The axis of a cone or cone-like fruit, e.g. in Diselma. The stem of a branched (e.g. stellate) hair, e.g Pyrossia eleagnifolia.
commissural face (L. commissura a joint, juncture or seam f. commissus to join together + face) The face of a spore in contact with an adjaceant spore.
commissural vein (L. commissura a joint, juncture or seam f. commissus to join together + vein) When veins unite at the ends to form a continuous joint vein. Maybe marginal, submarginal or lateral (when secondary veins themselves lateral to the lateral veins, unite with adjaceant veins in a pinnate pattern). See venation patterns.

Pteris carsei syn. P. comans
Base of secondary pinna
adapted from 'Ferns and Allied Plants of Victoria, Tasmania and
South Australia' 1986. Betty D. Duncan and Golda Isaac.
Melbourne University Press
Figure 56 commisural vein
commissure (L. commissura a joint, juncture or seam f. commissus to join together) 1. A joint or seam, place of joining. In Pellaea, a continuous marginal sorus formed when laterally expanded fertile vein endings coalesce. 2. Regarding spores, the line of dehiscence in the tetrad scar.
common name (s) An informal name by which a species is named, e.g. hen and chick fern, the common name may be a Maori name for the species, e.g. mamaku. Compare scientic/botanical name.
compound (L. compositura , a joining together, connection) Of a leaf, having the blade divided into two or more distinct leaflets (pinnae in ferns). The leaflets may be arranged in a pinnate or palmate pattern hence pinnately compound or palmately compound. The leaflets themselves maybe divided into seperate segments so compound leaves can be quite complicated in ferns, as is the jargon regarding how lobing merges gradually into separate leaflets., Decompound means very compound - bipinnate or greater.. Most ferns are pinnately compound and maybe 1-pinnate (pinnate), 2-pinnate (bipinnate) and upto 8-pinnate. Opposite of simple (undivided).

Modified from "Australian Ferns and Fern Allies' 1976. Jones D. L. and Clemesha S. C. . A. H. \& A. W. Reed PTY LTD

Figure 57 compound leaf terminology
compressed (L. compressus flattened laterally) Somewhat flattened lengthwise.
concave (L. con- with, cavus cavity) Curving inwards,arched inwardly or dished like a shallow bowl. The opposite of convex curving outwards.

0

Figure 58 concave and convex
concavo-convex (concave +convex) With the upperside curved inward, lowerside curved outward; concave uppermost convex lower. Bean-shaped in outline.
conceptacle (L. conceptacalulum, a receptacle) Reproductive cavity or fruit case of a sporocarp, a saclike reproductive structure containing several sporangia - as in Marsilea.
concolorous (L. com-,co-, with, in, among, colos colour) Coloured uniformly; the same colour on both sides. Compare bicolorous or discolorous.
conduplicate (l. con- with + duplicate f. duplex double, twofold) Folded flat together lengthwise; with the upper surface inwards of developing leaves.
cone (L. conus, cone, wedge, peak f. Gr konos cone, spinning top, pine cone) A group of sporophylls arranged compactly on a central axis. Also known as a strobilus. Lycopodium sp. Selaginella sp. Equisetum sp.. In Ophioglossum and Botrychium sp. a similar structure is termed a fertile spike.
confertate (L. confercire to press or cram together) Crowded together, or pressed together closely.
configuration (L. configurare, to form) The gross surface patterns of the epidermal cells other than that caused by venation, excrescences, or vestiture (hairs). Examples:- canaliculated, punctate, rugose, bullate and striate.
confluent (L. confluere, confluo, to flow or run together) Blending or merging together. Such as the upper pinnules of Cyathea medularis.
conform (L. conformare f. con- together + formare, to form, f. forma, form) Similar in shape or outline to an earlier mentioned organ e.g. in Thelypteridaceae, plants have pinnate fronds with the apical pinnae similar to the lateral pinnae.
congeneric (L. con- com-same + genus kind) Belonging to one and the same genus.
congested (L. congerere, to crowd together, heap up) Crowded closely together.
connate (L. connecto, to join together) With like parts fused or joined.
conifer (Gr konos cone + + ferre, to bear, carry) Trees or shrubs that bear seeds in cones (sometimes modified and unrecognizable as in the Podocarps). In New Zealand includes the native kauri Agathis australis (family Araucariaceae), two cedars Libocedrus spp. (Cupressaceae) and seventeen podocarps(family Podocarpaceae) including rimu, totara, matai miro, kahikatea and three celery pines- tanekaha, toatoa and mountain toatoa (sometimes seperated off in the family Phyllocladaceae). Conifers class as gymnosperms along with the exotic cycads, gingko and gnetophytes. Conifers may dominate certain forests as canopy trees, be mixed with broadleaf canopy trees, beech forest or be rare or absent.
connivent (L. connivere to be tightly closed) Converging.
conspecific (L. con-, cum with, together + specificus specific, particular f. species, kind + facio make) Belonging to one and the same species.
contact faces The area/s adjaceant to the tetrad scar, proximal.
contiguous (L. contingere to have contact with) Adjoining, touching or in contact at a boundary but not united.
continuous (continuus, f. continere to hold together) Without interruption. Said of an annulus that forms a complete ring. Opposite interrupted. Also a sorus that extends along the length of a vein or coenosorus (fusion-sorus).
contorted (Contortus, f. com- torquere to twist) Twisted.
contracted (L. contractus , tightened, narrowed)) Narrowed and/or shortened.
contractile (L. contractus c con-together + trahere , tractum to draw) Used of roots which shorten and thus pull the plant further into the ground. Contractile-roots.
convergent evolution (L. con, together + vergere, to bend and evolution) The evolution of similar characteristics in organisms that are unrelated (except through a distant ancestor) as each adapts to a similar way of life. See analogous variation.
convex (L. convexus, arched) Curved like the outside of a circle or sphere, a low outward curve,curved or arched outward. Opposite concave. See concavo-convex.
convolute (L. convolvo , to roll together) Rolled together longitudinally.
Cooksonia (after Isabel Clifton Cookson (25 December 1893 - 1 July 1973) was an Australian botanist who specialised in palaeobotany and palynology.) The genus Cooksonia includes the oldest known plant (ca. 432 mya, Cooksonia barrande) to have a stem with vascular tissue and is thus a transitional form between the primitive non-vascular bryophytes and the vascular plants. The genus is polyphyletic and some species have been transferred to other genera. Simple small plants with naked axes showing dichotomous branching and terminal sporangia. Some appear related to the zosterophyte-lycophyte clade although they had terminal sporangia and others to the rhyniophyte- trimerophyte- fern/horsetail/seed plant clade while one or two are closer to bryophytes (liverwort/moss/hornwort plants)
coralline (L. coralium, Gr. koralion, coral) Spore ornamentation resembling coral; with many multibranched fenestrate elements.
cordate (L. cor, heart) Of a leaf blade or gametophyte (prothallus) broad and notched at the base; heartshaped (in two dimensions).
coriaceous (L. corium, leather) Leathery. e.g. leather fern Pyrossia eleagnifolia, adders tongue fern Ophioglossum coriaceum.
corm (Gr. kormos, trunk minus its boughs) In Isoetes, the condensed stem, which may be 2-5-lobed.

Adapted from 'Biology of Plants' 2005 ed.. Raven, Peter H.. Evert, Ray F.. Eichhorn, Susan E.. W. H. Freeman and Company.

It should be noted that microphylls in Isoetes and their extinct relatives can be quite large, so the term lycophyll may be preferred.

Figure 59 corm Isoetes
cosmopolitan (Gr. Kosmopolites, citizen of the world, f. kosmos, world + polites citizen) World-wide in distribution. The horsetail family Equisetopsida is almost cosmopolitan in distribution but is naturally absent from present day Australasia.
costa (L.costa, rib) The midrib or main vein of a pinna. pl. costae Compare rhachis (midrib of the whole frond), and the dimunitives costule (midrib of a pinnule) and costulet (midrib of a pinnulet). Regarding spore/pollen wall ornamentation, broad individualized, regular ridges (ribbed).
costal (L.costa, rib) Near or adjaceant to the costa, costule, or midrib. Applied in particular to soral position.
costate (L.costa, rib) Ribbed, with ridges. Opposite acostate-without ribs. Regarding spore/pollen wall ornamentation,regular ribs more or less encircling the spore/pollen grain.
costate-alate (L.costa, rib + ala wing) Winged-ridges or wing-like crests, ribbed and winged said of some spores.
costule (diminutive of L.costa, rib) The midrib or main vein of a pinnule, lobe or segment of lower order.
costulet (diminutive of costule) Midrib of a pinnulet (leaflet).
cottony (from cotton) With long soft, weak, filamentous hairs, somewhat flocculent and entangled. Also known as gossypinus/gossipinus like the the cotton of Gossypium seeds.
craspedodromous (Gr. kraspedon, border, edge + dromos, running, racecourse) Pinnate venation pattern whereby the secondary veins reach the leaf margin. Divided into simple craspodromous- the secondary veins directly reach the margin and semicraspedromous, the secondary veins branch near the margin, one terminating at the margin and the other looping upward to join the next secondary vein and mixed
craspedodromous when only some veins terminate at the margin, the others terminating away from the margin. A study by Tan \& Buot indicated ferns belonging to the Polypod clade Eupolypod II are characterized by craspedodromous venation plus some cathetogyrates. This group includes Asplenium sp., Athyrium sp. Blechnum sp.. Dennstaedtia sp Diplazium sp. Pteris sp. and Thelypteris sp. .

Simple craspedodromous

Secondary veins reach margin

 and enter teeth

Semicraspedodromous secondary veins branch, form loops, and reach the margin

Mixed craspedromous
Simple + semicraspedodromous

Pinnate Craspedodromous Venation

"border (margin) running vein"

Figure 60 craspedodromous venation
creeping Said of rhizomes or stolons running along the ground and rooting at intervals. May be classed as either short creeping e.g. Lindsaea linearis, medium creeping or long creeping e.g. Lindsaea viridis. Compare: tufted (caespitose) or caudex (trunked).
cremnophilous (Gr. kremnos, cliff, + philous, loving) A plant that grows on cliffs e.g. Pleurosorus rutifolius. Synonym: cremnophyte similar rupestral etc
cremnophyte (Gr. kremnos, cliff, + phyton , plant) A plant that grows on cliffs, e.g. Pleurosorus rutifolius. Synonym cremnophilous similar rupestral etc

Crevice growing plants on a stack of rocks, Punakaiki, South Island Veronica (Hebe) elliptica and shore spleenwort Asplenium obtusatum
'Moa's Ark The Voyage of New Zealand' 1990. David Bellamy et al Television New Zealand. Viking Press.
crenate (L. crena, a notch) With small, rounded teeth; scalloped. Pinnulets of Pteris tremula. See bicrenate.
crenate- serrate (Combination crenate and serrate) Bearing teeth varying from small rounded (crenate) to small sharp teeth pointing forwards (serrate).
crenulated (diminutive L. crena, a notch) Of a margin finely crenate, minutely scalloped.
crested With an elevated ridge or crest, forked tips, usually many,; usually referring to the leaf, pinnae or segments. Many fern cultivars are characterized by crested leaves.

Cretaceous (Derived from Terrain Crétacé used in 1822 by Jean d'Omalius d'Halloy in reference to extensive beds of chalk within the Paris Basin. Ultimately derived from the L. crēta, chalk.) The chronostratigraphic (geological) time period from the end of the Jurasic 144 million years ago to 65 million years ago; Part of the Mesozoic era. Flowering plants and some fern families evolved during this period. Notably the dinosaurs died out (apart from the bird line) at the end of this period. Zealandia including New Zealand seperated from Gondwana (adjaceant parts of todays Australia and Antarctica) in the later part of the Cretaceous, the Tasman Sea filling the gap, an important isolating biogeographical factor. A fossil site (mid-Cretaceous, circa 97 Ma) in the Clarence River valley in eastern Marlborough has fossil Cycads, ginkgos, ferns, conifers and primitive angiosperms.

Cenozoic Era	Period Series/EpochPaleogene Period (Formerly Tertiary Period)		Stage/Age	Numerical Age (Ma)		
66 (Ma)	Cretaceous Period	Upper		Maastrichtian	-72.1	Cretaceous Period
			Campanian		approximately 145-66	
			Santonian		million years ago (Ma)	
			Coniacian	88.8		
Mesozoic Era			Turonian	$\begin{array}{r} 89.8 \\ -93.9 \end{array}$	Formation of Zealandia Separation of	
			Cenomanian		New Zealand from	
		Lower	Albian	-113	Gondwana 80-60 (Ma)	
			Aptian	-125		
			Barremian	-129.4		
			Hauterivian			
			Valanginian	139.8		
			Berriasian			
245 (Ma)	Jurassic Period			-145		

crisped (L. crispus, curled) The margins finely wavy, curled or crumpled.
crista pl. cristae (L. crista, the comb or tuft on the head of animals, tuft of leaves on plants, crest of a helmet) Spore ornamentation where different kinds of sculptural elements join laterally to form crests or ridges.
cristate (L. crista, the comb or tuft on the head of animals, tuft of leaves on plants, crest of a helmet) In ferns, having a tasselled margin to the fronds. Spore ornamentation- with crest/ridges, when portions of the outer wall unite, forming seams or crests.
crown The foliage canopy of a fern.
crozier (French crossier, staff bearer, the pastoral staff of a bishop) The coiled young frond of a fern, the fiddlehead, koru or monkey's tail. See circinate venation, contrast non-circinnate venation.

Circinate vernation
 Koru or fiddlehead
 Spiral of Archimedes
 Non-circinate Vernation
 Shephards crook-like

Figure 62 crozier - circinate vernation \& non-circinate vernation
cruciate (L. crux, cross) In the form of a cross. Also known as cruciform.
cryptic (Gr. Kruptos, hidden) Hidden.
cryptogam (Gr. Kruptos, hidden + gamos, marriage) Plants which are cone less and flowerless and reproduce by spores not seeds. An older term applied to the algae, bryophytes, ferns and fern allies whose reproduction process was not obvious to the early botanists, hence hidden.. Opposite phanerogam (Gr. phaneros, visible + gamos, marriage) - the seed plants.
crystalochory (Gr. krystallos, ice, crystal + -chore f. khoreo, to move)) Dispersal of seed, spores etc by ice or glaciers.

Ctenitis-hairs Articulated hairs with dark red septae (walls), as in Ctenitis, Lastreopsis and allied genera (Dryopteridaceae).

Ctenopteridian venation: (After fern genus Ctenopteris) Venation pattern (from German botanist Mettenius 1823-1866) in which a series of simple or forked secondary veins branch off the primary vein or midrib in a pinnate manner. This form of venation is subdivided into three types based on the angle at which the secondaries leave the midrib:-

1 Taenopteridian (f. fossil genus Taeniopteris) \pm right angles secondaries continue to margin. Any tertiary veins run parallel with secondaries.
2. Sphenopteridian (f. fossil seed-fern (Pteridosperm) genus Sphenopteris) Seconday veins leave midvein at acute angles and any tertiary veins leave the secondaries at acute angles reaching the frond margin
3. Eupteridian (f. Fern genus Eupteris now Pteridium) The secondaries leave the midrib at an angle that is intermediate between Taenopteridian and Sphenopteridian.
cucullate (L. cucullatus, hooded, capped) Hood-shaped.
cultrate (L. cultratus, knife shaped f. culter, kife) Knife-shaped.
cuneate (L. cuneus, wedge) Wedge-shaped sometimes used to describe the base of a leaf or leaflet.
cuneiform (L. cuneus, wedge + form) Wedge-shaped (cuneate), attached by the narrow end.
cupular, cupulate, or cupuliform (L. cupula, a little cup.) Cup-shaped. In Greek kyatheion, little cup from whence we get the tree fern genus Cyathea. See cyathiform.
cushion (archegonial cushion) Area of gametophyte (prothallus) tissue that is more than one cell thick and accomodates the archegonia (female sex organs).
cuspidate (L. cuspus, a point, spike) Tipped with a sharp, firm point.
cuticle (L. cuticula, dimin. of cutis, the skin) A protective layer containing cutin, that is secreted to the outside of epidermal cells and functions to inhibit water loss: found in all land plants.
cutin (L. cutis, skin) A polymer of fatty acids functioning as a sealant, deposited in the cuticle of the epidermal cells of all land plants.
cv. Abbreviation for cultivated variety (cultivar). A horticultural variety, bred or selected, e.g. Nephrolepis exaltata 'Fluffy Ruffles'. Note the species name is written or typed in the conventional botanical way:

Plant name is italicized
Capitalize genus name Lower case specific epithet Cultivar in single quotation marks \& not italicized Only one name per plant
cyanobacteria (Gr. kyanos, dark blue + bacteria) Blue-green algae; photosynthetic bacteria, some also capable of nitrogen fixation and associated with water ferns. Chloroplasts are thought to be derived from them by endosymbiosis.
cyathiform (Gr. kyathos cup + L. forma form) Cup-like shape. Synonym cupulate. Similar to urceolate urn -shaped.
cyathiform indusium (Gr. kyathos cup + L. forma form + indusium) In tree ferns genus Cyathea those species that bear a cup-shaped indusium. Compare hemitelioid indusium and sphaereopteroid indusium.
cyclopteridian venation (f. fossil Pteridosperm (seed-fern) foliage type Cyclopteris) Venation pattern, pinnules rounded without apparent midrib the veins radiating out from the point of attachment and subordinate veins branch repeatedly in a fan-like pattern. The veins branch dichotomously (forking in two) along the way. Approximately the same as actinodromous-flabellate (ray pattern and fan shape) venation.

Botrychium Iunaria exhibiting

Cyclopteridian venation
'Welsh Ferns a descriptive handbook'
1954
H. E. Hyde and A. E. Wade

Figure 63 cyclopteridian venation (Mettenius -German botanist))

Division \dagger Pteridospermatophyta (seed ferns), Order \dagger Medullosales, Family \dagger Cyclopteridaceae (\dagger denotes extinct)
https://www.georgesbasement.com/Langford-WilmingtonCoalFlora/Webpage/GL062CyclopterisCB.jpg

Figure 64 cyclopteridian venation (Mettenius - German Botanist 1823-1866)

Cylindrical (L. cylindricus f. cylindrus, roller) In the form of cylinder, also known a terete (L . terese, teretis, ,smooth, f. terere, to rub). Said of an axis such as a stem.

Figure 65 cylindrical/terete and cymbiform
cymbiform (L. cymba, boat) Boat-shaped.
deciduous (L. deciduous, falling) Shed seasonally. Falling off, after maturity or at the end of the growing season, not persistant, or evergreen. Applied to foliage, most New Zealand native ferns are perennial evergreen, an exception is the annual fern Anogramma leptophylla. While a number of cold hardy exotic ferns are deciduous e.g. Athyrium felix-femina, Dryopteris affinis, D. dilatata and D. filix-mas.
decompound (L. de-, very + compositus, compound) (1) Divided several times, multi-compound, e.g. bipinnate (2-pinnate) or greater, some ferns e.g. Adiantum spp. are up to 8 -pinnate ($8 \times$ pinnate). (2) Deeply divided into numerous segments such that leaflets are not clearly defined, e.g. fennel leaf.
decrescent: (Anglo-French decressant f. decrestre to decrease) Gradually decreasing in size, e.g. lower or basal pinnae of some thelypteroid ferns, e.g.Christella species.
decumbent (L. decumbo, to lie down, recline) Lying down (prostrate), but with the tips growing upwards (ascending). E.g. Cyathea colensoi.
decurrent (L. decarro, to run down) Extending downwards beyond the point of attachment, e.g. of a lamina extending downwards to form a flange or wing along the rachis,e.g. Blechnum colensoi. Opposite of surcurrent where the flange or wing extends upwards. Asplenium decurrens syn. A. obtusatum subsp. northlandicum.
decurved (de- + curvatus, f. curvare, to curve) Curved downwards.
decussate (L. decussatim in the form of the Roman number ten (X) hence decussatus, cut crossways) Borne in pairs alternately at right angles to each other making four rows,e.g. Veronica (syn. Hebe) spp. Compare opposite distichous, alternate (helical/spiral), alternate distichous and whorled. Said of leaf arrangement (phyllotaxy).
deflexed ((L. deflex, turned or bent down) Bent abruptly downwards. For example leaf margins.
defoliate (defoliatus, past participle of defoliare, from Latin de- + folium leaf) Shedding of leaves.
dehisce (L. dehisco: to yawn, gape, open, split asunder). To split open, so as to scatter the seeds or spores. Hence dehiscence.
dehiscence (Latin de- + hiscere to split, from hiare to be open)) The process of opening by valves or splits. In ferns and lycophytes the manner in which the sporangium opens to release the spores..

Phlegmarius varius syn. Lycopodium varium
'Oxford Book Of New Zealand Plants' 1978.
Moore, L. B. and Irwin, J. B.
Oxford University Press

Dehiscence in Lycopodiaceae

Figure 66 dehiscence Lycopodiaceae

Dehiscence in Selaginella a heterosporous lycophyte
Figure 67 dehiscence Selaginella

Isoetes no special form of dehiscence -open by tissue degradation

Figure 68 Dehiscence in Isoetes

Psilotum nudum
three -lobed synangium dehiscence spores released through three radial slits
(Lawrence) Psilotaceae

Ptisana salicina syn. Marattia salicina Marattiaceae (artist J. B. (Bruce) Irwin)

Dehiscence in Eusporangiate ferns (various sources)

Figure 69 Dehiscence in Eusporangiate ferns

Figure 70 dehiscence (leptosporangiate)

Leptopteris superba

Leptopteris hymenophylloides Heruheru, Single crape fern Osmundales, Osmundaceae Primitive leptosporangiate fern

Todea barbara

Leptopteris hymenophylloides

Dehiscence in primitive leptosporangiate ferns Osmundaceae

Figure 71 Dehiscence in Osmundaceous ferns

Hymenophyllum

Schizaea bifida
Schizaeaceae

Lygodium articulatum

Dehiscence in primitive leptosporangiate ferns

Figure 72 Dehiscence in primitive leptosporangiate ferns

Dehiscence in some other leptosporangiate ferns
(diagrams from various sources including 'Oxford Book of New Zealand Plants')
Figure 73 Dehiscence in other leptosporangiate ferns

Figure 74 Dehiscence in Azolla
delicate Finely made. The leaves of filmy ferns, family Hymenophyllaceae, may be described as delicate, as very thin, one cell thick (apart from veins).
deltate (L. deltoides, from Greek deltoeides Shaped like the fourth letter of the Greek alphabet delta, and a capital delta is triangle-shaped (Δ) A flat plate with the outline of a triangle- broadly triangular with an obtuse tip.
deltoid: Triangular like the Greek letter Δ (delta). Cranfillia deltoides syn. Blechnum vulcanicum
dentate (Latin dens, dentis tooth) With sharp teeth perpendicular (at right angles) to the margin . The orientation of the projections (teeth) distinguishes from serrate and retorse.
denticulate (Diminutive of dentate) Finely toothed. Minutely dentate. See leaf margin
dendritic (Gr. dendrites, of or pertaining to a tree f. dendron, tree). Said of a hair that branches in a treelike manner.

dendritic
 hairs

Figure 75 dendritic hairs
depauperate (Latin de- + pauper poor, impoverished) Weak, reduced in size, starved and impoverished.
descent with modification Charles Darwin's (1809-1882) term for evolution.
determinate (L. determinatio a boundary, termination, end, determinatus, limited) With a definite cessation of growth in the main axis. Limited growth of leaves (or plants) that ceases after differentiation and complete development of its tissues. Determinate leave stop their growth when the genetically determined leaf form is completed. The opposite of indeterminate.

Devonian (after Devon in England) The chronostratigraphic (geological) time period from about 420 million years to 360 million years ago. During the early Devonian - spore bearing vascular plants developed and two major clades had evolved:- one the lycophyte branch and the other leading to the ferns, horsetails and seed plants.

MUSE.jpg:Cropped., CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=83255301

Cooksonia spp. and allied polysporangiate plants appear in previous Silurian Period and may be ancestral to both the lycophyte lineage and the Rhynia/fern-seed plant lineage

Cooksonia sp. depicted as an independant photosynthetic sporophyte

By Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48122033

Figure 76 Devonian Period
diaspore (Gr. dia - through + spore or f. sperein, to scatter) A reproductive unit such as a spore, seed or other structure that functions in dispersal. Synonym: propagule, disseminule.
dichopodial (Gr. dicha, akin to di- in two + L. podium, foot) Roots in which the apical meristem branches in two. A form of dichotomous branching in the roots of lycophytes.

Dichopodial - dichotomous branching
in root of Selaginella bigelovii
'Plant Classification' 1979. Benson, Lyman
D. C. Heath and Company

Figure 77 dichopodal
dichotomous (Gr. dikhotomous, cut in half, f. dich-, in two+ temnein, to cut) A branching pattern in which each branch or axis splits into two approximately equal branches like the arms of the letter " \mathbf{Y} " resulting from the division of a growing point, e.g. Gleichenia microphylla. .Also known as bifurcation. Common in lycophytes and primitive ferns e.g. whisk ferns (Psilophyta) and their fossil relatives such as the rhyniophytes and Cooksonia.. If forking is equal- isotomous and if forking is unequal anisotomous. Dichopodial is a form of dichotomous branching in the roots of lycophytes. See apical branching, pseudodichotomous. Schizaea dichotoma

Modified from 'Five Kingdoms: An Illustrated Guide To The Phyla of Life on Earth' 1998. Margulis, Lynn and Schwartz Karlene V. . A W. H. Freeman/ Owl Book

Examples of dichotomous branching in a living fern allie and an extinct early rhyniophyte

Figure 78 dichotomous branching Psilotum and Rhynia
dictyostele (Gr. diktyon, from dikein to throw (net) + Gr. stēlē stela, pillar) A complex stele (vascular plumbing) with large, overlapping leaf gaps, in section composed of many meristeles- a number of separate vascular strands (xylem surrounded by phloem); in transverse section these strands appear as a ring of separate bundles. Multiple siphonostele also known as a dissected amphiphloic siphonostele.. Found in some ferns. See stele.

Modified from 'Plant Systematics" 3rd ed. 2019, Simpson, Michael G.. Academic Press (Elsevier)
Figure 79 dictyostele
didymous ((Gr. didymos ,doubled) Twinned, (or in pairs) the two parts similar and attached by a short portion of the inner surface, e.g. Dipteris fronds.
differentiation (L. differre, to carry different ways) Refers to the way cells divide and the daughter cells become modified for different fuctions. As a result have different cell types, tissue sytems and organs.
difform (de-, from, formis , form) Dissimilar.
diffuse (L. diffundere ,to spread, scatter)) Spreading or open or straggling form. Lateristachys diffusa syn. Lycopodium diffusum.
digitate (L. digitus: finger) A compound frond with the parts spreading from the centre like the fingers of a hand. Form of palmate with narrow leaflets.
dilated (L. dilato , I spread out) Widened. Hymenophyllum dilitatum
dimidiate (L. dimidiatus, past participle of dimidiare, from di- (from dis- apart) + -midiare (from medius mid) Halved, as when half of an organ is so much smaller than the other half that it seems absent. Lop-sided In Adiantum, Asplenium, and Lindsaea applied to pinnules in which the basiscopic lamina is reduced. The pinnule therefore appears \pm rectangular or trapeziform rather than flabellate.

Adiantum cunninghamii pinnule

https://en.wikipedia.orq/wiki/Adiantum cunninghami\#/media/File:Adiantum cunninghamii.jpg

Figure 80 dimediate
dimorphic (Gr. dis: twice + morph shape) Having two different forms, said especially of fronds, where the fertile and sterile (vegetative) blades differ in size or shape. cf. monomorphic. The dimorphism may vary from -Complete Dimorphism- Leaves completely fertile or vegetative,to Partial Dimorphism:- Leaves with only a part modified as fertile sporangia to Slight Dimorphism: - with Fertile and vegetative leaves only slightly different in appearance. See sporophyll, trophophyll.

Sterile and fertile fronds of Blechnum montanum
Silhouetes Patrick Brownsey and W. N. Wilson

Dimorphic

Lycopodium volubile two types of sterile leaves (microphylls/lycophylls) flattened in one plane; smaller linear leaves appressed, larger falcate leaves, subdistichous, spreading.
'New Zealand Ferns and Allied Plants' 2nd ed. 2000, Patrick Brownsey and John C. Dodsworth-Smith; Bateman

Figure 81 dimorphic leaves
dioecious (Gr. dis-, twice; oikos, house) Having the male and female reproductive structures housed on separate plants or prothalli. Compare monoecious.
diplazoid (Resembling Diplazium) In the form of Diplazium, usually a comparison with the paired elongate sori of that genus. The sorus divided into two parts -the sporangia 'back to back' on both sides of veins, but not crossing over the vein itself.
diploid (Gr. diploos, double + oides, like) Having two of the basic sets of chromosomes in the nucleus or 2 n . Characteristic of the sporophyte generation. Compare haploid, polyploid.
disarticulate (L. dis- reverse, opposite of + articulate f. articulatus, past participle of articulare to separate into joints, f. from articulus a part, a member, a joint) To separate readily at a joint
discolorous (L. dis-, + cololare, coloratum, to colour) Of different colours; of leaves, having the two surfaces different in colour; e.g. silver tree fern, Cyathea dealbata, Compare concolorous.
discontinuous Interrupted or lacking sequence
discrete (L. dis + cretus f. cernere, sift , seperate) Clearly separate and not united. Said of sori that are not united (as in a coenosorus), or continuous. Or sporangia not united in a sorus as in the acrostichoid state.
disjunct distribution (Gr. disjunct f. dis separate, apart, two + jungere, juncti-, join) Distribution seperated geographically. (biogeography term).
dispersal (L. di- + spergere scatter) In biogeography, the movement of organisms or their propagules/ disseminules into or out of an area. The evolution of ancestral populations separated by dispersal can then proceed. Normal dispersal is the localized reproduction of organisms in an area via disseminules (syn. propagules). See drifters. Compare vicarience, ancient rafters.
dispersion The geographic range of an organism.
dissected (L. dissecare, cut up from dis- asunder + secare to cut) Deeply divided or cut into many segments.
disseminule (L. dis-, asunder, + seminare, to sow f. semen, seed) Any reproductive unit such as a spore, seed, or asexual structure such as a bulblet. Synonym diaspore, propagule.
distal (L. distantia , to stand apart, remote) Remote from the point of origin or attachment. Towards the free end or tip of an organ. The opposite of proximal. Regarding spores: facing away from the centre of the tetrad, remote from the point of attachment - the side opposite to the tetrad scar.
distal face The distal hemisphere of a spore or pollen surface,that is directed away from the tetrad.
distant (L. distantia , to stand apart, remote) Widely spaced, similar parts that are well separated and not overlapping or touching; said of stipes, pinnae, or segments. Synonym remote, compare approximate, confluent, connivant, contiguous, congested, close set. Cheilanthes distans.
distelic (Gr. dis- , twice + stele , pillar, column, post) With two steles (vascular cylinders or central columns).
distichous ((Gr. dis: twice+ stikhos: rows) Arranged in two, opposite rows in either opposite distichous or alternate distichous pattern (Phyllotaxy). The leaves of the water fern Azolla filiculoides are arranged in a distichous (2-ranked) manner.

alternate/ distichous

Figure 82 distichous (phyllotaxy)
distinct Separate, clear.
distribution The areas where a species (or taxa) occurs. The geographic range of taxa. Altitudinal distribution refers to the range in height above sea level (altitude) a species or taxa occurs. See disjunct distribution.
disturbance (dis, separate + turbare, f. turba, crowd) Relatively abrupt event (e.g. fire, storm,) causing loss of biomass or structure. (Plant ecology term). Provides an opportunity for succession. Some species may depend on disturbance to create living space or habitat.
disturbance regime Characteristic of disturbance (such as fire), occurring in a given ecosystem; generally described by intensity, size or frequency.
divaricate (L. divaricare , to stretch apart)) Attached or spreading at a very wide angle (nearly 90°).
divergent (L. divergens, diverging ,differing from) Spreading apart at a wide angle. Similar to divaricate.
divergence/diversification. The evolution of separate lineages from a common ancestor.
divided (L. dividere, divisum f. dis- asunder+ root vid, to seperate) Separated at the base.
dorsal (L. dorsum , back of a man or beast) Pertaining to, or attached to the back of an organ; lower surface of a leaf also known as abaxial surface.. Compare ventral, adaxial.
dorsal sori (dorsal + sori) Sori located on the back (dorsal or abaxial surface) of the leaf rather than the margin.
dorsifixed (L. dorsum, back + fixed) Attached by or at the back.
dorsiventral (L. dorsum, back + venter, belly) Having a back side and belly side, as a leaf does. With a distinct upper and lower surface or structure: as in a creeping rhizome which bears roots on the lower surface and fronds on the upper surface. Opposite of isobilateral - same both surfaces as in some monocotyledon leaves.

General position terms

modified from 'Plant Systematics' 2019. Michael G. Simpson Academic Press (Elsevier)
Figure 83 dorsiventral

In the silver tree fern Cyathea dealbata the upper and lower frond surfaces typically have distinct colours

Diagram from "Plant Life on Banks Peninsula' 2013
Hugh D. Wilson (author and artist). Manuka Press
Figure 84 dorsiventral Cyathea dealbata
drifters Drifters is the informal term for biota (plants, animals etc) that have arrived in New Zealand by dispersal, after the geological separation of Zealandia from Gondwana circa 80 million years ago. Compare ancient rafters, vicarience. For plants this could occur through wind, sea or animal transport of propagules (such as seed or spores). Following colonization by dispersal, the population is free to evolve seperately from the parent population. Late dispersal probably? accounts for the indigenous element of the flora, e.g. species shared with Australia and or South America. The endemic element, is derived either from vicariance (ancient rafters) or early dispersal. Recent 'drifters' that occasionally arrive but fail to establish permanenty as yet are known as vagrants.
dromy (f-dromous, Gr. dromos, running, racecourse) Leaf venation term referring to the way veins run in the leaf blade. See actinodromous, brochiodromous, campylodromous,cladodromous, craspedodromous, hyphodromous, parallelodromous and reticulodromous.
dryopteroid ferns or family (Gr. from Dryopteris, f. drys, oak + pteris, fern) Ferns of the family Drypteridaceae e.g. Polystichum, Dryopteris.
dune A mound formed from wind blown sand.
eccentric (L. f. excentricus, one-sided, placed out of the centre) Said for instance of a peltate leaf or scale where the point of attachment of the stalk is one sided or off-centre.
echinate: (L. echinatus, set with prickles) Of a spore, spiny, with echinae or spine-like projections The Australian spiny anteater (mammal) is also known as an echidna
echinate-rugose (L. echinatus, set with prickles + L. rugo: to crease, wrinkle or crumple) Combination of spiny and wrinkled as in the surface of some spores.
eciliate (L. e-without + ciliate, f. cil , eyelash)) Lacking trichomes (cilia) on the margins, regardless of the prescence of teeth. The opposite of ciliate.
ecology (Gr. oikos, house + logos, discourse, study of) Study of the interactions of living organisms such as plants and animals within their natural environment (other organism and the physical environment including the soil, air, climate).
ecostate or acostate (L. e- or a- , without + costa, rib) Lacking a costa or midrib. Synonym enervate (lacking nerves i.e. main veins) or nullinervate (zero nerves).
ecotype (Gr. oikos, house + typos, the mark of a blow) A form of taxon arising under different local ecological conditions.
ectendomycorrhiza pl. ectendomycorrhizae (combines ecto- outside \& endo-inside) Mycorrhiza that is formed by septate Ascomycota (sac fungi) and is intermediate between endomycorrhiza and ectomycorrhiza. Although the Hartig net forms outside the root cells, penetration of plant cortical cells occasionally occurs. Many species of ectomycorrhizal fungi can function either as ectomycorrhizas or in the penetrative mode typical of arbuscular mycorrhizas, depending on the host. Because these associations represent a form of symbiosis in between arbuscular mycorrhizas and ectomycorrhizas, they are termed ectendomycorrhizas. Hosts include Pinus (pine), Picea spruce) and Larix (larch).
ectohydric (Gr. ecto- f. ektos, outside + hydor, water) Conducting water externally as is the case with many 'bryophytes'. Synonym exohydric (exo- = ecto). Compare with endohydric, conducting water internally (vascular plants) and mixohydric, conducting water both internally and externally.
ectomycorrhiza pl. ectomycorrhizas or ectomycorrhizae (Gr. ecto-f. ektos, outside + mykes, fungus + rhiza, root) Mychorrhiza (abbreviated EcM) in which the fungal hyphae forms a sheath (mantle) around the root of the host plant and penetrates the intercellular spaces of the root cortex (termed Hartig net), but not into the root cells (as endomycorrhiza do). Hosts include dominant forest trees. The edible truffle is the fruiting body of one such fungi. Compare endomycorrhiza and ectendomycorhiza.
edaphic (Gr. edaphos, soil) Pertaining to soil. There are plenty of terms for plants growing on rocks, but not for plants that regularly or preferably grow in soil: terrestrial in a sense does, but what about edaphophyte or edaphicolous, edaphophilous?. Geophyte comes close but already has a specific meaning. Latin equivalent: solum, soil.
effuse (L. effundere, effusum, ex-, out + fundere to pour) Very open and spreading loosely.
egg The nonmotile enlarged haploid gamete (ovum) produced by the female sex organ (archegonium) on the gametophyte or prothallus. The female gamete, also known as oosphere. Compare sperm and zygote.
eglandular (e-without + gland f. glandula ,little acorn (glans)) Without glands (Secretory organs). Opposite of glandular- possessing glands..
ektexine (ekt- or ect-, outer + exine) A structurally variable outer layer of the exine- itself the outer layer of a spore wall or pollen grain wall. Intexine (or intextine) being the inner layer of the exine.
elater (Gr. elater, driver, that which drives away) One of four filamentous appendages of the spores of Equisetium: A spirally thickened cell that is hygroscopic - changes shape with changes in humidity, associated with the spores and aiding in their dispersal. Sometimes called bands or hygroscopic ribbons. In liverworts (Hepataceae) sterile cells interspersed among the spores in a liverwort capsule. The cells stiffened with spiral thickenings, change shape with changes in humidity, breaking up the spore mass as they do so and thus aiding spore dispersal in these plants.

Equisetum spores with elaters

Figure 85 elators Equisetum
eligulate (L. e-without, + ligule f. ligula: a little tongue) Lacking a ligule. Opposite of ligulate. Of the lycophytes, lycopodiacea are eligulate, while Isoetopsida (Isoetiacea and Selaginellacea) are ligulate.
ellipsoid (L. ellipsis, f. Gr. elleipsis, f. elleipo come short f. en- in + leipo, leave + -oid, resembling) A solid object with a three-dimensional elliptical shape.
elliptic Having the outline of an elongated circle. Widest in the middle, 1.5-2 times longer than wide, with equal tapers at each end. See leaf shape
elliptical (L. ellipsis, f. Gr. elleipsis, f. elleipo come short f. en- in + leipo, leave) In the shape of an ellipse with the widest part in the centre; rounded at both ends. A regular oval shape.
elongate (L. elongare , to lengthen) Drawn out in length. Said of a sorus that extends in length along a vein for a distance such as in Asplenium sp., Trichomanes elongatum.
emarginate (L. e- , without + margino, edge) Having a broad shallow apical notch on an otherwise round or truncate apex.
embryo (Gr. embruon, fetus f. en- + bryein to swell) The developing zygote in the fertilized archegonium. The immature diploid sporophyte in land plants.
embryophyte/embryophyta (embryo + phyte, Gr. plant) Eukaryotic green plants forming a monophyletic group united by an outer cuticle, specialized gametangia -antheridia and archegonia - and a diploid phase of the life cycle, that includes the embryo. The land plants: bryophytes, lycophytes, ferns and seed plants, but not terrestrial algae.
emergent (L. emergere, emersum, e-, out of, mergere, to plunge) In forest stratification, a canopy tree that towers above the surrounding trees.

Figure 86 emergent (forest stratification)
emergent hydryophyte A aquatic plant that is partially submerged and partially aerial, such as raupo Typha orientalis. Aquatic zonation term
emersed (L. emergo, to swim) Occurring under water, e.g. Isoetes spp. Synonym submerged. Most often rooted in bottom substrate but some species unrooted. See aquatic or hydrophyte. Contrast floating aquatic, emergent hydrophyte.
enation (L. enato, f. enascor, to sprout, to be born f. e-from + natus, born) A structure, which takes its evolutionary origin as an outgrowth from another structure. A rudimentay leaf-like structure, that lacks vascular tissue, e.g. Psilotum nudum. The microphylls/lycophylls of the lycophytes may have evolved as an enation from the stem of early lycophytes, which became vascularized (received a vein from the stems vascular cylinder). This hypothesis is termed the enation theory. The enation theory is contrasted with the telome theory for the origin of megaphylls/euphylls and the telome theory for the evolution of the microphyll by reduction.

Hypothetical origin of the microphyll by reduction alternative theory
Modified from "Morphology of Plants and Fungi' 1980. Harold C. Bold, Constantine Alexopoulos and Theodore Delevoras.
Harper International Edition
Figure 87 enation theory and alternative
endarch (Gr. endon, within + archein, to be first) Differention of primary xylem centrifugally.

exarch: (Gr. ex-, out of + archein, to be first)

Endarch: (Gr. endon, within + archein, to be first)

Mesarch: (Gr. mesos, in the middle + archein, to be first)
Some common patterns of primary xylem differentiation from procambium. Protoxylem cells form first (hence the "arch" which here means first point of origin) are small, metaxylem cells are large and thicker walled. Synchronous type, consisting of metaxylem only not illustrated.

Centrifugal from Greek kentron centre + fugo to fly from
Centripetal from Greek kentron centre + Peto, petere to
seek
Protoxylem: The first-differentiated primary xylem, usually in a region where the organ is increasing in length.
(Gr. protos, first + xylem f. xylon, wood).

Metaxylem: The primary xylem that differentiates from procambium after elongation of the organ has ceased and after the protoxylem has matured. (Gr. meta-, beyond, after + xylem).

[^1]Figure 88 endarch xylem differentiation
endemic (Gr. endemos, among one's people, native f. en, in + demos, people) Exclusively native or restricted to a particular country, region or area. Whereas indigenous can be native to more than one area, region or country. Endemism may occur at different levels, such as subspecies, species, genus, family etc. Compare the non-native terms: exotic, adventive, naturalized.
endohydric (Gr. endo- , inside + hydor, water) Conducting water internally (vascular plants). Compare with ectohydric/exohydric, conducting water externally as in many 'bryophytes' and mixohydric, conducting water both externally and internally.
endomycorrhiza pl. endomycorrhizae (Gr. endo- , inside, within + mycorrhiza f + mykes, fungus + rhiza, root) Internal mycorrhiza with fungal hyphae that penetrate the cells of the root cortex (intraradicle) but do not form a sheath (mantle) around the root. Arbuscular mycorrhiza is an example.(others are associated with plant groups: ericoid, arbutoid, monotropoid and orchid). Compare ectomycorrhiza .
endospore (endo- , inside + spore) The innermost layer of a fern spore adjaceant to the cytoplasm and consisting of a relatively thin layer of cellulose. Equivalent to intine. The outer layer is the exospore.
endosporic gametophyte A gametophyte that develops within a spore. For example in Selaginella the female gametophyte is contained within the megaspore and at maturity only a portion bearing archegonia, is exposed through the spore wall.

A. Sectioned female gametophyte of Selaginella within megaspore wall. B. Section of reduced microgametophyte of Selaginella within microspore wall. C. Motile sperm cells of Selaginella released from the male gametophyte.
Adapted from "Plant Diversification" 2nd ed. 1977. Theodore Delevoryas. Modern Biology Series. Holt, Rhinehart and Winston. Redrawn from 'The Plant Kingdom' by William H. Brown. 1935. Ginn \& Co. (Xerox Company).

Figure 89 endosporic gametophytes
enervate (Gr. e-, without, nerve, vein) Lacking a midrib or costa. Synonym acostate,ecostate, and nullinervate. Opposite of nervate, and costate.
ensiform (L. ensis , a sword + forma , shape) Sword-shaped. With a length: width ratio greater than 12:1 e.g. the frond outline of Blechnum discolor. Pteris ensiformis (exotic fern). Leaf shape term.
entire (L. in, not + teger, f. tag- , tangere, touch f. integer, untouched, whole) With a smooth continuous margin, not toothed, divided or lobed in any way. Integer - having no kind of marginal division \& integerrimus (quite entire) perfectly free from division of the margin (Stearn-'Botanical Latin')
entomochory (Gr. entomos, insect f. en + temmnos cut up (referencing the way insect bodies are divided) + -chore f. khoreo, to move) Dispersal of seeds, spores etc by insects or invertebrates in general. A form of zoochory (animal dispersal).

