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Abstract: Mealybugs are insects belonging to the family Pseudococcidae. This family includes many
plant-pest species with similar morphologies, which may lead to errors in mealybug identification and
delimitation. In the present study, we employed molecular-species-delimitation approaches based on
distance (ASAP) and coalescence (GMYC and mPTP) methods to identify mealybugs collected from
coffee and other plant hosts in the states of Espírito Santo, Bahia, Minas Gerais, and Pernambuco,
Brazil. We obtained 171 new COI sequences, and 565 from the BOLD Systems database, representing
26 candidate species of Pseudococcidae. The MOTUs estimated were not congruent across different
methods (ASAP-25; GMYC-30; mPTP-22). Misidentifications were revealed in the sequences from the
BOLD Systems database involving Phenacoccus solani × Ph. solenopsis, Ph. tucumanus × Ph. baccharidis,
and Planacoccus citri × Pl. minor species. Ten mealybug species were collected from coffee plants in
Espírito Santo. Due to the incorrect labeling of the species sequences, the COI barcode library of the
dataset from the database needs to be carefully analyzed to avoid the misidentification of species.
The systematics and taxonomy of mealybugs may be improved by integrative taxonomy which may
facilitate the integrated pest management of these pests.

Keywords: biodiversity; agricultural pests; DNA barcoding; species identification; coffee plant;
phylogenetic analysis; entomology; systematics; integrative taxonomy

1. Introduction

Coffee (Coffea spp.) is the second-most valuable commodity in the world and a
crop that drives a multi-billion-dollar worldwide market [1,2]. From coffee planting and
harvest to the consumer’s table, the production chain faces numerous challenges, such as
climate change, price volatility, post-harvest storage, and mycotoxins [3–6], as well as insect
pests and diseases [7–10]. Mealybugs (Hemiptera: Pseudococcidae) are phytophagous
insects with a global distribution [11–14]. They are vectors of plant pathogens that harm
agricultural crops, and they are significant pests of coffee [15–17].
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Because mealybugs are typically small and cryptic, it is challenging to identify and
control them. They also secrete wax, which creates a coating that protects them from
pesticides [18–21]. The effective prevention and management of pests such as mealybugs
depends on the accurate identification of species, which is often difficult using traditional
methods based on morphological characteristics [22,23]. Mealybug identification based
on morphology is a challenge because it requires the microscopic examination of mature
females; it is especially difficult to differentiate closely related species using this method [24].
The other limitations of using morphological methods for species identification include
immature specimens, specimens with physical deterioration, and multiple species with
overlapping morphological characteristics that inhibit accurate identification [25].

These taxonomic issues have recently been investigated using molecular methods [26–31].
DNA barcoding is a genetic technique that uses a portion of the mitochondrial gene cytochrome
c oxidase I (COI), which has approximately 658 base pairs, to identify species [32–34]. DNA bar-
coding has contributed to the discovery of new species, assessment of biodiversity, clarification
of taxonomic ambiguities, and correction of misidentifications in studies of diversity [35–37].
Taxonomic and systematic investigations have also examined the delimitation of species based
on the COI gene, with DNA barcoding used with genetic distance or tree-based methods for
species delimitation to increase the accuracy of identifications [38–44].

Mealybugs are a group of insects that have been subjected to relatively little research in
Brazil, despite significant recent advancements in the study of species delimitation. A search
in the BOLD Systems database [45] in April 2022 using the term “Pseudococcidae” produced
3417 published records and 276 BINs, whereas the phrase “Pseudococcidae Brazil” produced
69 records and 11 BINs. In other words, just 2% of the world records are from Brazil, despite
the fact that Brazil is a country with high species richness [37]. This percentage demonstrates
the lack of awareness about the biodiversity of mealybugs in Brazil.

Because of the economic importance of coffee, mealybugs, as coffee pests, and the
challenges involved in their identification based on morphology, information on the species of
mealybugs present in the coffee crop in state of Espírito Santo is essential. Thus, the aims of
this study were to develop a DNA barcode library for mealybug species collected in Espírito
Santo, Brazil, based on morphological analysis, to assess the accuracy of COI barcodes, and to
perform phylogenetic analyses for species delimitation in the family in Brazil.