Eocene The geologic time epoch following the paleocene epoch from 56 to 34 million years ago. Included in the Paleogene period (formerly Tertiary period).
ephemeral (Gr. ephemeros, of the day, f. epi, on + hemera, day) A plant with a very short life cycle (subannual) or plant part that does not exist for very long. Compare: annual, biennial and perennial. See also marcesent : ephemeral but with persistent remains.
epidermal excrescence (epidermal + Gr. ex-f. exo- outside +crescere, grow) Surface outgrowths other than hairs or scales (vestiture), surface patterns and secretions of the epidermis (skin). Secretion related terms include glandular, shining through waxy coating (nitid or laevigate) and sticky:- viscid or glutinous, Terms related to epidermal outgrowths or protuberances include prickly (aculeate), farinaceous /mealy (scurfy -coarsly mealy or granular -finely mealy), muricate-having coarse, radially elongate, rounded protruberances, papillate- small nipple-like protuberances, tuberculate- having minute, rounded protuberances, verrucate or warty - having small wart-like protuberances and vesciculate-
having small- rounded bladder-like outgrowths and scabrate- bearing small firm sharp protuberances (or hairs) giving a rough surface like sandpaper. See vestiture which covers hairs and scales and leaf indumentum (covering). Scaly or lepidote intergrades with epidermal excrescence characters.
epidermis (Gr. epi, upon + dermis, skin) The outermost layer of cells of an organ (leaf, stem, young root) usually only one cell thick. adj. epidermal. The epidermis serves to provide mechanical protection of inner tissue and control water loss. The presence of cutin - a polymer of fatty acids, acts as the sealant. Pores in the epidermis called stomata allow the entry and exit of gases. For epidermal surface patterns see epidermal excrescence and hairiness terms (vestiture).
epigeal/ epigeous (Gr. epi, upon, above geo, earth) Growing above but near the surface of the ground (e.g., in moss mats at base of trees.). Gametophytes growing on the soil surface rather than underground and so usually photosynthetic. Synonyms: epiterranean, surficial. Contrast subterranean, hypogeal/hypogeous.
epipelic (Gr. epi , upon + pelo, clay, mud) Growing on mud. In New Zealand, the aquatic quillworts, Isoetes kirkii and I. alpina and the pillwort Pilularia novae-zealandiae could be described as epipelic, though they also grow on stony bottoms. See limicolous.
epipetiolar. (Gr. epi- , upon + L. petiolus: a little foot, leg f. pes , foot) With branches arising from buds on the petiole- footstalk of a leaf (stipe in ferns).
epipetiolar bud (Gr. epi- , upon + petiole + bud) Buds produced at the base of the petiole in some ferns such as Histiopteris incisa, Microlepia sp. and Hypolepis sp.

Figure 90 epipetiolar bud bat-winged fern Histiopteris incisa (Moran - Michel and Beitel (1988))
epilithic (epi- , on top of, + lithos, rocks).) Growing on rocks. Synonyms: epipetric, lithophyte, petrocolous, rupestral, and saxicolous). Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte. See also chasmophyte.
epipetric (epi-, on top of, L. petra stone, rock, f. Greek pétra, stone, rock). Growing on rock (synonyms epilithic, petrocolous, rupestral, and saxicolous. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte.
epiphyllous (Gr. epi- ,upon + phyllos: , leaf)) Borne on or growing on leaves. Some algae,bryophytes and lichens do this. See foliocolous.
epiphyte (Gr. epi ,upon + phyton a plant) - A plant growing on (but not parasitic on) another plant for support. adjective. A perching fern or lycophyte, e.g. Davallia tasmanii, Lycopodium varium, Tmesipteris spp. . Some epiphytes may also grow on rocks (see rupestral etc). Synonym aerophyte, perching plant.

Epiphyte and climbers on a tree

'A Living New Zealand Forest: A community of plants and animals'. 1992. Robert Brockie. David Bateman Ltd

Figure 91 epiphyte
epispore (Gr. epi- , upon+spore, a seed) Another name for perispore. An outer layer of the exospore found in some species.
epitactic (Gr. epi- , upon + taxis, I arrange,order) With sori borne on the apical veins of an ultimate branch system of a lamina with catadromic branching (the first branch of a segment is given off toward the base of the lamina, pinna or pinnule). Compare paratactic and pantotactic. Terms mostly applied to filmy ferns- Hymenophyllaceae. See soral position.
equater (L. aequalis, aequus, equal), The circle, half-way between the poles, dividing a spore or pollen grain into two polar hemispheres.
equatorial dimension " E " The greatest equatorial axis, the distance across the equator of a spore or pollen grain, from one side to the other, measured from the equatorial view in trilete spores or equatorial longitudinal view in monolete spores.
equatorial longitudinal view In monolete spores, side view parallel to the laesura (dehiscience fissure).
equatorial transverse view In monolete spores, side view tangential or transverse to laesura (dehiscience fissure)
equatorial ridge Ridge extending around the circle mid-way between the poles; a ridge circling the equater dividing the spore into two prominent hemsiphers.
equisetoid (L. horsetail genus Equistum + oid, like) Pertaining to a horsetail like feature e.g. sporangiophore characteristic of the horsetails and their extinct relatives. Synonym: arthrophytan.
erect Upright orientation. Similar ascending. Example tree fern trunk.
erose (L. erosus eaten away, gnawn, from erodere to erode) Of a margin, finely and irregularly eroded or incised as if chewed.
estuarine Pertaining to estuaries or river mouths, usually brackish conditions.
eucamptodromous (L eu- , well, good, true + camptodromous - Gr. kampe, to bend, L. campto-, bent, curved f. kamptos, flexible + dromos, running, racecourse)) Pinnate, camptodromous leaf venation pattern in which secondary veins do not terminate at the margin, curving upwards near the margin but not directly joining adjaceant secondaries.
euphyll (Leu- , well, good, true + Gr. phyllos, leaf) Leaves that developed evolutionarily from threedimensional branching systems of early (Devonian) vascular plants; also known as a megaphyll. Leaves borne by ferns and the seed plants and their extinct relatives, distinct from the microphyll (or lycophylls) of the lycophyte clades. Characterized by a branching vein system and often petiolate. It is thought the leaves of horsetails are microphyll-like through reduction from megaphylls, as fossil forms bore megaphylls.. Compare microphyll. See telome theory.
eupteridian venation (f. fern genus Eupteris, now Pteridium bracken) A venation pattern of the Ctenopterian form (pinnate) in which the secondary veins leave the midrib at an angle intermediate between the acute angle of the Sphenopteridian type and the right angle form of the Taenopteridian type.

Figure 92 eupteridiun venation (Mettenius German botanist 1823-1866)
eusporangiate (Leu-, good, true + sporangium) With the sporangial wall more than one cell in thickness, originating from several cells in the sporophyll leaf tissue. Distinguishes, a major clade of ferns - the eusporangiate ferns from the leptosporangiate ferns. The lycophytes and seed plants are also eusporangiate the presumed ancestral state in vascular plants. Compare leptosporangiate. See diagram below.

Greek eu- "good or true" + sporangium "spore vessel". Here the sporangium develops from a series of superficial parent cells and internal cells (i.e. a group of cells) called "initials" of the sporophyll (spore bearing leaf). Here the eusporangium develops a wall two or more cells thick from the superficial cells and the sporogenous tissue from the internal cells. At maturity the inner wall layers and tapetum may be crushed. The sporangium characteristically produces many spores ($100-1000$). Eusporangia occur either singly or two or more are fused to form synangia e.g. Psilotum, Tmesipteris, Ptisana(Marattia) or they may be aggregated on a specialized sporophyll as a cone or strobilus e.g. Equisetum and some Lycopods.

superficial sporangial initial (single cell) divides periclinally

apical cell

tapetum develops from peripheral cells of the archesporium

(b) Leptosporangium develepment

Greek leptos "thin" + sporangium. Here the sporangium develops from a single superficial parent cell or initial, which first produces a stalk and then a capsule. Each sporangium gives rise to a relatively small number of spores (typically 64). Leptosporangia usually occur in clusters -plural sori, singular sorus (Greek "dust") and may be protected by a flap of tissue called an indusium or a reflexed leaf margin (false indusium).

Figure 93 comparisom eusporangiate and leptosporangiate development
eustele (L eu- , true, good + stele, pillar) A stele, in which the primary vascular tissues are arranged in discrete strands around a pith; characteristic of seed plants - gymnosperms and angiosperms. Not in ferns or lycophytes. The monocotyledons (of the angiosperms) have a modified eustele called an atactostele (Greek, atacto- scattered, irregular, disordered + stele), in which the vascular bundles appear scattered in the ground tissue (ground meristem) so there is no distinct pith.

Figure 94 eustele
evanescent (Fr. f. evanescent f. e- + vanescere, vanish) Short-living, shrinking, falling. See ephemeral and marescent.
evergreen Retaining green leaves throughout the year. Leaves are shed and replaced gradually, not all at once. Opposite: deciduous. The majority of New Zealand native ferns are evergreen; a few e.g. annual fern Anogramma leptophylla are deciduous as are a number or naturalized exotic ferns - e.g. Dryopteris filix-mas.
exannulate (L. ex- out of + annulus) Lacking an annulus, as in the eusporangiate ferns and water ferns (Salvinniales) and lycophytes..
exarch (Gr. ex-, out of + archaein, to be first) Differention of primary xylem centripetally. The first formed protoxylem forms towards the centre of stem or root axis, the later metaxylem on the outside.

exarch: (Gr. ex-, out of + archein, to be first)

Endarch: (Gr. endon, within + archein, to be first)

Mesarch: (Gr. mesos, in the middle + archein, to be first)
Some common patterns of primary xylem differentiation from procambium. Protoxylem cells form first (hence the "arch" which here means first point of origin) are small, metaxylem cells are large and thicker walled. Synchronous type, consisting of metaxylem only not illustrated.

Centrifugal from Greek kentron centre + fugo to fly from
Centripetal from Greek kentron centre + Peto, petere to seek

Protoxylem: The first-differentiated primary xylem, usually in a region where the organ is increasing in length.
(Gr. protos, first + xylem f. xylon, wood).
Metaxylem: The primary xylem that differentiates from procambium after elongation of the organ has ceased and after the protoxylem has matured. (Gr. meta-, beyond, after + xylem).

Modified from 'Morphology of Plants and Fungi' 4th ed. 1980. Bold, Harold C., Alexopoulos, Constantine J., and Delevoryas, Theodore. Harper International Edition

Figure 95 exarch xylem differentiation
excrescence (L. ex- out of + crescere, cret-, grow) Outgrowth from the surface.
excurrent (L. Ex- out of + currere, curs-run) Having the vein extend beyond the apex of a segment as a sharp point (mucro). Tmesipteris sp..
exindusiate (L.ex- , without + indusium) Lacking an indusium. Sorus or sporangium is said to be naked. Opposite of indusiate - possessing an indusium. The fern family Polypodiacea are exindusiate, while Aspleniaceae are indusiate.

Sporangia on pinna of Hypolepis ambigua the sporangia arranged in clusters (sori) on either side of midrib on the underside of leaflets, not all sporangia within each sorus are at the same stage of development. The sori not or hardly protected by green reflexed laminal flaps. Essentially exindusiate or with what could be called a false indusium.
'Plants: A Scanning Electron Microsscope Survey' 1973.
Troughton, J. H. \& Sampson F. B. . John Wiley \& Sons Australasia Pty Ltd

Figure 96 exindusiate Hypolepis
exine: (L. ex- , without + in- fibrous tissue, f. Gr. in-, is, tendon, or L. extimus, outside +ine) Outer layer of a spore wall , pollen grain (or second layer, if perine is present). It is very resistant to decay due to deposition of sporopollenin within. Also known as the exospore (fig.90). The exine itself has layers -an outer sexine (sculptured exine) and an inner nexine (non sculptured exine).. Intine is the inner layer of the spore wall.
exmedial (Lex- , without + medial, middle) Located away from the middle. Opposite of admedial. See soral position.
exospore (L ex-, without + spore) or exine (1) The outer layer of a fern spore or pollen grain; it consists of several layers and may be pitted or bear canals . (2) Apically abstracted spores in cyanobacteria (bluegreen algae). (3) The outer layer of a zygote (cyst) of some algae and fungi.

Figure 97 exospore
exserted (L. exsertus , thrust forward, protruding, projecting) Protruding beyond the surrounding parts. Sticking out or projecting beyond. Example the receptacle (stalk) of Trichomanes spp. extends beyond the indusium at maturity. Opposite included.
extraradicle hyphae/mycelium (L. extra- outside +radix, root) The fungal filaments(hyphae) that make up the fungal body in the soil outside the roots. These aquire nutrients, propagate associations with plant roots and produce spores and other structures. Compare intradicle hyphae/mycelium.
extrorse ((L. exstra-, outside + versus, towards) Directed or bent outward. Opposite of introrse, turned or bent inwards or towards the center. Compare also antrorse, facing towards the tip, and retrorse, facing away from the tip.
exudate (Ex- + sudare, sweat)) A liquid, resinous or gelatinous substance excreted by a plant organ.
facilitation (L. facilis, easily done, f. facere, do) Positive interaction amongst plants; a process by which early pioneer species increase the establishment and survivial of later successional species, e.g. a moss species favouring a fern species, a tree fern favouring establishment of epiphytes.
facultative (L. facultas, ability, power) Not essential, not restricted to,able to exist without. Opposite of obligate.
falcate (L. falcula, a small sickle, pruning hook) Scythe or sickle shape: curved and tapered toward tip, e.g. Blechnum montanum, Pellaea falcata (sickle fern), Cyrtomium falcatum.. Synonym: seculate.
false indusium (False + indusium) A covering over the sorus formed by a reflexed leaf margin, characteristic of many genera in the Pteridaceae such as Adiantum, Cheilanthes, and Pellaea. Some ferns possess both a false and a true indusium e.g. Pteridium esculentum.
false veins Rows of thickened epidermal cells in a leaf/leaflet which are not part of the vascular system, as in some genera of the Hymenophyllaceae. Or a thinned area of the lamina that is translucent and resembles a vein as in Davallia. Also known as falsinervis.
family Rank in the taxonomic hierarchy consisting of a group of related genera: plant family names end with the suffix- -aceae e.g. Pteridaceae. The rank is above the rank of genus.
farina (L. farinosus mealy, f. L. farina, meal) A white, or yellow mealy or flour like covering, as on the fronds of Cheilanthes farinose. Adjective farinise.
fascicled (L. fasiculus: a little bundle or package, a bouquet)) Arranged in bundles or clusters, as the stipes of some ferns.
fastigiated, fastigiate (L. fastigo , to bring or raise to a point, to elevate) With stems or branches more or less erect and close to the axis. Lycopodium fastigiatum.
faveolate (L. favus, honeycomb) Forming a honeycomb pattern. Seed, spore or pollen wall sculpturing.

female gamete See egg.

female sex structure The archegonium borne on the gametophyte or prothallus. Produces the egg cell (female gamete). Compare antheridium the male sex structure.
fen A habitat that is wet with running water, neutral in pH , relatively nutrient rich, and well aerated. A type of wetland that accumulates peat deposits. Fens are less acidic than bogs, deriving most of their water from groundwater rich in calcium and magnesium. Over time may transition in a form of succession from rich fen to poor fen to bog.
fenestra or fenestrae (L. fenestra, an opening in a wall to admit the light. A window) Windows, holes.
fenestrate: (L. fenestra, an opening in a wall to admit the light. A window) Pierced with small window-like openings or holes called fenestra or fenestrae,.
fern allies Vascular plants that reproduce by liberating their spores and having a life cycle like that of true ferns with mostly independent gametophytes and sporophytes; but differing in how they bear their sporangia and by having small leaves with simple, unbranched veins (microphylls) versus the megaphylls of true ferns.. Living familes of fern allies are the Equisetaceaea, Isoetaceae, Lycopodiaceae, Psilotaceae, and Selaginellaceae. The term "fern ally" is now obsolete because it has been shown that the Equisetaceae (horsetails) and Psilotaceae (whisk and fork ferns) are ferns, and ferns are more closely related to seed plants than to the lycophytes :- Isoetaceae (quillworts), Lycopodiaceae (club mosses) and Selaginellaceae (Club mosses). The two evolutionary lines split over 400 million years ago. The grouping of ferns and fern allies as pteridophytes is thus polyphyletic and one of tradition and convenience. Compare Monilophytes and Lycophytes (Microphyllophyta). A pteridologists studies both monilophytes (real ferns) and Lycophytes.
ferruginous (L. ferrugo ,iron rust) Rust-coloured. Rusty filmy fern Hymenophyllum frankliniae formerly regarded as H. ferrugineum a South American species.
fertile (L. fertilis, capable of producing fruit) Of fronds capable of bearing spores Synonym sporophyll. In some ferns there are separate fertile and sterile fronds -the latter also known as a trophophyll. Producing spores capable of germination synonym viable..
fertilization (L. fertilis, capable of producing fruit) The act of union of the sperm and the egg cell in the archegonium. The union of male and female gametes which are haploid. The result is the zygote, fertilized egg, the start of the diploid sporophyte generation.
feuillettes (French A puff pastry case with a sweet or savoury filling, f. flakey) Plates of material which make up layers of the exospore.
"FEVs" (freely ending ultimate veins of a leaf) Included veinlets within a reticulately veined leafs areola's. They maybe absent, simple unbranched -straight or curved, or branched one or more times.
fibbonachi series (Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book Liber Abaci), In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1 , although some authors omit the initial terms and start the sequence from 1 and 1 or from 1 and 2 . Starting from 0 and 1 , the next few values in the sequence are: $0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$ The appear in biological settings, such as branching in trees, the arrangement of leaves on a stem, the fruit sprouts of a pineapple, the flowering of an artichoke, an uncurling fern, and the arrangement of a pine cone's bracts.

Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same recurrence relation and with the Fibonacci numbers form a complementary pair of Lucas sequences.

Phyllotaxy (Leaf Arrangement) and Fibonnacci

Diagrams (a-c) from 'Bellamy on Botany' 1972. David Bellamy. BBC
(d) from 'mathematics of Life: Unlocking the secrets of Existence' 2011. lan Stewart. Profile Books

Figure 98 phyllotaxy

PHYLLOTAXY (synonym DISPOSITIO)				
RANK = NUMBER OF LEAVES IN EACH CYCLE, OR THE NUMBER OF PERPENDICULAR RANKS (ORTHOSTICHIES). (Indicated by the denominator)	FRACTION	NUMBER OF TURNS MADE ROUND THE STEM BY THE SPIRAL LINE IN COMPLETING ONE CYCLE OR SET OF LEAVES (Indicated by the numerator)	NUMBER OF ORTHOSCTICHIES (STRAIGHT LINES BETWEEN LEAVES IN VERTICAL ALIGNMENT (Indicated by the denominator) \& LEAF NUMBER THAT STANDS OVER THE FIRST LEAF	ANGLE OF DIVERGENCE (Divide the number of turns in a cycle by the number of leaves passed on the way, or by the number of orthostichies. $\times 360^{\circ}$)
Two -Ranked Three - ranked Five-ranked Eight- Ranked Thirteen - Ranked	$\begin{gathered} 1 / 2 \\ 1 / 3 \\ 2 / 5 \\ 3 / 8 \\ 5 / 13 \\ 8 / 21 \\ 13 / 34 \end{gathered}$	One One Two Three Five Eight thirteen	(2 orthostichies) $3^{\text {rd }}$ leaf over first (3 orthostichies) $4^{\text {th }}$ leaf over $1^{\text {st }}$ (5 orthostichies) $6^{\text {th }}$ leaf over $1^{\text {st }}$ (8 orthostichies) $9^{\text {th }}$ leaf over first (13 orthostichies) $14^{\text {th }}$ leaf over first (21 orthostichies) $22^{\text {nd }}$ leaf over first (34 orthostichies) $35^{\text {th }}$ leaf over first	$\begin{gathered} 180^{\circ} \\ 120^{\circ} \\ 144^{\circ} \\ 135^{\circ} \\ 138.5^{\circ} \\ 137.14^{\circ} \\ 137.6^{\circ} \end{gathered}$
The Lucas Numbers Pattern (Numbers 1, 3, 4, 7, 11, 18, 29, 47, 76, 123) example four petals of Fuchsia flower				
Ratios =Pairs of numbers of spirals		$\begin{gathered} \text { Angle -converges } \\ \text { to } 99.5^{\circ} \\ \hline \end{gathered}$	example	
$\begin{aligned} & \hline 1 / 3 \\ & 3 / 4 \end{aligned}$				

$4 / 7$			
$7 / 11$			
$11 / 18$			
$18 / 29$			
\cdots		 29 ribs Echinocactus sp. 47 and 76 spirals in sunflowers	

fibrillose (L. fibra, a filament) With thread like fibres or scales.
fibrose (L. fibra, a filament) Composed of, or resembling fibres. Dicksonia fibrosa
fiddlehead A popular term for a fern crozier , koru (Maori), monkey's tail. A Young fern leaf coiled in bud. See circinate venation. Contrast non-circinate vernation.
filamentose (L. filatim: , filum, a thread) Hair-like. Bearing filaments.
fid -fid (L. -fid f. -fidus, f. findere, to split, cleave) Cleft or lobed. See pinnatifid, palmatifid. Hymenophyllum multifidum much-divided filmy fern.
filament (adjectective filamentous) (L. filatim, filum, a thread) Thread-like row of cells attached end to end, usually uniseriate, long and sometimes branched.
filamentous (L. filatim, filum, a thread) Composed of filaments, thread-like. Some fern gametophytes are filamentous rather than thalloid.
filicetum (L. filici , fern) A fernery, place for growing ferns.
filici- (L. filici , fern) Prefix from the Latin for fern hence Filicopsida the order of true ferns and the fern Dryopteris felix-mas. Equivalent to Greek pteris.

Filicopsida or Filicales (L. filici , fern) The leptosporangate ferns, also known as PolypodiopsidaLeptosporangiatae. The bulk of ferns sometimes called true ferns. See leptosporangium.
filiform (L. filatim, filum, a thread + forma, shape) Thread-like, long and slender. Synonym: filamentous. Compare capillary- hair-like and therefore more delicate. Icarus filiformis syn. Blechnum filiforme, Thread or climbing hard fern.
filmies Informal collective name for the filmy ferns, family Hymenophyllaceae.
filmy Thin and membraneous, nearly translucent.
fimbria (L. fimbriae , fringe, border, edge) The fine hair-like fringes of a scale. Hence fimbriate.
fimbriate (L. fimbriae , fringe, border, edge) Of a margin, fringed with fine hairs (fimbria).
flabellate (L. flabellum fan) Fan-shaped. Fan-like filmy fern Hymenophyllym flabellatum, Asplenium flabellifolium.
flabelloid scale (L. flabellum fan +oid- resembling + scale) Or marginate scale.In tree ferns (genus Cyathea subgenus Cyathea) scales at the base of the stipe that are relatively broad with a marginal layer of fragile, shorter cells which turn outwards from the main body of of elongate coarser cells. In some species the fragile marginal cells terminate in short setae (bristles). Contrast setiferous scale.
flaccid (L. flaceo . flabby, to droop, flags) Soft, limp, lax. Asplenium flaccidum, Drooping or Hanging spleenwort.
flagelliform (L, flagellum, diminutive of flagrum whip+ + forma, shape)) Long and whip-like.
flagellum (L. flagellum, diminutive of flagrum whip;) A whip-like, motile hair.
flange (connected with Fr. flank) A projecting flat edge.
flexible (L. flexus , bending, turning, winding) Easily bent but recovering the original form.
flexuose (L. flexus, bending, turning, winding) Wavy or zig-zag
floccose (L. floccus a lock or flock of wool) Covered with soft tangled woolly hairs in tufts.
flora (L. floris, a flower) (1) The vegetation, plant species or plant populations of a given region (2) also a book systematically detailing with the plant species of an area.
flush A period of rapid vegetative growth.
fluvial (L. fluvialis, belonging to a river) Occurring in rivers and streams or associated with them e.g. on the margins (banks). Azolla filiculoides (slow flowing), Equisetum fluviatile, Cranfillia fluviatilis syn. Blechnum fluviatile.
foetid (L. fetidus (commonly, but incorrectly, foetidus , stinking, f. fetere "have a bad smell, stink.") With a stinking offensive odour.
foliaceous (L. folium, leaf) Leafy.
foliar (L. folium, leaf) Pertaining to the leaves.
foliocolous (L. folium , leaf +-colous) Living on leaves e.g. some lichens or mosses living on plant leaves. Synonym epiphyllous.
foot Area of cells by which the embryo attaches to the gametophyte (prothallus) and receives nutrition, acting as a haustorium or placenta in the early stages of the development of the sporophyte. See gametophyte illustration.
forked Divided into two equal branches (isotomous)arising at a common point on an axis. If unequal anisotomous. See dichotomous, bifurcate and furcate.
fossulate (L. fossa, a ditch) Grooved, cavities elongate and regular or irregular, but not anastomosing. Connected to the word fossil, by the digging link.

forest stratification

Profile of a ridge crest transect at Maungataniwha, Northland, including a patch of smaller trees that have grown up in a canopy gap
(Dawson \& Sneddon 1969). Abbreviations for profile diagrams in conifer/broadleaved forest: Ap, Asplenium polyodon; Ar, Ackama rosifolia; As Astelia solandri; Br, Beilschmiedia tarairi; Cd, Cyathea dealbata, Cg, Coprosma grandifolia; Ch, Collospermum hastatum; Cj, arpodetus serratus; Dc, Dacrydium cupressineum; Dq, Dicksonia squarrosa; Ds, Dysoxylem spectabile; E, Elaeocarpus dentatus; F, Freycinetia baueriana; G, Geniostoma rupestre; Gu, Griselina lucida; H, Hedycarya arborea; Ma, Myrsine australis; Mav, Microlaena avenacea; Mb, Metrosideros robusta; Md, Myrsine divaricata; Mm, Mida salicifolia var. myrtifolia; Ms, M. salicifolia var. salicifolia; Mp, Metrosideros perforata; Or, Olearia rani; Pa, Pseudopanax arboreus, Ra, Rubus australis; Rs, Rhopalostylis sapida; V, Vitex lucens; Ws, Weinmannia silvicola.

Forest Stratification in a Northland Forest (adapted from 'Vegetation of NewZealand' 1991. Wardle, Peter. The Blackburn Press.)
Figure 99 forest stratification
fovea (L. fovea, a small pit, the womb) Pit or depression containing the sporangium in the leaf base of the quillwort Isoetes. Concave space for the sporangium.

Plant structure Isoetes
Figure 100 fovea Isoetes
foveate and foveolate (L. fovea, a small pit, the womb + ate) Seed coat, pollen or spore wall sculpturing with a pitted surface. Similar to punctate- covered with minute, pitlike depressions.
form (L. forma, shape) A minor botanical division below the level of variety, within a species.
Abbreviation f . No New Zealand fern examples but native herb Mazus novaezelandiae subsp. impolitus f . impolitus and Mazus novaezelandiae subsp. impolitus f. hirtus.
fractflex (L. fracti- frango ,break, shatter + flex L. flexus, past participle of flecto to bend) In intermittent zig-zag lines.
free Not joined to any other part. Unattached end of an organ or structure.
free veins (or open veins) Means simple or forked but without uniting branches. See venation patterns.
frond (L. frona, frons, the leaf) The whole leaf of a fern, palm or cycad, including the lamina (blade) and the stipe or petiole. The lamina often much divided (compound). Fern fronds or leaves have both a photosynthetic function and a reproductive function either combined in one frond (monomorphic fronds) or in the case of ferns with dimorphic fronds producing separate fertile and sterile fronds called sporophylls (fertile frond) and trophophylls (= sterile frond).
frond dissection /division Fronds can be simple and undivided, pinnate (once divided), bipinnate (2 x pinnate), tripinnate ($3 x$ Pinnate) and up to $8 x$ pinnate. The leaflets are termed pinna pl. pinnae , primary division (1° pinna), pinnule for the secondary division (2° pinna), and some botanists use the diminutive term pinnulet for a tertiary division (3° pinna), otherwise pinnule is used for the last complete leaflet division. The last division may itself be toothed or partially divided and termed pinatilobate, pinnatifid, pinnatipartite or pinnatisect depending on how deeply cut it is (or the palmate equivalent). The ultimate segments are the last, apical or terminal and smallest divisions of a blade.
frondlet (diminutive of frond) A segment of a divided frond = pinna, or leaflet.
fruit dot A popular term for sorus. Technically not a fruit at all only flowering plants have fruits.
fugacious (L. fugax inclined to flee, swift, from fugere to flee) Shed or withering away very early.
fulvous (L. fulvus reddish yellow, gold-coloured, tawny) Tawny-yellow or dull yellow.
funnelform (funnel + forma, shape) Shaped like a funnel.
furcate (L. furca:, a two pronged fork)) Forked. See also bifurcate - forked in two and dichotomous.
furfuraceous (L. furfur bran, scurf) With soft, minute, flakey or scurfy scales .
furrowed With longitudinal grooves or furrows. Such as a stipe.

ridged

furrowed

grooved

Figure 101 furrowed
fuscous: (L. fuscus dark,) Dusky, blackish. Fuscospora (Nothofagus) fusca - Red Beech.
fused Joined and growing together, e.g. sporangia fused together termed synangia.
fusiform (L. fusus, a spindle + forma: shape) Spindle-shaped, swollen in the middle and tapering to both ends.
fusion-sorus (fusion + sorus) See coenosorus.
gamete (Gr. gametes, a husband, and gamete, a wife, gamos, marriage) The female and male sex cells (egg and sperm) that unite at fertilization to form the zygote. These cells are produced by mitosis, in the gametophyte sex organs (gametangia: archegonia and antheridia), not meiosis as in animals. The gametophyte is already haploid (1 n) and grew from a meiospore produced by the sporophyte in a sporangium where meiosis occurs.
gametangium pl gametangia (Gr. gametes, a husband, and gamete, a wife, gamos, marriage + angeion, a vessel) Organ producing gametes. In ferns the antheridia (male gametangia) producing sperm and the archegonium (female gametangium) producing the egg.
gametophyte (gamete + Gr. phyton, plant) Gametophyte or prothallus- plant or generation that bears gametes (sperm and egg cells) during the sexual life cycle. In ferns, a small, usually flat plant (thalloid) bearing the minute sex organs; (archegonia and antheridia) that in turn produce the gametes; each cell in the body of the gametophyte is haploid (1n). The archegonia produce the egg, while the antheridia produce the sperm. The gametophyte grows from a haploid spore (meiospore) produced by the sporophyte. Sperm from the antheridia (of another gametophyte:- in life cycle diagrams self fertilization is usually depicted) swim across the surface of the gametophyte to the flask shaped archegonia and there fertilize the egg cells. Cell division from spore germination to mature gametophyte and production of gametes (sperm and eggs) is by mitosis.

The fertilized egg cell - zygote which is diploid (2n) represents the start of the sporophyte generation. The zygote grows into an embryo, which may still receive nourishment from the gametophyte via a placental foot. The gametophyte withers and dies leaving the sporophyte to lead an independent existence. In lycophytes the gametophyte is often tuberous and partly or wholly underground - in the latter case the plant is totally dependent on a mycorrhizal fungus for nourishment (see achloromycoheterotrophic). In the heterosporous water ferns (Salvinniale), and lycophytes (Isoetales - Selaginella and Isoetes) - there are separate male and female gametophytes called microgametophytes and megagametophytes
respectively. Here the minute gametophytes develop entirely or mostly within the original spore wall, a condition known as endospory (inside the spore).

In leafy bryophytes it is the gametophyte that bears leaves (called phyllids); in ferns, lycophytes and seed plants it is the sporophyte that bears leaves.

Early development of the gametophyte or prothallus in the fern life cycle. The sexual generation that produces gametes: egg and sperm.

Mature prothallus (gametophyte) with thickened archegonial cushion bearing archegonia (female sex organs). Antheridia (male sex organs) are developed outside the cushion, where the prothallus is one cell thick.

Figure 102 gametophyte developing from spore

Figure 103 gametophyte (typical)

Figure 104 gametophyte with embryo

An assortment of gametophytes
(from various sources)
gametophytes range in size from pinhead to a few cm in diameter

Figure 105 gametophytes (various)
gap colonization Plant colonization of a gap in the forest caused by localized disturbance (tree fall) the plants taking advantage of changes in light levels or soil disturbance. In many rainforests, tree ferns are gap colonists that form a lower canopy between and under larger trees, as long as the overstory does not become so dense that shade inhibits growth.
gastropodochory (+ -chore f. khoreo, to move) Dispersal of seed or spores by snails and slugs. A form of zoochory (animal dispersal).
gelatinous (L. gelatio, a freezing, or congealing) Jelly-like, of a slimy, clear sticky nature.
gemmiferous (L. gemma, bud +-ferous, bearing) Bearing asexual buds (gemmae) or bulbils e.g. Asplenium bulbiferum. Synonym gemmiparous.
geminate (L. geminus, twin, geminatus, doubled) Arranged in pairs, like twins (gemini twins).
gemma pl. gemmae: (L. gemma, bud) A vegetative bud, by which a plant propagates and disperses itself.
gemmiparous (L. gemma, bud + parere, to begat) Bearing vegetative buds. Synonym gemmiferous.
gemmiphore: L. gemma , bud + phoreus, bearer). A structure bearing gemma.
gene (Gr. genos, race, stock) A unit hereditary factor (DNA) located in a linear order on a chromosome that determines the inheritance of a particular character.
generalist A plant that is tolerant of a wide range of habitats. Opposite of specialist.
genet (Gr. genos, race, stock) Sexually produced, genetically unique plant individual -sporophyte that develops from a fertilized egg (zygote). The opposite of ramet- a vegetatively produced plant individual that may detach from the gentetically identical parent e.g. the bulbil type asexual reproduction of Asplenium bulbiferum.
geniculate ((L. genu , the knee) Bent like a knee.
genus pl. genera (Gr. genos, race, stock) Rank in the taxonomic hierarchy consisting of a group of related species. Examples of genera include: Adiantum, Blechnum, Cyathea, Pteridium. The genus name plus the specific epithet provides the scientific/botanical name of a plant species in the binomial system. Genera are included in the next highest taxonomic rank the family. See classification.
geophyte (Gr. ge-, earth + phyton , plant) A plant well anchored in the soil cf. hemicrytophyte. Bulbs and corms are geophytes. Raunkier Danish botanist.
geothermal areas In New Zealand areas of the earths surface that receive heat from underground geolgical sources, such areas have a warmer microclimate, enabling species of an otherwise tropical to subtropical distribution to grow, nearby. Examples Christella dentata, Cyclosorus interruptus, Nephrolepis sp. .
germination (L. germinare, to sprout) The resumption of growth by a spore, seed or other propagule, after a period of dormancy.
germination furrow A term for the laesura (tetrad scar), a line of weakness in the spore wall, through which a spore commonly germinates.

Example of trilete mark or laesura functioning as germination furrow

Figure 106 germination furrow
gibbous (L. gibbus: crouched, hunched) Humped or swollen on one side.
glabrate (L. glaber: without hair, bald, smooth) Smooth and lacking hairs or scales.
glabrescent Becoming glabrous. or nearly glabrous.
glabrous (L. glaber: without hair, bald, smooth) Without hairs or scales - smooth, e.g. Hymenophyllum bivalve, Parapolystichum glabellum syn. Lastreopsis glabella
gland (L. glans acorn) A structure with a secretory function, embedded or projecting from the surface of the plant. Often club-shaped,or globular.
glandular Having glands or functioning as a gland.
glandular hair Hair with a swollen head that secretes oil or some sticky substance.
glaucescent Slightly glaucous or becoming glaucus
glaucous (L. glaucus , bluish, grey) With a distinct, waxy bloom which gives it a bluish grey appearance.
Gleichenoid Ferns Members of the Forking Fern or Umbrella fern group: Gleicheniales, family Gleicheniaceae represented in NZ by Dicranopteris linearis, Gleichenia dicapra, G. microphylla and Sticherus cunninghamii.
globose (L. globosus: spherical) Almost spherical. Globe-like.
glochidium (Gr. glochid , the point of an arrow) A small barbed hair or spine, e.g. in Azolla.

Azolla sp.

Figure 107 glochidium Azolla
glomerule (L. diminutive glomer-, glomus ball;) A very dense cluster. Ball-like.
glossy Smooth and shining. Fronds of Asplenium oblongifolium syn. A. lucidum - shining spleenwort. glutinose ((L. gluten, glue)) Covered with a sticky exudate.
gossypinus/gossipinus also known as cottony (from cotton) With long soft, weak, filamentous hairs, somewhat flocculent and entangled. Latin from the cotton of Gossypium seeds.
gradate Said of sorus with the younger sporangia at the apex and the older ones lower down (basipetalous) or the reverse (acropetalous). Contrast mixed. Synonym sequential.
grammitid Ferns usually epiphytic or rupestral, closely related to Grammitis within the family Polypodiaceae.
granular/granulate/granulose Appearing as if covered with very small grains, or more or less globular particles. Hence granulate. Applied for instance to a spore surface.
grooved Channeled or furrowed, having one or more longitudinal grooves or channels on an axis, such as stipes, rachises, costae. See furrowed.

Figure 108 grooved
growth form With ferns and lycophytes the following growth forms are found:- rossete, tufted or caespitose, creeping (short, medium or long), scrambling, climbing, tree fern, stoloniferous, tuberous, aquatic floating, aquatic emergent and submerged aquatic.. Similar to habit. See also rhizome.

Growth habit of ferns
Adapted from: 'Ferns in Peel Forest: A Field Guide' (1983). Brian Molloy. Department of Lands and Survey, Christchurch

Figure 109 growth habit of ferns
gumland (gum -kauri gum or resin) Tracts of infertile soils found in Northland and Coromandel Peninsula, with perched water tables, that contain kauri resin.

Profile of gumland vegetation near kaikohe (Esler \& Rumball 1975) reproduced in "Vegetation of New Zealand" 1991. Peter Wardle The Blackburn Press

Figure 110 gumland plants
gymnosperms The naked seed plants including- the conifers - such as New Zealand's podocarps, kauri and native cedars; the cycads, ginkgo's and gnetophytes. The seed (ovule) is not enclosed-hence naked. The angiosperms are the flowering plants with the seed enclosed in a fruit. The pteridosperms (seed ferns) are extinct polyphyletic paleozoic to Mesozoic seed plants. The ancestors of the angiosperms (flowering plants) derive from mesozoic pteridosperms
habit (L. habitus, the external aspect) The general appearance of a plant, not to be confused with habitat. Similar to growth form.
habitat (L. habitare, inhabit, dwell) The environment in which a plant grows. not to be confused with habit.
 surviving plants from mild erosion: Glossostigma less frequent here presumably because of shallow root system: D = zone of species able to withstand more marked erosion - Isoetes only: $\mathrm{E}=$ silty Elodea community.
'New Zealand Lakes' 1975. Edited by V. H. Jolly and J. M. A. Brown.
Auckland University Press/ Oxford University Press

Figure 111 habitat Isoetes
hair A slender epidermal appendage either unicellular or multicellular (pluricellular) consisting of a single row of cells (uniseriate and septate)or multiseriate with more than one vertical row of cells.. Maybe erect, or appressed, branched or unbranched, tangled, glandular, hooked, stellate, dendritic, bristly. Synonym : trichome. Vestiture refers to the mass appearance of hairs e.g. tomentose. Compare scale.

Some authorities will differ in their definition, and there may be overlap and intermediates occur.

simple \& spreading hairs unicellular, erect straight

tangled hairs if short tomentose if long lanate or villous

branched (ramous) multicellular Gleicheniaceae

hooked hairs (uncinate)

septate hairs multicellular, uniseriate

hairs on raised protuberances

glandular pilate (cap-headed)
hairs clustered in fascicles

dendrite hair
branching with tree-like form

stellate (star-shaped) hairs sessile -not stalked

stellate \& stalked

glandular stalked capitate (head bearing)

bristles (setae) similar to hairs or trichome but stouter may intergrade
 malpighi two-armed
bifurcate or dichotomous
 branching pattern
biramous hairs
(two-branched)
Bristles and hairs

Figure 112 bristles and hairs
hairiness Synonym vestiture, trichome cover, pubescence (broad sense).
hairiness terms (vestiture) A number of terms describe hairiness, some intergrade or can be treated as synonymous, scales are broader, multicellular and multiseriate, though some are hair-like. Protruberances (prickles, papillae, tuberculae, vescicles and murae).are covered under epidermal excrescence:
absence hairs: glabrous/glabrate (usually smooth)and subglabrous- nearly glabrous.
adpressed/appressed Lying flat against the surface. Opposite of erect ,spreading or upright.
arachnoid/archnose Covered with white,entangled hairs, forming a cobwebby mass.
barbate Bearded with long tufts of hair
ciliate \quad Bearing fine hairs on the margin.
comose
echinate Hairy, bearing an apical tuft of hairs.
Roughened by firm, bristly hairs or prickles
ate \quad Of margin, fringed with fine hairs (fimbria).
floccose Covered with soft tangled woolly hairs that fall off in tufts.
hirsute Bearing coarse rough relatively long hairs.
hispid Clothed with short stiff hairs or bristles.
lanate Wooly, covered with long, soft,crooked hairs.
lepidote Covered with scales
pilose Clothed with soft, straight to slightly shaggy hairs.
plumose Feathery
pubescent (1) Downy, clothed with short soft erect hairs. (2) Hairy in general.
sericeous Clothed with silky hairs.
strigose With stiff sharp slanting hairs, hair-like scales or bristles.
velutinous Covered with fine, soft, velvety, spreading hairs.
villose \quad Clothed with long (longer than lanate) soft hairs. Maybe irregularly twisted or curled.

Figure 113 hairiness terms (vestiture)
hairy Covered with hairs or producing hairs. Contrast a hairy stipe as in the tree fern genus Dicksonia with a scaly stipe as in Cyathea hence the mnemonic "hairy dick and scaly cy".
hair-like scale: Very narrow scale, $2-5$ cells wide at base and tapering to a long tip.
halophyte (Gr. hals, sea, salt+ phyton, plant) A plant which grows in saline soils.
haplodiplontic life cycle Life cycle having both a haploid (1n) and diploid (2n) phase, as in all land plants and corresponding to the gametophyte and sporophytes phases. Synonym alternation of generations, diplohaplontic life cycle, diplobiontic life cycle. In ferns and lycophytes,the spore, prothallus and gametes are the haploid phase, the zygote,sporeling, juvenile sporophyte, mature sporophyte are the diploid generation.
haploid (Gr. haploos, single or simple + oides, like) Having a single set of chromosomes (n or 1n) in the nucleus a condition, characteristic of the gametophyte generation, the gametophyte or prothallus, the gametes (egg and sperm) and the spores produced by the diploid sporophyte by meiosis (reduction division). Compare with diploid, polyploid.
harsh See Asperous (L. asper rough) Rough to touch.
Hartig net The nutrient-tranfer structure (network of hyphae) formed by ectomycorrhizal fungi that weaves between the outer cortical cells in plant roots or outer epidermal cells in angiosperms. The hyphae although inside the root (intraradicle hyphae) they do not penetrate the cells so ecto- outside.
hastate: (L. hasta ,a spear) Spear-shaped; or arrow-head shaped of a leaf blade, narrow and pointed but with two basal lobes spreading laterally.
haustorium (L. haustor, a drawer, f. haurire, haustum, to draw, to drink) A specialized organ or organelle through which a parasite absorbs nourishment from its host. In ferns the foot of the sporophyte embryo temporarily acts as a haustorial organ attached to the gametophyte.
helicoid (Gr helikoeides f . helix, a spiral ++ oides, like) Branching repeatedly on the same side. In Adiantum, applied to anadromous fronds in which basal basiscopic pinnae are well-developed (i.e. pinnate), but corresponding acroscopic pinnae are reduced to simple pinnules. The stipe thus appears to branch dichotomously into two helically curved rachises, with pinnate pinnae apparently arising from their upper sides.
heliophilic (Gr. helios, sun + phílos, "love") Sun and light loving. Synonyms photophilous and photophilic. A "sun fern" e.g. bracken fern, Pteridium esculentum and pig fern, Paesia scaberula. The plant prefers open, well-lit places. Opposite of heliophobic, sciaphilous.
heliophobic (Gr. helios, sun + phobos, fear) Sun fearing, essentially Shade loving. Synonyms sciaphilous also spelt skiophilous, umbrophile or umbraticolous. Opposite of heliophilic or photophilous.
helophyte (Gr. helos, marsh + phyton , plant) Marsh-dweller. A plant growing in permanent or seasonaly wet mud e.g. Pilularia novae-hollandiae. See limicolous and epipelic.
hemicryptophyte (Gr. hemi-half + cryptophyte, f. crypto- hidden + phyton , plant) A plant rooting shallowly and poorly in soil; not well anchored. Perennating buds at soil surface level. See, cryptophyte, chamaephyte, geophyte and phanerophyte.
hemispherical (Gr. hemi- half + spherical) Half-sphere like.
hemitelioid indusium (f. genus Hemitelia, half-completed, f. Gr. hemi- half + telos, end) Tree ferns now in genus Cyathea (broad sense) that bear indusium that are usually half cup-shaped. In New Zealand Cyathea smithii has a indusium that has been described as hemispherical to nearly cup-shaped. Compare cyathiform indusium and sphaeropteroid indusium.
herb (L. herba, grass) Any vascular plant which is not woody.
herbaceous (L. herbaceous , grassy) Soft in texture; midway in thickness between membranous and coriaceous, usually applied to the lamina. Also referring to plants with the characteristics of herbs. All living ferns and lycophytes including tree ferns are technically herbs.
heteroblastic ((Gr. heteros, other, different + blastos , bud, sprout) With two or more distinct kinds of shoot. cf. homoblastic.
heteromorphic (Gr. heteros, other, different +-morphos, from morphē, shape) Existing in two or more easily distinguishable forms. Opposite of homomorphic. See dimorphic.
heterophilous (Gr. heteros, other, different + phyllos ,leaf)) Bearing fronds of more than one kind such as having leaves that are not uniform along a branch, e.g. in Huperzia, with long leaves in the lower portions and smaller reduced leaves distally. Compare homophyllous. Ctenopteris heterophylla.
heteropolar (Gr. heteros, other, different + polar) With different poles as when the extremities (poles) differ. In heteropolar spores the distal and proximal faces are distinctly different. Compare homopolar.
heterosporous (Gr. heteros, other, different + spora, seed) Producing two kinds of spores (male and female, or microspores and megaspores). Heterosporous fern and lycophyte genera include Azolla, Isoetes, Marsilea, Pilularia, Regnellidium, Salvinnia, and Selaginella. The microspore develops into the male gametophyte and the megaspore into the female gametophyte or prothallus often within or nearly within the confines of the original spore wall, hence endosporic.. Compare homosporous and anisosporous. Heterospory is regarded as a step in the evolution of the seed habit.

Homosporous spore production

Heterosporous spore production

Microspore x 100

Heterosporous

Megaspore x 100

Selaginella sp.

Modified from "Introductory Botany" Arthur Cronquist, 2nd ed. 1971, Harper Inernational Edition

Figure 114 heterosporous Selaginella

Life Cycle of Selaginella - A heterosporous Lycophyte

Modified from 'Introductory Botany' Arthur Cronquist, 2nd ed. 1971
Harper International Edition

Figure 115 heterosporous life cycle Selaginella
heterotroph (Gr. heteros, other, + trophe, nourishment) An organism that does not make its own food, depending on other organisms for nourishment e.g. animals and fungi. Some plants are heterotrophic either mycohetrotrophic (dependent on fungus for food) or as holoparastes on other plants. The gametophytes of some lycophytes and ferns are mycoheterotophic, the sporophytes photoautotrophic. Opposite of autotroph or photoautotroph.. See mycoheterotroph.
hirsute (L. hirsutus , bristly, shaggy) Bearing coarse rough relatively long hairs. cf. villous. Nephrolepis hirsutula (in New Zealand now N. brownii \& N. exaltata). See hairiness terms.
hispid (L. hispidus: rough, shaggy) Clothed with short stiff hairs or bristles. Adiantum hispidulum. See hairiness terms.
hispidulous (L. diminutive of hispidus: rough, shaggy) Minutely hispid. See hairiness terms.
hoary (Old English har , hoary, grey, old) Covered with short white hairs giving the surface a greyish appearance. Hairiness term.
holosaprophyte: (Gr. holos whole + saprophyte: (Gr. sapros , rotten, + phyton , plant) A plant which obtains its nutriment or energy entirely from dead organic matter with the aid of endophytic fungi. Also known as a achloromycoheterotroph meaning a non-photosynthetic (without chlorophyll), fungi (mycorrhizal) dependent, heterotroph or simply mycoheterotroph. The gametophytes of some ferns and lycophytes fit this category.
homoblastic (Gr. homo , same + blastos, bud, sprout) With one kind of shoot. cf. heteroblastic.
homogenous (Gr. homos, same + genos, kind) Uniform or relatively so.
homology (Gr. homos, same + logos, ratio) Similarity caused by the inheritance of a characteristic from a common ancestor hence homologous. Compare analogy.
homomorphic (Gr. homos, same +-morphos, from morphe, shape.) Having the same shape or form. Synonym isomorphic. Compare heteromorphic.
homophyllous: (Gr. homo ,same + phyllos , leaf) With all leaves uniform along a branch. Synonym isophyllous $c f$. heterophyllous.
homopolar (Gr. homos ,same + polar) In palynology, when poles are the same; the distal and proximal faces are the same. Compare heteropolar.
homosporous: (Gr. homos ,same + spora, seed) Producing only one type of spore from which develops a gametophyte producing both male and female gametes. Opposite of heterosporous.
hormone (Gr. hormaein, to excite) A chemical substance produced in one part of a plant and inducing a growth response, or process when transferred to another part.
horneophytaceae (After genus name of Hornea is in honour of John Horne (1835-1905), a Scottish botanist a name occupied by a flowering plant in the Sapindaceae -so fossil was renamed Horneophyton to correct the mistake) Very early (early Devonian age) polysporangiate plants (multibranched sporophytes with terminal sporangia) that lacked true vascular tissue and hence class as prototracheophytes. Precede the Cooksonia and rhyniophyte type plants, and intermediate between them and hornwort type plants.

Figure 22.6 (left). The hornwort Phaeoceros, showing gametophyte and sporophyte stages. Mature hornwort sporangia split into longitudinal strips, beginning at the tip and opening downward. Rhizoids, which anchor gametophytes to the ground, are not shown. Figure 22.7 (right). A longitudinal section through a hornwort (Anthoceros) sporophyte. Only the midportion of the sporophyte is shown, omitting the tip of the sporangium and rhizoids at the base. The tubular sporophyte is mainly an elongated sporangium. Sporophyte cells within the sporangium undergo meiosis to produce haploid spores. Other cells produce twisted pseudoelaters, which assist in the ejection of spores from the sporangium.
bryophyte clade
polysporangiates
Localization sporogenous tissue
distal position

Anthoceros type ancestor (Hornwort) unbranched sporophyte permanently attached to thalloid gametophyte

Rhyniophyte early Devonian Age plant

Hypothetical steps in the evolution of a Rhynia type sporophyte from a anthoceratan (hornwort) type ancestor
hornwort Anthoceratae "flower horn" both names from the horn-like sporophyte which is axial, elongate, cylindrical, long-lived (occasionally persisting after the death of the thalloid gametophyte).,stomatic and photosynthetic. The sporophyte has a basal, intercalary meristem so has indeterminate (potentially continuous) growth. They house nitrogen fixing cyanobacteria in gel-like lumps in cavities in the gametophyte thallus. Most species are unusual in having a single pyrenoid chloroplast in each cell. Nonvascular land plants similar to thalloid liverworts as opposed to the leafy liverworts and mosses. The third extant lineage of 'bryophytes' (liverwort/moss/hornwort clade). Studies indicate they are sister to the tracheophytes (vascular plants).

A hornwort compared with the extinct 400 million-year-old land plants Horneophyton and Rhynia.
Figure 117 comparisom hornwort and early vascular plants
humicolous (humus +-colous, inhabiting) Growing on humus (decaying organic matter).
humus (L. humus, the ground) Organic material resulting from the decomposition of plant leaf and branch litter, or forest duff in the ground or collected on branches or epiphytes. The uppermost soil horizon.
humus-collecting fronds Specialized overlapping or erect fronds that collect litter. See base frond, shield frond or mantle frond.
hyaline: (Gr. hyaleos , transparent) Transparent or translucent.
hybrid (L. hybrida, offspring of a tame sow and a wild boar) Offspring of two different species, nearly all fern hybrids are sterile, having aborted spores.
hydathode (Gr. hydro- f. hudor, water + hodos way) A water and or salt secreting gland on the surface or margin of a leaf; usually situated at the end of a vein e.g. in Grammitidaceae and some Davalliaceae. and often surrounded by a concretion of white salts; similar to a stoma but with functionless guard cells; popularly termed lime-dot.
hydrenchyma (Gr. hydro- f. hudor, water + + en- + chein to pour, an infusion) Water storing tissue in ferns such as Pyrossia consisting of large parenchymatous cells. In drought these cells shrink and the cell wall folds like the bellows of a camera, shrinking the thickness of the lamina, but maintaining the photosynthetic cells in a hydrated state for longer.
hydric (Gr. hydro-f. hudor, water) Habitat having an abundant supply of water. Compare xeric and mesic.
hydrochory (Gr. hydro-f. hudor, water + -chore f. khoreo, to move) Dispersal of seeds, spores, gametes and other propagules by water. Dispersal by sea (thallasochory), Dispersal by ice or glaciers (crystalochory).
hydroid (botany) (Gr. hydro- f. hudor, water + eîdos, form, likeness) Water conducting cells of some mosses e.g. Dawsonia sp. , with a central strand in their stems, setae, or leaf costa (midrib). They are narrow and elongate, dead and empty at maturity, conduct water and are analogous to (but not homologous to) the tracheid's of vascular plants. Unlike tracheid's they lack secondary thickening (lignin). Leptoids are comparable to phloem cells in these plants. See hydrom/hydrome.
hydrom or hydome (Gr. hydro- f. hudor, water + soma, body) The vasculature (specialized conducting tissue) of some mosses, found in the central strand, costa and seta which is analogous but not necessarily homologous with the xylem of vascular plants. Includes hydroids (narrow, elongate, empty cells that are dead at maturity,that resemble tracheids but are not lignified), conducting parenchyma and thick walled stereids. Compare leptome, parenchymatous cells (leptoids) that function as phloem cells conducting photosynthates in these plants.
hydrophilous (Gr. hydro-f. hudor, water + phílos, love) Growing in a aquatic habitat, submerged or floating or emergent. Same as hydrophyte or aquatic plant. Compare hygrophilous,mesophilous, and xerophilous.
hydrophyte (Gr. hydro-f. hudor, water+ phyton, plant) A plant that grows wholly or partly submerged (emergent or floating) in water. A aquatic plant e.g. water fern Azolla sp. or quillwort Isoetes sp . (see habitat diagram). Hydrophytes occur in the littoral zone of water bodies. . See hydrophilous. Compare hygrophyte, mesophyte and xerophyte.

A generalized diagram of lake zonation \& hydrophyte types

Figure 118 aquatic zonation
hydropteridales (Gr. hydro-f. hudor, water+ pteris, fern +-ales) An older name for the order of water fern families now Salviniales.
hygromorphic (Gr. hygro- , f. hugros, wet, moist + morphos, f. morphe, shape) A plant adapted to wet but not aquatic conditions. Compare hydromorphic, mesomorphic and xeromorphic.
hygrophilous (Gr. hygro- , f. hugros, wet, moist + philous, loving) Preferring wet climate or moist environment. Not quite hydrophilous, slightly mesophytic.
hygrophyte (Gr. hygro- , f. hugros, wet, moist + phyton, plant) A plant that grows in and is adapted to a wet but not aquatic environment. Intermediate between hydrophyte and mesophyte in water dependency terms.
hygroscopic (Gr. hygro- , f. hugros, wet, moist + skopéō, examine, inspect, look to or into) Expanding or contracting by absorbing or losing water and thus changing shape or size. See elater (hygroscopic ribbon or band), annulus.
hylophile adj. hylophilous (Gr. hylo-forest + philous, loving) Plant growing in forest habitats. Synonym silvicolous.
hymenophylloid (Like Hymenophyllum) Filmy fern in the family Hymenophyllacea that is more closely related to the genus Hymenophyllum than to Trichomanes. A clade of the filmy fern family.
hypha pl. hyphae (Gr. hyphē web; hyphos web) Branching filamentous structure of fungi. One of the threads that make up the mycelium of a fungus, increase by apical growth, and are transversely septate or nonseptate.
hyphodromous (L. hypho, weaving + Gr. dromos, racetrack) Pinnate leaf pattern, with only the midrib vein present or evident. Secondary (lateral) veins absent (\pm uninervous or unicostate) or hidden. Microphylls/lycophylls are hyphodomous as are many conifer leaves.

hyphodromous = uninervate

Figure 119 hyphodromous
hypogeal/hypogeous (Gr. hypo: below, under + geo- earth) Usually applied to seeds whose cotyledons develop underground. Growing or developing below the soil surface. Synonym subterranean, opposite of epigeal or surficial.
hypostomatic (Gr. hypo: below, under + Gr. stoma, mouth) Bearing stomata on one leaf surface only, usually the lower or abaxial surface. cf. amphistomatic.
idioblast (Gr. ídios, own, personal, distinct + blastós, germ, sprout) Specialized epidermal cells producing slime or gum.
imbricate (L. imbricarus , tiled)) Overlapping like fish scales or tiles on a roof; said of leaves and scales etc. Lycododium serpentinum -"leaves of main stem uniform, dense, ascending, imbricate, linearlanceolate, acuminate, c. 3 mm . long; Ivs of aerial branches less dense somewhat spreading." Flora of New Zealand. Volume 1.

Phlegmarius varius syn. Lycopodium varium

'Oxford Book Of New Zealand Plants' 1978.
Moore, L. B. and Irwin, J. B.
Oxford University Press
Figure 120 imbricate Phlegmarius (Lycopodium)
immersed (L. immersus: plunged in, immersed) Sunken or embedded in the surrounding tissue. Such as sori that are surrounded by leaf-tissue. Opposite of superficial.
imparipinnate ((L. impar, imparis: unequal, odd; + pinna; feather) Pinnate with the rhachis terminated by a single leaflet. Also called odd-pinnate (Blade Architecture). The most common pattern in ferns. Compare paripinnate, even-pinnate, abruptly pinnate.

Asplenium oblongifolium Imparipinnate or odd pinnate
'New Zealand Ferns and Allied Plants' 2000. Brownsey,Patrick J. and Smith-
Dodsworth, John C.. David Bateman
Figure 121 imparipinnate
Imperfect In leaf venation said if vein branches cover less than two thirds of the leaf blade area (or reach less than two thirds of the distance toward the leaf apex). It is perfect if veins coverage is greater than this.
incised (L. incisio: a division, an incision) Cut deeply, sharply and often irregularly (an intermediate condition between toothed and lobed). Histiopteris incisa.
inclined (L. inclinare. to cause to lean) Angled upwards at a slight angle. See orientation.
included (L. includere , enclosed) 1. Contained within, as a veinlet within an areole. 2. In filmy ferns a receptacle that is not exserted - does not extend beyond the indusium/involucre.
inconspicuous Not easily seen, not prominent.
incrassate (L. incrasso: to make thick, stout) Thickened.
incurved (L. incurvare, bent in) Bent or curved inwards or upwards; of leaf margins, curved towards the adaxial (upper or ventral) surface.
indefinite (L. in-, not + definitus, definite de- +finis boundary, limit) Of apparent unlimited growth, e.g. the frond of Lygodium articulatum and the rhizome of Pteridium esculentum. Same as indeterminate.
Opposite of definite or determinate.
indeterminate (L. -in , not + determinatus, limited) Same as indefinite. Not limited in longitudinal growth; continuously or intermittently elongating from the tip; said of blades,e.g. Lygodium articulatum .The
growth continues throughout the life span of an individual (or leaf) such that size and age are roughly correlated. indeterminate leaves grow until there leaf tip dies because of external factors. In Lygodium the long, repeatedly branching leaves result from indeterminate growth of the rhachis (midrib) and may reach 20 meters in some species. In scrambling ferns such Dicranopteris indeterminate growth results from repetitive development and expansion of dormant leaf buds. Opposite of definite or determinate.

Indeterminate leaf growth by long-lasting, growing
leaf tip or growth of accessory leaf buds

Representative New Zealand Ferns
Creeping Rhizome
Dicranopteris (scrambler)
Gleichenia (scrambler)
Hypolepis(scrambler)
Lygodium (climber)
Paesia (climber)
Sticherus (scrambler)
indigenous (L. indigenus, native, born in a country) Native to a country, region or area but not necessarily exclusively so. For example Asplenium bulbiferum is native to both New Zealand and Australia. Compare endemic, exotic, adventive.
indumentum: (L. indumentum , a covering) Epidermal appendages, e.g. hairs, scales or glands, collectively. See vestiture, leaf indumentum (covering)
indurated (L. indurare to make hard,f. durus, hard, harsh) Hardened, e.g. Blechnum durum foliage.
indusiate Bearing an indusium,e.g. Hymenophyllum spp. . Opposite of exindusiate, e.g. Gleichenia spp.,Pleurosorus rutifolius
indusium ((L. indusium: a woman's skirt) The covering of a sorus (sporangium cluster), a thin membranous, often colourless covering of the sorus, shrivels at maturity to expose the sporangia. Maybe either a true indusium specialised organ such as a scale-like epidermal outgrowth protecting the sorus or a false indusium the incurved margin of the lamina or part (flap) of the lamina protecting the sorus. Some ferns have both a true indusium (on one side) and a false indusium (on the margin side) e.g. Pteridium. An Inferior indusium is attached beneath the sorus with the sporangia appearing above it. In the water ferns, (Salviniales) the globose indusium forms a wall that encloses the sporangia and is called a sporocarp and in Marsilia this is reinforced by a folded pinnule. Plural indusial hence indusiate, having the sorus covered. See exindusiate, lacking an indusium or bearing naked sori or sporangia. Other ferns may instead have specialized hairs or scales called paraphyses intermingled with sporangia. Some ferns are both paraphysate and indusiate.

Indusium - mode of attachment basally including centrally attached -central stalk (peltate), or edge/sides (lateral), and shape :- round, orbicular, globose (sporocarp) kidney-shaped (reniform), crescent shaped or lunate, oblong, squamiform (fish scale-like), pateliform (plate-like), linear, elongated, tubular, bivalved, reflexed margin or flap etc are useful for identification and taxonomic classification.

Figure 122 cross section peltate indusium Polystichum

'Textbook of General Botany' 4th ed. 1938
Esther G. Holman \& Wilfred Robbins
Figure 123 pelate indusium Polystichum

Pteridium pinnule diagramatic representation showing both a true and false indusium. In Bracken ferns the true indusium may be poorly developed.

Modified from "A Book Of Ferns" Greta Stevenson (2nd ed.) Paul 1959

Pteridium spp. (bracken fern) drawn by John McLuckie
"Australian and New Zealand Botany" Associated General Publications 1954 Modified slightly

Figure 124 true and false indusium Pteridium

Figure 125 paraphystae and indusiate
indusia opening near margin

Davalia tasmanii pouched indusium or narrowly to broadly cup-shaped Sorus submarginal terminates a short lateral vein

Fertile pinna of Davalia sp. indicates location indusiate sori

Figure 126 pouched indusium Davalia

Ptisana salicina synangium

Cyathea dealbata
Sorus with cup-shaped indusium

Nephrolepis cordifolia reniform indusium

Arthropters tenella exindusiate sorus

Flora of New Zealand Vol. 1 (1961), H. H. Allan, R.E. Owen, Government Printer, Wellington, New Zealand artist Nancy M. Adams

Sticherus flabellatus
exindusiate -naked sorus 4 sporangia sorus protected by lamina margin and very similar indusium (true indusium)

Dicksonia squarrosa
lobe of pinnule with sorus and indusium

Doodia australis sorus and indusium

Hymenophyllum peltatum
bivalvate indusium protruding

Pteris carsei syn. P. comans

Rumohra adiantiformis sorus and peltate indusium

Adiantum aethiopicum reflexed lamina-margin flap (false indusium) protecting sorus

Trichomanes colensoi
tubular indusium

Figure 127 sori and indusia

Azolla filiculoides. Stages in the development of the megasporangium and sporocarp type indusium Note included Anabaena (cyanobacteria) cells (after Smith) Sporocarp is essentially a modified indusium enclosing the sporangia

Figure 128 megasporocarp Azolla

Azolla filiculoides L.S immature microsporocarp (left) and maturing microsporocarp (right) (after Smith)

Figure 129 microsporocarp Azolla
inferior (L. inferus, below, underneath, lower) Situated below another organ. Opposite of superior. See inferior or partly inferior indusium below.

Cyathea dealbata Silver Tree Fern

'Oxford Book of New Zealand Plants' 1978

L. B. Moore \& J. B. Irwin

Figure 130 indusium Cyathea
inflated (L. in + flare, blow) Swollen, distended. Said of the indusium of Deparia petersenii subsp. congrua for instance.
infraspecific (L. infra , below + specific). Below the rank of species, referring to taxonomic subdivisions within a species includes subspecies, varieties, and forms.
internal hairs In leaves of Isoetes, projections into the lacunae.
Internode (L. inter-, between, + nodus , knot) The portion of a stem between two successive nodes. A mesome connecting telomes in telome theory.
interrupted (L. interrupto, a breaking off abruptly) Broken or discontinuous, e.g. an annulus not forming a complete circle, also known as an incomplete annulus. The opposite of a continuous annulus.
intine (probably from German, f. L. intus within + New Latin in- fibrous tissue, from Greek in-, is tendon) The inner cellulosic and pectinic wall layer of a spore or pollen grain. The outer layer is the exine.
intramarginal (L. intra- , within + marginalis f. margo ,margin) Within the margin and near the edge said of soral position.
intraradicle hyphae/mycelium (intra- inside +radix, root) Hyphae -fungal filaments that grow within (intra-) the cortex of a root and develop nutrient transfer structures within the host. These form the mycorrhizal fungal body inside the roots of plants. Contrast extraradicle hyphae.
introduced Not native to an area where it now occurs; introduced through human agency. See also adventive, exotic, naturalized.
introgression (L. introgredior, to step in, enter) The formation of a wide range of intermediate plants, with intermediate morphology, by hybridization and backcrossing among different taxa and their progeny.
involucre (L. involucrum a cover, wrapping, case, envelope) The tubular, urceolate or two-lipped (bivalvate) indusium of members of the filmy ferns family Hymenophyllaceae. The abaxial and adaxial surfaces are almost identical. A receptacle an extension of a veinlet bears the sporangia within, but may extend beyond the indusium in which case it is said to be exerted (as in Trichomanes spp.) if not included.
involute (L. involutus, in rolled in- + volvo, roll) With the edges rolled inwards. Longitudinal posture term, compare revolute.
isodromous venation (Gr. isos , equal + dromos, running, racecourse) Vein branching equally spaced
isomorphic (Gr. isos, equal + morphe, form) Of the same form or appearance. Synonym homomorphic but this term also applied to chromosomes of the same form. Compare dimorphic or polymorphic..
isophyllous (Gr. isos, equal + -phyllos, from phyllon leaf) Leaves equal in size and shape at any point on the branch. Compare anisophyllous.
isosporous Gr. isos, equal + + spora, seed) Producing one type of spore (same size and shape). Synonym homosporous. The majority of ferns are isosporous bar the water ferns (Salviniales) which are heterosporous. While in the lycophytes (Lycopodiales) the Lycopodiaceae are isosporous, the Isoetales (Selaginellaceae \& Isoetaceae) are heterosporous. Seed plants are heterosporous. Compare heterosporous or anisosporous..
isotomous: Gr. isos, equal + tomous cut, divided) Having all dichotomies resulting in equally thin branches. Forking or branching in two equally. Compare anisotomous.
isovalvate Gr. isos , equal + valvate f. valae folding doors) Having the two valves of a sporangium equal in size. Compare. anisovalvate.
jointed (articulate) Bearing joints or nodes, with the stems separating easily at the nodes as in Equisetum. An earlier name for this group of plants was arthrophytes which means "jointed plants".

Jurassic The chronostratigraphic (geological) time period dating from 201 to 145 million years ago. The middle Mesozoic period preceded by the Triassic and followed by the Cretaceous. Some modern conifer and fern families arose here. Lurking here also was the unknown ancestor (Pteridosperm of some kind) of the flowering plants which evolved in the next period (Cretaceous). The Triassic/Jurassic extinction event left the dinosaurs in charge over their archosaur relatives. The first birds appear. Curio Bay in eastern Southland is a mid-Jurassic, circa $180(\mathrm{Ma})$ fossil site. Araucarian and podocarp conifers,cycads and a variety of extinct tree ferns and ground ferns grew there at the time.

PARAHAKI buSh, Whangarei

The Jurassic Period Approximately 201-145
million years ago (Ma)
L = Late; $\mathrm{M}=$ Middle; $\mathrm{E}=$ Early

The Araucarian conifer genus Agathis appears in the early Jurassic The Podocarpaceae and Araucariacea appear to have split in the Late Permian Period.

Tree ferns belonging to Cyatheales appear in the Late Jurassic
though modern genera not until the Cenozoic Period

From 'New Zealand Ferns' 1930, 3rd ed. H. B. Dobbie; photographs by F. W. Birch. Southern Reprints 1987

Figure 131 Jurassic Period
juvenile ((L. juvenis: young, youthful) The young stage of growth before a plant is capable of flowering or spore production.
kauri forest Forest dominated by kauri Agathis australis, found naturally north of latitude 38° South in the North Island and some offshore islands. A tall forest tree in the conifer family Araucariaceae. It may also be found mixed with other species as in mixed kauri/podocarp/broad-leaf forest. In the Miocene,several other Araucariacean conifers were present in New Zealand. The genus Agathis appears in the early Jurassic Period. See arapod.
keel A ridge, usually on the back.
keeled furnished with a keel, sharply folded in the middle like the keel of a boat. Synonym carinate. See also marginate.
koru (Maori koru, crozier) A young fern frond in the crozier or fiddlehead stage of growth, before it has uncoiled, and expanded at maturity. Synonym crozier, fiddlehead. See also circinate vernation.
labium (L. labium lip) Lip- like structure such as an outgrowth above the sporangium which partially or wholly covers the ligule.
labiate (L. labium lip) Having lips.
lacerate (L lacer: mangled, torn to pieces) With an irregular, ragged margin as though torn said of pinnae and ultimate segments. Similar to lacinate.
lacinate ((L. lacinia, full of folds, fringed, indented, jagged) Deeply and irregularly cut into narrow, pointed segments.

Iacuna pl. lacunae (L. lacuna a pit, small hole) The area of the lamina enclosed by joined veins in a reticulate-veined frond. Synonym areole. In Isoetes, a cavity within the leaves. In spores large meshes in a reticulum; a large pit or depression in the exine of reticulate grains. The cavity, or space between the walls (muri) of a reticulum formed by anastomosing ridges.

Selaginella krausiana African clubmoss megaspore showing reticulate sculptural ornamentation.
Figure 132 lacunae
laesura (L. laesioni, injury) The scar or suture line (dehiscience fissure) that shows how spores or grains separated from the original tetrad (group of four spores joined together -meiosis has four products (cells). pl. laesurae. When the spore germinates it is most likely to do so through one of these, as they split open readily. Therefore the laesura is also known as the germination furrow. A spore with one laesura is said to be monolete, whereas a spore with three laesurae is trilete, or rarely four tetralete and one where the laesura has disappeared alete.
lamelliform (L. lamina thin plate or sheet of metal/other material,+ form) In the shape of a plate or scale. applied to spore wall ornamentation.
lamina pl. laminae (L. lamina thin plate or sheet of metal/other material,) The blade or leafy part of a frond. The expanded green part of a fern frond. The lamina includes the rachis (midrib or stalk) and the pinnae (leaflets) if compound, but excludes the stipe/petiole (leaf stalk) if present.
laminar size The leaf blade area $\left(\mathrm{mm}^{2}\right)$-petiole/stipe excluded, obtained approximately by measuring the length and width (widest part) in mm and multiply the length x width $\mathrm{x} 2 / 3$. From there the leaf area can be fitted into a leaf size class:

Blade class (Gr. -phyll f. phyllon, leaf)	Area of leaf in mm ${ }^{2}$
Leptophyll (Gr. lepto, fine, slender + phyll)	<25
Nanophyll (Gr. nano-, dwarf + phyll)	$25-225$
*Microphyll (Gr. micro- small + phyll)	$225-2,025$
Notophyll (Gr. noto- southern, back + phyll)	$2,025-4,500$
Mesophyll (Gr. meso- middle + phyll)	$4,500-18,225$
Microphyll (Gr. macro-, large,long + phyll)	$18,225-164,025$
*Megaphyll (Gr mega- ,very large, great + phyll)	$>164,025$
*N.B. microphyll and megaphyll are used in	
another sense where microphyll = lycophyll and	
megaphylly = euphyll.	

'Manual of Leaf Architecture' 1999. Smithsonian Institute

Figure 133 leaf size terms (1 cm bar for scale)
Iaminar stipules (L. lamina thin plate or sheet of metal/other material, + L stipula stalk of hay or straw, diminutive of stipe) Where the lowermost pair of secondary pinnae overlap the rachis as in Histiopteris incisa.

$$
\begin{aligned}
& \text { Not homologous with stipule in } \\
& \text { Marattiaceae }
\end{aligned}
$$

Figure 134 laminar stipules
lanate (Latin lanatus, wooly) Wooly, covered with long, soft, crooked or curly, interwoven, matted hairs. Similar to villous but hairs shorter. See hairiness terms. Wooly tree fern Dicksonia lanata.
lanceolate ((L. lancea ,a light spear, a lance) Lance-shaped: broadest between base and middle several times longer than wide (3: 6x) tapering slowly to the apex and rapidly to the base. Tmesipteris lanceolata, Anarthropteris lanceolata.
land plants Mosses, hornworts, liverworts, lycophytes, ferns, and seed plants (gymnosperms and angiosperms) known as embryophytes. These plants evolved from freshwater aquatic green algae ancestors. Some algae are also terrestrial. Algae and or cyanobacteria are present as photosymbionts in lichenized fungi - the lichens.
lanuginose (L. lanuginosus f. lanugo down f. lana wool) Downy, cottony or wooly. Tomentose. See hairiness terms.
lateral (L. lateralis : pertaining to the side, f. latus side) Arising at the side of an axis. Lycopodium laterale. lateral indusium With indusium attached by one side as opposed to peltate or basally attached.

Figure 135 lateral indusium
lateral leaf. Leaf on the side of the stem, as in heterophyllous species of Selaginella.
lateral vein A vein that branches from a vein of higher order such as a secondary vein from a midrib (rachis or costa in ferns).
latitudinal diversity gradient Tendency for most taxonomic groups to have most of their species in the tropics, with diminishing numbers of species towards the poles. "Over two thirds of the species in the New Zealand region may be found north of Auckland, and in a single small area of Kauri forest one may find upwards of 60 species. Further south, in Westland, it is not uncommon to find over 40 different ferns on a single hillside in lowland podocarp forest. In contrast on the Auckland and Campbell Islands south of the New Zealand mainland, less than 40 fern species have been authentically reported. Fewer species are encountered in mountain areas". David Given "Ferns: An Introduction'; New Zealand Natures Heritage' Vol. 5 Part 74. 1975. Hamlyns Limited.
lax (L. laxus,loose) Loosely arranged, open, scattered.
leaf apex (tip) Compare leaf base.

LEAF APEX/LEAF TIP TERMS (Apical refers to the upper 25\% of the lamina (0-0.25 length)
LEAF APEX SHARPLY POINTED WITH APICAL PROCESS (EXTENSION OF MIDRIB)

Figure 136 leaf apex (tip)
leaf base Compare leaf apex.

LEAFLET (PINNAE OR PINNULE ATTACHMENT)

shortly attenuate

Cuneate "wedge shaped"

BASE BLUNT

Figure 137 leaf base and leaflet attachment
leaf division (Iobation) and margins Leaf or leaflet shape characteristics referring to the presence and characteristics of sinuses (incisions) spaces or gaps defining lobes or segments. Margin refers to features of the side of the leaf, such as the presence or absence of teeth. Teeth may be regarded as very shallow leaf divisions extending no more than $1 / 8$ of the distance to the midrib or equivalent axis or point (in a palmately lobed leaf the junction of the primary veins). An entire margin lacks teeth or lobes altogether and is also called smooth. Teeth shapes and orientation include dentate, serrate, crenate.
Leaf divisions extending more than $1 / 8$ of the distance to the midrib or equivalent axis or point (in a palmately lobed leaf the junction of the primary veins) include:
lobed ($1 / 8-1 / 4$), cleft ($1 / 4-1 / 2$), parted ($1 / 2-3 / 4$) and divided ($3 / 4$ - circa 1). Full or complete leaf division results in a leaflet.The terms lobed and division are sometimes used in a more general sense. The terms pinnatifid or palmatifid means pinnately or palmately lobed to divided ($\approx 1 / 8-3 / 4$); pinnatipartite or palmatipartite ($\approx 1 / 2-2 / 3$); and pinnatisect or palmatisect $(\approx 3 / 4-$ circa 1).

Decompound means deeply divided into numerous segments such that leaflets are not clearly defined.(Decompound also refers to a multi-compound leaf).
pedate is palmately divided with the lateral or basal lobes further divided. Special terms include:
incised means having sharp, deeply cut, jagged, lobes.
sinuate means shallowly wavy in horizontal plane,
undulate means shallowly wavy in horizontal plane and vertical plane.
lacerate means irregularly cut as if torn;
lacinate has lobes cut into narrow, ribbonlike segments.
pectinate means comblike with pinnately divided with close-set, very narrow lobes.
Note leaf division often varies along the length of a frond with the greatest division found near the base, decreasing towards the apex (leaf tip).
leaf indumentum (covering)

Papillose
With short soft, nipple-like protruberances

Farinose/Farinaceous Mealy with a powdery covering

Echinate
Spiny, prickly bristles or protruberances

Pilose
Short thin, upright straight hairs
Short thin, upright straight hairs

Puberulous/Puberulose

 /PuberulentMinutely pubescent, covered with minute, soft hairs, barely visible.

Figure 138 leaf indumentum
leaf gap A point in the stele or primary vascular cylinder at which the vascular supply to a leaf (leaf-trace) is attached. Feature of megaphylls (euphylls), absent in microphyll (lycopod leaves). It resembles a branch trace, perhaps indicative of the evolution of megaphylls from a branching system. The gap is filled with parenchyma tissue rather than vascular tissue - a break in the stele. See telome theory.

Figure 139 leaf gap

Leaf margin Margin refers to the side or boundary of an object, such as a leaf, bract sepal or petal. Terminolgy refers to the presence and morphology of teeth or lobes.

LEAF (LEAFLET) MARGINS (SMOOTH,TOOTHED,LOBED, DIVIDED)

Figure 140 leaf margin

Maidenhair fern Adiantum spp. Frond tripinnate ($3 \times$ pinnate) or decompound (very compound)

Figure 141 frond division terms

Zealandia pustulata subsp. pustulata Hound's tongue fern, Kowaowao Pinnatid leaf (simple but partially divided)

Figure 142 pinnatifid leaf

Compound leaf

Parablechnum procerum pinnate leaf fully divided once

Absence of blade tissue along the side of the rachis (midvein) between pinnae (leaflets)

Figure 143 pinnate leaf ($1 \times$ pinnate)
leaf primordium (leaf + L. neuter of primordius 'original', f. primus, first + ordiri, begin.) Embryonic stage of a leaf in the apical meristem.

diagram showing life history stages of fern leaves dimorphic pattern, if monomorphic essentially same as for fertile leaf

Figure 144 fern leaf life history
leaf shape The terms for the names of simple symmetrical plane shapes have been standardized on a mathematical basis, based on the length to breadth ratio (l:b), whether the sides are curved or straight and parallel for some distance, or angular and the location of the widest part in relation to the latitudinal middle of the shape. There are also a number of special shape terms developed over the centuries. For a
compound leaf, shape is applied to an outline of the lamina. Leaflets or segments can be described by the same terms. Leaf bases and apices(tips) have their own terminology.
"Systematics Association Committee for Descriptive Biological Terminology. II. Terminology of Simple Symmetrical Plane Shapes (Chart 1)." Taxon, vol. 11, no. 5, 1962, pp. 145-156. JSTOR, www.jstor.org/stable/1216718.

ELLIPTIC SERIES Sides curved, tapering equally to base and apex, widest in the middle.

OBLONG SERIES Sides almost straight and parallel for some distance, the ends tapering rapidly.

OVATE SERIES
Egg-shaped, sides curved, the greater breadth below the middle.

OBOVATE SERIES
Reverse egg-shape, sides curved, widest above the middle.

RHOMBIC SERIES
Diamond-shaped, widest in the middle, sides approximately straight.

TRULLATE SERIES
Trowel-shaped, widest below the middle, sides almost straight.

OBTRULLATE SERIES Reverse trowelshaped, widest above the middle, sides almost straight.

TRIANGULAR SERIES Widest at base. Sides more or less straight.

OBTRIANGULAR SERIES Reverse triangular widest at apex, sides more or less straight.

Figure 145 overview shapes

ELLIPTIC SERIES

 widest in middle

OBLONG SERIES (RECTANGULAR) sides straight and parallel for most of length

RHOMBIC SERIES (DIAMOND-SHAPED)
6:1

narrowly rhombic

rhombic (rhomboid)

broadly rhombic
(rhomboid)

quadrate rhombic

transversely widely (broadly) rhombic

transversely rhombic
transvarsely rhombic

narrowly transversly rhombic
widest in middle

Figure 146 elliptic, oblong and rhombic series of shapes
OVATE SERIES (EGG-SHAPED)

OBOVATE SERIES (REVERSE OVATE (EGG-SHAPE))
widest above the middle

narrowly obovate

broadly transverse obovate

obovate

broadly obovate (obovoid)

very widely obovate (obovoid)

TRULLATE (TROWEL-SHAPED) SERIES also known as ANGULAR OVATE

narrowly trullate

trullate (trulloid)

-

broadly or widely trullate

very widely trullate

broadly transverse trullate

Figure 147 ovate,obovate and trullate series of shapes

OBTRULLATE SERIES (REVERSE TRULLATE) OR ANGULAR OBOVATE

narrowly obtrullate

obtrullate

broadly/widely obtrullate

very widely obtrullate

broadly transverse obtrullate
depressedly transverse obtrullate

TRIANGULAR (DELTOID) SERIES

shallowly triangular

OBTRIANGULAR SERIES (CUNEATE OR WEDGE-SHAPED) \& OBDELTOID

very shallowly triangular
narrowly transverse triangular
widest at
widest at top(apex)

linear obtriangular (very narrowly cuneate)

narrowly obtriangular
(cuneate)

shallowly obtriangular (depressedly obtriangular)

)

obtriangular

obdeltate
(obdeltoid)

shallowly oddeltate (obdeltoid)

Figure 148 obtrullate, triangular and obtriangular series of shapes

SPECIAL LEAF SHAPE TERMS

Figure 149 special leaf shape terms

Leaf size The petiole (stipe in ferns) and the lamina (leaf blade) are measured seperately. Both length and width measurements are taken, with width measured at the widest part of the blade. In a pinnately compound leaf, the length measurement would be taken from the leaf base, where the basal pinnae attach to the stipe and the rachis begins then to the leaf tip(apex) -end of terminal leaflet. See also laminar size.

Leaf transverse posture
Leaf Posture/Attitudes - Transvere Posture

Figure 150 leaf transverse posture terms
Leaf or leaflet spacing (scales and hairs also) The following terms can be applied: approximate, close or close-set, confluent, connivent, congested,contiguous, distant,imbricate (overlapping like tiles), remote, widely spaced .
leaflet (Diminutive of leaf) The distinct and seperate segment of a compound leaf. Where the leaf blade (lamina) is completely divided to the midrib and seperated by a length of midrib from similar segments .In ferns with pinnate leaf arrangement, the leaflet is called a pinna pl. pinnae. Sometimes called a frondlet.
leaf-trace The vascular bundle that runs from the stele (vascular cylinder) to the petiole (stipe in ferns).
leathery Tough, thick and opaque.Synonym Coriaceous.
lensiform (L. lens, f. lentil in shape +form -shape) Lens shaped, awl shaped or subulate.
lenticular (L. lens, f. lentil in shape) Shaped like a biconvex lens.
lepidote (Gr. lepidotos, covered with scales, f. lepis , scale or flake) Furnished with small, scurfy scales.Asplenium lepidotum
lepto- (Gr- leptos, thin) Thin. Anogramma leptophylla. Opposite crassus thick.
Leptosporangiatae The clade of ferns with leptosporangia, also known as the Polpodiopsida/ Filicopsida or Filicales. The bulk of ferns species belong here. Contrast eusporangiate ferns.
leptosporangiate pl. leptosporangia (Gr. leptos, thin + sporangium). With each sporangium, originating from a single initial cell, and the sporangial wall consisting of a single layer of cells. The sporangium has an annulus and stomium. Compare eusporangiate. Leptosporangiate ferns form a clade which differs from
the eusporangiate ferns. The bulk of ferns are leptosporangiate comprising the order Polypodiopsida or Leptosporangiatae (or Filicopsida or Filicales).. Seed plants, Psilopsida (ferns), Marattiopsida (ferns), horsetails and Lycophytes have the eusporangiate condition. The leptosporangia is an apomorphy - a derived condition or character state representing an evolutionary novelty for this group of ferns.
liane (French liane f. lier, to bind) A woody climbing plant. As ferns are technically non-woody, climbing ferns are simply climbers.
life cycle The stages in the life of ferns and lycophytes, from spore, gametophyte, gametes, zygote and sporophyte and back to spore again. In these plants the gametophyte and sporophyte plants are mostly independent plants (contrast the 'bryophytes' where the sporophyte is dependent on the gametophyte and seed plants or spermatophytes, where the gametophyte is dependent on the sporophyte). This cycle is known as the alternation of generations - a gametophye and sporophyte generation.

The spore represents the start of the gametophyte generation and the zygote (fertilized egg) the start of the sporophyte generation.The life cycles in the "Pteridophyte" plants have a broad similarity, the main contrast is between homosporous (with ectospory) and heterosporous (with endospory) plants. Vegetative or asexual reproduction in certain ferns and lycophytes reproduces clonaly the sporophyte or gametophyte (less commonly) generation.

I have followed the example of David Jones "Encyclopedia of Ferns" of including diagrams of representative examples from different clades of lycophytes and ferns, this way you can see the similarities and differences between them. Approximately following evolutionary order.

A pictorial Fern Life Cycle Pattern

Modified from 'Plant Structure and Function' 1976. Postlethwait S. N; Ross, Norris M. and Wright, Ronald J.. W. A. Saunders Company

Figure 151 General fern life cycle

Stages in the life history of a fern or lycophyte

Figure 152 stages in the life history of a fern or lycophyte

Genus Lycopdium \& allied genera Lycopdiophyta (lycophytes) Lycopodiales, family Lycopdiaceae

Figure 153 life cycle Lycopodiaceae

Life Cycle of Selaginella

Lycopodiophyta (lycophytes), Isoetales (oldername Glossopsida - from the ligula (glossa)
family Selaginaceae
Modified from various sources.

Figure 154 life cycle Selaginella

The Life Cycles of Lycopodium, a Homosporous clubmoss and Selaginella, which is Heterosporous

Figure 155 Life cycles of Lycopodium and Selaginella compared

Isoetes Lycopodiophyta, Order Isoetales, family Isoetaceae

Figure 156 life cycle Isoetes

Life cycle of Equisetum (exotic in New Zealand)

Monilophyta, Equisetopsida, Equisetidae family Equisetaceae

Figure 157 life cycle Equisetum

Life cycle of Psilotum whisk fern

Euphyllophyta, Monilophyta (ferns), Psilopsida, order Psilotales, family Psilotaceae

Figure 158 life cycle Psilotum

Life cycle of Tmesipteris

Euphyllophyta, Monilophyta (ferns), Psilopsida order Psilotales (whisk ferns), family Psilotaceae

Figure 159 Life cycle Tmesipteris

Life cycle of Ophioglossum

Euphyllophyta, Monilophyta (ferns), Psilopsida,order Ophioglossales, family Ophioglossaceae

Figure 160 life cycle Ophioglossum

Life cycle of Ptisana salicina syn. Marattia salicina
Euphyllophyta, Monilophyta (ferns), Marattiopsida (Marattoid ferns), family Marattiaceae A eusporangiate fern family.

Figure 161 Life cycle Ptisana (Marattia)

Figure 162 Leptosporangiate dehiscence

Life cycle of Leptopteris hymenophylloides

Euphyllophyta, Monilophyta (ferns), Polypodiopsida/Leptosporangiatae,

 Osmundales, family OsmundaceaeFigure 163 life cycle Leptopteris (Osmundaceae)

Life cycle of Lygodium Schizaeales, Lygodiaceae

inset gametophye of Schizaea puslia for comparison (filamentous type)

Figure 164 Life cycle Lygodium (Schizaeales)

Figure 165 life cycle Hymenophyllaceae

Life Cycle of a typical polypod fern (Polypodiales)
Illustrations by Tim Galloway (taken from 'New Zealand Ferns and Allied Plants' 2000. Brownsey, P. J and Smith-Dodsworth, John. David batemen (publisher).

Figure 166 life cycle polypod fern

Life cycle of Azolla filiculoides
Salviniaceae [incl. Azollaceae]
Diagrams sourced from "Cryptogamic Botany II' 1955. Smith, Gilbert and 'Plant Classification' 1979 Lyman Benson

Figure 167 life cycle Azolla

Comparison of the Life Cycles of Water Ferns

Figure 168 comparisom of the life cycles of water ferns
lignicolous (L. lignum, wood + colous, living on or growing in f. -cola ,inhabitant) Growing on decorticate wood.
lignified (L. lignum, wood) Cells that have had a large amount of lignin deposited in their cell walls. For example sclerenchyma and xylem cells: tracheids and vessel elements.
lignified sclenchymatic plates (see lignin \& sclerenchyma) Supporting tissues of dead cells with lignin in the cell walls, providing stiffness to the tree fern trunk.
lignin (L. lignum, wood) Complex polymeric macromolecule of secondary cell walls in plants, providing strength and resistance against most microorganisms. It cements together cellulose fibres and stiffen cell walls.
ligulate (L. ligula: a little tongue, a strap) Bearing a ligule; strap-shaped structure. Amongst the lycophytes, the Isoetopsida (families Selaginellaceae and Isoetaceae) are ligulate, and an older name for the group was Glossopsida from the Greek equivalent of the Latin ligula: glossa "little tongue". The members of the other family of lycophytes the Lycopodiaceae lacks ligules and the term eligulate applies.