2. Materials and Methods
2.1. Sample Collection and Morphological Identification

Adult female mealybugs were collected from coffee plants in the Brazilian states
of Espírito Santo and Bahia (Figure 1), with three or more specimens collected at each
sample location when possible. Specimens were preserved in 95% ethanol and stored at
−30 ◦C after collection. Mealybug specimens were also collected from other host plants to
investigate mealybug species composition in the state.

Collected mealybugs, including DNA voucher specimens, were slide-mounted and
identified by light microscopy using methods described by Sirisena et al. (2013) [46].
Mealybugs were examined with a phase-contrast compound microscope (Ernst Leitz
GmbH Biomed, Wetzlar, Germany) and identified using taxonomic keys [47–52].

Planococcus minor (Maskell, 1897) from Minas Gerais, Ferrisia dasylirii (Cockerell, 1896),
Phenacoccus solenopsis (Tinsley, 1898), and Planococcus citri (Risso, 1813) from Pernambuco,
Brazil, were included in the research as reference samples. This research did not include
any endangered or protected insect species and consent from landowners was acquired for
collection of the mealybugs. A total of 226 mealybug samples from four states were used in
this study. Information on host plants from which specimens were collected and geographic
coordinates of collection locations are available in Table S1 (Supplementary Materials).

2.2. DNA Extraction, Amplification, and Sequencing

The methodology described by Arseneau, Steeves, and Laflamme (2017) [53] was used
to extract genomic DNA from each individual mealybug specimen separately, without
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crushing. The original technique was adjusted to include a minimum of 8 h of incubation,
with no RNase A in this stage, and an elution step using 40 µL of DNAse-free water. A
NanoDropTM 2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA) was used
to verify DNA yield and purity. DNA extracts were preserved in a freezer at −30 ◦C.
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Figure 1. Sampling locations in Brazil for mealybugs (Hemiptera: Pseudococcidae) collected in the
present study. (A) Map of South America indicating the geographical location of samples collected
in the states of Minas Gerais (MG) and Pernambuco (PE). (B) Map of Espírito Santo indicating the
geographical location of sampling sites (black dots) and municipalities sampled without specific
geographical location (dark green with black borders). Specific collection locations and additional
information for samples are available in Table S1 (Supplementary Materials). The map was created
using QGIS Geographic Information System v3.16 (https://qgis.org accessed on 12 November 2022)
by P.V. Oliveira.

COI gene amplicons (~670 bp) were amplified and sequenced using PCO-F1 and
LEP-R1 primers [24]. The reaction master mix comprised 1X PCR Buffer, 1.5 mM MgCl2,
0.2 mM each dNTP, 0.2 µM forward and reverse primers, 1 unit of Platinum™ Taq DNA
Polymerase (Invitrogen), 20 ng of DNA and ultrapure DNase/RNase-Free distilled water
up to a final volume 12.5 µL. The following PCR procedures were modified from Park et al.
(2010) [24]: A 2-min initial denaturation at 94 ◦C, followed by 5 cycles of 40 s at 94 ◦C, 40 s
at 45 ◦C, and 1 min at 72 ◦C. This preceded 35 cycles of 40 s at 94 ◦C, 40 s at 51 ◦C, and
1 min at 72 ◦C, followed by a final extension of 10 min at 72 ◦C, which ended at 4 ◦C.

Successful PCR products were confirmed using electrophoresis on a 1.5% agarose gel
stained with SYBRTM Safe DNA Gel Stain (Invitrogen). Primer residues and unincorpo-
rated nucleotides were eliminated using ExoSAP enzymes. Sequencing reactions were
carried out using the BigDye® Terminator v3.1 Cycle Sequencing Kit in accordance with
the manufacturer’s instructions. Samples were precipitated with EDTA/NaOAc/ethanol
following the sequencing procedure, dried at 50 ◦C for 30 min, and then sequenced using
an ABI 3500 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA).

https://qgis.org
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2.3. Data Assembly and Analysis

MEGA X was used to analyze, edit, and align raw sequences [54]. The MUSCLE
algorithm was used for multiple sequence alignment [55]. All sequences translated into
amino acids were examined for the presence of stop-codons and indels to ensure there were
no nuclear pseudogenes [56].