Isoetes sp. (quilwort) Adaxial view of megasporophyll (left) and microsporphyll (right) indicating location of megasporangium (m.e.) and microsporangium (m.i.), velum and the minute leaflike flap (tongue) of tissue the ligule

L.S. strobilus of Selaginella harrisiana
adapted from "Plant Systematics A Phyllogenetic Approach" 2008 Jung et al
ligulata I vonnhivtoc

Vertical section of a ligule (Selaginella) passing through the sheath (Smith)

Figure 169 ligules
ligule (L. ligula: a little tongue, a strap) A small membranous structure towards the base of the upper leaf surface and above the sporangium in the fertile leaves in Isoetes and Selaginella. Also a small membranous structure at the base of grass leaves and a ligulate flower is in many members of the Asteraceae (daisy family) a straplike, usually five toothed ,coroalla limb (petal).
lime-dots A popular term for the outlet point of a hydathode where white salt accumulates.
limicolous (L. limi- limus mud + -colous f. -cola ,inhabitant) Living in a mud habitat. See helophyte and epipelic. Example Pilularia novae-zealandiae (Pillwort).
lindsaeoid (Genus Lindsaea + -oid, resembling) Implying related to or resembling ferns of the genus Lindsaea.
lineage (L. linea, line) Line of common descent; a group of species sharing descent from a common ancestor. Synonym monophyletic.
linear ((L. lineal , a line) Long and narrow with parallel sides, more than 10 times as long as wide. See Leaf shapes.
lip Cells In leptosporangiate ferns, the line of thin walled slightly large cells between which the sporangium dehisces (the sporangium ruptures along a line between the lip cells to discharge the spores). Collectively the stomium which means mouth. See stomium and annulus.
lithophyte (Gr. litho-, stone, rock + phyton, plant) A plant growing on rock. Synonyms epilithic, petrocolous, rupestral, saxicolous. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte. See also chasmophyte.
lithophytic (Gr. litho- , stone, rock + phyton , plant) A plant that grows on rocks, cliff faces etc. Synonyms epilithic, petrocolous, rupestral, saxicolous. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte. See also chasmophyte.
litter Predominantly dead plant material on the substrate surface (e.g. topsoil,branch,rock) that is not completely decomposed. Organic matter,forming a growing medium for ferns.
littoral (L. litoralis, from litor-, litus seashore) Growing in communities near the seashore, or lake shore, or banks of rivers. Compare riparian.
lobe (Gr. lobos, lobe of the ear or of the liver, the pod of a leguminous plant). A usually rounded segment of a leaf or leaflet e.g. Zealandia pustulata subsp. pustulata. More technically with a sinus $1 / 8$ to $1 / 4$ the distance to the midrib or equivalent point. Hence lobed,and the diminutive lobulated. Sinus is the gap between the lobes. See leaf division (Iobation) and margin.

(133a) FOLYPODIUM BILLARDIERI.
WAITEMATA.
A Medium Specimen. Upper Side. Λ Ycung Frond, showing Veins,

Zealandia pustulata subsp. pustulata

'New Zealand Ferns' 1930. Southern Reprints 1987.
by H. B. Dobbie
Figure 170 lobes
lobulate, Possessing small lobes..
Iobule (Diminutive of lobe) A small lobe. Hence lobulate, possessing small lobes..
locule (L. loculus, a little place) A compartment of an organ.
long-creeping rhizome One that grows horizontally and produces stipes arising distantly from each other. Growth habit or form in ferns: compare short creeping rhizome, medium creeping rhizome, tufted or caespitose, trunked - tree fern or caudex.
longitudinal (L. longitude, length) Running lengthwise.
lowland In New Zealand, altitudinal distribution zone, approximately below 500 metres above sea level where the montane zone begins, depending on latitude and continentality (distance from the sea). Between coastal and montane zones. Enjoys a warm temperate climate in the north, cool to cold temperate in the south. See coastal, montane, subalpine, alpine, nival.
lumen pl. lumina (L. lumen, light, an opening) The spaces enclosed by muri (walls) within a reticulum. Similar to lacuna.

Selaginella krausiana African clubmoss megaspore showing reticulate sculptural ornamentation.
Figure 171 lumen or lacunae
Iunate (L. lunatus , crescent-shaped f. luna , moon). Half-moon or crescent-shaped. Botrychium lunaria.
Iustrous (L. lustrare, illuminate) Shining, or with sheen. Such as the foliage of the shining spleenwort Asplenium oblongifolium (syn. A. lucidum).
lycophytes (Gr. Lykos, wolf + phyton , plant) Abbreviated from Lycopodophyta (wolfs foot (f. Gr. pous) plant). Includes the families Lycopodiaceae (club mosses), Selagineaceae (spike mosses or club mosses), Isoetaceae (quillworts), and their fossil relatives (for example lepidodendrids), characterized by simple entire leaves with a single vein (microphylls) and a single sporangium borne on the upper surface of the leaf or its axil. Evolutionarily, these plants are the sister group to ferns and seed plants. The probable ancestral group, the zosterophylls first appear circa 430 million years ago. in the fossil record. Sometimes, termed fern allies, although not as allied (related) as once thought. See Pteridophyte.
lycopod (Gr. Lykos, wolf + pous, foot) Informal name for a herbaceous plant having scale-like leaves (microphylls) and spore-bearing cones, clubmosses,spikemosses and relatives. See Lycophytes.
lycophyll (Gr. Lykos, wolf +) The sterile microphyll of a lycopod. Compare euphyll or megaphyll of the ferns and seed plants.
macrogametophyte (Gr. makros, large, + gamos, marriage + phyton, plant) The gametophyte or prothallus developing vegetatively from the macrospore/megaspore of a heterosporous plant e.g. Selaginella spp. Isoetes sp. ,Azolla sp. . Often endosporic as well. Compare microgametophyte.
macrospore (Gr. makros, large + spora, seed) Another term for megaspore. The larger spore type produced in heterosporous species. Compare microspore. The marcospore germinates into the macrogametophyte or female gametophye often developing mostly within the spore wall (endosporic).
male gamete See sperm, antherozoid or spermatozoid.
male sex structure The antheridium borne on the gametophyte or prothallus. Sperm (male gametes) are produced within this structure - the male gametangium. Compare archegonium the female sex structure. See Life cycle entry.

Figure 172 antheridium (male sex structure)
mangrove (Spanish f Caribean native term + grove) A specialized plant growing in brackish or sea water. Represented in the North of the North Island by the mangrove tree, manawa Avicennia resinifera . The habitat is referred to a mangal. Not a prime fern habitat but never the less some epiphytic ferns manage to grow here.
mantle frond A frond differentiated for litter collection, e.g. Platycerium spp. Synonym: base frond, or shield frond.

Maori name The common name for a species, or taxon in Maori, e.g. kiokio, for Blechnum novaezealandiae and related ferns. Compare scientific/botanical name and common name.
marcescent (L. marceo: to wither, droop, break, shrivel) Withering without falling off. Such as the skirt of dead leaves beneath the living leaves of the tree fern Cyathea smithii.

Marattiopsida - Marratoid Ferns (f. genus Marattia after G. F. Maratti, Italian botanist (1723-1777). Primitive eusporangiate ferns represented in New Zealand by Ptissiana salicina syn. Marattia salicina King fern, Para or horseshoe fern. A large ground fern of northern regions of the North Island. This clade of ferns arose in the Carboniferous age.
margin (L. margo , edge) Edge or border of a surface; hence marginate.
marginal (L. marginalis. of the margin) Attached to or close to the edge, at the margin of flat structures such as pinnae, pinnules, ultimate segments, or scales; said of sori, cilia and veins.
marginate (L. marginatus, past participle of marginare , to margin) With a margin of distinct character; a term for a stipe or rachis that is minutely keeled not winged.
margo (L, margo, an edge) A transition zone between the commissure of the tetrad scar and the remainder of the exine in a spore wall.
marine (L. marinus , of the sea) Pertaining to sea or salt water.
maritime (Latin maritimus, growing by the sea) Belonging to the sea, coastal, influenced by the sea, e.g. maritime climate. Coastal ground spleenwort Asplenium appendiculum subsp. maritimum.
marsh A swamp.. A plant community developing on a wet but not peaty soil.
marsh plant: Synonyms: helophyte, helophilous, paludicolous.
massula pl. massulae (L. massula, a small mass, f. massa, lump, mass) A gelatinous mass of tissue from multinucleate plasmodium (tapetal cell origin) in the macrosporangium and microsporangium of water ferns Salvinniales. Clump of microspores enclosed in a hardened mucilage.. . In some microsporic massula hook like glochidia attach the clump of microspores to the megaspsoric massula of the megaspore, where they germinate and develop into mature microgametophytes producing sperm close to the female megagametophyte that develops from the megaspore. See sporocarp, sorophore, life cycle.
matted Closely tangled together, said of hairs etc.
mealy Covered with coarse, flour-like powder. Synonym farinaceous.
medial (L. medialis, in the middle, f. medius, middle) Positioned midway between the margin and the midrib, costa, midvein, or costule; said of soral position.
medium creeping rhizome A rhizome intermediate between short creeping and long creeping.
medullated protostele Medullated (Latin medulla ,pith, marrow) A protostele in which the xylem has a core of non-vascular tissue (pith).
megagametophyte (Gr. megas, large, + gametophyte) The gametophyte developing vegetatively from the megaspore of a heterosporous plant, e.g. Isoetes sp. Selaginella sp. Azolla sp. . Identifies as the female gametophyte. Compare microgametophyte the male equivalent.

Isoetes braunii megagametophyte vertical section

Developing archegonia at top of megagametophyte

Adapted from 'Cryptogamic Botany II'. 1955. Gilbert Smith. McGraw-Hill
Figure 173 megagametophyte Isoetes
megaphyll (1) (Gr. megas, large, + phyllon, leaf) (1) A large (usually), complex sporophytic leaf, multiveined, with leaf gaps in the central vascular system (stele) e.g. a fern frond or leaf of a seed plant. In ferns comprising the stipe, rachis and lamina, growing by means of marginal or apical meristem, having multiple-branched veins and associated leaf gap. Synonym euphyll. Compare microphyll (synonym lycophyll). See telome theory.
megaphyll (2) (Gr. megas, large, + phyllon, leaf) Laminar/leaf size term for a leaf with an area (mm^{2}) $>164,025 \mathrm{~mm}^{2}$ (Length \times width $\times 2 / 3$). See laminar size.
megaphylly Leaf development evolutionarily from three-dimensional branching systems of early (Devonian) vascular plants; also known as euphyll (True leaf). The telome theory is put forward to explain its evolution. Compare microphyll, lycophyll.
megasporangium pl. megasporangia (Gr. megas, great, large, mighty + sporangium) The larger of the two kinds of sporangia produced in the sexual life cycle of a heterosporous plant. Produces megaspores.
megaspore (Gr. megas, great, large, mighty + spore) The larger of the two kinds of spores produced in the sexual life cycle of a heterosporous plants such as water ferns and lycophytes - Azolla, Isoetes, Salvinnia and Selaginella, giving rise to the female gametophyte. Also known as a macrospore. Megaspores develop in megasporangia on megasporophylls or sporocarps and germinate to produce the female gametophyte. Compare microspore.

Selaginella sp. Megaspore (from megasporangium)
and microspore (from microsporangium)
Figure 174 megaspore Selaginella
megasporocarp: (Gr. megas, great, large, mighty + sporocarp f. spora, seed, + karpos, fruit) A sporocarp (modified indusium) containing megasporangia. In water ferns where the microsporangia and megasporangia are borne in separate sporocarps. In Azolla the megasporocarp is smaller than the microsporocarp. In Salvinnia they are the same size. In Marsilea the microsporangia and megasporangia arise in the same cavity of the sporocarps but are borne on separate sori.. See sporocarp.

Azolla sp. water fern heterosporous bears microsporangium \& megasporangium in seperate sporocarps

In Salvinia the microsporocarp and megasporcarp are the same size Marsilea sporocarps bear sori with either microsporangia or megaaporangia

During meiosis, the cell (spore mother cell) replicates its chromosomes once and divides twice. The result is four haploid (1n) cells, also called meiospores. Compare mitosis.
meiospore (meiosis + spore) Any spore resulting from meiotic divisions. The haploid (1n) spores produced by the fern or lycophyte sporophyte generation, which when dispersed and in the right conditions germinate and grow into the gametophyte or prothallus (by mitosis cell division). Represents the start of the gametophyte generation. See meiosis.

Adapted from 'Spore atlas of New Zealand ferns \& fern allies' 1991 Large, M. F. \& Braggins, J. E. Sir Publishing

Figure 176 meiospores and meiosis
membranous (L. membrane, the skin) Thinly-textured pliable and often transparent. Blechnum membranacaeum. Synonym membranaceous - thin, flexible and more or less translucent.
meristele: (Gr. meristos , divisible + stele) A division of the main vascular stele of a dictyostele (dissected amphiphloic siphonostele). The vascular tissue running between two leaf-gaps. The portion of a stele received by each leaf. The gaps are filled with ground tissue (mostly parenchyma).

Transverse section, portion of meristele of Pteridium
'Textbook of Botany', 1962. 13th ed. Lowson, J. M. revised by Howarth, W. O. \& Warne, L. G. G. . University Tutorial Press

Figure 177 meristele Pteridium

Three dimension diagram of the stele of Ophioglossum lusitanicum. Both leaf traces (directed upwards) and roots (directed downwards) arise from the bundles that surround the gaps

Adapted from "Plant Anatomy" 3rd ed. 1982.
Fahn, A. H..
Pergamon Press
Figure 178 meristele
meristem (Gr. meristos, divisible) A growing point, or area of active cell division. Classified according to position: apical, intercalary, lateral or axillary, adventitious; classified by origin and development:
promeristem or primordial meristem, primary meristem and secondary meristem (cork cambium and interfascicular cambium), classified by function : protoderm meristem gives rise to epidermal tissue system, the procambium meristem gives rise to vascular tissue and ground meristem which gives rise to the ground or fundamental tissue system (pith, cortex, leaf mesophyll).merstems may also be classified according to the planes of cell divisions: a mass or block meristem divides in all planes of cell division (anticlinal, periclinal, diagonal or oblique) results in growth in volume, a rib or file meristem divides in one plane only, resulting in the formation of filaments and lastly the plate meristem where cells divide in two planes resulting in an increase in the area of an organ as in leaf formation.
mesarch (Gr. mesos, in the middle + archaein, to be first) A pattern of primary xylem differention in which the metaxylem develops both centrifugally and centripetally with reference to the protoxylem.

exarch: (Gr. ex-, out of + archein, to be first)

Endarch: (Gr. endon, within + archein, to be first)

Mesarch: (Gr. mesos, in the middle + archein, to be first)

Some common patterns of primary xylem differentiation from procambium. Protoxylem cells form first (hence the "arch" which here means first point of origin) are small, metaxylem cells are large and thicker walled. Synchronous type, consisting of metaxylem only not illustrated.

Centrifugal from Greek kentron centre + fugo to fly from
Centripetal from Greek kentron centre + Peto, petere to seek

Protoxylem: The first-differentiated primary xylem, usually in a region where the organ is increasing in length.
(Gr. protos, first + xylem f. xylon, wood).
Metaxylem: The primary xylem that differentiates from procambium after elongation of the organ has ceased and after the protoxylem has matured. (Gr. meta-, beyond, after + xylem).

Modified from 'Morphology of Plants and Fungi' 4th ed. 1980. Bold, Harold C., Alexopoulos, Constantine J., and
Delevoryas, Theodore. Harper International Edition Delevoryas, Theodore. Harper International Edition

Figure 179 mesarch primary xylem differentiation
mesic (Gr. mesos, middle) Habitat with moderate water balance, neither too wet (hydric) nor too dry (xeric).
mesoclinal (Gr. mesos, middle + kleinen, slope, to lean) Growing on the side of a slope where most rain falls c.f. xeroclinal.
mesomorphic (Gr. mesos, middle +) Adapted to a moist climate, neither too wet or too dry. cf. xeromorphic, hydromorphic.
mesophyll (Gr. mesos, middle + phyllon, leaf) Photosynthetic tissue of a green leaf. Tissue between the upper and lower leaf epidermis excluding veins. Cell types may include palisade cells and spongy mesophyll cells both types of parenchyma.
mesophyte (Gr. mesos, middle + phyton, plant) A plant which favours a moist climate, or moist conditions, neither too wet or dry. Compare xerophyte, hydrophyte.
mesophytic (Gr. mesos, middle + phyton, plant) A moist habitat, neither too wet or too dry.
Mesozoic era (Gr. mesos, middle + zoe, life) The geologic time era from about 252 to 66 million years ago; Includes the Triassic, Jurassic and Cretaceous periods. It followed the Permian period of the Paleozoic Era. Many modern fern families arose in this period. It is followed by the Cenozoic era.
metaxylem (Gr. meta after + xylem f. . xylon, wood) The xylem of a group of tracheary elements that matures later (after the protoxylem) consisting of large diameter cells. Compare protoxylem.
micron A unit of length for microscopial measurements, equal to $1 / 25,000$ of an inch or $1 / 1000$ of a millimetre or one millionth of a metre. Symbol $\mu \mathrm{m}$.
microgametophyte (Gr. mikros, small + gametophyte) In heterosporous ferns and lycophytes, the male gametophyte or prothallus that develops from a microspore often within the spore wall (endosporic).

Isoetes microgametophyte

(Adapted from 'Cryptogamic Botany II' 1955. Gilbert Smith. McGraw-Hill)
Figure 180 microgamteophyte Isoetes
microphyll (Gr. mikros , small + phyllon, leaf) (1) The sterile leaves of lycophytes (Lycopodiacea, Selaginacea, Isoetaceae \& their extinct relatives); a small leaf with only one unbranched vein, an intercalary meristem and no leaf gap and sessile.. The fertile version is the sporophyll (if homosporous) or the microsporophyll and megasporophyll (if heterosporous e.g. Selaginella and Isoetes). Thought to have evolved by a different process (enation theory) and independently from the megaphyll. This form of leaf evolved in the lycophytes earlier (circa 410mya) than the megaphyll or euphyll Note some megaphylls are smaller than microphylls (especially those of Isoetes and their extinct relatives), the terms are not used in a strictly size sense here. Also known as lycophyll, which avoids confusion with the term microphyll used in the next sense.. (2) Laminar size term for a leaf with an area (mm^{2}) between 225 and $2,025 \mathrm{~mm}^{2}$. (Length x width $\times 2 / 3$).

(a) Protostele with microphyll Lycophytes

(b) Siphonostele with
megaphyll

Euphyllophytes
(Ferns \& seed plants)

Adapted from "Biology of Plants' 7th ed. 2005. Raven Peter, Evert Ray F. and Eichhorn Susan E.. W. H. Freeman \& Co.

Structure of lycopsid (left) and pteropsid (right and centre) shoots
Adapted from "Introductory Botany" 1971. Arthur Cronquist. Harper International Edition

Figure 181 comparisom microphyll and megaphyll

Transverse section of leaf (microphyll) of Lycopodium volubile

Modified from 'Cryptogamic Botany: Vol. II Bryophytes and Pteridophytes'. 2nd ed. 1955. Smith, Gilbert. McGraw-Hill

Figure 182 microphyll T.S. Lycopodium volubile

'New Zealand Ferns and Allied Plants' 2n. ed. 2000, Patrick Brownsey and John C. Smith-Dodswoth; Bateman Illustrator Tim Galloway

Isoetes kirkii New Zealand quilwort

Figure 183 microphylls (lycophylls)
microsporangium: (Gr. mikros, small +sporangium) The smaller of the two kinds of sporangia produced in the sexual life cycle of a heterosporous plant. Produces microspores. Contrast megasporangium.
microspore: (Gr. mikros, small +spore) The smaller of the two kinds of spores produced in the sexual life cycle of a heterosporous ferns and fern allies Azolla, Isoetes, Salvinnia and Selaginella, giving rise to the male gametophyte. Designated as the male spore. Microspores develop in microsporangia on microsporophylls (lycophytes) or sporocarps (water ferns) and germinate to produce the male gametophyte or prothallus. Compare megaspore.

> microspore (X 100)
Sporangia and spores of Selaginella (From W. H. Brown, 'The Plant Kingdom', 1935,1963. Ginn \& Company)

Figure 184 microspore
microsporocarp (Gr. mikros, small + sporocarp f. spora, seed, + karpos, fruit) Sporocarp containing microsporangia (male sporangia) in heterosporous water ferns (Salviniales).. Where the microsporangia and megasporangia are borne in separate sporocarps as in Azolla sp. and Salvinia sp. In Azolla the microsporcarp is larger than the megasporocarp, in Salvinia they are the same size. In Marsilea both microsporangia and megasporangia arise in the same cavity of the sporocarp so simply a sporocarps in this case..
microsporophyll (Gr. mikros , small +spore + phyllon, leaf) In lycophytes (clubmosses,quillworts, Selaginella) a specialized leaf in heterosporous plants bearing or subtending the microsporangia, . A fertile microphyll - simple entire leaf with one vein usually bearing a single microsporangium on its upper surface. The microsporangium produces many microspores. Compare megasporophyll.
midrib (mid-, middle + rib) The central, and usually the most prominent, vein (or nerve) of a leaf or leaf-like organ. In ferns the midrib of a frond is called the rachis (L. backbone), that of a primary leaflet or pinna a costa (L. rib), that of secondary leaflet or pinnule a costule and that of a tertiary leaflet or pinnulet a costulet.
mire pl. mires Synonymous with any peat-accumulating wetland. Term covers bogs and peaty swamps, fens, carr, moor, muskeg and peatland. Term excludes marsh which is non-peat forming.

A classification of inland wetlands identifies 3 categories. (1) Eutrophic mires have high nutrient levels, and are usually dominated by raupo. (2) Mesotrophic mires contain moderate nutrient levels, and are dominated by rushes, sedges, and flax. And finally (3) oligotrophic mires are characterised by low nutrient levels, and are dominated by sphagnum moss, sedges and rushes.
mitosis (Gr. mitos, thread, from the appearance of the chromosomes) Kind of cell division in which the chromosomes duplicate, then the two daughter chromosomes are pulled apart into separate cells to form two genetically identical daughter cells. All the cells share the same chromosome number. The gametophyte of ferns and lycophytes develops from a haploid spore (meiospore) by mitosis and so is haploid (1 n) itself, the sex cells (gametes) are produced by the gametophyte by mitosis also, so are haploid as well. When the male and female sex cells- the egg and sperm unite in the fertilization process to form the zygote, the diploid (2n) condition is attained. The zygote then by mitotic cell division develops as the diploid ($2 n$) sporophyte - the familiar fern. The mature sporophyte produces spores by meiosis (reduction division), which are therefore haploid (1n) meiospores and the cycle starts again. All vegetative or asexual growth is by mitosis. The process of mitosis is particularly active in meristems. Compare meiosis. See Life cycle entry.
mixed sporangia (spore + angeion, vessel) A term used when sporangia of all ages are borne at all levels in a sorus.
mixohydric (Gr. mixis, mixing, misgein, to mix + hydor, water) Conducting water both externally and internally. Synonym mesohydric. Compare with endohydric, conducting water internally as in vascular plants, and ectohydric/exohydric, conducting water externally as in many 'bryophytes'.
monilophyta (L. monilo, necklace, or string of beads + Gr. phytum, plant) The ferns and their true allies, divided into four major lineages: the first three lineages are eusporangiate: Equisetiopsida (horsetails), Psilopsida (whisk ferns and ophioglossoid ferns), Marrattiopsida (marrattoid ferns), and finally the leptosporangiate ferns Polypodiopsida or Leptosporangiatae/ Filicopsida/Filicales. The name derives from an apomorphy of the group where the stem protoxylem is mesarch position (xylem matures in middle first) and the tracheary element cells appear like a string of beads. Of the traditional fern allies only Equisetiopsida and Psilopsida belong here, the lycophytes are a separate clade (Lycopodiophyta) of early and living vascular plants. Monilophyta are megaphyllous Euphyllophytes (as are seed plants) - the megaphyll reduced or lost in some; whereas Lycophytes are Microphyllophytes. See phylogeny diagram below.

Phylogeny of the tracheophytes, the vascular plants. Modified from 'Plant Systematics' 3rd ed. 2019. Michael Simpson. Academic Press (Elsevier)

Figure 185 Tracheophyte phylogeny
monoecious (Gr. monos, solitary, one + oikos, house) Having the male and female reproductive parts in separate organs but on the same plant (the house). In ferns and lycophytes, bisexual gametophyte with both the male and female organs on the prothalli.
monolete (Gr. monos, solitary, one + possibly f. + latus, side) Of a spore having a single straight unbranched tetrad scar (laesura) or dehiscience fissure. Generally bean-shaped (concavo-convex); also called bilateral because the spore has two nearly flat sides. Compare trilete, alete. The scar may be
prominent or barely visible. The trilete or monolete scar (laesura) functions as an area of weakness which ruptures, allowing germination of the developing gametophyte -so is also known as the germination furrow.

Figure 186 Monolete, trilete and alete
monomorphic (Gr. monos, solitary, one + morphe, form) Of uniform shape and size., with all fronds fertile. Compare dimorphic.
monophyletic: (Gr. monos, solitary,one + phyle, tribe) Said of taxa arising from the diversification of a single ancestor (i.e., all the several distinct species descended from a single ancestor species are monophyletic). Taxonomy aims to group species into monophyletic groups. Compare polyphyletic.
monopodial (Gr. monos, solitary, one, + podion, diminutive of pod-, pous foot) Branching pattern, having one main axis of growth. Compare dichotomous, pseudomonopodial and sympodial.
monopolar (Gr. monos, solitary, one, + polos, axis, pivot) The earliest vascular plants (Tracheophytes) exhibited monopolar growth- growth along one end of a single axis (essentially stem or rhizome only) lacking a true root axis, instead producing adventitious rhizoids. Modern byrophytes and lycophytes are monopolar. Any roots produced are adventitious in origin. Plants with true roots display bipolar growth.
monosulcate (Gr. monos, solitary, one + sulcus ,furrow, ditch, track) A type of spore with a single germination pore or furrow.
monotypic (Gr. monos, solitary, one + tupos, mark, impression, type) Having only one representative, eg a genus or a family with a single species e.g. Loxsoma cunninghamii is the sole species in the genus Loxsoma.
montane In the mountains (general sense). Higher elevation forest. In terms of altitudinal distribution between lowland and the tree line where the subalpine zone begins. Depending on latitude and continentality (distance from the sea), approximately between 500 metres above sea level and the treeline in New Zealand. Generally cool temperate to cold temperate.
morphology (Gr. morphe, form + logos, discourse) The study of the form and structure of a plant.
motile (Latin motus moved, from movere to move) Actively moving by its own propulsion. Said of sperm (antherozoids).
mucilaginous Covered in mucilage, a vegetable jelly of slimy consistency
mucro (L. mucro , a point, sharp end) A sharp abrupt terminal point, e.g.Tmesipteris tannensis. adj. mucronate
mucronate (L. diminutive of mucro, a point, sharp end) With a short sharp tip or mucro.

'Ferns in Peel Forest: A Field Guide' 1983. Brian Molloy Department of Lands and Survey. Christchurch

Figure 187 mucronate
mucronulate (L. diminutive of mucronate) Having a very small mucro; diminutive of mucronate.
multicipital (L. multus , many +caput head).) With many heads, a term used for the knobby branches on some fern rhizomes.
multifarious (L. multus, many + farius, f. fariam ranked in a row or line) In many rows or ranks. Equivalent to multiseriate. Compare unifarious/uniseriate and bifarious/biseriate.
multifid (L. multus , many + fid, from Latin findere , to cleave) Divided into many parts, e.g. Hymenophyllum multifidum frond.
multiflagellate (L. multus, many + flagellum a whip) A cell such as a sperm cell with many (more than two) flagella, compare biflagellate -possesing two flagella.

Fern sperm multiflagellate
(Dittmer)

biflagellate motile sperm
Selaginella

Figure 188 multiflagellate sperm
multiseriate (L. multus , many + series, f. serere , to join together, bind) Arranged in many rows, such as a hair (trichome) composed of several rows of cells (multicellular), multiseriate at base and tapering to uniseriate apically. Compare uniseriate, biseriate..

Figure 189 multiseriate versus uniseriate
muri (L. murus, a wall) Low ridges.
muricate (L. from murex, a pointed rock or stone, murex, purple shellfish). Rough, covered with short hard-pointed outgrowths or tubercles.. Similar to tuberculate and verrucate (warty).
murus pl. muri (L. murus, a wall) A wall, low ridges separating the lumina of an ordinary reticulum. Spore or pollen wall.
mutualism (L. mutus, to exchange) Symbiosis; a relationship in which both organisms benefit. For example mycorrhiza, nitrogen fixation.
mycoheterotroph (Gr. mykos, fungus + heteros, other + trophe, nourishment) A plant which depends entirely on fungi for nourishment. Some fern and lycophyte gametophytes are mycoheterotrophic, quite what the fungus gets out of the relationship is unknown, perhaps it gets payback from the sporophyte generation. See achloromycoheterotroph.
mycorrhiza pl. mycorrhizae or mycorrhizas (Gr. mykos, fungus + riza, root) Fungi species that associate symbiotically with root systems of plants
mycorrhizal (Gr. mykos, fungus + riza, root) A beneficial relationship (symbiosis or mutualism) between the roots of a plant or a prothallus and fungi resulting in a nutrient exchange system. See arbuscular mycorrhiza, endo- and ectomycorrhiza.

Gametophyte of Lycopodium showing origin of the mycorrhizal association. Entry of the fungus takes place shortly after germination of the spore, and if it does not take place the gametophyte or prothallus never develops more than five cells.

Figure 190 origin of mycorrhizal association

Fig: Lycopodium. Three different types of prothallus.
Figure 191 mycorrhizal gametophytes Lycopodium

'Introductory Botany' 1971. Cronquist, Arthur Harper International Edition

Figure 192 Lycopodium gametophytes harbour mycorrhiza (some entirely mycoheterotrophic)
n The abbreviation used for the number of chromosomes in a cell ($\mathrm{n}(1 \mathrm{n}$) = haploid, $2 \mathrm{n}=$ diploid, $3 \mathrm{n}=$ triploid etc.
naked Lacking any covering or pubescence. Also said for instance of ferns with unprotected sori (exindusiate).
naked sorus A sorus lacking a protective cover or indusium. Synonym : exindusiate
naturalized An exotic (non-native) or adventive plant growing and reproducing itself unaided as though a native.
neck canal cells Cells that form a column of cells in the centre of the archegonial neck. The bottom cell is called the ventral canal cell, it sits above the egg cell. These cell disintegrate releasing chemical attractants to sperm, and allowing sperm access to the egg through the canal. See archegonia.
neck cells Cells that form the neck of the archegonium (female gametangium).
nerve A fine vein.
nest fronds Specialised shield-like basal fronds in some ferns (e.g. Platycerium) which accumulate leaf litter. Synonym mantle frond, shield frond, nest-leaves. .
nest-leaves Specialized sterile leaves modified for catching litter and debris, e.g. Platycerium sp. Synonym mantle frond, shield frond, nest fronds.
net-veined Another term for reticulate venation, anastomosing or anastomising veins.
neuropteridian (F. fossil genus Neuropteris) A venation pattern in which secondaries leave the midrib (mid-vein) at an acute angle as in Sphenopteridian type, but differing in that the secondaries instead of running straight to the margin of the frond, turn sharply towards the margin, curving convexly in relation to the midrib, branching dichotomously distally. The tertiary veins leave the secondaries at an acute angle and run parallel with them towards the frond margin. Probably best regarded as a form of cladodromous

Osmunda regalis Royal Fern, pinnule exhibiting Neuropteridian venation (type of Ctenopteridian venation - pinnate venation pattern)
Redrawn from 'Welsh Ferns a descriptive handbook' 1954 by H. A. Hyde and A. E. Wade

Neuropteris
'Paleobotany An Introduction to Fossil Plant Biology' (1981)
Thomas N. Taylor, McGraw-Hill Inc.

Figure 193 neuropteridian venation (Mettenius - German botanist 1823-1866)
nexine (' n ' from non-sculptured, and exine). The part of the outer spore/pollen wall layer (exine) that is nonscuptured in contrast to sexine.

New Zealand Botanical Region The Islands that are politically New Zealand (Macquarie Island politically Australian sometimes included) Includes the three main islands: North Island, South Island and Stewart Island or Rakiura plus the offshore island groups such as the Kermadec island group in the North, the Chatham island group in the east and the so called subantartic Island group in the South. Ecologists have divided the country into Ecological districts that have the same type of ecosystem repeated throughoutrelated ecological districts are in turn grouped into ecological regions.

New Zealand Botanical Region and Ecological Provinces
Figure 194 New Zealand Botanical Region
nitrogen fixation Incorporation of atmospheric nitrogen, which is unusable by plants, into compounds that are usable; carried out only by certain kinds of bacteria, such as cyanobacterium Anabaena azollae, which inhabits the leaves of the mosquito fern (Azolla).
node (L. nodus: a knot) A point on a stem where leaves, bracts or branches arise.
nodosity (L. nodus: a knot) In Adiantum, a callus or swollen node, often lacking normal colouration, where a pinna or pinnule stalk arises from a rachis.
nomenclature (L. nomenclatura , a calling by name, list of names, f, nomen, name + calare call) The study of the application of the names of taxa. The International Code of Nomenclature for algae, fungi, and plants (ICN) formerly International Code of Botanical Nomenclature (ICBN) provides rules and guides for the correct application of botanical names. See classification, binomial.
non-circinate vernation A characteristic where the young leaves are hooked like a walking stick rather than coiled in the circinate(fiddlehead, crozier or koru) pattern. Ophioglossoid ferns exhibit this pattern. Compare circinate vernation.
non-paraphysate. Without paraphyses (sterile filaments, hairs or paranema) in the sorus. Opposite of paraphysate - bearing paraphyses in the sorus.
nullinervate (Gr. nulli-, no, none + nerve, vein) Lacking a midrib or costa. Synonym acostate, ecostate, and enervate. Opposite of nervate or costate.
nutrient (L. nutrire, to nourish) An element important in plant growth and supplied from the soil, water (aquatic plants) or by manures and fertilizers. Essential elements are nutrients required by plants, in the right amounts (too much can be toxic while too little can result in deficiency symptoms). Often divided into macronutrients and micronutrients (or trace elements) and some add the category mesonutrients (in between). Nutrients required by some but not all plants are called beneficial elements. Carbon (C), Oxygen (O) and Hydrogen (H) obtained from air or water by plants are essential too, (average 96% plant dry tissue). The other known essential nutrients include: the macronutrients: Nitrogen (N), Potassium (K) Calcium (Ca), Phosphorus (P) and Sulfur (S); the micronutrients: Chlorine (Cl), Iron (Fe), Boron (B), Manganese (Mn), Zinc (Zn), Copper (Cu), Nickel (Ni), and Molybdenium (Mo).. An example of a beneficial element is Silicon (Si) which is required by the horsetails Equisetum spp. .

NV (number of veins) A method of estimating the maturity of a frond based on the count of the veins extending from the midrib of sequentially-produced leaves.
ob-: a prefix signifying the opposite of, reverse of. Hence lanceolate and oblanceolate cordate and obcordate.
obconical (ob + conical) Cone-shaped but attached at the narrower end.
obcordate (ob + cordate) Cordate with the broadest part above the middle. See leaf shape terms.
oblanceolate (ob- + lanceolate) Lanceolate with the broadest part above the middle instead of below the middle. . See leaf shape terms.
obligate (L. obligare, ob-, down +ligare , to bind) Essential, unable to exist without. Compare facultative
oblique (L. obliquua f. ob-intensely, + liquis, slanting) With the sides unequal or slanting. The fern Loxsoma cunninghamii gets its generic name Loxsoma "oblique band" from Gk. loxos, oblique or slanting; and zoma, girdle alluding to the oblique band or annulus of the sporangium. See also plagiotropic.
oblique cell division Cell division angle that changes the direction of growth e.g. branching in filamentous growth pattern.. Diagonal cell division. Compare anticlinal and periclinal cell division.
oblong (L. ob- + longus, long) Longer than broad with mostly parallel sides and rounded ends . . See leaf shape terms.
obovate (Ob- + ovate) Ovate with the broadest part above the middle. See leaf shape terms.
obtuse (L. obtundere , f. ob- against + tundere, to thump, hence make blunt) Blunt or rounded at the apex, the converging edges separated by an angle greater than 90°. Asplenium obtusatum. See leaf apices
obtuse-angled (L. obtusangulus) Having projecting longitudinal angles that are rounded in contrast to acute-angled (L. acutangulus) when they are sharp.

obtuse-angled rounded angles

acute angled sharp angles (acies)

Figure 195 obtuse- angled versus acute angled
occluded (L. occludere f. oc- + claudere , shut) Filled with material making the structure opaque.
offset A growth arising at the base of a plant, or on a trunk. An asexual or vegetative propagule.
-oides (L. -oides, like) Suffix meaning resembling (as in Leptopteris hymenophylloides -resembling Hymenophyllum) and sometimes implying related to (as in Gleichinoid fern).
olivaceous Dark olive-green.
ombrogenous (Gr. ombro- rain, ombros, rain shower + genesis, origin) A wetland that is nourished solely by precipitation. Compare soligenous - a wetland such as a swamp, fen or marsh that is nourished by water flowing over or through soil.
opaque (L. opacus) Incapable of transmitting light. See occluded.
Ophioglossales- Ophiogossoid Ferns Primitive eusporangate ferns order Psilopsida Family Ophioglossaceae -adders tongue ferns with two genera Ophioglossum (2 species)and Botrychium (3 species) in New Zealand. Allied to Psilotales- the whisk ferns.
opposite Attached opposite each other along the stem, rachises or costae; said of leaves, pinnae and pinnules. Subopposite means nearly opposite or slightly alternate. Compare alternate, whorled.
opposite leaf phyllotaxy A pair of leaves at each node directly opposite each other and either with the next pair directly above, so there are two vertical rows of leaves (opposite and superposed, or nondeccusate or distichous) or the next pair of leaves are placed at right angles, so that there are four vertical rows of leaves (opposite and decussate) arrangement as in Veronica (hebe) sp. . Leaflets of a pinnately compound leaf normally follow the first pattern opposite distichous or alternate distichous..
-opsida Suffix denoting the rank of Class in the taxonomic hierarchy. For example, Psilopsida (fork ferns), Lycopsida (club mosses, spike mosses and quillworts), Equisetopsida (Horsetails), Filicopsida (True Ferns). The rank between Division (or Phyllum) and Order. See classification.
orbicular (L. orbicularis, f. orbiculus, circular figure, small disk, f. orbis , disk, circle + -culus, diminutive suffix)) Circular or nearly circular in outline. Length = width.
order A taxonomic grouping of similar families. The suffix: -ales, denotes the rank of order in the taxonomic hierarchy. Examples include Lycopodiales, Equisetales, Psilotales, Ophioglossales , Marattiales, and Filicales. Order is below the rank of class and above family. See classification.

Ordovician Period (named after the Welsh tribe of the Ordovices) The chronostratgraphic period dating from the end of the Cambrian Period 485.4 million years ago (Mya) to the start of the Silurian Period 443.8 Муа.

* Evidence of Bryophyte grade or
clade plants
from this time (472 Ma)

The cryptospores are the oldest land plant fossils yet found, have similarities to those of liverworts. Claudia Rubinstein of the Department of Palaeontology at the Argentine Institute of Snow, Ice and Environmental Research in Mendoza,

https://en.wikipedia.org/wiki/Marchantiophyta\#cite_note-Walker_2010-1

Also evidence for the first land fungi may have been arbuscular mycorrhiza fungi (Glomerales), playing a crucial role in facilitating the colonization of land by plants through mycorrhizal symbiosis, which makes mineral nutrients available to plant cells; such fossilized fungal hyphae and spores from the Ordovician of Wisconsin have been found with an age of about 460 million years ago, a time when the land flora most likely only consisted of plants similar to non-vascular bryophytes.
organic matter Decaying and decomposed material in the soil that comes from living organisms. Includes litter or forest duff and humus. Rich in carbon.
orientation (L. orients, the quarter where the sun rises- the east, in relation to a point on a compass) The angle of a structure relative to a central axis.

terminal/ distal/apical

retrorse
antrorse

Figure 196 orientation terms
orthostichous (Gr. orthós, straight + stichos ,row) Arranged in regular vertical rows on a stem or axis.
osumundaceaous ferns. Ferns of the Osmundales, single family Osmundaceae. Primitive leptosporangiate ferns. In New Zealand, Todea barbara, Leptopteris hymenophylloides, L. superba and the naturalized Osmunda regalis.
outcrossing When a sperm fertilizes an egg cell of another gametophyte that came from a different sporophyte. The opposite of selfing. The resulting offspring are heterozygous in the case of outcrossing and homozygous in the case of selfing.
ovate (L. ovum , an egg) A flat plane with the outline like that of a longitudinal cross section of a hen's egg, with the basal end broader. Widest near the base; $11 / 2$ to 3 times longer than wide. See leaf shape.
ovoid (L. ovum: an egg + Gr. -oid f. -oeides resembling) A solid object with the outline of an egg.
oxylophil/oxylophile (Gr. oxy-, sharp,acid + phile, loving) Preferring an acid or humus rich habitat. Synonym acidophilic, Similar calcifuge and calciphobe. Opposite basophil and calciphil.
palea (L. palea: chaff, the husk of wheat separated in threshing) A chaffy scale. Also in general scales on various parts of ferns hence paleate and paleaceous.
paleaceous (f. palea) Furnished with scales often chaff-like in texture. See palea. Compare lepidote.
paleate (f. palea) Clothed with scales. See palea and lepidote.
Paleozoic Era (Gr. palaeo- palaios, ancient + Gr. zōē 'life' + -ic). The geologic time era spanning 540 to 252 million years ago. Includes:- the Cambrian, Ordovician, Silurian, Devonian, Carboniferous and Permian periods. Non-vascular land ("Bryophyte" grade) plants arose in the Ordovician period, the first vascular land plants in the Silurian to Devonian periods of the paleozoic..
palinactinodromous (Gr. palindromos, running back again, palin, back again, + actinodromous) Actinodromous leaf venation (ternate or palmate) pattern but with additional branching above the main point of divergence of the primary veins. (Unusual term)

Palinactinodromous venation
compound actinodromous with a mix of
basal, suprabasal \& pedate actinodromous
palmate (L. palma ,the palm of the hand) Of a leaf, divided into several leaflets radiating from the same point. Hand-shaped, radiately lobed, or divided. Most ferns follow the pinnate pattern.

Adapted from 'Plant Systematics' 2nd ed. 2010. Michael G. Simpson Academic Press (Elsevier)

Figure 197 palmate
palmatifid (palmate + -fid L. f. fidus, f. findere, to split, cleave) Of a leaf, deeply (but not completely) divided into several lobes which arise (almost) at the same level in the palmate pattern. In the broad sense includes palmately lobed /palmatilobed (1/8-1/4 sinus depth to base), palmately cleft (palmatifid strict sense) $(1 / 4-1 / 2)$ palmately parted/palmatipartite $(1 / 2-3 / 4)$-the lobes occupying more than half of the leaf.. If more deeply divided that is palmately divided/palmatisect (3/4-ca. 1)- the lobes almost extending to the base.
palmatilobed (palmate + lobed) Lobed with the lobes radiating from a central point like the fingers of a hand. Palmately lobed in general sense. In precise sense with a shallow sinus (1/8-1/4 sinus depth to base).
palmatipartite (palmate +L. partire to divide, from part-, pars part.) Palmately parted. Lobed in the hand shape pattern, the lobes occupying more than half of the leaf. Sinus depth $\pm 1 / 2-3 / 4$.
palmatisect (palmate + sectus, f. secare to cut) Lobed like a hand, the divisions extending nearly to the base. Palmately divided ($3 / 4-\mathrm{ca}$. 1 sinus depth). Compare palmatifid.
paludicolous (L. palus,marsh + cola inhabitant f. colere, colereto to live in a place, to inhabit) A marsh dwelling plant or animal.
palynology (Gr. palynos , dust +) The science of the structure of spores (including pollen). Spores and pollen are quite resistant and frequently preserved as fossils, which can be studied by paleobotanists. A spore has a single haploid (1n) vegetative cell that in land plants, originates from meiotic division of sporocytes in the sporangium borne by the adult sporophyte, ultimately growing into a gametophyte by mitosis. Pollen is similar to a spore but the haploid cell germinates within the spore wall (endospory) to produce a greatly reduced (few-celled) male gametophyte in the seed plants.
panicle (L. panicula , a tuft on plants, panicle)) A branched racemose inflorescence; in ferns a loosely arranged cluster of sporangia on a fertile spike as in Botrychium spp.
pantotactic (Gr. pan, all + táxis, I arrange,order) When sori are on nearly all veins of an ultimate branch system. Compare epitactic and paratactic. Tyron suggests these terms are difficult to apply to leaves with an entire to 1-pinnate lamina, and they are redundant to terms for the kinds of branching system.

Kidney fern Hymenophyllum nephrophyllym syn. Trichomanes reniforme Artist Nancy M. Adams 'Encyclopedia of New Zealand' 1966

R. E. Owen, Government Printer, Wellington, New Zealand

Figure 198 pantotactic soral arrangement
papilla (L. papilla, nipple, f. diminutive of papula pimple) a small elongated protuberance on the surface of an organ, usually an extension of one epidermal cell. adj. papillose.
papillate (L. papilla, nipple, f. diminutive of papula pimple) With wart or nipple-like glands,or pimple-like raised areas. Applied to leaf or spore surface for instance e.g. Botrychium lunaria spore surface. See leaf indumentum.
papillose (L. papilla, nipple, f. diminutive of papula pimple) Having minute, pimple-like projections on the surface. See leaf indumentum.
papyraceaous (L.papyrus , papyrus plant from which paper is made) With a texture like parchment.
parallel (L. parallelus, lines extending in the same direction and at the same distance) In leaf venation, with primary or secondary veins \pm parallel to one another, generally converging at the apex, the ultimate veins transverse. Characteristic of monocotyledons.
parallelodromous (parallel + Gr. dromos, running, racecourse) Having the primary veins in a leaf blade arranged approximately parallel to one another, although converging at the base and apex of the leaf. Characteristic of many monocotyledons. Synonym striate venation, parallel venation.

Parallelodromous
'Parallel running veins'
synonym Striate
Figure 199 parallelodromous venation
parallelogrammoid (f. parallelogram f. Gr. parallël-ógrammon, a shape "of parallel lines") With 4 sides, the opposite sides parallel.

Adiantum cunninghamii

ultimate pinnules \pm oblong or
parallelogrammoid
'Flora of New Zealand' Vol IV
Figure $\mathbf{2 0 0}$ parallelogrammoid
paranema (plural paranemata) (Gr. para, about, nēma, a thread) Sterile filament in the reproductive organs of algae, fungi and ferns.
paraphysate (Gr. para- , beside +physis , growth +-ate) Bearing paraphyses. Opposite of nonparaphysate.
paraphysis (Gr. para- , beside + physis, growth) Sterile filaments (paranema) or hairs borne among sporangia in a sorus: may be simple or branched, pointed, glandular or clubbed pl. Some may represent undeveloped sporangia. paraphyses. Soral hairs or filaments if you like.

Figure 201 paraphyses
Modified from David L. Jones , "Encyclopedia of Ferns" 1987, Lothian Publishing Co.
paratactic (Gr. parátaxis, "placement side by side" f, pará, beside + táxis, I arrange,order) With sori on the basal veins of the ultimate branch system of a lamina with anadromic branching (the first branch of a segment, is given off towards the apex of the lamina, pinna or pinnule). Compare epitactic and pantotactic. Terms mostly applied to filmy ferns-Hymenophyllaceae. See soral position.
parenchyma: (Gr. parenchyma to pour in beside f. para- beside + en- + chein to pour) Term derived from an ancient Greek concept of how tissue formed from coagulating blood in a mould. The simplest of three cell types found in plants, the other two are collenchyma and sclerenchyma. Parenchyma is plant tissue consisting of mature living cells that are relatively unspecialised in function. Cells isodiametric to elongate in shape, possessing a primary cell wall (cellulose) only. Potentially meristematic. If the cells contain chloroplasts the term chlorenchyma may be used. The latter are the principal photosynthetic cells in plants. Parenchyma is usually found in the ground tissue: pith or cortex of the stem or roots, and the mesophyll of the leaf.
paripinnate (L. par, paris, equal + pinnate) Also known as even-pinnate, pinnately compound without a terminal leaflet, ending in a pair of leaflets. Rare in ferns - Gleicheniaceae have paired leaflets but not in the pinnate pattern. Compare imparipinnate or odd-pinnate.
parted When the sinus extends (pinnately or palmatly) $1 / 2$ to $3 / 4$ of the distance to the midrib or similar central axis .See: partite, Pinnatipartite and palmatipartite. See Leaf division.
partite (L. partitus: f. partio, I share, part) Divided nearly to the base into lobes or divisions. Similar to parted.
pateliform (L.. pateli, saucer, plate + form) Plate-like. Can be used to describe scales, or indusia for instance.
patent (L. pateo: to lie open, exposed to) Spreading, horizontal; divaricate or divergent orientation.
Peat: A mass of partially carbonised plant tissue formed by partial decomposition in water of various plants and especially of mosses of the genus Sphagnum, widely found in many parts of the world, varying in consistency from a turf to a slime used as a fertiliser, as stable litter, as a fuel, and for making charcoal. Partially carbonized vegetable matter saturated with water; can be used as a fuel when dried. A type of soil deriving from dead organic material situated in a wet area, where the reduced amount of [[oxygen available in the wet conditions results in the organic material not decomposing as much as it usually would do so in the presence of more oxygen. Used in growing media. Represents an important carbon sink -drainage of peat releases large amounts of carbon $\left(\mathrm{CO}_{2}\right)$ to the atmosphere.

P:E Ratio In palynology, the ratio of the polar dimension to equatorial dimension: the ratio polar to greatest equatorial axis, taking the longer of the two as 8 .
pecopteridian venation (f. fossil Seed Fern (Pteridosperm) genus Pecopteris) Venation pattern in which the tertiary veins leave the secondary veins in a pinnate arrangement.

Athyrium filix-femina exhibiting Pecopteridian venation

'Paleobotany An Introduction to Fossil Plant Biology' (1981), Thomas N. Taylor, McGraw-Hill inc.
'Welsh Ferns a handbook' 1954 H. A. Hyde and A. E. Wade

Figure 202 pecopteridian venation (Mettenius, German botanist 1823-1866)
pectinate (L. pectin, a comb) Comb-like; deeply divided with the segments narrow and close. See Leaf margin.
pectinal vein (L. pectin , a comb) Lateral veins that produce abmedial veins (veins facing away from the midvein) almost throughout their length.
pedate (L. pedatus footed, from ped-, pes foot) Of a palmate or palmately-lobed leaf, having the basal lobes or lateral segments divided again e.g. Adiantum hispidulum

Figure 203 pedate
pedicel (L. pediculus , a little foot) In ferns the stalk of a sporangium or a conceptacle; more generally, a stalk, usually short and narrow, supporting a gland or other larger structure.
peduncle (L. pedunculus a late Latin form of pediculus, a lttle foot) In ferns the stalk supporting a sporocarp e.g. in Marsilea.
pellucid (L. pellucio , transparent, to shine through) Transparent.
peltate (L. pelta , shield , f. Gr. pelte , shield) Having the stalk attached to the lower surface (hence also basally attached) usually at or near the centre (centrally attached); umbrella-shaped. Hence peltate indusium shield-like (round) with the stalk attached near the centre and a peltate scale one attached at a point away from the margin. If the stalk is off centre, or one sided the term eccentric peltate or subpeltate can be applied. The shield ferns such as Polystichum and Lastreopsis receive that name because of the prominent peltate indusium they possess.

pendent ((L. pendo to hang down) Hanging downwards. Also pendulous.

Modified from 'Ferns in Peel Forest: A Field Guide' 1983. Brian Molloy Department of Lands and Survey. Christchurch

Figure 205 pendent growth form
penninerved (L. pinna, a feather + nerve) The veins (nerves) branching pinnately.
pentapinnate (Gr. penta, five + pinnate) The frond divided five times pinnately. $5 \times$ pinnate. Synonym quinquepinnate. The term decompound meaning 'very-compound' could also be used.
percurrent (L. percurrens, f. percurrere, to run or pass through, f. per, through + currere, to run) Extending through the entire length, such as from the base to the apex -used of the midrib of a leaf. In leaf venation, when tertiary veins link the secondary veins (or quaternary veins link the tertiary veins) in a ladder-like (scalariform) pattern. Compare netlike or reticulate pattern. Opposite percurrent: in relation to quaternary veins $\left(4^{\circ}\right)$ - crossing between adjaceant tertiary veins $\left(3^{\circ}\right)$ in parallel paths, without branching and alternate percurrent when quaternary veins cross between adjaceant tertiaries with an abrupt offset (an abrupt angular discontinuity).

Percurrent or
scalariform

Reticulate

 (netlike)Two patterns of tertiary veins
'Plant Systematics: A Phylogenetic Approach' 2008
Judd, Campbell, Kellog, Stevens, Donoghue.
Sinauer Publisher
Figure 206 percurrent/scalariform venation and reticulate venation
perennate Maintain a dormant state through the non-growing season. Hence perennating organ.
perennial (Latin perennis, f. per- throughout + annus, year) Living for more than two years. The majority of ferns are perennial. Can be subdivided into short-lived and long-lived perennial, as well as deciduous or evergreen, herbaceous, shrubby (suffrutescent) or arborescent (tree form). Compare ephemeral, annual and biennial.
perfect In leaf venation said if vein branches cover at least two thirds of the leaf blade area (or reach at least two thirds of the distance toward the leaf apex). It is imperfect if veins coverage is less than this.
pericostal (Gr. peri- , about, around + costa) Located along and near the costa (mid-rib), e.g. sorus or sporangium located near the costa. See soral position.
peridroma pl. peridromae (Gr. peri- around + droma running) The main axis (midrib) of the lamina from the junction of the stipe with the lamina, or lowermost pinna, to the apex. Synonyms: midrib, rachis, rhachis.
perine (peri- around + -ine, after German Perinium. in Latinised form) A thick outer (perisporial) spore wall layer, present in some families and genera of ferns and mosses. Compare exine. Synonym perispore.
perinium (peri- around + -ine, after German Perinium. in Latinised form) An outer coat of the microspores of certain Lycophytes and ferns.
peripheral fibre strands: Multicellular fibre strands which strengthen the periphery of the leaf in some Isoetes species.
perispore (Gr. peri- , around + spore) The folded membrane of most spores, forming an ornamental external covering. Synonym Perine.

Permian Period (f. the Russian region of Perm, where rocks deposited during this time are particularly well developed) The chronostratigraphic (geological) time period from about $299-252(\mathrm{Ma})$, that followed the Carboniferous Period and was followed by the Triassic Period. Represents the late Paleozoic. Evolving
during this time were the cycads, bennettites, ginkos, glossopterids (Gondwana) and other late paleozoic pteridosperms (Angiosperms had yet to evolve from within these Pteridosperm groups) plus the gnetales. Early conifers (voltzialeans from walchian conifers) derived from Cordaites which persisted also existed as did Calamites and the last of the progymnosperms (Noeggerathiales) into the early Permian. The Lycopsid trees died out end Carboniferous leaving herbaceous and subarborescent forms to carry the line on. . Marattoid ferns and horsetails were present plus the earliest leptosporangiate ferns (subclass Polypodiidae) Osmundales and Gleicheniaceae . A mass extinction event terminated the Permian Period.

proto- podocarp/araucaria conifer ancestors split late Permian

Permian Period approximately 299251 million years ago (Ma) $\mathrm{E}=$ Early; M = Middle \& L = Late

Osmundaceous ferns early leptosporangiate clade appear

Alethropteris lindleyana fern foliage, probably the leaf of Palaeoosmunda trunks. Speciemen from Tryphinia, Queensland, Late Permian age.
Mary White "The Greening of Gondwana" 1986. Reed Australia

Glossopteris tree Late Paleozoic Pteridosperm

Gondwanan distribution
Fossil leaves Southland
Diagram from ' The Evolution of Plants' 2nd ed. 2014. K. J Willis \&
J. C. McElwain

Oxford University Press
persistent (L. persist, to continue standing, to persevere) Remaining attached to the plant beyond the expected time of falling. Such as the dead fronds on a tree fern.
petiolate (L. petiolus little foot, from pes foot) Possessing a petiole.
petiole (L. petiolus little foot, from pes foot) The stalk of a leaf: in ferns a stipe. Ophioglossum petiolatum.
petiolule (L. diminutive of petiole) The stalk of a leaflet. In ferns the leaflet is the pinna and the stalk is called the costa, for a secondary pinna it's the costule and for a tertiary pinna the costulet.
petrocolous (Gr. petros, rock, stone + L. cola, inhabitant f. colere or coloreto, to live in a place, to inhabit) Living on or in rock. Synonyms: epilithic, lithophyte saxicolous, petrophilous, rupestral. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte. See also chasmophyte.
petrophilous (Gr. petros, rock, stone + philous, , love, loving) Rock-loving, growing on rocks. Synonyms epilithic, saxicolous, petrocolous, rupestral. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte. See also chasmophyte.
pH (power of hydrogen) The measure of acidity or alkalinity of a material. A logarithmic scale is used. 1 is extremely acid and 14 is extremely alkaline, while 7 is neutral.
phanerogams (Gr. phaneros, visible, apparent + gameo, to marry) An old term for the seed plants (gymnosperms and angiosperms) whose reproduction process was observable (phaneros-) to early botanists. Compare cryptogam.
phanerophyte (Gr. phaneros, visible, apparent + Gr. phyton, plant) Danish botanist Raunkier's term for often woody plants with buds perennating more than 25 cm above the surface of the ground. Tree ferns definitely fit this class.
-philous. (Gr. philus, love, loving) Suffix used to denote preferring certain conditions or a habitat. Similar to -colous. Example photophilous.
phloem (Gr. phloos , bark) Part of the vascular system of plants concerned with the transport of nutrients, photosynthates, organic compounds and hormones. Tissue composed of sieve cells and companion cells with phloem parenchyma and fibers. Found in the stele and veins. Compare Xylem.
photophilous (Gr. photos, light + philus, loving) A plant preferring to grow in well lit areas. Synonym heliophyte or heliophilous. Example bracken fern, Pteridium esculentum and pig fern, Paesia scaberula. Opposite of sciophilous or umbrophile or umbraticolous,
photosynthesis (Gr. photos, light + syn, together + tithenai, place) The conversion of carbon dioxide and water to sugars within green parts of the plant, using chlorophyll and light energy from the sun's rays. Plants that rely on this means, are called photoautotrophs (Light + self feeding) though they do need some additional nutrients and water from the soil. Photosynthetic organs include leaves, stems, thalloid structures such as fern gametophytes, liverworts and hornworts, some roots in part, and some spores.
photosynthetic spores Green spores containing chlorophyll and which can therefore photosynthesize.
phyllome (Gr. phyllon, leaf + oma- , body f. soma) The leaf structures or foliar organs of a plant as a whole i.e. leaves, bracts, scales and floral appendages.

Phyllomophore (phyllome Gr. phyllon, leaf + oma- , body f. soma + pherien to carry or bear) Is a structure intermediate between a stem and a leaf. The stipe of an ophioglossoid fern, bearing two blades, one limb of the dichotomy becomes the fertile spike and the other sterile leaf. Hypothetically the fertile segment originates from a modified pair of fertile lateral pinnae (leaflets).

Modified from "A Natural History of Ferns' 2004. Moran, Robbin C.. Timber Press
Figure 207 phyllomophore (Ophioglossales)
phyllopodium (Gr. phyll- f. phyllon, leaf + L. -podium f. Gr. podion, diminutive of pod-, pous foot) (plural phyllopodia) Stump-like extension of the rhizome of some ferns to which the leaves are attached, usually by a distinct abscission layer. When the leaf falls, the phyllopodium remains as a raised scar, a remnant of the petiole.. Example Zealandia pustulata subsp. pustulata

Stem of Polypodium (Gr. Poly, many, and podion, foot)
From 'A Nautural History of Ferns' 2004. Robbin C. Moran
Timber Press

Figure 208 phyllopodium
phylogeny (Gr. phylon, race or tribe + genesis, beginning) The evolutionary history of organisms. See clade.

Modified form ' A Natural History of Ferns' 2004. Moran, Robbin C.. Timber Press
Figure 209 phyllogeny(Moran)

A modification of a more recent phyllogeny

Figure 210 phyllogeny tracheophyte (note position of Equisetales has changed)
phyllotaxy (Gr. phyll- f. phyllon, leaf + taxis, arrangement) Leaf or leaflet arrangement on a stem or axis.

LEAF ARRANGEMENT (PHYLLOTAXY)

Leaf placement on the stem

alternate (helical) polystichous (many rows)
alternate (distichous) in two rows

subopposite leaves slightly offset

opposite
distichous/bijugate/ non-decussate pattern
opposite decussate (roman numeral X as viewed from above)

ternate 3 leaves

verticillate 1

whorled 3 + leaves per node

clustered

fascicled clustered type 2 + leaves per node

imbricate overlapping often scale leaves

rosette/rosulate basal, radical or acrocaulescent pattern usually close set alternate spiral on compact stem
rare
scattered

equitant
overlapping leaves as in iris sp.

secund/unilateral leaves on one side rare

Figure 211 phyllotaxy
phytogeography (Gr. phytón, plant + geography) The branch of biogeography that studies of the geographical distribution of plants.
pikopiko (Maori) A bud or bulbil, produced vegetatively on the stem or frond of, e.g. Asplenium bulbiferum and capable of breaking off and growing independently.
pilate/pileate (L pileus, a felt cap shaped like half an egg.) Capped or cap shaped.

Figure 212 pilate/pileate
pilose (L. pilo: to put forth hair, to grow hair) Hairy, the long simple soft hairs, scattered, clearly separated but not sparse. See leaf hairiness.
pinna pl. pinnae (L. pinna: a feather or fin) A primary segment (leaflet or frondlet) of the lamina in a compound leaf. From its arrangement in a feather-like pattern either side of the axis.. Pinnae may be arranged alternately or in opposite to subopposite pairs along the midrib. The pinna may itself be divided once again (bipinnate state) this secondary pinnae is called a pinnule. If the secondary pinnae is itself divided (tripinnate condition) this segment is called a pinnulet. Some ferns may be up to 8 times pinnate, which exhausts the use of diminutives. The word decompound (very compound) covers the greatly or finely divided fronds
pinnate (L. pinna: a feather) With two rows (distichous arrangement) of pinnae, pinnules, segments, or veins on either side of an axis. If compound the two rows of leaflets may be opposite or alternate or subopposite. Compare pinnatifid.

Adapted from 'Plants Systematics' 2nd edition 2010. Michael G. Simpson
Academic Press (Elsevier)
Figure 213 pinnate division
pinnate-pinnatifid Pinnate with the pinnae pinnatifid. Synonym bipinnatifid. That is the blade is once divided (pinnate) with deeply lobed pinnae (leaflets). Not quite Bipinnate.
pinnate-pinnatilobate Pinnate with the pinnae pinnately lobed. Synonym bipinnatilobte.
pinnate-pinnatisect: Pinnate with the pinnae pinnatisect. That is the blade is once divided (pinnate) with very deeply lobed pinnae ($3 / 4$ to c. 1 to midvein) more so than pinnate-pinnatifid. Synonym bipinnatisect. Not quite Bipinnate.
pinnatifid (pinnate + fid : Cut deeply (sinus depth $1 / 4$ to $1 / 2$ distance to midrib) into lobes that are spaced out along the axis in the pinnate pattern. palmatifid., same degree of division, but segments (lobes) radiating from central point, palmate pattern. The distinctions between pinnatilobate, pinnatifid, pinnatipartite and pinnatisect can be somewhat blurred.
pinnatilobate (pinnate + lobate) Having lobes pinnately arranged. Sinus depth $1 / 8$ to $1 / 4$ distance to midrib. The distinctions between pinnatilobate, pinnatifid, pinnatipartite and pinnatisect can be somewhat blurred.
pinnatipartite (pinnate + partite) Once divided with the divisions or sinus, extending half to two-thirds of the way to the rachis. The distinctions between pinnatilobate, pinnatifid, pinnatipartite and pinnatisect can be somewhat blurred.
pinnatisect: Once divided with the divisions reaching nearly to the rachis (midrib) that is more than three quarters of the way. Not quite bipinnate. The distinctions between pinnatilobate, pinnatifid, pinnatipartite and pinnatisect can be somewhat blurred.
pinnule: (diminutive of pinna) A secondary pinna: the ultimate segment of a frond divided two or more times the secondary pinnae, Some botanists use this term for the ultimate segment of a tripinnate or more divided frond. Other botanists substitute the term pinnulet for tertiary pinnae or greater.
terminal sporangia on telome trusses

Hypothetical evolution of the pterophytan (fern) pinnule with marginal sporangia from a primitive axis bearing sterile and fertile telomes.

'Morphology of Plants and Fungi' 1980. Harold C. Bold, Constantine J. Alexopoulos, Theodore Delevoryas. Harper International Edition

Figure 214 pinnule evolution (hypothetical)
pinnulet (diminutive of pinnule) A term for segments of a tripinnate (3-pinnate or higher order frond) another term for pinnule. The midrib is the costulet.
pioneer community The organisms that establish themselves on bare ground, rock or sand at the start of a primary succession. Lichens and byrophytes (mosses, liverworts and hornworts) and some higher plants are commonly involved.
pit Of a cell wall, a small hollow or depression.
pitted With numerous small depressions on the surface. Applied for instance to a spore surface.
plagiotropic (Gr. plagios, oblique + tropikos and trope turn) Growing laterally or obliquely, as in most fern rhizomes.
planar (L. planus, flat, planum level surface) Flattened.
planation (L. planus, flat, planum level surface) The process of flattening an organ from a three dimensional character - such as the flattening and vascularization of an enation to form the lycophyll and flattening of branches followed by webbing to form the megaphylly/euphyll. See enation theory and telome theory.
plano-convex (planar + convex) With a flat side and a convex side. Flattened uppermost and curving or arching outwards lower.
plesiomorphic (Gr. plesio- , near, neighbour + -morphos, f. morphe, shape.) Ancestral state or feature.. A symplesiomorphy (sym-together + plesiomorphy) is a shared ancestral state among taxa. Compare apopmorphy and synapomorphy.
pleuricellular or pluricellur (L. pluri-, many + cellular) Having many cells; used of hairs. Same as multicellular.
plicate (L. plicare , to fold, bend, curve,) Folded lengthwise into pleats.
plumose (L. pluma: a small soft feather, the downy part of a feather) Feather-like. Libocedrus plumosa a conifer.
pluricellur or pleuricellular (L. pluri-, many + cellular) Having many cells; used of hairs. Same as multicellular.
pluricostate (L. pluri- , many + costate) With more than one midrib or main vein. Compare unicostate, uninervous or hyphodromous.
pluvial (L. pluvial, rain) Pertaining to rain, rainy. another name for a rain-gauge is pluviometer. Hymenophyllum pluviatile.
pneumathodes (Gr. pneumo, lung, breathe +) Lines, swellings ,bands of pores or aerating tissue, especially prominent along the stipes, rachises, costae or pinnule bases of some leptosporangiate ferns. Also know as aerophores. They bear abundant stomates (pores) involved with gas exchange.

Fiddlehead and aerophore (or pneumatophore) of Pteris livida (Pteridaceae).

Figure 215 pneumatophore/ aerophore
The genus Pneumatopteris derives its name from the Greek pneuma (air, wind or breath), and pteris (a fern), a reference to the aerophores in some species. New Zealand species Pneumatopteris pennigera.
pneumatophores (Gr. pneumo, lung, breathe + Gr. phorus, bearing, carrying) Wing like protruberances (form of aerophore) found on the petiole bases of some ferns that also have trophopods (enlarged leaf bases).
podocarp forest Forest dominated by species from the conifer family Podocarpacea and the related family Phyllocladaceae. Species include the "big five"; kahikatea, rimu, totara, matai and miro plus celery pines tanekaha and toatoa. Podocarps may also be found intermixed with other species -sharing dominance (canopy layer and emergent) as in a mixed beech/podocarp/broad-leaf forest and kauri/podocarp/broad-leaf forest (northern). See also arapod forest.
poikilohydrous (Gr. poikilos variegated + hydrous F. hudor, water) Said of a plant with leaves that can inroll or shrivel when dry, but which can unfold and reopen when wet.
polar axis (polar + axis) The perpendicular line connecting the poles of a spore.
polar dimension " P " The distance from the proximal to distal end, measured from the equatorial view in trilete spores, or the equatorial longitudinal view in monolete spores.
polar view (polar + view) Spore or pollen grain view at pole; view along axis of symmetry directed towards the centre of the tetrad; view from the proximal or distal end.
pole (L. polus, Gr. polos, pivot, axis, firmament) Spore or pollen grain viewpoint, one of the extremities of the axis of symmetry that is directed towards the centre of the tetrad.
polygon (Gr. poly- , many + gonos, angle) Multi-sided shape. Such as when veins anastomose to areoles (leaf tissue surrounded by veins), which may be 3,4 or $5+$ sided.
polymorphic (Gr. poly- , many + -morphos, f. morphe, shape.) Having more than two distinct morphological variants. Compare monomorphic, dimorphic..
polyphyletic_ Gr. polyphylos, of many tribes, f. poly-+ phyle tribe) A group with several separate lineages, each with a separate common ancestor. The common ancestor of all these lineages is not itself a member of the group. A somewhat, artificial group. Compare monophyletic.
polyploid (Gr. polys, many + ploos, fold) Having more than two of the basic sets of chromosomes in the nucleus. Compare diploid, haploid. Triploid or greater. Adj. polyploidy.
polypod ferns (From genus Polypodium f. Gr. polys, many + pous, foot - referring to the knoblike petiole bases laft after leaf abscission - See phyllopodium) Ferns belonging to the Polypodiales- over 8,700 species worldwide in 26 families. In New Zealand ferns of the families: Lindsaeaceae, Pteridaceae, Dennstaediaceae, Aspleniaceae, Athyriaceae, Blechnaceae, Cystopteridaceae, Thelypteridaceae, Davalliaceae, Dryoperidaceae, Nephrolepidaceae,Oleandraceae,Polypodiaceae and Tectariaceae.

Polypodiopsida/Polypodiidae or Leptosporangiatae (Polypodiopsida f. genus Polypodium f. Gr. polys, many + pous, foot - referring to the knoblike petiole bases laft after leaf abscission + taxonomic rank). The leptosporangiate ferns. The majority of ferns. Also known as Filiopsida or Filicales. Contrast eusporangiate ferns. See leptosporangium, annulus, stomium.
polysporangiates Clade of land plants for which the sporophyte is relatively large (compared to bryophytes) and produces multiple reproductive organs (sporangia) hence the name. The clade includes all the vascular plants or tracheophytes, but some early forms lacked a lignified vasculature and are called prototracheophytes (all extinct) or where semi-lignified the paratracheophtes-Rhyniopsida: Rhynia gwynevaughanii (all extinct). All the surviving vascular plants and the immediate ancestors of the Lycophyte and fern/horsetail/seed plant clades, class as eutracheophytes or true vascular plants.
polystichous (Gr. poly- , many +-stichos, f. stichos row, line) Arranged in many rows, such as leaves in several rows. Compare distichous. The genus Polystichum from the lines of sori on the pinnules.
primary succession (L. prime, first + succession) Succession in which plants colonize surfaces with little or no prior soil development (e.g. lava, sand, landslide, floodplain). New Zealand example. Rangitoto Island lava fields. Contrast secondary succession. The initial community of organism is known as the pioneer community and as the area develops subsequent communities (seral) are called seres, until a more or less stable mature community is established known as a climax community. It should be noted that primary succession and soil development (pedogenesis) go hand in hand.
primitive Having characteritics similar to or retained unchanged from ancient members of the group. Opposite of advanced or derived. Eusporangiate ferns are considered primitive relative to leptosporangiate ferns for instance. Leptosporangia is an apomorphy - derived condition or character state, representing a novelty from the ancestral (plesiomorphic) eusporangiate condition. Psilotales, Ophioglossales, Marattiales and Equisitopsida (horsetails) share the ancestral eusporangiate condition so this is a symplesiomorphy for this group. Osmundales, Hymenophyllales, Gleicheniales, Schizaeales, Salviniales, Cyatheales and Polypodiales share the leptosporangiate condition so this is a synapomorphy- shared derived state for this group.
primofilicales (L. primus, first + filici , fern) The Primofilcales, an older name for the earliest ferns that first appeared in the middle Devonian and survived until the end of the Paleozoic. Now Class Cladoxylopsida, including subclasses: Cladoxylida, Stauropteridae and Zygopteridae - all extinct. As the name implies probably includes the ancestors of modern ferns.
procumbent (L pro: before, earlier, in front of + cumbi, to lie, to lie down) Trailing or lying on the ground without rooting at the nodes.
progymnosperms (L pro: before, gymnosperms) An extinct Palaeozoic plant group, with fern-like foliage and reproduction - that is by spore either homosporous or heterosporous, but conifer-like trunks. Ancestral to the gymnosperms (seed plants) and sister to the early ferns.
projection (L. projectura, a jutting out) Any feature that extends beyond the surface or margin of an organ or body, such as teeth or lobes on a leaf, ornamentation on a spore wall surface and so on. See exserted.
proliferous (L. proles, prolis, offspring + ferre: to bear) Having adventitious leaf buds which produce new plants (plantlets or bulblets). A form of asexual or vegetative propagation in some ferns. Polystichum proliferum Mother shield fern, Australian fern, naturalized in places.
propagule ((L.propago, layer, runner, cutting, shoot) A body with the capacity to give rise to a new plant, e.g. spore, gemma, bulbil, seed. Similar disseminule (L. seminare f. semen seed), diaspore
prostrate (L. prostratus, f. prosternere, from pro-before + sternere to spread out, throw down) Lying flat on the ground.

prothallium (ia) See prothallus

prothallus (Gr. pro-, before + thallus, sprout) Gametophyte of a fern, fern allie or lycophyte. (plural prothalli). Thallus is a plant body not divided into discernible stems, roots and leaves, somewhat resembling a thalloid liverwort or hornwort or may be filamentous.. The prothallus when mature produces gametes, male and female sex cells, in structures termed archegonia (female) and antheridia (male). The gametophyte and the gametes it produces are haploid (1n). Compare sporophyte.

Mature prothallus (gametophyte) with thickened archegonial cushion bearing archegonia (female sex organs). Antheridia (male sex organs) are developed outside the cushion, where the prothallus is one cell thick.

Figure 216 mature prothallus fern
protostele (Gr. pro: in front, before + stele pillar) A simple primitive type of stele having a solid central vascular core (a cylindrical strand of xylem surrounded by a region of phloem - no pith), with pericycle and endodermis, then cortex external to this.. Four main types of protosteles are recognized:

1. haplostele 'Single or simple stele' has a cylindrical vascular core e.g Gleichenia, Selaginella krausiana,
2. actinostele 'ray stele' has radiating arms -stellate or star-shape, so the core is fluted or lobed, phloem occurs in small patches between the radiating arms e.g. Psilotum
3. plectostele 'pleated stele' a variation of actinostele, has parallel longitudinal plates of xylem alternating with phloem plates. e.g Lycopodium volubile.
4. mixed protostele has xylem groups scattered amongst the phloem e.g. Lycopodium cernum.
5. polystele "many" + stele (rare) One with two or more vascular cyclinders embedded in cortex.

A-D Modified from 'Cryptogamic Botany' Vol. II, 1955. Smith, Gilbert. McGraw-Hill
Figure 217 protostele types
protoxylem (Gr. protos, first + xylem f. . xylon, wood) Referring to the first tracheary elements that develop within a patch of xylem, being typically smaller and with thinner cell walls than the latter formed metaxylem. It matures during the elongation of the plant part in which it is found.
protruberance (L. protuberare. f. pro: in front, before + tuberare f. tuber, hump) A swelling or lump on the surface. See epidermal excrescence and projection.
proximal (proximare to draw near, from Latin proximus next,) Near to the point of origin, the base or point of attachment. Compare distal. Palynology, spore or pollen grain side directed towards the centre of the tetrad, the opposite of distal, the part of the spore or pollen grain facing inward in the tetrad.
pseudodichotomous (Gr. pseudo- , f. pseudes, false + dichotomous).) Appearing as if dichotomous, by continuously dividing ,but really two equal lateral branches in the shape of the letter " Y " with a dormant, terminal bud between, e.g. Gleichenia fronds. Division not the result of division of the apical cell.

Gleichenia sp. Umbrella fern

Figure 218 pseudodichotomous
pseudoindusium See false indusium which is what it means.
pseudomonopodial branching (Gr. pseudo- , f. pseudes, false +mono, f, monos single + L. podium f. Gr. podion, base f. pous foot) A form of dichotomous branching which is extremely unequal (anisotomous) with one daughter axis assuming the upright angle of the parent axis, the other is more divergent appearing as a side branch, and of smaller diameter. It resembles true monopodial branching hence the name. Branching pattern found in Equisetum, the extinct, trimerophytes and other Devonian age plants.

Transition from primitive dichotomous (isotomous) apical branching, through anisotomous branching to pseudomonopodial.

Figure 219 pseudomonopodial branching
pseudopeltate (Gr. pseudo- , f. pseudes, false + peltate) Appearing peltate but having a narrow sinus (gap) reaching to the central stalk, e.g. Dryopteris affinis. Compare reniform.
pseudoserrate (Gr. pseudo- , f. pseudes, false + serrate) Falsley toothed, a term used for the apparently toothed margins of some rhizome scales.
psilate (Gk. psil-, bare, naked +-ate) Lacking ornamentation —used especially of a spore or pollen grain walls. Equivalent to glabrous or smooth for a leaf surface.

Psilotales (Gk. psil-, bare, naked referencing leafless stem) The order containing the whisk ferns primitive eusporangiate ferns represented in New Zealand by Psilotum nudum and five species of fork ferns Tmesipteris sp.. One family: Psilotaceae and two genera: Psilotum and Tmesipteris. Allied to the

Ophioglossoid ferns and less closely to the non-native horsetails (Equisitopsida). Marratoid ferns are also eusporangiate but more distantly related.

Psilotoid (f.genus Psilotum + oid, resembling, like) Referring to the whisk and fork ferns Psilotum and Tmesipteris species, Psilotales, family Psilotaceae.
pteridologist (Greek pteris fern + logos, discourse) A student of pteridophytes (ferns and lycophytes).
Pteridophyte pl. Pteridophytes (Greek pteris fern + phyton, plant) The general term for Ferns, and the so called fern allies the psilophytes,horsetails and lycophytes, defined by having a life cycle in which the sporophyte and gametophyte generations grow independently of one another, not attached; the sporophyte is large and conspicuous, the gametophyte inconspicuous and ephemeral. They are all vascular spore producing plants, but consist of two separate evolutionary lines: the ferns including the horsetails and whisk ferns versus the lycophytes. So the grouping is polyphyletic or artificial.

FAMILY TREE (PHYLOGENY) OF EARLY LAND PLANTS

Note the early split between the Lycophyte and fern lineages
pteridosperms The seed ferns, fossil seed plants from the paleozoic to mesozoic periods that were gymnosperms, many bore large pinnately compound leaves like fern fronds hence the name. Extant plants the cycads, conifers gingkos, and gnetophytes derived from early forms, angiosperms (flowering plants) from late Mesozoic forms. The ancestor of the pteridosperms was probably a heterosporous progymnosperm (spore bearing plants with fern-like foliage and reproduction and conifer-like trunks).
pteris (Gr. pteris fern) Either a prefix: pteris- or pterido- or suffix: -pteris , meaning fern. The Latin equivalent is filici hence filicales etc. Also a fern genus Pteris, with four native species in New Zealand and two naturalized species.
pteroid fern Species of ferns belonging the the fern family Pteridaceae, includes Adiantum spp, Anogramma spp., Cheilanthes spp., Pellaea spp. , Pteris spp. in New Zealand. See pteris.
ptyxis (L. ptyxis, f. Gr. ptúxis, a folding) Pattern of folding and rolling shown by an individual leaf during leaf development. Compare vernation.
puberbulent (L. pubes: The hair in general) Minutely pubescent. See leaf hairiness terms.
puberulous (L. pubes: The hair in general) Slightly hairy. See leaf hairiness terms.
pubescent (L. pubes: The hair in general) Downy, clothed with short soft erect hairs. See leaf hairiness terms.
pulvinus, pl. pulvini (L. pulvinus: a cushion) An enlarged (swollen) area at the base of stipes, e.g. Ptisana salicina.
punctate (L. punctum, point) Marked with dots, points, depressions or translucent glands.
punctiform (L. punctum , point + form, shape) Reduced to a mere dot or point, e.g. the sori of Microsorum punctatum.
punctulate (L. diminutive of punctate) Minutely dotted.
pup A popular term for a bulbil, plantlet or offset.
pustule (L. pustule , a blister) A blister-like prominence, often in which a sorus occurs. adj. pustulate. Microsorum pustulatum.
pyriform: (L. pyrus: pear + form, shape) Pear-shaped. Pilularia novae-zelandiae - microsporangia pyriform with up to 30 microspores (Flora of N.Z. volume 1).
pyramidal (L. pyrimidialis, f. Gr, puramis, pyramid) Like a triangular pyramid.
quadrate (L. quadratus ,square f. quattuor four) Squarish.
quadrifoliar (L. quadri- f. quattuor four +). Bearing four leaflets arising at the same point, e.g. Marsilea leaves one species is called Marsilea quadrifolia.
quadripinnate (L. quadri- f. quattuor four + pinnate). Four times pinnate, 4-pinnate. It has primary, secondary, tertiary and quaternary leaflets. Synonym tetrapinnate. See quaternary leaflet.
quaternary (L. quadri- f. quattuor four) The geologic time period from 2.58 million years ago to the present. Includes the Pleistocene and Holocene epochs. The last period of the Cenozoic era. The period is noted for the ice age episodes (glaciations) and the evolution of the genus Homo (Humans).
quaternary leaflet (L. quadri- f. quattuor four + leaflet) A leaflet of the fourth degree; a leaflet of tertiary leaflet. This leaflet is either called a pinnulet or a pinnule. The ultimate leaflet of a quadripinnate/tetrapinnate fern.
quinquepinnate. (L. quinque, five + pinnate) Frond five times $(5 x)$ pinnate. Synonym pentapinnate. rachides A term used for rachises.
rachis pl. rachises (Gr. rachis ,spine, ridge) A midrib of the lamina, the extension of the stipe (petiole) of the frond i.e. refers to the main axis above the lowermost primary pinna. Also spelled rhachis. Synonym peridroma. Often the rachis differs from the stipe, both in colour and covering of hairs and scales. The branching of the rachis into secondary pinna (leaflets) results in a change of name for the main vein of the pinna to costa (rib).
radial (L. radialis, f. radius ray) A rhizome having leaves or roots on all sides. A radial stem is often short and erect and is sometimes termed a "root stock"; it may be creeping. The trunk of a tree-fern is a large radial stem.
radially symmetrical With more than two vertical planes of symmetry.
radical (L. radix, root) or basal With leaves positioned at the base of a stem, arranged in a basal rosette . Compare cauline with leaves positioned along the length of the stem and acrocaulis with leaves positioned at the apex of the stem as in tree ferns.
radicant (L. radix, root) Rooting, a term applied to stems, fronds when they root at the tips, proliferous buds
rain forest Forest that receives a high rainfall of $1500-3000+\mathrm{mm}$ (or part equivalent from fog) per year; usually lacking a pronounced dry season. Divided into temperate rainforest and tropical rainforest.
rameal sheath. (L. ramus , branch + sheath) Leaf sheath on the stem joints, as in Equisetum.
ramentum (L. ramentum, a shaving) One of the thin dry scales to be found on the stipe, rachis or lamina e.g. Asplenium bulbiferum and A. gracillimun.

Asplenium bulbiferum A. frond; B. bulblets; C. stipes scales (ramentum)

Adapted from 'New Zealand Ferns and Allied Plants' 2000. Patrick J. Brownsey and John C. Smith-Dodsworth Bateman

The expanding frond forms a fiddlehead or koru Cyathea medullaris

https://commons.wikimedia.org/wiki/File:Fiddlehead_black_tree_fern.jpg

Figure 221 ramentum Cyathea medullaris
ramet (L. ramus, branch) A vegetatively produced plant individual that may detach from the gentetically identical parent e.g. the bulbil type asexual reproduction of Asplenium bulbiferum. An independent clone. Opposite of genet - a sexual produced plant individual that is genetically unique.
random. (branching) With branches arising from buds without relation to leaves.
raphe (Gr. rhaphe, seam) The ridge that connects the sporocarp and stem in Marsilea.
ray An arm or branch of a stellate hair, e.g. Pyrossia eleagnifolia.
receptacle (L. receptacalum, store-house) The thickened sporangia- and sometimes paraphysis-bearing tissue on which the sporangia are borne. In the filmy ferns Hymenophyllum and Trichomanes this is bristlelike; in most other ferns it is flush with the leaf surface or slightly elevated.
recurvation (L. recurvus: bent back) In telome theory one of the evolutionary processes which modifies
a telome truss, as possibly occurred in the evolution of the equisitoid sporangiophore.
recurved (L. recurvus: bent back) Curved downwards towards the base or backwards.
reduced (L. reducere, reductuctum, to lead back, f. re. + ducere, to lead) Becoming smaller.
reduction (L. reducere, reductuctum, to lead back, f. re. + ducere, to lead) To make smaller. In telome theory, an evolutionary process whereby telome trusses are reduced from many to one telome, ending in a microphyll/lycophyll. This is contrasted with the enation theory for the origin of microphylls, which is better supported. Reduction nevertheless is a well known evolutuionary process even if in this case it is incorrect.
reflexed (L. reflexus, f. reflectere , to bend back). Bent sharply downwards or backwards, turned back on itself - as in the margin of a leaf. In ferns a reflexed leaf margin or leaf lobule margin may form a false indusium -protecting sporangia or sori in some species.
remote (L. remotus, f. removere , to remove) Distant, far apart, well separated. For instance the spacing of leaves on a stem. Synonym distant, compare approximate, confluent, connivant, contiguous, congested, close, close-set, imbricate.
renascent (L. renasci, reborn) Spring up afresh each year.
reniform: (L. renes; the kidneys + forma, shape) Kidney-shaped. Crescent-shaped with rounded margins and a central sinus. example Dryopteris felix-mas, kidney fern Trichomanes reniforme. Applied to leaf and indusial shapes amongst other things. Note also genus Nephrolepis means 'kidney scale'.

Nephrolepis cordifolia
reniform indusium
Figure 222 reniform indusium
reticulate (L. reticulum, a little net,) Branching and rejoining of veins to form a network. The enclosed area of leaf tissue is the areole, pl. areolae. Also applied to ornamentation or sculpturing of a spore surface where anastomosing ridges (muri/walls) enclose small more or less irregular spaces (lacunae).
reticulodromous (L. reticulum , a little net, + Gr. dromos, running, racecourse) (1) Pinnate, camptodromous, leaf venation pattern in which secondary veins branch into a reticulum toward the margin. Example Histiopteris incisa (2) Actinodromous leaf venation pattern with three or more primary veins diverging from one point (ternate or palmate pattern) but do not reach the blade margin.
reticulum (L. reticulum , a little net) A network, e.g. of veins, where veins meet and cross or join.. adj. reticulate. The area of leaf tissue enclosed by the veins is the areola. Synonym net-veined and anastomosis.
retrorse (L. retrorsus, f. retroversus; f. retro- , back + vertere, versum , to turn). Bent, and pointing away from the apex. Directed downwards or backwards. Compare antrorse.
retuse (L. retusus, blunted) The apex rounded and notched.
revolute (L. revolutus , to roll back) With the margins rolled backwards, the lateral margins inrolled abaxially. Longitudinal posture term, compare involute.
rhachis See rachis alternative spelling. The midrib of a frond.
rheophyte (Gr. rheo- flow, current + phyton, plant) A flood resistant plant living between the high and low water levels of rivers.
rhizoid (Greek rhiza , root + oid- resembling) A thread-like, non-vascularized, unicellular absorbing structure occurring, in the vascular plants, in gametophytes of ferns and some related plants. They have a root-like function,similar to a root hair, they anchor it to the substrate and absorb nutrients.
rhizome (Gr. rhiza: a root) The creeping (often underground), climbing or erect stem of a fern, including the erect or vertical trunk or caudex of a tree fern. In other land plants rhizome used in the underground stem sense. The term stolon is then used for an above ground creeping stem and simply stem for an ascending or erect stem. As a stem it bears the fronds of the fern, whereas a true root does not bear leaves. Synonym: surculum pl. surcula.

Figure 223 rhizome types and branching
rhizomorph In certain lycophytes (for example, Isoetes), a rooting system developed from the first dichotomy of the embryonic shoot (because it originates from shoot tissue, it is not true root). It has the anchoring and absorptive functions of a root but the general morphology and characteristics of aerial shoots. More rhizome than root.
rhizophore: In Selaginella, a leafless stem that grows downwards producing adventitious roots or rhizoids.