Our mealybug COI-sequence dataset was created by combining 171 new COI se-
quences obtained in the present study, all sequences from other countries classified to
mealybug species level by BOLD methods, and all publicly available records of mealybugs
restricted to Brazil. To prevent missing data, sequences of less than 580 bp were not in-
cluded in the analysis. The 736 sequences that made up the final dataset are provided in
SM1 (Supplementary Materials). DNA sequences generated in this study are available in
the GenBank database under accession numbers OP381504-OP381598, OP391569-OP391593,
OP391594-OP391608, OP425673-OP425695, and OP450828-OP450839.

2.4. Phylogenetic Reconstruction and Species-Delimitation Methods

This study employed a haplotype-based species delimitation method, with each hap-
lotype represented by a single sequence (except for Phenacoccus solani × Ph. solenopsis and
Planococcus citri × Pl. minor species) to simplify computing requirements. The haplotype
sequences used to infer species delimitation (n = 110) were determined using DnaSP 6
software [57]. The aligned COI haplotypes used for the species-delimitation study are avail-
able in SM2 (Supplementary Materials). The numbers of sequences used for Phenacoccus
solani × Ph. solenopsis and Planococcus citri × Pl. minor species were different because these
closely related species shared haplotypes, with three sequences selected for Phenacoccus
solani × Ph. solenopsis species and two for Planococcus citri × Pl. minor species.

Maximum likelihood (ML) and Bayesian inference (BI) were used to evaluate the phy-
logenetic connections among the studied specimens. The Bayesian Information Criterion
(BIC) was used to infer the substitution model for phylogenetic-tree reconstruction using
jModelTest v.2.1.10 [58]. GTR+I+G was used as the best-fit model in ML analysis with
RAxML v 8.2.12 [59] and 1000 bootstrap replicates. Ripersiella emarai and R. multiporifera se-
quences were employed as outgroups [60]. The San Diego Supercomputer Center’s CIPRES
Science Gateway (https://www.phylo.org/index.php accessed on 12 November 2022) was
used for the ML analysis.

To derive an ultrametric tree, BI analysis was carried out in BEAST v.1.8.4 [61] utilizing
the GTR+I+G as a substitution model, the speciation birth–death model as a tree prior,
and the lognormal relaxed clock model. Three independent runs of 10 million generations,
sampled every 10,000 generations, and 25% burn-in were conducted. Convergence was
evaluated with Tracer v.1.7.1 [62], the trees were summarized in TreeAnnotator v.2.4.8 [63],
and the resultant tree was constructed using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/
software/figtree/ accessed on 12 November 2022)

To estimate the molecular operational taxonomic units (MOTUs), species-delimitation
techniques using distance- and tree-based methodologies were used. Assemble Species
by Automatic Partitioning (ASAP), a webserver for species delimitation (https://bioinfo.
mnhn.fr/abi/public/asap/ accessed on 12 November 2022) was used with the K2P model
and default settings for the distance-based method [64]. Bayesian Poisson Tree Processes
(bPTP; https://species.h-its.org/ptp/ accessed on 12 November 2022) [65] and multi-rate
Poisson Tree Processes (mPTP; https://mptp.h-its.org accessed on 12 November 2022) with
default settings were used for the tree-based method [66].

A non-ultrametric tree estimated by RAxML version 8.2.12 was used to calculate MOTUs
for both methods. The Generalized Mixed Yule Coalescent model (GMYC; https://species.h-
its.org/gmyc/ accessed on 12 November 2022) made use of an ultrametric tree that BEAST
v.1.8.4 had reconstructed using a single-threshold approach with default settings [67]. When
at least two of the three methods were in agreement, a consensus species delimitation was
chosen. The Kimura-2-parameter (K2P) model was used to compute overall mean distance,

https://www.phylo.org/index.php
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://bioinfo.mnhn.fr/abi/public/asap/
https://bioinfo.mnhn.fr/abi/public/asap/
https://species.h-its.org/ptp/
https://mptp.h-its.org
https://species.h-its.org/gmyc/
https://species.h-its.org/gmyc/


Diversity 2023, 15, 305 5 of 11

intraspecific distances, and interspecific distances among MOTUs [68]. MEGA X was used to
determine mean pairwise distances using pairwise deletion [54].

3. Results and Discussion

A total of 171 novel COI barcode sequences from 7 genera and 10 species were re-
covered, with the identifications confirmed morphologically. Furthermore, 565 publically
available BOLD sequences were added to our dataset of 736 sequences without outgroups,
including 219 from Brazil and 517 from other countries, representing the mealybug species
recorded in Brazil (SM1, Supplementary Materials). This study included 10 morpholog-
ically identified candidate species and 16 candidate species from the database. There
were 328 variable sites (53.33%), of which 257 (78.35%) were parsimony-informative and
71 (21.65%) were singletons.