Selaginella krausiana African clubmoss naturalized exotic lycophyte

Figure 224 rhizophore Selaginella
rhomboid (Gr. rhombus a mathematical figure whose four sides and angles are equal) Diamond-shaped and rhomboidal diamond-shaped or almost so.

Rhyniophyta or Rhyniophytina (from the fossil genus Rhynia, itself named after the Rhynie chert fossil site near the village of Rhynie, Aberdeenshire, Scotland) Primitive, small, early (lower Devonian) vascular plants characterized by naked, dichotomously branched, aerial axes with terminal sporangia. These stems arise from a horizontal, dichotomizing rhizome that bear rhizoids. As currently circumscribed Rhynia includes just one species R. gwynne-vaughnii. Other genera include, Huvenia and Stockmansella At one time the Psilophytes were considered to belong here, rather than with the ferns, Psilotum does bear an uncanny resemblance to these fossil plants. Rhyniophytes are considered basal to other vascular plant groups. Fossil plants that were similar to Rhyniophytes - polysporangiates, but which lacked vascular tissue such Horneophyton and Aglaophyton - having water conducting vessels (hydroids) to some mosses have been called protracheophytes. The Rhyniophytes have also been classified as paratracheophytes, having a simpler vascular system- have 'S-type' water-conducting cells, i.e., cells whose walls are thickened but in a much simpler fashion than those of true vascular plants, the eutracheophytes
ribbed With raised longitudinal areas, long raised piece or ridges. Also the lateral veins of a leaf. The terms costa and costule are derived from the Latin for rib, while the midrib of a frond is rhachis from the Greek for spine.

Modified from 'Introductory Botany' 2nd ed., 1971. Cronquist, Arthur.
Harper International Edition
Figure 225 ribbed
ridges /ridged Possessing short or long raised areas, such as a stipe or spore surface.

Figure 226 ridges
ring cells Another name for the annulus.
riparian (L. riparius f. ripa, bank, belonging to banks) Growing on riverbanks and streamsides. root-hair A unicellular protuberance arising from the surface cells of a root. Compare rhizoid.
rootstock A swollen root together with the whole or a portion of a very short stem. Another term for rhizome.
rosette (L. rosula, little rose) A group of overlapping leaves radiating from the centre.
rosette fern Fern with an ascending or erect, compact rhizome with leaves arranged in a funnel-like rosette (shuttlecock). Blechnum discolour. A tree fern is a special case of a rosette-forming fern, with the leaves borne in a acrocaulescent fashion on the trunk.
rostrate (L. rostrum , beak of a bird) With a beak like structure.
rounded Round in shape, globose,spherical.
rudimentary (L. rudis: in the natural state, rough, raw, wild) Fragmentary, imperfectly developed.
rugose (L. rugo: to crease, wrinkle or crumple) Deeply wrinkled. Compare bullate.
rugula pl. rugulae (L. rugo: to crease, wrinkle or crumple) Spore wall ornamentation. Corrugations, small wrinkled ridges, long and narrow.
rugulate (L. rugo: to crease, wrinkle or crumple) Bearing rugulae, irregularly distributed wrinkled elements.
rugulose (L. diminutive of rugose) Covered with minute wrinkles.
runner A slender prostrate or arching lateral stem that terminates in a bud which produces leaves and roots. Compare stolon.
rupestral (L. rupes: a rock) Growing on rocks, cliffs, walls etc. Synonyms: rupicolous, lithophyte, saxicolous, petrophilous, petrocolous and epilithic. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte. See also chasmophyte.
rupicolous (L. rupes a rock + L. cola, inhabitant f. colere or coloreto, to live in a place, to inhabit) See rupestral. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte.
saccate (L. saccus, sack or bag) With pouched projections or sacs. bag-shaped. The projections appear to be flaccid and hollow, pouched.
sagenoid (Gr. sagen, seine , fishing net + -oid , resembling) Anastomosing venation with regular areaoles with included veinlets (simple or branched) protruding in all directions, e.g. Tectaria spp
sagittate (L sagittalis f. L sagitta, arrow) Shaped like an arrow head, with the basal lobes pointing downwards. Compare hastate.
saline (Latin salinus, from sal salt) Salty, brackish. Halophytes (Gr. hals, salt, sea + phyton, plant) dwell in salty environments.
saprophyte (Gr. sapros, rotten, + phyton, plant). An organism such as fungi living on dead organic matter and usually lacking chlorophyll. Some of these fungi form a mycorrhizal association with plant roots and some fern and lycophyte gametophytes are totally dependent on the fungi for food and are termed achloromycoheterotrophs. Thus the plant is an indirect saprophyte.
sarmentose (L. sarmentum ,twig) Producing long, flexuose runners or stolons
saxicolous (L. saxum rock + L. cola, inhabitant f. colere or coloreto, to live in a place, to inhabit) Growing on or among rocks. Synonyms, rupestral, lithophyte, petrocolous, petrophilous, rupicolous, epilithic. Example: Leather-leaf fern Pyrossia eleagnifolia which also grows as an epiphyte, Pteris saxatilis. See also chasmophyte.
scaberulous (Diminutive of scabrate) slightly or minutely rough to the touch. Paesia scaberula. See leaf hairiness terms.
scabrate (L. scaber. rough) rough.
scabrous (L. scaber. rough) Rough to the touch, due to minute projections. See leaf hairiness terms.
scalariform (L scala, ladder + form) Resembling a ladder. Secondary xylem elements possessing parallel bands of lignified thickening or some perforation plates that have several pores separated by parallel bars of tissue.

Tip of tracheid of Drypteris with scalariform pitting

L.S. tracheary element showing helical thickenings and the strips by which they are joined to the primary wall

Different types of secondary wall thickening
(Modified from 'Plant Anatomy' 1982 (3rd ed.) A. Fahn. Pergamon Press)

Scalariform tracheid of

Marsilea vestita

'Cryptogamic Botany' 1955. Smith
Figure 227 scalariform tracheids
scalariform venation When tertiary veins usually link the secondaries in a ladderlike pattern. Synonym percurrent. Compare reticulate or netlike pattern.
scale 1. A dry thin plate of cells of epidermal origin; one cell thick but two or more cells wide at the base at least; a thin scarious trichome which is either flattened, inflated or twisted and variously shaped e.g. hairlike and the margin maybe entire, toothed or fringed. The scale may be attached by the basal edge or at a
point away from the edge (peltate attachment). The scales colouration and markings also distinct -this along with the previous features may be helpful in identification. May be found on rhizomes, stipes or rhachises of many ferns. The term palea refers to scales on various parts of ferns particularly if chaffy, hence paleate, paleaceous while lepidote means covered in small scales,
squamate/squamose/squamous means scaly;squamula is a small scale and squamulose-covered in small scales... The covering of scales and hairs is called indumentum. 2. Or a vestigial scale-like leaf e.g. Psilotum . Synonym ramentum. Note leaf shape terms can be used to describe scale shapes.

Scale subulateattenuate

Lanceolate scale setiferous margin

Clathrate scale Asplenium spp.

Flabellate (Fan-shaped) scale with fimbriate margin

Linear
setiferous scale
with hair-like process

Figure 228 scales

Figure $\mathbf{2 2 9}$ scales versus hairs in tree fern genera
scandent (L. scandere: to climb) Climbing on other vegetation for support, e.g. Phlegmarius volubile syn. Lycopodium volubile, Lygodium articulatum, Dendroconche scandens syn. Microsorum scandens.
scaly Covered in scales, synonyms: paleate/palaceous(chaffy), squamate/squamose/squamous, and the diminutive squamulose, and lepidote.
scarious (L. scariosus, dry and membranous in texture) Thin, dry and membraneous in texture. Lycopodium scariosum.
schizaeoid ferns Ferns in the order Schizaeles familes: Anemiaceae (not in New Zealand), Lygodiaceae (1 species NZ - Lygodium articulatum, mangemange) and Schizaeaceae (4 species of Schizaea in NZ, comb ferns).
scientific name also known as botanical name. The Latinised binomial (genus name + specific epithet) by which a species is recognized internationally or a trinomial or greater if subspecies, varieties or forms are involved. Compare common name, or Maori name. e.g.

Asplenium bulbiferum	Hen and chickens fern	Manamana, Mauku, Mouki, Mouku
Scientific Name	Common Name	Maori name/names

sciophilous or skiophilous (Gr. skia, shade + philous , love) Said of plants which favour shady conditions. New Zealand examples: Hymenophyllum atrovirens and Leptopteris superba. Synonym umbraticolous or umbrophile, photophobic. Compare heliophile, photophile.
sclerenchemya (skleros , hard + enchyma a suffix denoting tissue- see parenchyma for etymology) Cells having heavily lignified cell walls, often dead at maturity; or strengthening tissue formed from such. Cell types include fibres and sclerids, sometimes included are the vascular cells or conductive cells such as tracheids and vessel elements of the xylem and the sieve cells or sieve tube members of the phloem (the
phloem cells not lignified but thickened (nacreous thickening). Involved in mechanical support and sometimes conduction (internal transport- if we include xylem and phloem) as well.
sclerenchymatic plates (band) Bands of sclerenchyma tissue surrounding each vascular bundle in a tree fern trunk and often in addition a band of sclerenchyma thicker than others, providing a firm cylinder that produces the hard exterior of the trunk and provides the main support for the trunk in tree ferns.
sclerotic (skleros, hard) hard and stony.
scrambling fern/lycophyte Fern or clubmoss with leaves of indeterminate growth or dormant leave buds and that spreads across the soil surface and over other low growing vegetation and physical objects..
scutelliform (L. scutella , a dish, salver, shaped like an oblong shield f. Gr. scutum, shield + forma , shape) Shaped like a small shield.
scurf A fine, scaly covering. See leaf hairiness terms.
secondary pinna (L. secundo: secondly + pinna) The ultimate segments (leaflets) of a bipinnate fern. Also called a pinnule.
secondary succession (L. secundo: secondly + succession) Succession initiated by the disruption of a previously existing seral or climax community by some major environmental disturbance, leading to a marked change in the stable vegetation community. Secondary succession may occur after a fire or storm, after removal of grazing pressure,or abandonment of cultivated areas. Unlike primary succession, a soil is present and relatively intact. Bracken fern Pteridium esculentum can be sited as a frequent secondary succession species.
section A taxonomic subgroup of a genus containing closely related species.
seculate (L. f. sector, cutter) Sickle shaped, e.g. Blechnum montanum. Synonym falcate.
seed A ripened ovule, a reproductive unit formed from a fertilized ovule, and comprising an embryo (young sporophyte), food store and protective coat. The resting body in the reproductive cycle of and produced by the seed plants (spermatophytes). Seed differs from spores in many ways (despite the word spore being derived from the Greek for seed) but like spores serves as the dispersal unit. Spores tend to be one-celled. The unripened/unfertilized ovule is multicellular and includes protective and nurturing maternal sporophyte tissue as well as the female gametophyte. The gametophyte is thus retained by and dependent on the sporophyte in the seed plants. In flowering plants the seed is furthermore enclosed or embedded in a fruit, derived from the female parts of the flower - the ovary and sometimes the receptacle as well.
seed ferns The pteridosperms,fossil seed bearing plants,from the late Devonian and Carboniferous to Permian,many of which many bore fern-like leafs (fronds) but produced seeds as well. Class as gymnosperms. evolved from progymnosperms (fern-like plants with conifer like stems). Conifers,cycads, gingkos derived from early Paleozoic forms, angiosperms (flowering plants) from late Mesozoic forms.
seed plants Gymnosperms (for example, pines, gnetophytes, ginkgoes, and cycads) and angiosperms (flowering plants). Vascular plants that produce seeds .Synonym Spermatophyta. The non-seed plants (synonym cryptogams) include the ferns, lycophytes and the non-vascular bryophytes which reproduce from spores. Ferns and seed plants share a common ancestry in the extinct trimerophyte clade, the lycophytes seperated earlier and the bryophytes earlier still.
selfing self-fertilization, either gametophytic selfing when a sperm fertilizes an egg cell of the same gametophyte or sporophytic selfing, when a sperm fertilizes an egg cell of a different gametophyte that developed from spores from the same sporophyte parent. Opposite of outcrossing, when a sperm fertilizes an egg cell of another gametophyte that came from a different sporophyte. The resulting offspring are heterozygous in the case of outcrossing and homozygous in the case of selfing.
segment (L. segmentum a piece cut off) Each free part of a divided frond. The ultimate leaflets of a frond.
semi-terete (L. semi- half + teres, teretis , round, cylindrical) Flat on one side, terete on the other. Halfround.

Figure $\mathbf{2 3 0}$ semi-terete
semi-xeric (L. semi- half + Gr. xeros, dry), Able to grow in semi-arid conditions.
septate (L sepes, a hedge, divider) Divided internally by partitions or cross-walls called septa.
septapinnate (L. septa, seven + pinnate) With the frond divided seven times. 7 X pinnate.
septum (L sepes, a hedge, divider) A partition. pl. septa.
sequential. (L. sequential f. sequi, follow) Said of sorus with the younger sporangia at the apex and the older ones lower down (basipetalous) or the reverse (acropetalous). The sporangia mature in succession indicated by the direction. Contrast mixed. Synonym gradate.
seral (L. series, f. serere, to join together, bind) A plant community (sere) that is successional, before reaching equilibrium or climax. See primary succession.
sere A successional series of plant communities, a stage in a succession. Some seres are named after the starting substrate e.g. lithosere (rock) psamosere (sand as on dunes) hydrosere (water) or initial conditions xerosere (dry soil).
seriate (L. serere , to join together) In whorls or apparent whorls.
sericeous (L. sericus, silken) Clothed with silky hairs. Synonym silky.
serrate (L. serra: a saw) Toothed, like a saw blade. With sharp teeth having usually saw-like, sharp, acroscopically directed teeth on the margins. Teeth slightly oblique to the margin - like the edge of a saw. Hence serrulate, finely serrate.
serrulate (L. serra a saw) Finely or minutely serrate, diminutive of serrate.
sessile: (L. sessilis , pertaining to sitting) Lacking a stalk. Attached directly at the base, sitting directly on the organ or axis to which it is attached. Such as pinnae attached to the rachis or midvein and not having a separate stalk.
seta (L. seta , bristle) A stiff hair or bristle. pl. setae. A hair-like extension of the leaf, as in homophyllous species of Selaginella. Hence setose, setiferous, having small bristly hairs. Synonym echina. Spore wall projection where the trunk does not taper, and the apex is not sharp.
setaceous (L. seta , bristle) With the character of bristle. See leaf hairiness terms.
setiferous (L. seta, bristle +-ferous, bearing) Producing or having setae. Polystichum setiferum.
setiferous scale (L. seta, bristle + -ferous, bearing + scale) In tree ferns genus Cyathea subgenus Sphaeropteris scales at the base of the stipe, that are relatively narrow scales, the cells are similar in shape and orientation (elongate and approximately parallel to the axis) with a number of marginal cells thickened to form short, bristle-like projections or setae. Contrast flabelloid scale. See scale (diagram).
setose (L. setosus: hair covered) Covered with bristles (setae). See leaf hairiness terms.
setulate (L. setosus: hair covered f. seta, bristle) bearing setae. See leaf hairiness terms.
setulose (diminutive of setose) Covered with small bristly hairs. See leaf hairiness terms.
sexine (f. 's' in sculptured, and exine f. ex-+in- fibrous tissue, from Greek in-, is tendon) The outer sculptered part of the exine (exospore) - spore wall layer. in contrast to the nexine (' n ' from nonsculptured, and exine).
sheath A tubular envelope that clasps the stem, e.g. Equisetium spp.

Figure 231 sheath Equisetum
shield ferns The shield ferns such as Polystichum and Lastreopsis receive that common name because of the prominent peltate (shield-like) indusium they possess.
shield fronds Sterile fronds which envelop the root system of Platycerium spp. Synonym base frond, mantle frond.
shoot A stem plus its leaves and reproductive parts that it bears. Grows from a shoot apical meristem (sam). A bud is a condensed undeveloped shoot.
short-creeping rhizome: One that grows horizontally and produces fronds at short intervals. Compare medium-creeping rhizome, long-creeping rhizome, caudex or trunk, tufted.
shuttlecock Growth form like a badmington shuttlecock. Rosette type leaf architecture.
silky With a covering of very fine, lustrous hairs. See sericeous.
silvicolous (L. silva, woodland + -cola, inhabitant) Growing in forests. Synonym hylophile. Polystichum silvaticum.

Silurian Period (named after a Celtic tribe of Wales, the Silures.) The chronostratigraphic (geological) period from the end of the Ordovician Period, at 443.8 million years ago (Mya), to the beginning of the Devonian Period, 419.2 Mya. During the Wenlock epoch (between 433.4 and 427.4 million years ago), the oldest-known tracheophytes of the genus Cooksonia, appear. The complexity of slightly later Gondwana plants like Baragwanathia, which resembled a modern clubmoss, indicates a much longer history for vascular plants, extending into the early Silurian or even Ordovician.

DEVONIAN PERIOD (419.2-393.3 Ma)

Silurian Period approximately between 444 and 420 million years ago (Ma)

By Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48122033

Figure 232 Silurian Period
simple Undivided; of a frond, not divided into leaflets (though it maybe toothed or lobed); of a hair, vein or an inflorescence, not branched. Not compound, or branched. Compare compound.

Pyrossia eleagnifolia Polypodiaceae Simple Leaf - entire
'Encyclopedia of New Zealand' 1966 artist Nancy M. Adams

Zealandia pustultata subsp. pustulata syn. Microsorum pustulatum Phymatosorus diversifolius

Figure 233 simple leaves
sinuate (Shaped like the original Roman Letter C f. Greek letter sigma, but now equivalent to English S) Curved or shaped like C, but S will do as well. With the margins strongly wavy.
sinuous (Shaped like the original Roman Letter C f. Greek letter sigma, but now equivalent to English S) Changing direction of curvature.
sinus (L. sinus: curve, hollow) The cleft, space, recess or gap between lobes or teeth on a margin.
sinus membrane (sinus + membrane) A flap of membraneous tissue occurring in the sinus of some ferns.
siphonostele (Gr. siphon, pipe, tube + stele, column, post), An arrangement where the tubular, vascular tissue surrounds a central pith. If the xylem is surrounded by an out layer of phloem the term ectophloic (outside phloem) siphonostele is used. If the xylem has an inner and outer layer of phloem the term amphiphloic (both + phloem) siphonostele or solenostele is used and if dissected, a dictyostele.
sister group The most closely related group in an evolutionary tree; when a branch on an evolutionary tree (cladogram) divides, it forms two sister groups. The two groups share a common ancestor. The ferns and seed plants are considered sister groups, the lycophytes being more distantly related to both. Psilotales are sister to the Ophioglossales, while Equisetium is possibly sister to the Marattiales all eusporangiate fern groups.
skiophilous or sciophilous or (Gr. skia, shade + philous , love) Said of plants which favour shady conditions. New Zealand examples: Hymenophyllum atrovirens and Leptopteris superba. Synonym umbraticolous or umbrophile,photophobic. Compare heliophile, photophile.
skirt The remains of dead leaves or stipes that are persistent and hang down from the crown of a tree fern trunk e.g. Cyathea smithii.
slender Long and thin.
sobol pl sobole (L. soboles, suboles sprout, shoot, offspring) Archaic term for a shoot originating near the ground; produced by an underground stem that produces roots and buds. A sucker.
soil spore bank The accumulation of spores in the soil profile, not all the spores will be viable though. Similar to the soil seed bank concept.
solenostele (Greek solen channel, pipe + stele , pillar) Synonym amphiphloic siphonostele, a tubular stele with both external and internal phloem to the xylem (Gr. amphi- both sides + -phloic, bark, phloem today).

Siphonostelic (Tube) Types of Steles

A- E Modified from 'Cryptogamic Botany' Vol. II, 1955. Smith Gilbert. McGraw-Hill
Figure 234 solonostelic and siphonostelic stele types
solid shapes (three dimensional)

SOLID (THREE-DIMENSIONAL) SHAPES (from Simpson, 'Plant Systematics' and Stearn 'Botanical Latin')

Figure 235 solid shapes
solitary Singly, not in groups.
soligenous (L. solum ground + genesis, origin) - A wetland such as a swamp, fen or marsh that is nourished by water flowing over or through soil. The water sourced from groundwater or an inflow of surface water. Compare ombrogenous- A wetland that is nourished solely by precipitation.
somatic (f. French somatique f. Gr. somatikos, bodily, f. soma, body) All the body cells of an organism except those giving rise to the egg and sperms.
soral flap (Gr. sorus , heap + flap) The specialised fertile lobe unique to Adiantum. A false indusium.
soral patch The area of the lower surface of the frond where the sporangia of leptosporangiate ferns are concentrated, e.g. Leptopteris spp.
soral position The location of the sori on the pinna, pinnules or pinnulets in relation to the midrib (costa) and margin. Also whether located along the veins on one (single-sided sori) or both sides or terminally (at vein tips). The following terms have been applied:-
extramarginal - extending beyond the margin. Protruding marginal sorus.
marginal- at the margin,
surficial - located away from the margin (includes the terms below). In ferns also called abaxial (lower leaf surface) also not embedded or sunk into tissue (not immersed).
superficial -located on the surface. = surficial.
immersed - embedded or sunk into tissue rather than superficial.
submarginal - just behind the margin,
supramedial - nearer the middle (medial position) than the margin.
medial - in the middle, midway between the margin and the costa (costule or costulet).
submedial or inframedial -between medial and pericostal. Nearer the midvein than margin
pericostal - near or at the costa (midrib).

Figure $\mathbf{2 3 6}$ sorus position terms

Arrangment of sori (sporangia clusters) in fern genera represented in Peel Forest
'Ferns in Peel Forest' 1983. Brian Molloy. Dept of Lands and Survey, Christchurch

Figure 237 Arrangement of spore clusters (sori) in fern genera represented in Peel Forest (Bryan Molloy)

In addition the terms epitactic, paratactic and pantactic have been applied to the position of sori on the ultimate vein system of filmy ferns.

When sori are always located on terminal veins of terminal segments in addition to lateral segments, they are epitactic.

Hymenophyllum minimum showing toothed lamina segments, terminal sorus and toothed indusial flaps Artist Tim Gallowav

When sori are located on terminal veins of lateral segments (rarely on the apical/terminal ones), they are paratactic.

Hymenophyllum dilitatum Artist Tim Galloway

When sori are located almost on all segments or terminal veins, they are pantotactic.

Hymenophyllum nephrophyllum syn. Trichomanes reniforme, with sporarangia emerging from marginal, cup shaped indusia on, long receptacles. Patrick Brownsey

Soral Position in the filmy fern family Hymenophyllaceae

Figure 238 special soral position terms
soriferous (Gr. sorus, heap + L. -ferous , bearing) Bearing sori. Compare acrostichoid- sporangia singly placed and scattered.
sorophore (Gr. sorus + -phoros, bearing) (1.) Specialized outgrowth of a frond margin or segment margin bearing sporangia, e.g. Lygodium spp. and (2.) the elongate gelatinous, sporangium-bearing structure (massula) produced when the sporocarps of Marsileaceae open. Different structures but essentially performing the same function - exposing the sporangia for latter spore dispersal.

portion of fertile pinna showing sporangia on marginal outgrowths (sorophores)

Lygodium articulatum

Tim Galloway, artist 'New Zealand Ferns and Allied Plants' Brownsey, J. Patrick and Smith-Dodsworth, John C. .
David Bateman publisher.
Figure 239 sorophore Lygodium

Marsilea vestita sporocarp with extruding sorophore - swollen gelatinous structure bearing the sporangia from the sporocarp

Diagram from 'Plant Classification' 1979. Benson, Lyman.

D. C. Heath and Company publishers

Figure $\mathbf{2 4 0}$ sorophore Marsilea
sorus (Gr. sorus , heap) A cluster of two or more sporangia (spore cases). pl. sori. The shape of the sorus and position (see soral position) provide features that aid in the identification of ferns. The sorus may be naked (exindusiate) or protected by a flap of tissue (rue indusium), sporocarp or reflexed leaf margin (false indusium) or both. Paraphyses (filaments or hairs) may be present amongst the sporangia (paraphysate) or not (non-paraphysate). In some ferns e.g. Osmundaceae sori and indusia are absent, the sporangia are singly placed or scattered in distribution (See acrostichoid.). Similarly the synangia (fused twin or triplet sporangia) of the psilotales does not count as a sorus, nor the synangium of Maratiales Lycophytes lack them as well their sporangia are singly placed in the axil of the sporophyll or born on the upper sporophyll surface (adaxial or ventral position).

basal indusium attached at base (basally)

Figure $\mathbf{2 4 1}$ indusium attachment and false indusia

Figure 242 sori and indusia
spathulate (Gk. Spathe: a broad blade; \& L. spatula: spoon like instrument used by druggists and surgeons) Spoon-shaped; broad at the tip and narrowed towards the base.
spatulate (L. spatula: spoon like instrument used by druggists and surgeons) Spatula-shaped, narrow at the base and gradually widening distally to a rounded tip.
specialist A plant that is limited to very specific habitat conditions e.g. the filmy fern Hymenophyllum malingii habitat:- Montane to subalpine. Epiphytic (rarely rupestral) usually on the dead or dying trunks of kaikawaka (Libocedrus bidwillii) but also occasionally found on Hall's totara (Podocarpus cunninghamii), rimu (Dacrydium cupressinum), Halocarpus biformis, beech (Fuscospora and Lophozonia spp.) and on moss covered boulders, rocks and cliff faces.
speciation In evolution, the biological process by which new species may arise.
species (L. species, appearance, form, kind) A taxonomic group of closely related organisms, the individuals usually interbreeding freely and having many characteristics in common; the word is used for both the singular and plural. Abreviation sp. single species and spp. for more than one species.
species epithet or specific epithet (Species + Gr. epitheton f. epi, upon, + tithemi, place) The second word in a species name, following the genus name for example, filiforme in Blechnum filiforme. The first
name, the genus is capitalised, the specific epithet is always lower case today. Note not to be confused with the species name (binomial) which is both words. This is because the specific epithet can be reused but only for a different genus e.g. Cyathea colensoi and Trichomanes colensoi. This ensures that the binomial name is unique.
sperm Male gamete, smaller,flagellated and motile compared to the larger, non-motile female gamete (egg). Produced in the antheridium on the gametophyte. At fertilization the sperm and egg fuse to form the zygote.Synonyms: spermatozoid, antherozoid.
spermatozoid (Gr. sperma , seed + -oid, resembling) A motile, male gamete. Synonyms: sperm, antherozoid.
sphaereopteroid indusium. (f. genus Sphaeropteris, globe fern, f. Gr. sphaira, globe + pteron wing or fern of some kind, + -oid, resembling + indusium) In tree ferns genus Cyathea, species where the indusium is rounded and covers the sorus at first. Example Cyatheae medullaris. Compare hemiteloid indusium and cyathiform indusium

Sphenopteridian venation (f. fossil Pteridosperm (Seed Fern) Sphenopteris some formerly included in this genus may have been ferns) A type of Ctenopteridian venation (Pinnate pattern) in which the secondaries leave the mid-rib at an acute angle: the secondaries together with acute angled tertiaries run straight to the margin. Asplenium species. Classes also as craspedodromous venation.

Sphenopteris frond extinct seed fern

Division: tPteridaspermatophyta
Class: †Lyginopteridopsida
Order: †Lyginopteridales
Family: +Lyginopteridaceae
'Paleobotany An Introduction to Fossil Plant Biology' (1981) Thomas N. Taylor, McGraw-Hill inc.

Asplenium polyodon pinna with Sphenopteridian/Craspedromous venation

Diagrams from 'Hawai'i' Ferns and Fern Allies' 2003. Daniel D. Palmer. University of Hawai'i Press.

Figure 243 sphenopteridian venation (Mettenius German botanist 1823-1866)
spicular (L. spica, a spike) Spiky.
spiculate (L. spica , a spike) With small spine-like projections.
spike An undivided floral axis bearing sessile sporangia, with the younger sporangia at the tip e.g. Ophioglossum spp. .

Life cycle of Ophioglossum

Euphyllophyta, Monilophyta (ferns), Psilopsida,order Ophioglossales, family Ophioglossaceae

Figure 244 spike Ophioglossum
spine (L. spina, a thorn) A hard projection with a sharp point, hence spinose and spinescent.
spinescent Ending in a spine.
spinose Armed with spines.
spinula pl. spinulae (diminutive of spine) A small spine; hence spinulose, having small spines on the surface. Synonym spinule..
spinulate With fine tapering spine or rod-like projections.
spinule (diminutive of spine) A small spine; hence spinulose, having small spines on the surface. Synonym spinula.
spiny Possessing spines or spine-like. The Mamaku Cyathea medullaris has scales with a spiny margin.
spiral (L. spira, a coil) Borne at different levels along the axis, singly and alternately on the rachis or stem, successively, but $<180^{\circ}$ to the next. A helix , coiling. See Fibonacci \& phyllotaxy.
sporangiate (Gr. spora, seed + angeion, a vessel) Bearing spore cases (sporangium).
sporangiophore (sporangium + Gr. -phore, f. phorein, to bear) The stalk of a sporangium; peltate (shield or umbrella shaped) organ bearing sporangia in the horsetail (Equisetum), stobilus or cone.

ancestral condition

Hypothetical evolution of the Arthrophyton (Equisetum) sporangiophore (Zimmerman, Stewart, Bold)

Figure 245 sporangiophore evolution (Equisetum)

Figure 246 sporangiophore (Equisetum)
sporangium pl. sporangia. (Gr. spora, seed + angeion, a vessel) A reproductive structure within which spores are formed. Also known as a spore case. The sporangia may themselves be scattered (acrostichoid), or aggregated into a sorus - clusters of sporangia, or grouped in a cone like structure strobilus. In Psilotum nudum, Tmesipteris spp. and Psitania salicina syn. Marattia salicina fused sporangia (synangium) feature.. The sorus may be protected by a flap of tissue -indusium (hence indusiate) or not (exindusiate). In water ferns (Salviniales) a modified indusium called a sporocarp is found. In most ferns found on the underside of the fertile frond or margin. In Psilotales fused and found on the upper surface of forked leaves. In lycophytes single sporangia are borne on the upper surface of each
fertile leaf, or leaf base (Isoetes).See sorus, soral position, spore, indusium.

Figure 247 sporangium (Leptosporangiate)

spore (Gr. spora , seed) Usually one-celled (unicellular), seldom few-celled sexual or asexual reproductive propagule. In ferns and lycophytes spores are produced in specialized spore cases (sporangia) borne on the underside or margin of the frond (ferns) or the lycophyll leaf axis (sometimes aggregated into a strobilus/cone) of the adult sporophyte. The spores are produced by meiosis (reduction division), so are meiospores, and haploid (1n). The spore represents the start of the gametophyte generation and act as the plants dispersal unit. After release and dispersal by wind or water and reaching a suitable substrate the spore germinates in moist soil and develops as the gametophyte or prothallus by mitosis, so the gametophyte is also haploid (1n). In some heterosporous ferns and lycophytes, the male and female gametophytes develop more or less within the original spore wall -a condition known as endospory. The spores are called microspores and megaspores respectively. Seeds (mature ovules) in contrast are multicellular,diploid (2n) embryos, protected by surrounding maternal sporophyte tissue .
spore bank The deposition and retention of spores in soil or other substrates. If they remain viable can potentially germinate at some stage. Equivalent to seed bank.
spore capsule The apical part of the sporangium that produces and contains the spores and is born on a stalk.

spore case Sporangium.

sporeling A very young fern or lycophyte plant (juvenile sporophyte) developing from the prothallus after fertilization. If anything the gametophyte or prothallus has more right to be called a 'sporeling' because it develops from the spore.

Young fern sporophyte (sporeling) still attached to the gametophyte but independent of it

Modified from 'The Life of Plants' 1994. Martin Hanson. Longman Paul
Figure 248 sporeling (fern)

Two views Lycopodium cernuum young sporophyte
Adapted from Holloway reproduced in 'Cryptogamic Botany: Bryophytes and Pteridophytes' Vol II. 1955. Smith, Gilbert. McGraw Hill.
Figure 249 sporeling (Lycopodium)

Young Selaginella sporophyte (sporeling)

Figure 250 sporeling (Selaginella)
spore mother cells The 16 cells in a sporangium which undergo meiosis to produce the spores; each mother cell produces four spores, 64 spores in all in most ferns.
sporiferous (Gr. spora, seed + L. -ferous, bearing) Bearing spores.
sporocarps (Gr. spora , seed + karpos fruit) A thick-walled, globular organ containing sporangia embedded in sorophore in heterosporous aquatic ferns e.g. Pilularia,Marsilea, Azolla, and Sa/vinia .

> Pilularia novae-zealandiae Pillwort -both common and botanical names reference the sporocarp

Pilularia from L. Pilula, meaning small ball
Adapted from 'New Zealand Ferns and Allied Plants' 2000, Patrick Brownsey and J. C. Smith-Dodsworth; Bateman Illustration Tim Galloway

Figure 251 sporocarp (Pilularia)
 illustrations on right adapted from 'Plant Classification" 1979. Lyman Benson. D. C. Heath and Company

Figure 252 sporocarp (Azolla)
sporogenous (Gr. spora, seed + genes, born, produced) Spore-forming tissue
sporophore (Gr. spora , seed + phorein, to bear) Sporangium bearing tissue in heterosporous aquatic ferns e.g. Marsilea, Azolla, and Salvinia .
sporophyll (Gr. spora, seed + Gr. phyllon leaf) A spore bearing leaf. A specialised leaf-like organ that bears one or more sporangia. A fertile frond. Compare trophophyll, sterile frond or vegetative frond
sporophyte (Gr. spora, seed + phyton, plant) The diploid fern plant or lycophyte which produces dust-like spores (meiospores) when mature.. The asexual generation. The more conspicuous and recognizable plant in the fern or lycophyte life cycle. The sporophyte develops from the zygote (fertilized egg), the gametophyte develops from haploid spores produced by the sporophyte. Compare gametophyte or prothallus.
sporophyte embryo The sporophyte embryo of ferns and lycophytes posses a well developed foot attaching the embryo to the gametophye, rudiments of a primary root, leaf primordia (sometimes called cotyledons) and a short shoot apex
sporophytic Of the sporophyte generation.
sporopollenin (Gr. spora , seed + L. pollen, fine flour + in) The chemical coating of the spore wall, (and pollen grain wall). A biopolymer made from carotenoids and carotenoid esters. Decay and chemical erosion resistant. That's why spores fossilize well. Sporopollenin first appears in the zygotes of the land plant ancestors -freshwater green algae the Charophytes.
sporulation (Gr. spora, seed) The formation of spores.
spreading Directed outwards from the stem at a rather broad angle; said of leaves.
squamate (L. squamatus scaly, f. squama, fish or snake scale) or squamose/squamous - Scaly. Compare paleate and lepidote.
squamiform, (L. squama, fish or snake scale + form) In the shape of a scale.
squamule L. diminutive of squama, scale) A small scale.
squamulose (L. squamula diminutive of squama, scale) Covered with small, papery scales. See leaf hairiness terms.
squarrose: (L. squarrōsus , scabby) With spreading and divergent scales, projecting points or processes. Dicksonia squarrosa..
stalk A short, supporting axis (e.g., the short, free, basal portion of some pinnae, pinnules, and segments); structure attaching a sporangium to its receptacle; the petiole (stipe in ferns) of a leaf or frond.
stalked Joined to an axis with a stalk. Compare sessile.
stellar Referring to the stele (vascular cylinder).
stellate (L. stella , star) Star-shaped, as in some scales or hairs with several arms, e.g. Pyrossia spp..

Hymenophyllum malingii (Aptopteris malingii) sori at tips; stellate (magnified)
(Encyclopedia of New Zealand -artist Nancy M. Adams)

Hymenophyllum peltatum
2-valved indusium bearing stellate hairs.
(Flora of New Zealand Vol. 1)
Nancy M. Adams artist

Figure 253 stellate hairs
stele (Gr. stele, pillar or post) The vascular system/vascular cylinder(s) of rhizome, stem, or root. Three main types are found in ferns:-
protostele where the vascular system has a solid core (no pith) - primitive ferns e.g. Gleichenia spp..
siphonostele or solenostele where the stele is tubular- ferns with long creeping rhizomes.
dictyostele a complex stele composed of many meristeles (vascular strands) interrupted by leaf gaps, where the vascular trace to a leaf is attached.
stem The ascending axis, above or below ground, which bears leaves (fronds). In ferns and lycophytes, the rhizome, stolon, caudex or trunk. If the the stem creeps above the ground surface it is generally called a stolon, if below ground -a rhizome. With ferns even though the stem may be above ground the term rhizome is often still used. If the stem is erect and aerial it is called a caudex or trunk. See also stock, surculum .Contrast root the descending axis. The term shoot refers to a stem plus its leaves and reproductive structures..
sterile (L. sterilis barren) Barren, not producing viable spores. Opposite of fertile.
sterile frond Referring to leaves that do not produce sporangia or sori, also known as a vegetative frond, barren frond, or trophophyll. In ferns with dimorphic fronds - sterile and fertile. A purely photosynthetic organ. Compare fertile frond.
stipe (L. stipes, log, post, trunk of tree) The leaf stalk or petiole of the fern frond; attaching the frond to the rhizome (stem) changes to rhachise where the blade or lamina starts. Compare rachise the rest of the midrib where the leaflets (pinnae) are attached.
stipitate (See stipe) Having a stipe (petiloe) or stalk.
stipule (L stipula stalk of hay or straw, diminutive of stipe) Fleshy, persistent appendage, paired at both sides of base of a stipe, at least partially covering the stipe base and adjacent rhizome; seen in Marattiacea also the flared leaf bases in Osmunda .
stock Another term for the rhizome, the section of the plant from which both the roots and fronds arise.
stolon (L. stolo, branch, shoot) An elongate, creeping stem, that intermittently forms new plants and roots along its length. Weki, Rough Tree Fern Dicksonia squarrosa spreads vegetatively via stolons. Usually above ground in contrast to rhizome.
stoloniferous: (L. stolo, branch, shoot + -ferous , bearing) Bearing stolons.
stoma pl. stomata or stomates (Gr. stoma, mouth) Minute opening bordered by guard cells in the epidermis of leaves and stem. Air passes through the opening, and most of the plant's water evaporates through the pores (gas exchange).
stomium (Gr stomion, diminutive of stoma mouth) The lip cell region of a sporangium (leptosporangium) with thin walled cells (lip cells) associated with the annulus where dehiscence occurs and the spores are released.
stramineous (L. stramen: straw Straw-coloured, pale yellow.
striate (L. stria: groove, furrow) Marked with fine lines or ridges. Grooved. Also a synonym for parallel or parallelodromous leaf venation.
strigose (L. strigosus, f. striga row of bristles) With stiff sharp slanting hairs, hair-like scales or bristles.
strobilus (L. strobilus, pine cone f. Gr. strobilos twisted object, top, pine cone) A cone-like body, as in the Lycopodiaceae, Equisetum and Selaginellaceae, consisting of sporophylls (fertile leaves) with sporangia at their bases, borne close together on the axis. pl. strobili. Also called cones but distinct from those of conifers.

The position of microsporangia and megasporangia in differnt species of Selaginella and a comparisom with Lycopodium
(The strobilus or cone bears four rows of sporophylls each subtending a sporangium in its axil. In Longitudinal section, two rows of sporophylls with sporangia, ligule and the central axis are shown)

Figure 254 strobili (Selaginella and Lycopodium)

Equisetum arvense field horsetail
This species has distinct fertile and vegetative shoots, other species e.g. E. hymale only one kind of shoot (vegetative \& fertile)

Diagrams adapted from 'Biology of Plants' 2005 Raven, Peter H.; Evert, Ray F.; Eichhorn Susan E. W. H. Freeman and Company

Figure 255 strobilus (Equisetum)
sub- (L. sub- , under) Prefix meaning under, below, almost, nearly, approaching e.g. submarginal.
subarborescent (L. sub- + arbor, tree) A term used for ferns which develop small trunks, implying treelike. Miniature tree fern.
suberose (L. suberosus, f. suber, cork oak,) Corky. Cork oak is Quercus suber.
subfamily (sub- + family) A taxonomic group of related genera within a family. Subfamilies have the name ending -oideae. See classification.
subgenus (sub- + genus) The taxonomic rank of subgenus, for a group of more closely related species within the genus. Abbreviation subgen. See classification.
submarginal (sub- + marginal) Closer to the margin than the midrib. See soral position.
submedial (sub- + medial, middle) Near the middle; said of sori that are a little closer to the costa midrib than medial. See soral position.
subopposite (sub- + opposite) Nearly but not quite opposite. Slightly alternate.

Sticky pig fern Hypolepis rufobarbata
A fern displaying alternate to subopposite leaflet arrangement (adapted from Brian Molloy)
Figure 256 subopposite
subspecies A taxonomic grouping within a species (see infraspecific) used to describe a significant often geographically isolated varient. Example Dicksonia lanata subsp. lanata and Dicksonia lanata subsp. hispida. Ranked higher than variety, or form. Abreviation subsp. .
substrate (L. sub-+ stratum a spread for a bed) The surface or medium to which a plant is anchored e.g. soil, rock, bark, mud etc.
subtend (L. sub, under + tendere , to stretch, extend). To occur immediately below.
subterranean (L subterraneus, f. sub- + terra earth) Occurring below the soil surface. Roots and some rhizomes for instance. Some gametophytes are subterranean and depend on mychorrhizal fungi for nutrition. See achloromycohetertrophic.
subulate (L. subula, awl, a tool for making holes in leather) Narrow and tapering gradually to a fine point. Awl-shaped.
succulent (L. sucus, juice) Juicy or fleshy.
sucker A shoot arising from the roots or trunk below ground level.
sulcate (L. sulcare , to plough, furrow) Grooved; furrowed. Some stipes or midribs (rachises) are sulcate.

sulcate
Figure 257 sulcate
sulcus pl. sulculi (L. sulcare , to plough, furrow) A groove or furrow.
superior (L. super, above) Situated above another organ. Opposite inferior. See example:superior secondary vein below .

Figure 258 superior term used in relation to venation

(c) palinactinodromous venation

(d) acrodromous venation

Figure 259 Superior and inferior secondary vein

(e) craspedodromous left and brochiodromous right side

Figure $\mathbf{2 6 0}$ superior term used in relation to venation
superficial (L. superficialis, pertaining to the surface, f. superficies,surface, upper side, top,f. super "above, over + facies form, face) 1. When applied to sori, those arising from the surface, rather than the margin, of a leaf or leaflet - lamina, pinna or pinnule and not embedded or sunken in tissue (immersed) (See soral position). 2. Gametophytes that grow on the soil or substrate surface as opposed to underground. Synonym surficial.
suprabasal (L. supra, above, beyond + basal) Said of primary veins that diverge from a point above the leaf base. Compare basal. See Leaf Venation.
supramedial (L. supra, above, beyond + medial) Distal to the middle; said of sori that are a little closer to the margin than medial. See soral position.
surculum pl. surcula (L. surculus, twig, sprout) A creeping stem, usually spreading horizontally, e.g. Microsorum pustulatum, or short and erect, e.g. Blechnum discolor, but sometimes extending above ground as an upright, woody trunk or caudex, e.g. Cyathea dealbata. Synonym rhizome.
surcurrent (sur- , somewhat + currere to run, hasten) Regarding leaflet attachment with wings extending from the base of a pinna or segment up the rachis, costa or costule (opposite of decurrent). See also adnate, sessile and stalked, the other options.
surficial (surface + icial L. f. superficial, under influence from surface) Growing upon the ground - the soil surface. Such as a fern gametophyte also known as epiterranean, or epigeal and usually photosynthetic.. Surficial cells -those at the surface of an organ. Surficial sori or sporangia, those borne on the leaf surface away from the margin.
swamp Low land that is seasonally flooded; swamps are fertile river-fed freshwaters systems and contain moving water that is well aerated. has more woody plants than a marsh and better drainage than a bog. They are more fertile and less acidic than bogs because inflowing water brings silt, clay and organic matter.

Typical New Zealand swamp plants include raupo (Typha), purei (Carex secta) and harakeke /flax (Phormium tenax). Zonation and succession often leads through Manuka (Leptospermum scoparium) to kahikatea (Dacrycarpus dacrydioides) swamp forest as soil builds up and drainage improves. Bogs on the other hand are rain-fed, and contain stagnant, de-oxygenated water. They are also infertile.
symbiotic (Gr. syn, with + bios life) Two or more organisms living together to their mutual advantage. A beneficial association of different organisms. See mycorrhiza and nitrogen fixation.
sympatric (Gr. syn + patra , fatherland) Occupying the same general locality; usually describing ranges of populations of different species. Compare allopatric.
symplesiomorphy (Gr. syn-together + plesiomorphy). Shared ancestral condition (plesiomorphy- plesionear to ancestor)). The eusporangiate ferns share the ancestral state - bearing eusporangia for the Psilotales, Ophioglossales, Marattiales and Equisitopsida (horsetails) this is a symplesiomorphy for this group. Osmundales, Hymenophyllales, Gleicheniales, Schizaeales, Salviniales, Cyatheales and Polypodiales share the leptosporangiate condition so this is a synapomorphy- shared derived state for this group.
sympodial (Gr. syn- + podion a little foot, f. pous foot) Branching pattern with branches more or less equal without a main axis.

Synapomorphy (syn- together + apomorphy) Is an apomorphy (derived or evolved feature) shared by two or more taxa in whose common ancestor the derived condition arose. Osmundales, Hymenophyllales,Gleicheniales, Schizaeales, Salviniales, Cyatheales and Polypodiales share the leptosporangiate condition a derived feature from the ancestral eusporangiate condition so this is a synapomorphy- shared derived state for this group. Psilotales, Ophioglossales, Marattiales and Equisitopsida (horsetails) share the ancestral eusporangiate condition so this is a symplesiomorphy for this group.Compare plesiomorphy (ancestral state) and symplesiomorphy (shared ancestral state).
synaptospory (Gr. syn-together + L. aptatus, aptus, fasten, fix + spory) The shedding of spores in small groups or in whole sporangia (spore cases) rather than separately. Found in Cyatheaceae and Pyrossia spp. for example.
synangium . pl. synangia (Gr. syn: together, with + aggeion, vessel, bowl) Structure formed by the fusion of sporangia (spore cases) or sori, e.g. in Psilotum, Tmesipteris, Ptisana syn. Marattia. Distinct therefore Psilotoid and Marattoid synangia types. Synonym fused sorus.

Psilotoid synangia

Psilotaceae. Psilotum nudum: a, fertile and sterile branches, b, sterile branch portion with leaves (prophylls), c, fertile branch with synangium (3 fused sporangia), d, synangium close up, e, cross-section of synangium, f. synangium with sporangia dehiscing

Modified from 'Taxonomy Of Vascular Plants' 1951. Lawrence, George, H. M.. The McMillan Company

Psilotoid synangium

Psilotales. Tmesipteris tannensis, synangium with two fused sporangia

Modified from 'The Morphology of Pteridophytes', 1970. Sporne K. R.. Hutchinson University Library

Figure 261 synangium (Psilotum \& Tmesipteris)

Figure 262 synangium (Tmesipteris)

Habit of Ptisana salicina syn. Marattia salicina, Para or king fern
'A Book of Ferns' 1959. Greta Stevenson. Paul's Book Arcade, Hamilton

Ptisana (Marattia) salicina

'Oxford Book of New Zealand Plants' 1978.
L. B. Moore \& J. B. Irwin

Oxford University Press

Cover photograph: The sporangia of the primitive fern para (Ptisana salicina syn.
Marattia salicina) are fused into groups called synangia. Para was once common in the north of New Zealand but it is now in serious decline. 'Plant Conservation Training Module 1. May 2008.
by lain Reid, John Sawyer and Jeremy Rolfe Photography by Jeremy Rolfe

Published by the New Zealand Plant Conservation Network in conjunction with Northland Polytechnic.

Marattoid synangium

empty synangium cut through

Introduction to plant life in New Zealand

Figure 263 marattoid synangia

Proposed evolutionary steps leading to the develpment of the Psilotum type synangium
'Morphology of Plants and Fungi' 1980. Harold C. Bold, Constantine Alexopoulos, Theodore Delevoras. Harper International Edition

Figure 264 synangia evolution (Psilotum)

Hypothetical steps in the evolution of the Tmesipteris type synangium
'Morphology of Plants and Fungi' 1980. Harold C. Bold, Constantine Alexopoulos and Theodore Delevoras. Harper International Edition
Figure 265 synangia evolution (Tmesipteris)
synonym (Gr. syn-together, with + nym f. onoma, name). Another name for the same taxon, may be an alternate name to a currently accepted scientific name under a different classification system or an old name now superseded. Abbreviation syn. e.g. Ptisana salicina syn. Marattia salicina.

Taenopteridian venation (f. fossil Pteridosperm (Seed Fern) Taenopteris) A type of Ctenopteridian venation (pinnate pattern) in which the secondary veins leave the mid-rib at approximately right angles and run straight to the margin; any tertiary veins run parallel with the secondaries, then straight to the frond
margin. The short basal curves usually present in the secondaries of this type are ignored.

Hart's tongue Fern exotic
Exhibits Taenopteridian venation

Taenopteris

'Paleobotany:

An Introduction to Fossil Plant Biology' (1981), Thomas N. Taylor, McGraw-Hill Inc.

Figure 266 taenopteridean venation (Mettenius - German botanist 1823-1866)
tapetum L. tapete carpet, tapestry, f. Gr. tapet-, tapes carpet)The nutritional fluid which surrounds spores in their developmental stage. A layer of nutritive cells that invests the sporogenous tissue in the sporangium of vascular plants.
tapewormlike Wormlike and segmented; uniseriate with cells separated by clearly marked walls; said of hairs.
taxon pl. taxa (Gr. taxis, order) A group of plants of the same taxonomic rank, e.g. of the same:- family, genus, species etc.
taxonomy (Gr. taxis, arrangement + nomos, law) The study of the divisions of life forms into categories.
taxonomic hierarchy The arrangement of taxonomic categories ,clades or monophyletic groups of plants into ranks, with a higher rank inclusive of all lower ranks. Examples family, genus, species, subspecies. See classification.
teeth Small projections from the margin of leaf which may be sharp,rounded or blunt, regular or irregular Sinus (recess) less than $1 / 8^{\text {th }}$ way to midrib S:M. See Figure 267 leaf margins. If the projections are larger they are generally called lobes or segments.

Figure 268 teeth and hair-like projections

Major tooth types : some based on flowering plant families - hence suffix -oid resembling:
Violaceae, Chloranthaceae, Malvaceae, Rosaceae, Rutaceae, Theaceae, Salicaceae

Figure 269 major tooth types (Judd)

Tooth shape described in terms of the shape of the apical and the basal side. The possible combinations are shown in the chart. The following abbreviations are used
cv (convex) st (straight) cc (concave) fl (flexuose) rt (retroflexed)
basally convex \& apically convex \& apically concave basally concave
The apical side is listed first. For example cc/fl would be concave on the apical side and flexuous on the basal side of the tooth. Note that a given leaf can exhibit more than one tooth shape

APICAL SIDE

From 'Manual of Leaf Architecture'
1999. Smithsonian Institute

Figure 270 tooth shapes
temperate Cooler areas of the world. Can be subdivided into warm temperate, cool temperate and cold temperate. The greater part of New Zealand falls into this climate category.
telome (Gr. telos, end + soma, body) Ancestral branches -terminal segment of a dichotomously branched axis (stem) that may be fertile or sterile. The part of the stem axis that links telomes on a branched sporophyte is termed the mesome (G. meso-, middle). An aggregation of telomes is termed a telome truss. See telome theory. Telome is a hypothetical unit of morphological organization in a primitive vascular plant.

Telomes and Mesomes
Figure 271 telomes \& mesomes
telome theory Theory put forward by W. Zimmermann, to explain the evolution of the euphyll/megaphyll leaf structural type. The earliest vascular plants and their nonvascular relatives (Late Silurian to Devonian age) such as Cooksonia and the Rhyniophytes had sporophytes with a leafless aerial stem or axis that exhibited a dichotomous branching pattern, whereby the apical meristem splits in two and divides equally to form a forked branching system.. The euphyll leaves accordingly were derived from a three dimensional bifurcating or dichotomous lateral branching system that first underwent, anisotomous (unequal branching) or overtopping whereby one branch becomes reduced in size becoming the lateral branch, the other continues as the vertical axis (pseudomonopodial branching pattern) then the subordinated lateral branch becames flattened (planation stage) followed by webbing between lateral telomes (epidermal outgrowths from marginal meristems generating mesophyll tissue) to form the leaf blade. The branched veins indicate the location of former branches. The morphological units are the telomes and mesomes (internodes) lengths of stem (axis). The mesome forms the petiole. The telomes are fertile if they bear a terminal sporangium (spore case) and vegetative or sterile if they don't. Aggregations of telomes are called telome trusses. So the lateral telome trusses became the megaphylls or euphylls. Subsequent vascular plants evolved true monopodial growth, in which the branching pattern is derived from a single apical meristem.

Modifications of the telome theory with reduction and or recurvation steps have modelled the formation of the Psilotum and Tmesipteris type synangium, the arthrophytian (horsetail) sporangiophore, the Pterophytan (fern) pinnule, and as an alternative to the enation theory for the formation of microphyllous leaf.

Hypothetical steps in the evolution of Rhynia type sporophyte form an anthoceratan

Figure 272 evolution polysporangiate type sporophyte

Diagram of the hypothetical evolution of the Megaphyll according to the telome theory (Zimmerman)
Modified from 'Cryptogamic Botany II" 1955. Gilbert Smith. McGraw-Hill Book Company

Figure 273 telome theory
terete (L. teres, teretis, round, cylindrical) Circular or nearly so in cross section. Opposite of angular. Also known as cylindrical. Applied to an axis such as a stem which is cylindrical, smooth, long and gradually tapering e.g. Pilularia

cylindrical, terete

Figure 274 terete/cylindrical
ternate (L. terni, ternus: three each) in groups of threes, in whorls of three adv. ternately
terrestrial (L. terrestris, from terra land, earth, ground) Growing on the ground; not epiphytes on trees, rocks or aquatic or climbing.. A typical terrestrial fern would be Blechnum discolour. Growing on or preferring a soil habitat. Compare aquatic, rupestral, epiphyte. Synonym terricolous (L. terra, earth + colous, inhabiting).
tertiary leaflet or tertiaty pinnae A leaflet of the third degree; a leaflet of a secondary leaflet. This leaflet is either called a pinnulet or pinnule. The ultimate leaflet of a tripinnate frond.
testiculate (L. testiculatus, f. testiculus testicle) Testicle-like. Having synangia shaped like a pair of testes, ovoid and solid, Tmesipteris lanceolata.
tetrad (Gr. tetra- a group of four.) A group of four developing spores, formed by meiotic division of a spore mother cell.
tetrahedral (Gr. tetra- four +-hedral f. hédra, face of a geometrical solid, side). Having four sides.
tetralete (Gr. tetra- four +) With four dehiscience fissures, four laesura. Compare, monolete, trilete, alete. Rare, recorded for Adiantum hispidulum "Spore: trilete occasionally tetralete" (Large, M. F.; Braggins J. E., 1985: Tetralete and trilete spores in Adiantum hispidulum Sw. (Adiantaceae) in N.Z. Grana 24: 125-127)
tetrapinnate (Gr. tetra- four + pinnate) The frond four times pinnately divided. $4 \times$ pinnate. Synonym quadripinnate. Also covered by the term decompound ("very compound").
tetraploid (Gr. tetra- four + iodes, like) Having four of the basic sets of chromosomes in a nucleus. A form of polyploidy. Compare haploid, diploid, triploid
tetrastichous (Gr. tetra- four + stikhos: rows) Arranged in four regular vertical rows, but not necessarily decussate.
thallus (Gr. thallos, a sprout) A plant body not differentiated into leaves, stem and roots. Hence thalloid resembling a thallus. The prothallus or gametophyte of ferns and lycophytes is an example.
thicket (Old English thiccet f. thick + et, diminutive suffix) Dense often monospecific vegetation that covers and shades the entire ground, and can deter colonization by other plant species. Thicket-forming ferns include scrambling ferns, some climbing and some erect ferns. Dicranopteris, Gleichenia, Hypolepis, Sticherus, Lygodium, Pteridium esculentum, Dicksonia squarrosa are examples.
tomentum (L. tomentum, wool, hair feather, used as stuffing for cushions) A dense hairy covering of short closely matted hairs. adj. tomentose. Similar to wooly/lanate and cottony/gossypinus.
toothed Of lamina (leaf blade or leaflet) Margins furnished with teeth. See crenate, serrate, and dentate. Opposite of entire or smooth, but not as deeply divided as lobed, parted or divided. Sinus depth less than $1 / 8$ distance margin to midrib or equivalent point. See Leaf division (lobation) and margins.
tortuous (L. tortus, a twist) Twisted.
trabecula pl trabeculae (L. trabecula, little beam) In the sporangium cavity of Isoetes a series of transverse or slanting plates or bars, strands of sterile tissue (cells), that incompletely divide the interior of the sporangium into blocks of fertile cells. (sporangial trabeculae). In the stele of Selaginella sp. highly modified endodermal cells elongated in the direction of the radial axis of the stem and seperated by very large intercellular spaces. As a result the stele appears to be suspended in a very large central cavity. The rbbon-like trabeculae connect the stele to the cortex. (endodermal trabeculae)

tracheid: (L. trachea, tube and Gr. tracheia , windpipe) An elongated tapering xylem cell with lignified pitted walls, dead at maturity, adapted for conduction of water and mineral nutrients and for mechanical support. Has closed end walls. The ancestral tracheary element, found in ferns, lycophytes and most gymnosperms in contrast to the more advanced xylem cell the vessel member, found in angiosperms and gnetophytes. The vessel member has open perforations in the end wall. Found in vascular xylem tissue and can be classed as sclerenchyma.

Xylem cells. A, fibre; B, tracheid; C, D, vessel element; E-G segments of vessel elements with progressively less obstructed opening; H-M, types of secondary thickening of xylem cells; H , annular I, spiral, j, scalariform; K, reticulate; L, reticulate-pitted; M, pitted.
Figure 276 tracheids
trans-lacunar diaphragm A plate two or three cells in thickness, perforated by pores, in the leaves of Isoetes.

Transverse section of Isoetes leaf (microphyll)
(Modified from Cronquist)
Figure 277 trans-lacunar diaphragm Isoetes
translucent (L. trans- through + lucere , to shine) Nearly transparent.
transparent (L. trans- through + parere,appear +ent) Clear, easily seen through, like glass. Diaphanous (Gr. dia, through + phanes, showing) Adiantum diaphanum.
transpiration The loss of water vapour to the atmosphere mainly through the openings (stomata) in the fronds. Transpiration pull is one of the forces drawing water up the plant body. Evapotranspiration is a combined measure of water loss from an area by evaporation and transpiration.
transverse section (transverse f. transversus, f. trans, through + versus, transverto, turn across) A section perpendicular (at right angles) to the longitudinal axis of the plant organ. The horizontal plane to an upright axis. Abbreviation T.S. .
transversely elliptical A spore elliptical in shape when viewed from the pole, in a transverse ellipse, the laesura (tetrad scar) runs parallel with the longest dimension.
transition fern A fern that is homosporous but the adult sporophyte produces separate male and female spores that develop into male and female gametophytes.
trapezoid (Gr. trapezion, little table) Trapezium-shaped, when the sides of a four sided lamina or leaflet are unequal.
triangulate or triangular (L. tri, three +angulus, angle) In the shape of a triangle. Blechnum triangularifolium

Triassic Period (The Triassic was named in 1834 by Friedrich von Alberti, after a succession of three distinct rock layers (Greek triás meaning 'triad') that are widespread in southern Germany: the lower Buntsandstein (colourful sandstone), the middle Muschelkalk (shell-bearing limestone) and the upper Keuper (coloured clay)). The chronostratigraphic (geologic) time period from 252 to 201 million years ago. The Triassic period starts the Mesozoic era. It is preceded by the Permian period (the last period of the Paleozoic) and followed by the Jurassic period. The tree fern family Dicksoniaceae arose in the mid-Triassic. The conifer families Podocarpaceae and Araucariaceae also rose at this time. Archosaurs and their subgroup the Dinosaurs took over as dominant animals from the Permian synapsids and therapsids (Mammal allies and ancestors) following the Permian/Triassic extinction event.. While early mammals evolved during this period.

Part of New Zealand's plant inheritance from Triassic Period or even earlier times.
tribe A taxonomic grouping of similar genera within a family or subfamily. Similar to subfamily and sometimes corresponds to them in some taxonomic systems.
trichome: Gr. trichoma growth of hair, f. trich-, thrix , hair) An epidermal outgrowth, e.g. a hair (branched or unbranched), scale, hairlike scale, bristle, paraphysis, gland. See hair. Bristle ferns -Trichomanes sp. , Lindsaea trichomanoides.
trichome cover Vestiture with hairs.
trigonous (L. three-cornered) Having three longitudinal angles and three plane faces. Compare triquetrous.
trifid (L. tri , three + findere , to split)) Divided into three, more or less equal parts.
trilete (L. tri , three + possibly f. + latus, side) Of spores, with a three-pronged (triradiate) scar (laesura) in the shape of a YScar from separation from tetrad. This trilete or monolete scar functions as an area of weakness which ruptures, allowing germination of the developing gametophyte. The laesura is also known as the germination fissure. . Compare monolete, tetralete and alete.

Figure 278 trilete spores
Lygodium articulatum -Trilete spore
Phlegmarius varius Trilete spore
Dicksonia squarrosa Trilete triradiate syn. Lycopodium varium

Simultaneous type: cytokinesis (formation of cell wall and plasma membrane seperating cells) occurs after meiosis II resulting in the tetrahedral tetrad

Succesive type: cytokinesis occurs after meiosis I results in two cells a dyad and four cells after meiosis II in a tetragonal tetrad arrangment and monolete spores

SPOROGENESIS PATTERNS IN FERNS AND LYCOPHYTES

Figure 279 trilete, monolete and alete spore development
trimerous: (L. tri , three + Gr. meros: parts) Arranged in whorls of three.
tripartite (L. tri, three + partitus divided f. par, part) Divided into three more or less equal parts, cut nearly to the base. See partite, bipartite.
tripinnate (L. tri , three + pinnate) The frond divided three times pinnately, 3-pinnate. The ultimate segment (leaflet) or tertiary (3°) pinnae is a pinnulet (some authors continue to use the term pinnule for this though).

tripinnate (3 x pinnate) frond

Figure 280 tripinnate
tripinnatifid (L. tri: three + pinnate + -fid from findere; to split) Bipinnate ($2 \times$ pinnate) with the ultimate segment (leaflet) or pinnule partially divided, or deeply notched (-fid). The term tripinnatifid sometimes covers the next two terms.
tripinnatipartite (L. tri: three + pinnate + partitus, divided) Bipinnate with the pinnule partially divided, or parted (partite). Sometimes, covered by the term tripinnatifid.
tripinnatisect (L. tri: three + pinnate + sectum, f. seco , to cut) Bipinnate with the pinnule partially but deeply divided, Sometimes, covered by the term tripinnatifid.
triplenerved (L. tri , three + nerved) With three main veins (nerves).
triploid: (L. tri , three. triple + oides , like) Polyploid having three of the basic sets of chromosomes in the nucleus. Triploids are either sterile because they produce aborted spores, or fertile because they are apogamous. Compare diploid, haploid.
triquetrous (L. triquetrus, three-cornered) With three prominent, acutely angled ridge and concave faces. Psilotum nudum (syn P. triquetrum) has triquetrous branchlets

Figure $\mathbf{2 8 1}$ triquetrous
trophopod (Gr. trophikos, pertaining to food or nourishment f. trophe, food + podos, foot) Petiole bases that are swollen, enlarged and starch filled that persist on the rhizome of some fern species. Trophopods that arise from failure to develop (abortion) of a leaf apex have been termed cataphylls (e.g. Matteuccia struthiopteris)- a necrotic crozier(koru) is often persistant on the apex of the trophopod in this case.
Otherwise trophopods are left on the rhizome following senescence of the distal portion of a fully developed leaf.
trophophyll (Gr. trophikos, pertaining to food or nourishment f. trophe, food + Gr. phyllon leaf) A purely vegetative or sterile frond, one that does not produce spores, instead exists as a photosynthetic (feeding) organ only. In dimorphic ferns species such as Blechnum. In monomorphic fern species the sporophyl and trophophyll are combined in one frond type. Synonym vegetative ,barren or sterile frond. Compare fertile

Blechnum sp. with dimorphic fronds Image modified from 'Ferns in Peel Forest' 1983, Brian Molloy Department of Lands and Survey, Christchurch

Figure 282 trophophyll
tropical (Gr. tropikos, (kuklos) tropic circle f. trope, turning, solstice, (trepo , turn)) Warmer or equatorial areas of the world.
truncate (L. truncare , to lop) Appearing as if cut off perpendicular to the axis, having the end square or even. Applied to leaf apices or bases for instance. Fuscospora truncata hard beech.
trunk The erect, unbranched portion of a tree-like plant such as a tree fern caudex.
T.S. transverse section. Compare C.S. cross section and L.S. Iongitudinal section.. Term used in microscopy.
tuber (L. tuber, bump, hump, swelling) A swollen, often globular underground organ. In ferns, referring to the rounded fleshy stems produced on underground stolons of some species of sword ferns Nephrolepis.
tubercle (L. tuberculum, diminutive of tuber) A small wart-like outgrowth. Hence tuberculate.
tuberculate (L. tuberculum, diminutive of tuber) Covered with tubercles :knobbly projections or excresences. See tubercule. Applied for instance to a spore surface.
tuberculum pl. tubercula (L. tuberculum, diminutive of tuber) Tubers, rounded and irregular knobbly projections.
tubular (L. tubus , tube, pipe). Hollow and elongate like a pipe.
tufted Growing in small clumps like a tussock. In Latin caespitose f. caespes, tuft. tufted ferns are those with fronds that arise close together from a compacted more or less woody base. Fern possessing a condensed erect rhizome. Tree ferns are a variant of the tufted form. Creeping ferns differ from the tufted in having fronds more or less distantly spaced along an elongated rhizome. A few ferns adopt a habit which is both creeping and tufted. The rhizomes may be short and creeping, with fronds aggregated into short lengths of rhizome so that the plant appears to be made up of seperated tufts. Hairs growing closly together in groups (flocosse).

Polystichum richardii a tufted fern

Polystichum richardii (Hooker) J. Smith, 1895, United Kingdom, by Sydney Parkinson. Gift of the British Museum, 1895. Te Papa (1992-0035-2353/1941)

Figure 283 tufted fern (growth habit)
tussock grassland Vegetation dominated by grass species with the tussock or caespitose growth form. In New Zealand divided into Tall tussock or snow tussock grassland (colder, drier, but not too dry areas), red tussock grassland (often boggy areas) and short tussock grassland (cold dry eastern sites generally). Herbs and shrubs may grow with them. A similar divide to the Tall grass praire and short grass praire in North America. A rarer grassland type in New Zealand is the sward grassland. There are also a few forest grasses. Spinifex, pingao (a sedge) and introduced marram grass grow on foredunes.
ultimate (L. ultimare, come to an end) The final, last, apical, terminal segments that are the last and smallest divisions of a blade. Such as pinna, pinnules or pinnulets on a frond, depending on the degree of leaf division.
unarmed Without spines or prickles. Opposite of armed.
umbraticolous (L. umbrosus, shady f. umbra, shade +-colous, inhabiting) Inhabiting shady places. New Zealand examples: Hymenophyllum atrovirens and Leptopteris superba. Synonym umbraticolous, sciophilous/ skiophilous and sciophyte/ skiophyte. Opposite of photophilous/heliophilous preferring to grow in well lit sites.
umbrophile (L. umbrosus, shady f. umbra, shade + Gr. -philus , loving.) A plant which favours shady conditions. New Zealand examples: Hymenophyllum atrovirens and Leptopteris superba. Synonym umbraticolous, sciophilous/ skiophilous and sciophyte/ skiophyte. Opposite of photophilous/ heliophilous preferring to grow in well lit sites.
unicostate (L uni, unis: one + costa, rib) Leaf venation in which there is only a central midrib and no lateral or secondary veins, e.g. as in lycophytes (the microphyll), psilophytes, equisetophytes, as well as many conifers. Synonym uninervous, hyphodromous.
undulate (L. undula, Diminutive of unda, wave). Wavy and not flat; referring to margins waved in a plane at right angles to the surface. Similar to sinuate but up and down.
undulipodium pl. undulipodia ((L. undula, Diminutive of unda , wave + podium, foot, "wavy foot") Sperm tale, motile cilia or sperm flagellum. Composed of tubulin and hundreds of other proteins enclosed by an extension of the cell membrane called the undulipodial membrane.
unifarious (L. uni, unis,one + farius, f. fariam ranked in a row or line) In one row equivalent to uniseriate. Compare bifarious/biseriate and multifarious/multiseriate.
uninervous (L uni, unis: one + nervus, nerve) Leaf venation in which there is only a central midrib and no lateral or secondary veins, e.g. as in lycophytes (microphyll), psilophytes, equisetophytes, as well as many conifers. Synonym unicostate, hyphodromous.
uniseriate (L uni, unis: one + seria line) Arranged in a single row or series such as cells in a single file; said of multicellular hairs, in which the cells are in a single line. Synonym unifarious. Compare biseriate/bifarious, and multiseriate/multifarious..

Figure 284 uniseriate,biseriate and multiseriate
united Fused or growing together . Synangia for instance are united sori.
unreduced spores Spores that have not had their chromosome number halved (reduced) by meiosis; spores that are $2 n$, not n.
urceolate (L. urceolus a small jug, vessel.) Urn shaped. Pitcher shaped. Similar to cyathiform, or cupulate. Sticherus urceolatus.
vallecular canal (L. diminutive of valles, vallis, valley + canal) A canal beneath a stem groove (the valley), as seen in Equisetum. The carinal canal is beneath the ridge (keel).

Equisetum sp. C.S. stem -note three longitudinal cavities (canals)
Modified form 'Morphology of Plants and Fungi' 4th ed. 1980
Harold C. Bold, Constantine Alexopoulous, Theodore Delevoras
Harper International Edition

Figure $\mathbf{2 8 5}$ vallecular canal (Equisetum)
valve (L. valvae , the leaves or folds of a folding door) A lobe of an indusium (involucre) applied to indusial of Hymenophyllaceae (filmy ferns) and Dicksoniaceae. See bivalvate (2-lipped)

Figure 286 valve (indusium Hymenophyllum)

L.S. of sorus and indusia of Dicksonia sellowiana (A South American species)

Modified from 'Ferns and Allied Plants:With Special reference to Tropical America' (1982) Tryon \& Tryon; Springer-Verlag

Dicksonia sp. tree fern sori with indusia
https://www.flickr.com/photos/gishepherd/3938743546/in/photostream/

Figure 287 valve (indusium Dicksonia)
var. Abbreviation of the taxonomic rank of variety, term for a group of more closely related populations within a species. They differ slightly from the species or subspecies they are compared with. Similar to subspecies, but of lower rank, but above the rank of form. See infraspecific.
variable (L. variare, -atum, to vary f. varius) Varying in form, habit or colour. Lycopodium varium.
variegated (L. varius , diverse, varying) Where the basic colour is broken by areas of another colour.
variety (L. varietas, variety) A lesser subdivision of a species; which ranks below subspecies and is therefore a subdivision of subspecies. Abbreviation var. .
vascular (L. vascularis, f. vasculum ,small vessel f. vas container + -culum, diminutive suffix) Having specialized (often woody) conducting elements. The xylem and phloem tissue in plants. Pertaining to the stele, veins(or nerves) in plant morphology.
vascular bundle: Of tissue containing veins or main conducting elements (xylem and phloem) also known as vascular strand with associated xylem and phloem tissue. Contains cells that conduct water distally (xylem) and sugars in solution proximally (phloem). See xylem and phloem.

Transverse section (T.S.) of petiole bases of various ferns to show vasculature patterns
Diagrams modified from 'Ferns and Allied Plants of Victoria, Tasmania and South Australia' 1986. Betty D. Duncand and Golda Isaac. Melbourne University Press

Figure $\mathbf{2 8 8}$ vascular bundle patterns in ferns
vascular plants Vascular plants (L. vasculum 'duct'), also called tracheophytes or collectively Tracheophyta (Gr. trakheîa artēría, windpipe + phutá 'plants', form a large group of land plants (c. 300,000 accepted known living species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue (the phloem) to conduct products of photosynthesis. Vascular plants include
the clubmosses, horsetails, ferns, gymnosperms (including conifers) and angiosperms (flowering plants). Scientific names for the group include Tracheophyta, Tracheobionta and Equisetopsida sensu lato. Some early land plants (the rhyniophytes) had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones. The temporal range is from late Silurian period c. 425 Ma to the present. The liverworts, mosses and hornworts, collectively the 'bryophytes' are non-vascular land plants. Vascularization occurred in the early Silurian to Devonian period, polysporangiate plants, with some intermediate between the bryophytes and the true tracheophytes (Eutracheophyta). The polysporangiate plants lacking vascular tissue have been termed the 'protracheophyta' (Horneopsida \& Aglaophyton), those with a simple vascular system (-S-type tracheids) the paratracheophyta (e.g. Rhynia Gwynne-vaughanii, Stockmansella \& Huvenia) and then the eutracheophytes.
vegetation (L. vegetatio , growth) The whole plant communities or plant cover of an area.
vegetative (L. vegetare, enliven , f. vegetus, vegere, move, quicken) Asexual development or propagation.
vegetative frond. Frond lacking sporangia. Also known as sterile frond or blade, as opposed to fertile frond (sporophyll) or blade in ferns with dimorphic fronds. Synonym trophophyll (feeding leaf) or sterile frond.
vein (L. vena, a vein, blood vessel) A strand of vascular tissue (associated xylem and phloem) in the blade tissue of a frond or part of a frond. Synonym nerve. See venation.
vein course (dromy) The direction veins take, may be described as straight, convex, sinuous (wavy) or ramified (branching without rejoining) either admedially or exmedially.
veinlet (diminutive of vein) A small or slender vein. Venule smaller still.
velum ((L. velum, veil) The flap of tiisue that protects sporangia in Isoetes. A membranous flap-like envelope which partially or wholly covers the sporangium in cavities (fovea) at the base of leaves of Isoetes. The velum develops from epidermal cells between the sporangial initials and the ligule.

Isoetes sp. (quilwort) Adaxial view of megasporophyll (left) and microsporophyll (middle) indicating location of the megasporangium (m.e.) and microsporangium (m.i.), velum and the minute leaflike flap (tongue) of tissue the ligule. On right cross section view from side.

Figure 289 velum (Isoetes)

Isoetes nuttalii A. Br. A young vertical section of the base of a microsporophyll bearing a mature microsporangium. B a young microsporophyll with the primordium of a microsporangium. C-E, stages in the development of the microsporangia. Early stages in the development of the macro- and microsporangia are alike. Both ligule and velum develop from divisions of epidermal cells. Note in this species the velum almost completely overarches the sporangium, in other species only partially so. Nuttall's quilwort is native to western North America.
(adapted from 'Cryptogamic Botany' Vol II. 1955. Gilbert Smith. McGraw-Hill International Student Edition)

Figure 290 velum (Isoetes nuttallii)
.velutinous (L. velutinus, f. velutum velvet) Covered with fine, soft, spreading hairs; velvet
velvety see velutinous
venation (L. vena, a vein, blood vessel) The arrangement or pattern of veins in a leaf or frond. Synonym: nervation. Polyphlebium venosum syn. Trichomanes venosum Veined bristle fern, veined filmy fern.

Venation Pattern terms:- Can get a bit complicated but here are the main terms
abmedial vein A vein directed away from the midvein.
admedial vein A vein directed towards the midvein..
areoles. The spaces formed by a vein network. Synonym lacuna
branched veins Free veins that fork or branch but don't unite..Unbranched is simple.

Venation Pattern terms (continued)
dichotomous Where veins branch distally or fork in pairs (bifurcate) of equal size and orientation.
-dromous (Gr. dromos, run, race, raceway) Suffix added to the name of the pattern formed by the way the veins run within the lamina (leaf blade). Prefixed by: acro-(tip), actino- (ray), campto-, campylo- (bent, curved), brochio-(noose,loop) clado- (branched), reticulo- (netted), parallelo(parallel), hypho-(web) depending on pattern.
false veins. Small vein-like areas of thick-walled cells in the leaves of some lower vascular plants. Not true veins because they lack vascular tissue.
free No veins uniting, or looping to form a network. Maybe simple, forked or branched.
included veinlets. Small veins ending inside areoles. Maybe simple,forked or branched.
midrib The primary vein,in fern terminology rachis (frond midrib) costa (pinna midrib) costule (pinnule midrib) and costulet (pinnulet midrib). If unicostate,hyphodromous or univervous it is the only vein.
net Veins uniting, or looping, to form a network. The area enclosed by the veins is the areole. Synonym: anastomosing or reticulate
pectinal A lateral vein that supports a number of subsidiary branches abmedially (veins directed away from the midvein.
penninervous (pinnate + nerve (vein)) Veins running in a pinnate pattern.
primary vein (1° vein) or veins (in actinodromous, palinactinodromous and campylodromous venation) the prominent central vein or midrib of a leaf or leaflet or lobe. In ferns, the rhachis, costa, costule or costulet. If unicostate, uninervous or hyphodromous the only vein present.
secondary vein (2° vein) Vein branching from the primary vein or veins.
tertiary vein (3° vein) Vein branching from secondary veins. Tertiary veins usually link the secondary veins in either a ladderlike (percurrent/scalariform) or netlike (reticulate) pattern.
veinlets Secondary or higher order veins.
venules Quaternary (4° veins) or higher order veins.

Simple craspedodromous
Secondary veins reach margin and enter teeth

Semicraspedodromous secondary veins branch, form loops, and reach the margin

Mixed craspedromous Simple + semicraspedodromous

Pinnate Craspedodromous Venation

Cladodromous Secondary veins branch toward margin

Reticulodromous secondary veins merge into dense reticulum

Pinnate Camptodromous Venation (Secondary veins do not reach margin) (penninerved = pinnate pattern)

Figure 292 pinnate (craspedodromous \& camptodromous) venation patterns

(a)

Gingko biloba spur shoot with microstrobili -pollen organs from male tree

(b)
spur shoot with ovules female tree

Gingko biloba is the classic tree exhibiting dichotomous venation
'Contempory Plant Systematics' 1997. Dennis W. Woodland. Andrews University Press
dichotomous venation

Figure 293 other venation patterns

Adiantum capillus-veneris. Cleared pinnule; note dichotomous venation and sori with false indusia Morphology of Plants and Fungi' 1980 . Harold C. Bold, Constantine Alexopoulos, Fheodore Delevoras. Harper International

Figure 294 palmate venation patterns

1° or prominant 2° veins diverge from near the base (from the tip of the petiole), curving away and then converging towards the apex

"Summit or tip running veins"
Adapted from "Plant Systematics' 2010. Michael G. Simpson. Academic Press (Elsevier)

Figure 295 campylodromous \& acrodromous venation patterns

Phyllitis scolopendrium
Taeniopteridian venation

Hymenophyllum cupressiforme
Coenopteridian Venation

Osmunda regalis
Neuropteridian venation

Top row types of Ctenopteridian venation

Asplenium hookerianum Sphenopteridian venation

Botrychium lunaria Cyclopteridian venation

Athyrium filix-femina
Pecopteridian venation

Venation patterns according to the classification system of Mettenius

Named after living ferns: Coenopteris, Ctenopteris, Eupteris (Pteridium) and fossil Seed Fern (Pteridosperm) genera: Taenopteris, Sphenopteris, Neuropteris, Pecopteris and Cyclopteris.

Figure 296 venation patterns (Mettenius -German botanist 1823 1866)
vernation (L. vernalis , pertaining to the spring, f. vernus, of spring, f. ver, spring) The arrangement of the unexpanded leaves in a vegetative bud such as the manner in which the tips of fronds uncoil or unfold in development. Two patterns prevail in ferns:- circinate vernation (synonym, crozier, fiddlehead, koru) the common pattern in ferns and non-circinate vernation, seen in Pellaea falcata, where the young fern blade forms a hook or shepherds crook rather than a coil. In the Ophioglossales the vernation is said to be erect and does not coil. = Ptyxis (Gr. Ptyches, folds) is the way an individual leaf is folded in bud.

Leaf Posture (longitudinal) - leaf folding in bud = Ptyxis or Vernation

Lower images from 'Penguin Dictionary of Botany' 1984. Penguin Books

Figure 297 vernation (circinate \& non-circinnate)
ventral (L. ventralis, f. venter belly) The front of an organ; upper surface of a leaf (belly up). Synonym: adaxial. The opposite of dorsal (back).
vermiculate (L. vermis, worm) With worm-like projections.
verruca pl. verrucae (L. verruca, wart) Wart-like projections regularly distributed (c.f. tubercula), broad, more or less isodiametric projections, larger than granulate.
verrucate (L. verruca, wart) Warty, with verrucae... In Anogramma leptophylla the distal face of the spore is described as verrucate to coarsely tuberculate.
verrucose (L. verruca, wart) Covered with wart-like outgrowths, warted.
verticillate (L. verticillus, f. vertex, eddy, f. vertere, turn) Whorled. Three or more leaves at a node.
vesciculose (L. diminutive of vescica, bladder, a little bladder) With small bladder-like blistery features.
vestigial (L. vestigium , footstep, footprint) Rudimentary, of a relict nature.
vestiture (L. vestitura clothing, f. vestitus p.p. of vestio, to clothe, f. vestis, garment) Any covering, but especially hairs. Polystichum vestitum.
viable (French vie life, f. L. vita, life) Alive and able to germinate. Said of spores.
vicarience (German vikarirend, f. vikarieren to act as a substitute, f. Vikar representative, proxy, f. German vicar, f. L. vicarius substitute). In biogeography and evolution, when an ancestral population is split into two or more populations by a geologic process, such as continental drift (plate tectonics) or formation of a geographic barrier e.g. the Tasman sea and the Southern Alps in New Zealand's case. See ancient rafters. Compare dispersal or drifters.
villous (L. villosus, hairy, shaggy, rough) Clothed with long soft hairs. Maybe irregularly twisted or curled. Compare hirsute. Hairy filmy fern Hymenophyllum villosum. see hairiness terms.
vining (L. vinum, wine) Climbing by twining of the stems.
viscid (L. viscidus, viscum 'birdlime', mistletoe.) Sticky or gluey.
viviparous (L. vivesco, to become alive + parere, bring forth)) Sprouting from a bud while still attached to the parent plant. A form of asexual or vegetative reproduction. See bulbil,
volubile (L. volubilis twisting around a support,twinning f. volvere, to roll,turn about) Twinning about a support. Lycopodium volubile.
whorl (Middle English wharle, whorle, probably alteration of whirle, from whirlen to whirl) Three or more leaves at a node. Equals Latin verticillus. from whence verticillate.
whorled (English f. whorl) Describing three or more leaves growing at the same level round a stem. Equals Latin verticillatus , from whence verticillate.
wig A popular term for the reduced and skeletonized basal pinnae of the fronds of some tree ferns (aphleiae)
wing A membranous flattened border or outgrowth to an axis, such as the green laminal tissue down the side of a stipe, rachis, etc. The downwardly continuing base of a decurrent leaf, or the upwardly continuing base of a surcurrent leaf.

Diagram of the main fern frond parts

(based on a drawing of Zealandia pustulata subsp. pustulata
by Noeleen Clements taken at a fern seminar on 20th April 1991)

Figure 298 Wing of stipe and wing of rachis (Zealandia syn. Microsorum)
wings See ala.
winged See alate.
wooly Bearing,long, soft, matted hairs. Synonym lanate. See hairiness terms.
xeric (Gr. xeros, dry) Drought- resistant, able to grow in dry or arid and semi-arid conditions Compare mesic and hydric.
xeroclinal (Gr. xeros, dry + klinein, slope, to lean) Growing on the dry side of slopes. Compare mesoclinal.
xeromorphic (Gr. xeros, dry +-morphos, f. morphe, shape) Adapted to dry climatic conditions. The morphological and physiological adaptations that enable a plant to grow in dry conditions.
xerophyte (Gr. xeros, dry + phyton, plant) A drought resistant plant growing in arid or semi-arid climatic conditions or in a situation such as a epiphyte faces subject to dryer conditions. Compare mesophyte, hygrophyte, hydrophyte,
xylem (Gr. xylon, wood) The tissue, in a vascular plant, that conducts water and mineral salts distally from the roots to the leaves. The tissue is made up of conducting cells - tracheary elements such as tracheids and or vessel elements, plus associated parenchyma, and sometimes sclerenchyma (fibres). The other vascular tissue is phloem. Non- vascular tissue is ground tissue (synonym: fundamental tissue) and dermal (skin) tissue the epidermis and bark.
zoochory (Gr. zoo, animal + -chore f. khoreo, to move) Is dispersal of seed, spores etc by animals (mammals, reptiles, birds, amphibians, fish and invertebtates such as insects). If inside the animal (typically its gut) it is termed endozoochory (endo- inside +zoochory) and if outside ectozoochory (ecto- outside +zoochory). Subdivisions of zoochory include by insects -entomochory, ants -myremochory. snails \& slugs - gastropodochory, fish ichthyochory and humans- anthropochory or androchory. The other forms of dispersal are physical in nature and include anemochory (wind), autochory (self), barachory or clitochory (own weight), bolochory (propulsive mechanism), crystalochory (glaciers,ice), hydrochory (water), thallasochory (sea). The extent to which fern or lycophytes spores or other propagules are distributed by animals is largely unknown. In the book "Gathhering Moss" the author Robin Wall Kimmerer mentions the potential of invertebrates (mites, springtails, slugs ...) to carry moss sperm further than the sperm could on its own accord - a few centimeters swimming in water.

Zosterophyllopsida (named after the aquatic flowering plant Zostera from a mistaken belief that the two groups were related. David P. Penhallow's generic description of the type genus Zosterophyllum refers to "Aquatic plants with creeping stems, from which arise narrow dichotomous branches and narrow linear leaves of the aspect of Zostera." Wikipedia) The early vascular plants (Late Silurian Period (420 mya) to Devonian Period), allied to and stem-group lycophytes, forming a sister group to the ancestors of the living lycophytes. The stems of zosterophylls were either smooth or covered with small spines known as enations (precursers of microphylls? see enation theory) branched dichotomously, and grew at the ends by unrolling, a process known as circinate vernation. The stems had a central vascular column in which the protoxylem was exarch, and the metaxylem developed centripetally. The sporangia were kidneyshaped (reniform), with conspicuous lateral dehiscence and were borne laterally in a fertile zone towards the tips of the branches. (Stewart, W.N. \& Rothwell, G.W. (1993), Paleobotany and the evolution of plants (2nd ed.), Cambridge, UK: Cambridge University Press, ISBN 978-0-521-38294-6)

Zygote (Gr. zygon, a yoke) The fertilized egg. The cell formed by the union of two gametes (egg and sperm). The gametes are haploid (1 n) cells produced by the gametophyte in ferns and lycophytes. Following fertilization, the resulting cell is diploid (2n) and represents the start of the sporophyte generation.

APPENDIX 1			
CHECKLIST OF NEW ZEALAND FERNS \& LYCOPHYTES (endemic, indigenous and naturalized exotics)			
SPECIES (indigenous) or (endemic) or (exotic)	NAME IN BROWNSEY (IF DIFFERENT) 'New Zealand ferns and allied plants' Brownsey, P.J.; Smith- Dodsworth, J.C. 2000: Ed. 2. David Bateman, Auckland.	Common name(s)	
LYCOPHYTES: LYCOPODIOPHYTA			
LYCOPODIACEAE Clubmoss family Mātukutuku, Whareatu, Whareatua ,Tarakupenga Austrolycopodium fastigiatum (indigenous) Brownseya serpentina (indigenous) Diphasium scariosum (indigenous)	Lycopodium fastigiatum Lycopodium serpentinum	Alpine clubmoss, Mountain clubmoss Bog clubmoss	

Huperzia australiana (indigenous) Lateristachys diffusa (indigenous) Lateristachys lateralis (indigenous) Palhinhaea cernua (indigenous) Phlegmariurus varius (indigenous) Phylloglossum drummondii (indigenous) Pseudodiphasium volubile (indigenous) Pseudolycopodium densum (indigenous)	Lycopodium australianum Lycopodium diffusum Lycopodium laterale Lycopodium cernuum Lycopodium varium \qquad Lycopodium volubile Lycopodium deuterodensum	Fir clubmoss Carpet clubmoss clubmoss clubmoss hanging clubmoss, iwituna, tassel fern,whiri-o-raukatauri annual clubmoss climbing clubmoss, hiauea , waikāhu, waewaekoukou, puakarimu, taramoa, waewaekoukou
ISOETOPSIDA Ligulate lycophytes (synonyms Glossopsida)		
ISOETACEAE Quilwort family		
Isoetes alpina Isoetes kirkii		alpine quillwort quillwort
SELAGINELLACEAE Spikemoss Family		
Selaginella kraussiana (exotic) Selaginella martensii (exotic) Selaginella moellendorffii (exotic)		african clubmoss mexican clubmoss asian spikemoss

SPECIES	NAME IN BROWNSEY (IF DIFFERENT)	FAMILY		
MONILOPHYTES Ferns and Horsetails		field horsetail		
EQUISETACEAE Horsetail family			\quad	swamp horsetail
:---				
Equisetum arvense (exotic) Equisetum fluviatile (exotic) Equisetum hyemale (exotic)				
PSILIOPSIDA Whisk ferns and Ophioglossoid ferns				

OPHIOGLOSSACEAE Ophioglossoid ferns, Parsley Fern and Adder's tongue fern family		
Ophioglossum coriaceum (indigenous) Ophioglossum petiolatum (indigenous) Botrychium australe (indigenous) Botrychium biforme Botrychium lunaria (indigenous)	\square	adder's tongue stalked adder's tongue fern parsley fern, pātōtara ,ti taranaki fine-leaved parsley fern moonwort
MARATTIOPSIDA Marattoid ferns MARATTIACEAE King Fern Family		
Ptisana salicina (indigenous)	Marattia salicina	horseshoe fern, king fern, mouku, para, parareka, paratawhiti, tawhiti para, uhi para, uwhi para,
POLYPODIOPSIDA Leptosporangiate ferns synonym LEPTOSPORANGIATE, FILIOPSIDA, FILICALES		
OSMUNDACEAE Royal Fern Family		
Leptopteris hymenophylloides (endemic) Leptopteris superba (endemic) Osmunda regalis (exotic) Todea barbara (indigenous)		crêpe fern, heruheru, single crêpe fern, crêpe fern, double crepe fern, heruheru, huruhuru o ngāwaewae o paoa, ngutungutu, ngutukākāriki, ngutungutu kiwi, prince of wales feathers, pūniu, pūnui, tētē, tētē kura royal fern hard todea, king fern, royal fern
HYMENOPHYLLACEAE Filmy Fern family, Mauku		
Hymenophyllum armstrongii (endemic) Hymenophyllum australe (endemic) Hymenophyllum bivalve (indigenous) Hymenophyllum cupressiforme (indigenous) Hymenophyllum demissum (endemic) Hymenophyllum dilatatum (endemic) Hymenophyllum falklandicum (indigenous) Hymenophyllum flabellatum (indigenous) Hymenophyllum flexuosum (endemic)	Hymenophyllum atrovirens \qquad \qquad \qquad \qquad new \qquad \qquad	filmy fern filmy fern filmy fern filmy fern drooping filmy fern, Irirangi, piripiri filmy fern, matua mauku filmy fern fan-like filmy fern filmy fern

Hymenophyllum frankliniae (indigenous) Hymenophyllum lyallii (indigenous) Hymenophyllum malingii (endemic) Hymenophyllum minimum (indigenous) Hymenophyllum multifidum (endemic) Hymenophyllum nephrophyllum (endemic) Hymenophyllum peltatum (indigenous) Hymenophyllum pluviatile (endemic) Hymenophyllum polyanthos (indigenous) Hymenophyllum pulcherrimum (endemic) Hymenophyllum rarum (indigenous) Hymenophyllum revolutum (endemic) Hymenophyllum rufescens (endemic) Hymenophyllum sanguinolentum (indigenous) Hymenophyllum scabrum (endemic) Hymenophyllum villosum (endemic) Trichomanes caudatum (indigenous) Trichomanes colensoi (endemic) Trichomanes elongatum (indigenous) Trichomanes endlicherianum (indigenous) Trichomanes humile (indigenous) Trichomanes strictum (indigenous) Trichomanes venosum (indigenous)	Hymenophyllum ferrugineum Trichomanes reniforme New \qquad	rusty filmy fern filmy fern filmy fern filmy fern much-divided filmy fern kenehu, kidney fern, konehu, kopakopa, raumanga,raurenga one-sided filmy fern filmy fern cloud filmy fern tufted filmy fern filmy fern filmy fern filmy fern filmy fern, piripiri rough filmy fern hairy filmy fern jungle bristle fern (Australia) bristle fern bristle fern rough bristle fern kermadec (Raoul Island) bristle fern erect bristle fern veined bristle fern, veined filmy fern
GLEICHENIACEAE Gleichenoid Ferns, Umbrella fern family		
Dicranopteris linearis (indigenous) Gleichenia alpina (indigenous) Gleichenia dicarpa (endemic)		thermal umbrella fern alpine tangle fern spider fern, swamp umbrella fern, tangle fern, waiwaikāka,

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Dicksonia lanata subsp. hispida } \\ \text { (endemic) }\end{array} & & & \begin{array}{l}\text { stumpy tree fern, tūākura, } \\ \text { tuokura, }\end{array} \\ \begin{array}{l}\text { Dicksonia lanata subsp. lanata } \\ \text { (endemic) }\end{array} & - & & \begin{array}{l}\text { tūākura, tūōkura, Wooly dwarf } \\ \text { tree fern } \\ \text { atewekī, brown tree fern, harsh } \\ \text { Dicksonia squarrosa fern, pakue, pēhiakura, } \\ \text { (endemic) }\end{array} \\ \text { rough tree fern, tio, tirawa, } \\ \text { tironga, urūruwhenua, wekī, } \\ \text { wheki, }\end{array}\right]$

Adiantum fulvum (endemic) Adiantum hispidulum (indigenous) Adiantum raddianum (exotic)	-		maidenhair
Adiantum viridescens (endemic)	-		rosy maidenhair delta maidenhair, american maidenhair
PTERIDACEAE : subfamily Cheilanthoideae			maidenhair

Parablechnum triangularifolium (endemic)	Blechnum triangularifolium	kiokio, green bay kiokio
ATHYRIACEAE Lady fern family		
Athyrium filix-femina (exotic) Athyrium otophorum (exotic) Deparia petersenii subsp. congrua (indigenous)	Deparia petersenii	Asian lady fern
Diplazium australe (indigenous)	Northern lady fern, small lady fern	
DRYOPTERIDACEAE Dryopteroid family, oak fern family, shield ferns		

DRYOPTERIDACEAE Dryopteroid family, oak fern family, shield ferns

COMMON NAME (MAORI AND ENGLISH)	SCIENTIFIC (BOTANICAL) NAME
Adder's Tongue African Clubmoss African Hard Fern African Shield Fern African Spleenwort Alpine clubmoss Alpine Hard Fern Alpine Quillwort Alpine Tangle Fern American Maidenhair Annual Clubmoss Annual Fern Asian Lady Fern Asian Shaggy Shield Fern Asian Spikemoss Atewekī Australian Bracken Australian Cliff Brake Australian Mother Shield Fern Australian Tree Fern Azolla, Banks Peninsula Fork Fern Bat's Wing Fern Bead Fern Black Hard Fern Black Shield Fern Black Tree Fern Bladder Fern Blanket Fern Blechnum 'Black Spot' Bog clubmoss Boston Fern Bracken Fern Bracken Bristle Fern Bristle Fern Brittle Bladder Fern Broad Buckler Fern Brown Tree Fern Bushman's Mattress Butterfly Fern Button Fern Cape Fern	Ophioglossum coriaceum Selaginella kraussiana Blechnum punctulatum Dryopteris inaequalis Asplenium aethiopicum Austrolycopodium fastigiatum syn. Lycopodium fastigiatum Austroblechnum penna-marina subsp. alpina syn. Blechnum penna-marina Isoetes alpina Gleichenia alpina Adiantum raddianum Phylloglossum drummondii Anogramma leptophylla Athyrium otophorum Dryopteris cycadina Selaginella moellendorffii Dicksonia squarrosa Pteris tremula Pellaea falcata Polystichum proliferum Cyathea cooperi Azolla rubra syn. Azolla filiculoides Tmesipteris horomaka Histiopteris incisa Onoclea sensibilis Cranfillia nigra syn. Blechnum nigrum Polystichum richardii complex:- (P. neozelandicum subsp. neozelandicum, P. neozelandicum subsp. zerophyllum, P. oculatum and P. wawranum) Cyathea medullaris Cystopteris tasmanica Asplenium subglandulosum syn. Pleurosorus rutifolius Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae Brownseya serpentina syn. Lycopodium serpentinum Nephrolepis exaltata Pteridium esculentum Pteridium esculentum Trichomanes colensoi Trichomanes elongatum Cystopteris fragilis Dryopteris dilatata Dicksonia squarrosa Lygodium articulatum Asplenium flabellifolium Pellaea rotundifolia Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae (formerly included in B. capense)

Carpet clubmoss	Lateristachys diffusa syn. Lycopodium diffusum
Carrier Tangle Fern	Gleichenia microphylla
Cave Spleenwort	Asplenium cimmeriorum
Chatham Island Spleenwort	Asplenium chathamense
Chinese Brake	Pteris vittata
Christella	Christella dentata
Climbing Clubmoss	Pseudodiphasium volubile syn. Lycopodium volubile
Climbing Hard Fern	Icarus filiformis syn. Blechnum filiforme
Cloud Filmy Fern	Hymenophyllum polyanthos
Clubmoss	Lateristachys lateralis syn. Lycopodium laterale
Clubmoss	Palhinhaea cernua syn. Lycopodium cernuum
Coastal Brake	Pteris carsei
Coastal Spleenwort	Asplenium appendiculatum subsp. maritimum
Colenso's Hard Fern	Austroblechnum colensoi syn. Blechnum colensoi
Colenso's Spleenwort	Asplenium hookerianum var. colensoi
Comb Fern	Schizaea fistulosa
Comb Fern	Notogrammitis heterophylla syn. Ctenopteris heterophylla
Common hypolepis	Hypolepis ambigua
Common Lindsaea	Lindsaea trichomanoides
Common Maidenhair	Adiantum cunninghamii
Common Polypody	Polypodium vulgare
Common Shield Fern	Polystichum richardii complex:- (P. neozelandicum subsp. neozelandicum, P. neozelandicum subsp. zerophyllum P. oculatum and P. wawranum)
Common Strap Fern	Notogrammitis billardierei syn. Grammitis billardierei
Creek Fern	Cranfillia fluviatilis syn. Blechnum fluviatile
Creeping clubmoss	Diphasium scariosum syn. Lycopodium scariosum
Creeping Tree Fern	Cyathea colensoi
Crêpe Fern	Leptopteris hymenophylloides
Crêpe Fern	Leptopteris superba
Cretan Brake	Pteris cretica
Crown Fern	Lomaria discolour syn. Blechnum discolour
Cunningham's Maidenhair	Adiantum cunninghamii
Dark Rachis Pig Fern	Hypolepis amaurorachis
Delta Maidenhair	Adiantum raddianum
Double Crepe Fern	Leptopteris superba
Drooping Filmy Fern	Hymenophyllum demissum
Drooping Spleenwort	Asplenium flaccidum
Dunedin-Cass Blechnum	Parablechnum montanum syn. Blechnum montanum
Dwarf Strap Fern	Notogrammitis crassior syn. Grammitis poeppigiana
Erect Bristle Fern	Trichomanes strictum
Erect Sword Fern	Nephrolepis cordifolia
European Maidenhair	Adiantum capillus-veneris
Fan Fern	Schizaea dichotoma
Fan-Like Filmy Fern	Hymenophyllum flabellatum
Feather Fern	Pakau pennigera syn. Pneumatopteris pennigera
Ferny Azolla	Azolla pinnata

Fibrous Tree Fern	Dicksonia fibrossa
Field Horsetail	Equisetum arvense
Filmy Fern	Hymenophyllum spp.
Fine-Leaved Parsley Fern	Botrychium biforme
Finger Fern	Notogramma spp.
Fir clubmoss	Huperzia australiana syn. Lycopodium australianum
Fishtail Fern	Cyrtomium falcatum
Florists Fern	Rumohra adiantiformis
Fork Fern	Tmesipteris spp.
Forked Comb Fern	Schizaea bifida
Fossil Fern	Tmesipteris sigmatifolia
Four-Leaved Clover Fern	Marsilea mutica
Fragrant Fern	Dendroconche scandens syn. Microsorum scandens
Giant Hypolepis	Hypolepis dicksonioides
Giant Maidenhair	Adiantum formosum
Giant Pig Fern	Hypolepis dicksonioides
Golden Shield Fern	Dryopteris affinis
Golden Tree Fern	Dicksonia fibrosa
Green Bay Kiokio	Parablechnum triangularifolium syn. Blechnum triangularifolium
Ground Fern (Norfolk Island Only)	Hypolepis dicksonioides
Ground Spleenwort	Asplenium appendiculatum subsp. appendiculatum syn. A. terrestre
Gully Fern	Pakau pennigera syn. Pneumatopteris pennigera
Gully Tree Fern	Cyathea cunninghamii
Hairy Fern	Lastreopsis hispida
Hairy Filmy Fern	Hymenophyllum villosum
Hanging Clubmoss	Phlegmariurus varius syn. Lycopodium varium
Hanging Spleenwort	Asplenium flaccidum
Hard Fern	Austroblechnum durum syn. Blechnum durum
Hard Fern	Paesia scabeulla
Hard Todea	Todea barbara
Harsh Tree Fern	Dicksonia squarrosa
Hart's Tongue Fern	Phyllitis scolopendrium
Hauraki Gulf Spleenwort	Asplenium haurakiense
Hay Scented Fern	Microlepia strigosa
Hen \& Chicken Fern	Asplenium bulbiferum
Hen And Chicken Fern	Asplenium gracillimum
Heruheru	Leptopteris hymenophylloides
Heruheru	Leptopteris superba
Hiaue	Pseudodiphasium volubile syn. Lycopodium volubile
Hiaue	Lygodium articulatum
Himalayan Shield Fern	Polystichum lentum
Histiopteris	Histiopteris incisa
Holly Fern	Cyrtomium falcatum
Hooker's Spleenwort	Asplenium hookerianum var. hookerianum
Horokio	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Horseshoe Fern	Ptisana salicina syn. Marattia salicina
Hot Rock Pellaea	Pellaea calidirupium

Hound's Tongue	Zealandia pustulata subsp. pustulata syn. Microsorum pustulatum
Huruhuru o ngāwaewae o Paoa	Leptopteris superba
Huruhuru taipairu.	Adiantum spp
Huruhuruwhenua	Asplenium oblongifolium
Hybrid Hen \& Chicken Fern	Asplenium x lucrosum
Irirangi	Hymenophyllum demissum
Inituna	Phlegmariurus varius syn. Lycopodium varium
Japanese Holly Fern	Cyrtomium falcatum
Japanese/Korean Shield Fern	Polystichum polyblepharum
Jersey Fern	Anogramma leptophylla
Jointed Fern	Arthropteris tenella
Jungle Bristle Fern (Australia)	Trichomanes caudatum
Kākātarahae	Cyathea medullaris
Kaponga	Cyathea dealbata
Kārerarera	Azolla rubra syn. A. filiculoides
Kārearea	Azolla rubra syn. A. filiculoides
Kariba Weed	Salvinia molesta
Katāta	Cyathea medullaris
Katote	Cyathea smithii
Katote	Cyathea dealbata
Kātote	Cyathea smithii
Kātote	Cyathea dealbata
Kawakawa	Cranfillia fluviatilis syn. Blechnum fluviatile
Kekakeka	Loxsoma cunninghamii
Kenehu	Hymenophyllum nephrophyllum syn. Trichomanes reniforme
Kermadec (Raoul Island) Bristle Fern	Trichomanes humile
Kermadec Hard Fern	Austroblechnum norfolkianum syn. Blechnum norfolkianum
Kermadec Prickly Shield Fern	Arachniodes aristata
Kermadec Rasp Fern	Doodia milnei
Kermadec Tree Fern	Cyathea kermadecensis
Kidney Fern	Hymenophyllum nephrophyllum syn. Trichomanes reniforme
King Fern	Ptisana salicina syn. Marattia salicina
King Fern	Todea barbara
Kiokio	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae and P. triangularifolium syn. B. triangularifolium
Kiwakiwa	Cranfillia fluviatilis syn. Blechnum fluviatile
Kiwikiwi	Cranfillia fluviatilis syn. Blechnum fluviatile
Konehu	Hymenophyllum nephrophyllum syn. Trichomanes reniforme
Kopakopa	Hymenophyllum nephrophyllum syn. Trichomanes reniforme
Kōrau	Cyathea medullaris
Korokio	Cranfillia deltoides syn. Blechnum vulcanicum
Korokio	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Koropio	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Koropiu	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Kōwaewao	Zealandia pustulata subsp. pustulata syn. Microsorum pustulatum
Kōwaowao	Zealandia pustulata subsp. pustulata syn. Microsorum pustulatum
kuianuipākā	Dicksonia fibrosa

Kuripāka	Dicksonia fibrosa
Lace Fern	Leptolepia novae-zelandiae
Lace Fern	Paesia scaberula
Lace Fern	Microlepia strigosa
Lacy Fern	Paesia scaberula
Lacy Ground Fern	Dennstaedtia davallioides
Ladder Brake	Pteris vittata
Ladder Fern	Nephrolepisis spp
Lady Fern	Athyrium filix-femina
Lance Fern	Austroblechnum lanceolatum syn. Blechnum chambersii
Lance Fern	Loxogramme dictyopteris syn. Anarthropteris lanceolata
Large Lady Fern	Diplazium australe
Leather-Leaf Fern	Pyrrosia elaeagnifolia
Leathery Shield Fern	Rumohra adiantiformis
Little Hard Fern	Austroblechnum penna-marina subsp. alpina syn. Blechnum penna-marina
Lyall's Spleenwort	Asplenium lyallii
Maidenhair	Adiantum aethiopicum
Maidenhair	Adiantum fulvum
Maidenhair	Adiantum viridescens
Maidenhair Fern	Adiantum spp
Maidenhair Spleenwort	Asplenium trichomanes
Maidenhair Spleenwort	Asplenium trichomanes subsp. quadrivalens
Maikuku-moa	Leptopteris spp. and Todea barbara
Mākaka	Adiantum aethiopicum
Mākaka	Lygodium articulatum
Makamaka	Lygodium articulatum
Makawe	Asplenium flaccidum
Makawe o Raukatauri	Asplenium flaccidum
Makawe tapairu	Adiantum spp
Male Fern	Dryopteris filix-mas
Mamaku,	Cyathea medullaris
Manehu	Pteridium esculentum
Mangemange	Lygodium articulatum
Mangimangi	Lygodium articulatum
Maratata	Zealandia pustulata subsp. pustulata syn. Microsorum pustulatum
Marsh Fern	Thelypteris confluens
Mātātā	Histiopteris incisa
Mātātā	Paesia scaberula
Matua-kaponga	Asplenium richardii
Matua Mauku	Hymenophyllum dilatatum
Mātukutuku	Lycopodium spp. (broad sense)
Mexican Clubmoss	Selaginella martensii
Milky Pig Fern	Hypolepis lactea
Milne's Tree Fern	Cyathea milnei
Miniature Tree Fern	Diploblechnum fraseri syn. Blechnum fraseri
Moki	Dendroconche scandens syn. Microsorum scandens
Moki	Doodia mollis

Moki	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae (agg.)
Mokimoki	Doodia mollis
Mokimoki	Dendroconche scandens syn. Microsorum scandens
Mokimoki	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae (agg.)
Moonwort	Botrychium lunaria
Mother Fern	Asplenium bulbiferum
Mother Shield Fern	Polystichum proliferum
Mother Spleenwort	Asplenium bulbiferum
Mouki	Asplenium bulbiferum
Mouku	Asplenium bulbiferum
Mouku	Ptisana salicina syn. Marattia salicina
Mounga	Asplenium bulbiferum
Mountain clubmoss	Austrolycopodium fastigiatum syn. Lycopodium fastigiatum
Mountain Hard Fern	Cranfillia deltoides syn. Blechnum vulcanicum
Mountain Hound's Tongue Fern	Zealandia novae-zealandiae syn. Microsorum novae-zealandiae
Mountain Kiokio	Parablechnum montanum syn. Blechnum montanum
Mountain Shield Fern	Polystichum cystostegium
Mountain Tree Fern	Cyathea colensoi
Much-Divided Filmy Fern	Hymenophyllum multifidum
Mukimuki	Doodia mollis
Nardoo	Marsilea mutica
Necklace Fern	Asplenium flabellifolium
Neinei-kura	Cyathea smithii
Netted Brake	Pteris carsei
New Zealand Cliff Brake	Pellaea rotundifolia
Nga makawe o raukatauri	Asplenium flaccidum
Ngutukākāriki	Leptopteris superba
Ngutungutu	Leptopteris superba
Ngutungutu kiwi	Leptopteris superba
Nini	Austroblechnum lanceolatum syn. Blechnum chambersii
Northern Lady Fern	Deparia petersenii subsp. congrua syn. D. petersenii
Northern Shore Spleenwort	Asplenium decurrens syn. A. obtustaum subsp. northlandicum
One-Sided Filmy Fern	Hymenophyllum peltatum
Ota	Pyrrosia eleagnifolia
Pacific Azolla	Azolla rubra syn. Azolla filiculoides
Pacific Brake	Pteris pacifica
Pacific Sword Fern	Nephrolepis flexuosa
Pākau	Pakau pennigera syn. Pneumatopteris pennigera
Pākauoharoha	Pakau pennigera syn. Pneumatopteris pennigera
Pakue	Dicksonia squarrosa
Palm Leaf Fern	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Pānako	Asplenium oblongifolium
Pānako	Asplenium obtusatum
Pānako	Icarus filiformis syn. Blechnum filiforme
Palapalai	Microlepia strigosa
Para	Ptisana salicina syn. Marattia salicina
Paraharaha	Zealandia pustulata subsp. pustulata syn. Microsorum pustulatum

Paranako	Asplenium oblongifolium
Paranako	Asplenium obtusatum
Parasol Fern	Gleichenia microphylla
Parenako	Asplenium oblongifolium
Parenako	Asplenium obtusatum
Paretao	Asplenium oblongifolium
Paretao	Asplenium obtusatum
Paretao	Asplenium polyodon
Paretao	Austroblechnum colensoi
Parsley Fern	Botrychium australe
Pātōtara	Dicksonia squarrosa
Pēhiakura	Austroblechnum colensoi syn. Blechnum colensoi
Peretako	Asplenium polyodon
Peretao	Austroblechnum colensoi syn. Blechnum colensoi
Peretao	Asplenium polyodon
Petako	Austroblechnum colensoi syn. Blechnum colensoi
Petako	Asplenium spp.
Petako-pāraparaha	Asplenium spp.
Petako rauriki	Lomaria discolour syn. Blechnum discolour
Petipeti	Paesia scaberula
Pig Fern	Asplenium bulbiferum
Pikopiko	Polystichum richardii complex:- (P. neozelandicum subsp. neozelandicum,
Pikopiko	P. neozelandicum subsp. zerophyllum P. oculatum and P. wawranum).
Pikopiko	Polystichum vestitum
Pillwort	Pilularia novae-hollandiae syn. Pilularia novae-zelandiae
Pīpiko	Polystichum richardii complex:- (P. neozelandicum subsp. neozelandicum, P. neozelandicum subsp. zerophyllum P. oculatum and P. wawranum)
Pīpiko	Polystichum vestitum
Piripiri	Hymenophyllum demissum
Piripiri	Hymenophyllum sanguinolentum
Piupiu	Lomaria discolour syn. Blechnum discolour
Pitau	Cyathea medullaris
Pitau	Polystichum neozelandicum subsp. zerophyllum
Piupiu	Pakau pennigera syn. Pneumatopteris pennigera
Piupiu	Lomaria discolour syn. Blechnum discolour
Piupiu	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Plumed Maidenhair	Adiantum formosum
Pohutakawa	Asplenium flaccidum
Ponga	Cyathea cunninghamii
Ponga	Cyathea dealbata
Poor Knights Spleenwort	Asplenium pauperequitum
Pounamu	Loxsoma cunninghamii
Prickly Rasp Fern	Doodia aspera
Prickly Shield Fern	Polystichum vestitum
Prince Of Wales Feathers	Leptopteris superba

Puakarimu	Pseudolycopodium densum syn. Lycopodium deuterodensum
Pukupuku	Doodia australis
Pūniu	Polystichum vestitum
Pūniu	Leptopteris superba
Pūnui	Cyathea cunninghamii
Pūnui	Dicksonia fibrosa
Pūnui	Leptopteris superba
Pyrrosia	Pyrrosia elaeagnifolia
Quillwort	Isoetes kirkii
Raoul Island Shield Fern	Parapolystichum kermadecense syn. Lastreopsis kermadecensis
Rarauhe	Pteridium esculentum
Rarauhe-mahuika	Pteridium esculentum
Rarauheriki	Sticherus cunninghamii
Raraukeriki	Sticherus cunninghamii
Rasp Fern	Doodia australis syn. Doodia media
Raukatauri	Asplenium flaccidum
Raumanga	Hymenophyllum nephrophyllum syn. Trichomanes reniforme
Raumanga	Zealandia pustulata subsp. pustulata syn. Microsorum pustulatum
Raurenga	Hymenophyllum nephrophyllum syn. Trichomanes reniforme
Rautaia	Asplenium polyodon
Rautao	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Rawlings's Strapfern	Notogrammitis rawlingsii syn. Grammitis rawlingsii
Red Azolla	Azolla rubra syn. A. filiculoides
Rereti	Austroblechnum lanceolatum syn. Blechnum chambersii
Retoreto	Azolla rubra syn. A. filiculoides
Returetu	Azolla rubra syn. A. filiculoides
Richard's Spleenwort	Asplenium richardii
Rigid Lace Fern	Microlepia strigosa
Ring Fern	Paesia scaberula
Rock Fern	Cheilanthes sieberi subsp. sieberi
Rosy Maidenhair	Adiantum hispidulum
Rough Filmy Fern	Hymenophyllum scabrum
Rough Horsetail	Equisetum hyemale
Rough Pig Fern	Hypolepis ambigua
Rough Sword Fern	Nephrolepis brownie syn. N. hirsutula
Rough Tree Fern	Dicksonia squarrosa
Rough Tree Fern	Cyathea colensoi
Round-Leaved Fern	Pellaea rotundifolia
Royal Fern	Osmunda regalis
Royal Fern	Todea barbara
Rusty Filmy Fern	Hymenophyllum frankliniae syn. H. ferrugineum
Scaly Male Fern	Dryopteris affinis
Scented Fern	Paesia scaberula
Scouring Rush	Equisetum hyemale
Screw Fern	Lindsaea linearis
Sensitive Fern	Onoclea sensibilis
Shaking Brake	Pteris tremula

Shield Fern	Parapolystichum (Lastreopsis) and Polytstichum spp.
Shield Fern	Polystichum silvaticum
Shining Spleenwort	Asplenium oblongifolium
Shore Hard Fern	Austroblechnum banksia syn. Blechnum blechnoides
Shore Shield Fern	Polystichum richardii now:- (P. neozelandicum subsp. neozelandicum, P. neozelandicum subsp. zerophyllum, P. oculatum and P. wawranum)
Shore Spleenwort	Asplenium obtusatum
Shuttleworth's Spleenwort	Asplenium shuttleworthianum
Sickle Fern	Pellaea falcata
Sickle Spleenwort	Asplenium pauperequitum
Silky Fan Fern	Sticherus flabellatus var. flabellatus syn. Gleichenia flabellata
Silver Fern	Cyathea dealbata
Silver Tree Fern	Cyathea dealbata
Single Crêpe Fern	Leptopteris hymenophylloides
Skeleton Fork Fern	Psilotum nudum
Slender Bracken	Pteris ensiformis
Slender Lindsaea	Lindsaea linearis
Slender Tree Fern	Cyathea cunninghamii
Small Kiokio	Parablechnum procerum syn. Blechnum procerum
Small Lady Fern	Deparia petersenii subsp. congrua syn. D. petersenii
Small Maidenhair	Adiantum diaphanum
Smith's Tree Fern	Cyathea smithii
Smooth Shield Fern	Parapolystichum glabellum syn. Lastreopsis glabella
Soft Fern	Christella dentata
Soft Shield Fern	Polystichum setiferum cv. Divisilobium Pulcherrimum'
Soft Tree Fern	Cyathea smithii
South African Brake	Pteris dentata subsp. flabellata
Southern Comb Fern	Schizaea australis
Southern Pig Fern	Hypolepis amaurorachis
Southern Shore Spleenwort	Asplenium scleroprium
Southern Strap fern	Notogrammitis rigida syn. Grammitis rigida
Southern Sword Fern,	Nephrolepis exaltata
Spider Fern	Gleichenia dicarpa
Spleenwort	Asplenium trichomanes subsp. quadrivalens
Spleenwort	Asplenium spp.
Stag Horn Fern	Platycerium bifurcatum
Stalked Adder's Tongue Fern	Ophioglossum petiolatum
Sticky Pig Fern	Hypolepis rufobarbata
Strap fern	Notogrammitis spp. syn. Grammitis spp.
Stumpy Tree Fern	Dicksonia lanata subsp. hispida
Sub- Antarctic Pig Fern	Hypolepis amaurorachis
Swamp Horsetail	Equisetum fluviatile
Swamp Lady Fern	Thelypteris confluens
Swamp Shield Fern	Cyclosorus interruptus
Swamp Fern	Thelypteris confluens
Swamp Kiokio	Parablechnum minus syn. Blechnum minus
Swamp Umbrella Fern	Gleichenia dicarpa

Sweet Fern	Pteris macilenta
Sword Fern	Macrothelypteris torresiana
Sword Fern	Nephrolepsis spp.
Tāniwhaniwha	Lomaria discolour syn. Blechnum discolour
Tākaha	Pteridium esculentum
Tangle Fern	Gleichenia dicarpa
Tangle Fern	Gleichenia inclusisora
Tapuwae kotuku	Sticherus cunninghamii
Tasmanian Tree Fern	Dicksonia antarctica
Tassel Fern	Phlegmariurus varius syn. Lycopodium varium
Tarakupenga	Lycopodium spp. (broad sense)
Taramoa	Pseudolycopodium densum syn. Lycopodium deuterodensum
Tarawera	Pellaea rotundifolia
Tarawera	Pteris tremula
Tarikupenga	Lygodium articulatum
Taupeka	Notogrammitis heterophylla syn. Ctenopteris heterophylla
Tawhiti Par	Ptisana salicina syn. Marattia salicina
Tender Brake	Pteris tremula
Tētē	Leptopteris superba
Tētē kura	Leptopteris superba,shoot of a fern or similar plant
Thermal Umbrella Fern	Dicranopteris linearis
Thin hard fern	Austroblechnum membranaceum
Thousand Leaved Fern	Hypolepis millefolium
Thread Fern	Icarus filiformis syn. Blechnum filiforme
Tio	Dicksonia squarrosa
Tirawa	Dicksonia squarrosa
Tīronga	Dicksonia squarrosa
Ti taranaki	Botrychium australe
Toothed Brake	Pteris dentata subsp. flabellata
True Maidenhair	Adiantum aethiopicum
Tuber Ladder Fern	Nephrolepis cordifolia
Tuber Sword Fern	Nephrolepis cordifolia
Tuberous Maidenhair	Adiantum diaphanum
Tufted Filmy Fern	Hymenophyllum pulcherrimum
Tufted Lindsaea	Lindsaea viridis
Tūkirunga	Dicksonia fibrosa
Tūākura	Dicksonia lanata
Tukura	Dicksonia lanata
Tukura	Dicksonia squarrosa
Tūōkura	Dicksonia lanata
Tupare, Tupari	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Tupari-maunga	Parablechnum novae-zelandiae syn. Blechnum novae-zelandiae
Turawera	Pteris tremula
Turukio	Lomaria discolour syn. Blechnum discolour
Tutoke	Polystichum richardii now :- (P. neozelandicum subsp. neozelandicum, neozelandicum subsp. zerophyllum , P. oculatum, and P. wawranum)
Tutoke	Polystichum vestitum

Uhi para	Ptisana salicina syn. Marattia salicina
Uwhi para	Ptisana salicina syn. Marattia salicina
Umbrella Fern	Sticherus tener
Umbrella Fern	Sticherus urceolatus
Umbrella Fern	Sticherus cunninghamii
Urūruwhenua	Dicksonia squarrosa
Urūruwhenua	Asplenium oblongifolium
Veined Bristle Fern	Trichomanes venosum
Veined Filmy Fern	Trichomanes venosum
Velvet Fern	Lastreopsis velutina
Venus's Hair Fern	Adiantum capillus-veneris
Virgin's hair	Adiantum capillus-veneris
Waikāhu	Pseudodiphasium volubile syn. Lycopodium volubile
Waekura	Sticherus cunninghamii
Waiwaikāka	Gleichenia dicarpa
Waiwaikāka	Gleichenia microphylla
Waiwai kotuku	Gleichenia microphylla
Waewaekoukou	Pseudodiphasium volubile syn. Lycopodium volubile
Waiwai matuku	Gleichenia microphylla
Walking Fern	Asplenium flabellifolium
Water Fern	Salvinia molesta
Water Fern	Histiopteris incisa
Water Fern	Cranfillia fluviatilis syn. Blechnum fluviatile
Weeping Spleenwort	Asplenium flaccidum
Wekī	Dicksonia squarrosa
Whareatua	Lycopodium spp. (broad sense)
Whare Ngārara	Loxogramme dictyopteris syn. Anarthropteris lanceolata
Whē	Cyathea smithii
Wheki	Dicksonia squarrosa
Whekī	Asplenium flaccidum
Whekī- Kōhunga	Dicksonia fibrosa
Whekī-Ponga	Dicksonia fibrosa
Whiri-o- Raukatauri	Asplenium flaccidum
Whiri-o- Raukatauri	Phlegmariurus varius syn. Lycopodium varium
Whiri-o- Raukatauri	other ferns
Whisk Fern	Psilotum nudum
Woolly Cloak Fern	Cheilanthes distans
Woolly Rock Fern	Cheilanthes distans
Woolly Dwarf Tree Fern	Dicksonia lanata subsp. lanata
SOME COMMON NAMES FOR NEW ZEALAND FERN PARTS (MAORI)	
aka-o-tuwhenua	Pteridium esculentum rhizome
aka-o-t ūwheunua	Pteridium esculentum rhizome
ariki noanoa	Pteridium esculentum rhizome
aruhe	Pteridium esculentum rhizome

haumia	Pteridium esculentum rhizome
haumia roa	Pteridium esculentum rhizome
haumia tiketike	Pteridium esculentum rhizome
Kakaka	Pteridium esculentum stipe (leaf stalk)
koeata	Pteridium esculentum young shoot
koru	crosier or fiddlehead, unopened fern frond
kotau	Pteridium esculentum young shoot
kōwauwau	Pteridium esculentum rhizome
Māhuhu	Pteridium esculentum new growth
Māhunu	Pteridium esculentum young shoot
Mākaha	Pteridium esculentum rhizome
Mākehu	Pteridium esculentum new growth
manehau	Adiantum bulbiferum shoots
Mārohi	Pteridium esculentum rhizome
mātākai-awatea	Pteridium esculentum rhizome
Meke	Pteridium esculentum rhizome
Miha	Pteridium esculentum new growth
mohani	Pteridium esculentum rhizome
moheke	Pteridium esculentum rhizome
moki	Pteridium esculentum new growth
mōnehu	Pteridium esculentum fine pubescence or spores on opened fronds
motuhanga	Pteridium esculentum meal from rhizome
pakakohi	Pteridium esculentum rhizome
peka	Pteridium esculentum rhizome
peka a Haumia	Pteridium esculentum rhizome
putuputu	Pteridium esculentum rhizome
rauaruhe	Pteridium esculentum fronds
roi	Pteridium esculentum rhizome
tēte kura	shoot of a fern or similar plant
tope	Pteridium esculentum fresh growth after a fire

References:

Alan, F. Mark. 2012. Above The Treeline: A Nature Guide to Alphine New Zealand. Craig Potton Publishing.

Allan, H.H. 1961: Flora of New Zealand. Vol. I. Indigenous Tracheophyta: Psilopsida, Lycopsida, Filicopsida, Gymnospermae, Dicotyledones. Government Printer, Wellington

Brownsey, P.J.; Smith-Dodsworth, J.C. 2000: New Zealand ferns and allied plants. Edition 2. David Bateman, Auckland.

Crowe, Andrew, 2009 Which Native Fern? New Ecology Edition, Penguin Books

Duncan, B. D. \& Isaac, G. 1986. Ferns and Allied Plants of Victoria, Tasmania and South Australia. Melbourne University Press, Carlton, Victoria.

Esler, Alan. 2004. Wild Plants in Auckland. Auckland University Press.
Grounds, Roger . 1974. Ferns. Readers Union Limited.
Heads, Michael, 2017, Biogeography and Evolution in New Zealand, CRC Press
Heath, E, \& Chinnock, R. J. 1974, Ferns and Fern Allies of New Zealand, Wellington, Reed.
Jones, David L., 1987, Encyclopedia of Ferns- An introduction to ferns, their structure, Biology, Economic Importance, Cultivation and Propagation. Lothian Publishing Company, Melbourne, Sydney, Auckland

Koller, Rosemary \& Tripp, Sally. 2010. Ferns of the Port Hills. Microfilm Digital Print, Christchurch.
Large, M. F. \& Braggins. 1991. Spore atlas of New Zealand ferns \& fern allies. New Zealand Journal of Botany, supplement.

Large, Mark F. \& Braggins, John E. 2004. Tree Ferns. Timber Press, Portland, Oregan
Metcalf, L. 2003. A photographic Guide to Ferns of New Zealand. New Holland Publishers, Auckland.
Moore, L. B. \& Irwin, J. B. 1978. The Oxford Book of New Zealand Plants. Oxford University Press.
Moran, Robbin, C.. 2004. A Natural History of Ferns,.Timber Press, Portland, Oregan
Palmer, Daniel D.. 2003. Hawai'I's Ferns and Fern Allies. University of Hawai'l Press, Honolulu
Radcliffe-Smith,A. , 1998. Three-Language List of botanical name components, Royal Botanic Gardens , Kew

Short, Emma \& George, Alex. 2013. A Primer of Botanical Latin with Vocabulary. Cambridge University Press.

Simpson, Michael G. 2019. Plant Systematics, Edition 3, Elsevier Inc..
Smith, Gilbert. 1955. Cryptogamic Botany Volume II Bryophytes and Pteridophytes. McGraw-Hill Book Company.

Sporne, K. R., 1966, The Morphology of Pteridophytes; the structure of ferns and allied plants, Edition 2, Hutchinson, London.

Stearn, William T. 1992, Botanical Latin, Edition 4, Timber Press, Portland, Oregan.
Stevenson, Greta, 1954, A book of Ferns, Pauls Book Arcade, Hamilton, New Zealand.
Steele, John. 2013, Botany III, What Plant is that? How to identify New Zealand Native and Introduced Plants. Otago University Department of Botany..

Steele, John. 2013, Key to the monilophytes and lycophytes of Dunedin, Otago University Botany Department.

Taylor, Thomas N., 1981, Paleobotany An Introduction to Fossil Plant Biology, McGraw-Hill Inc.

Timescale card (New Zealand Geological Timescale)
https://www.gns.cri.nz/content/download/7517/40965/file/Timescale_Card_2015_poster.pdf
Tryon, R.M.; Tryon, A.F. 1982: Ferns and allied plants. Springer-Verlag, New York.
Webb, C. J. Sykes, W. R. \& Garnock-Jones.1988. Flora of New Zealand Volume IV: Naturalised Pteridophytes, Gymnosperms, Dicotyledons. Botany Division, DSIR., Christchurch, New Zealand.

Wilson, H. D. 1978. Wild Plants of Mount Cook National Park. Field Guide Publication, Christchurch, New Zealand.

Wilson, H. D. 1994. Stewart Island Plants. Edition 2, Manuka Press, Christchurch.
Wilson, H. D. 1996. Wild Plants of Mount Cook National Park. Manuka Press, Christchurch
Wilson, H. D. 2009. Natural History of Banks Peninsula,. Canterbury University Press, New Zealand.
Wilson, H. D. 2013. Plant Life on Banks Peninsula. Manuka Press, Cromwell, New Zealand.
Website resouces
https://www.nzflora.info/publications.html : https://www.nzflora.info/publications.html\#ferns-lycophytes
https://www.nzpen.org.nz/
Timescale card (New Zealand Geological Timescale)
https://www.gns.cri.nz/content/download/7517/40965/file/Timescale Card 2015 poster.pdf

THE

 FERNS \& FERN ALLIES

 FERNS \& FERN ALLIES

 OF

 OF}

NEW ZEALAND

```
G.M.THOMSON
```

Figure 299 Scanned images form G. M. Thomson's 1882 book on New Zealand Ferns

A. Polypodium Billardieri. B. Lomaria Fluviatilis.
C. Asplenium Bulbiferum.

All one-fourth the natural size.

THE FERNS AND FERN ALLIES

OF

NEW ZEALAND

celutly tberir \mathfrak{C} ultionation

BY

GEORGE M. THOMSON, F.L.S.
SCIENCE TEACHER IN THE DUNEDIN HIGH SCHOOLS

WITH FIVE PLATES

GEORGE ROBERTSON
MELBOURNE, SYDNEY, ADELAIDE, AND BRISBANE Dunedin, N.Z. : HENRY WISE \& CO., 108 Princes Street MDCCCLXXXII

PLATES.

PLATE I.

Fig. 1. Gleichenia flabellata, segment of frond (nat. size); a, portion of same showing sorus (mag.); b, portion of frond of G. circinata (nat. size).
Fig. 2. Cyathea dealbata, pinnule (nat. size); a, portion of same (mag.) ; b, empty involucre (mag.)
Fig. 3. Hemitelia smithii, pinnule (nat. size) ; a, portion of same (mag.) ; b, empty involucre (mag.)
Fig. 4. Alsophila colensoi, pinnule (nat. size) ; a, capsule (mag.)
Fig. 5. Dicksonia antarctica, segment of pinnule (mag.) ; a, sorus and involucre (much mag.)
Fig. 6. Loxsoma cunninghamii, portion of frond (nat. size); a, sorus and involucre (mag.)
Fig. 7. Hymenophyllum pulcherrimum, apex of frond (nat. size); a, fragment of same (mag.) ; b, involucre with one valve removed (mag.)
Fig. 8. Trichomanes venosum, frond (nat. size); a, sorus and involucre (mag.)
Fig. 9. Duvallia nova-zelandia, apex of frond (nat. size); a, portion of pinnule (mag.)

PLATE II.

Fig. 1. Cystopteris fragilis, portion of frond; a, sorus with involucre turned back; b, involucre in position covering the sorus (all mag.)
Fig. 2. Lindsaya viridis, portion of frond (nat. size) ; a, L. linearis, portion of frond (nat. size) ; l, segment of same, showing sori with the involucre turned back (mag.)
Fig. 3. Adiantum ethiopicum, portion of frond (nat. size) ; a, involucre turned back, showing the sorus placed upon it (mag.)
Fig. 4. Hypolepis millefolium, portion of frond (nat. size) ; a, H. distans, pinnule (mag.)
Fig. 5. Cheilanthes tenuifoliu, pinna (mag.) ; a, sorus with the marginal involucre turned back (much mag.)
Fig. 6. Pellaa rotundifolia, portion of frond (nat. size) ; pinna (mag.)
Fig. 7. Pteris macilenta, pinnule (nat. size) ; a, P. incisa, pinnule (nat. size).
Fig. 8. Lomaria banksii, portion of sterile frond (nat. size); a, portion of fertile frond (nat. size) ; b, back of same (mag.)
Fig. 9. Doodia media, pinnæ (nat. size); a, portion of same (mag.)

PLATE III.

Fig. 1. Asplenium flabellifolium, portion of frond (nat. size).
Fig. 2. Asplenium flaccidum, portion of frond (mag.)
Fig. 3. Aspidium capense, portion of frond (nat. size) ; a, sorus covered with shieldlike involucre (mag.)
Fig. 4. Nephrodium velutinum, portion of frond (slightly mag.) ; a, N. hispidum, portion of frond (nat. size); b, segment of same (mag.)
Fig. 5. Nephrolepis cordifolia, fertile pinna (slightly mag.) ; a, sorus (mag.)
Fig. 6. Polypodium pennigerum, pinna (nat. size).
Fig. 7. Polypodium billardieri, apex of frond (nat. size).
Fig. 8. Notochlena distans, apex of frond (nat. size); a, pinnules showing sori (much mag.)
Fig. 9. Gymnogramme leptophylla, portion of frond (mag.); a, G. pozoi, portion of frond (nat. size).
Fig. 10. Todea barbara, pinnules (nat. size) ; a, portion of same (mag.); \bar{b}, capsule (much mag.)

Fig. 11. Schizeea dichotoma, apex of frond (nat. size); a, S. fistulosa, apex of fertile frond (mag.)

PLATE IV.

Fig. 1. Lygodium articulatum, portion of fertile frond (nat. size) ; a, pinnule (mag.)
Fig. 2. Marattia fraxinea, portion of pinna (nat. size); a, one of the receptacles open (mag.)
Fig. 3. Ophioglossum vulgatum, frond (nat. size); a, capsules (mag.)
Fig. 4. Botrychium ternatum, fertile and sterile fronds (reduced) ; a, portion of fertile frond (mag.)
Fig. 5. Phylloglossum drummondii (nat. size); a, spike (mag.)
Fig. 6. Lycopodium volubile, fertile and sterile branches (nat. size); a, spore (much mag.)
Fig. 7. Tmesipteris forsteri, portion of frond (nat. size) ; capsule after opening (mag.)

Fig. 8. Psilotum triquetrum, portion of frond (nat. size); a, capsules (mag.)

Plate I.

Plate II.

G.M.T. del

Plate III.

G.M.T del

[^0]: Figure 31 bipinnate

[^1]: Modified from 'Morphology of Plants and Fungi' 4th ed. 1980. Bold, Harold C., Alexopoulos, Constantine J., and Delevoryas, Theodore. Harper International Edition