In the public databases, conflicting findings were observed for two genera: three
sequences of “Phenacoccus solani” and three of Phenacoccus solenopsis; and two sequences
of “Planococcus citri” and two of Planococcus minor, which shared the same haplotype.
In the cases in which species identification was questionable, the name of the species
was noted with quotation marks. The final haplotype alignment included 118 sequences
(without outgroups), representing 110 different haplotypes (Supplementary Materials). The
estimated molecular operational taxonomic units were not consistent among the methods:
25 for ASAP, 30 for GMYC, and 22 for mPTP (Figure 2).

For species delimitation, the use of multiple approaches may be more reliable than
a single method [69]. In the present study, three approaches were studied and ASAP
was found to be the best species-delimitation model for mealybugs. Planococcus citri and
Pl. minor were recognized as a single species, suggesting an inability to delimit these two
closely related species. The weaker genetic divergence between them can explain this
clustering [70–72]. This method identified 25 candidate species, near to the number used
initially (26 species). Thus, ASAP has better biological significance (delimiting species
concordantly) and a lower number of singletons than GMYC.

With a strong theoretical basis, GMYC was created to delimit species using single-
locus data. However, compared to other approaches, it often produces more OTUs. [73].
Dysmicoccus brevipes, M. hirsutus, and Ps. longispinus, for example, were each separately
split into two, two, and three candidate species by GMYC, respectively. This could mean
cryptic species, but it is necessary to be cautious. More gene sequences are necessary to
perform a reliable species delimitation in these cases. For this to be definitive, an integrated
taxonomic strategy and more thorough sampling are required [71,74].

Although mPTP has been regarded as a useful technique for species delimitation, in the
present study, mPTP was combined with well-known taxa such as Ferrisia virgata (Cockerell),
F. dasylirii, Pseudoccoccus jackbeardsleyi (Gimpel & Miller), and Ps. annonae (Pacheco da Silva
& Kaydan) [38,75]. The bPTP approach was eliminated from our study because it estimated
too many singletons, which might have led to an incorrect interpretation of the data [73].
As input, bPTP does not require an ultrametric tree or a sequence-similarity threshold [65].
Instead, it adds Bayesian support values to the input tree to delimit species. The greatest
Bayesian support value at a node suggests that all of that node’s descendants are most
likely species [42,76,77].

Due to character loss or poor specimen quality, it can be challenging to distinguish
closely related mealybug species based on morphology. In the present study, sequences
from the BOLD Systems database that were deposited as Ph. solani were noted. However,
our results strongly suggest that the sequences are from Ph. solenopsis. All 14 specimens
collected and identified as Ph. solenopsis based on their morphology were sequenced and
matched to Ph. solenopsis in BOLD to support this conclusion.

Similar circumstances apply to the Pl. citri sequences from BOLD, which apparently
belonged to the Pl. minor species. These findings may help to explain why Ph. solani x
Ph. solenopsis and Pl. citri × Pl. minor have inconsistent species identifications based on
morphology, since they share geographic regions and have similar morphologies [78]. In
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addition, Phenacoccus tucumanus (Granara de Willink, 1983) sequences were matched to
Ph. baccharidis (Williams; 99.77% likelihood of placement).
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The use of genetic/molecular databases has been shown to increase the accuracy of
identification [79]. Nevertheless, many sequences obtained from databases may result
in incorrect identifications and create taxonomic confusion. To prevent problems with
accuracy in biodiversity data, care must be taken when taxonomic information is obtained
from repositories [80,81].

The genera Maconellicoccus, Phenacoccus, and Planococcus were sampled with a signifi-
cant number of haplotypes, according to the BI phylogeny (Figure 2). These monophyletic
groups have PP values over 0.9. Although only one or two haplotypes were examined,
we also found monophyletism for the genera Anisococcus, Nipaecoccus, Paracoccus, and
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Saccharicoccus. However, the delimitation of putative species may be biased because of this
underrepresentation of sequences [82].

The paraphyletic groups for the genera Dysmicoccus and Pseudococcus are shown. These
taxonomic groups had comparable phylogenetic relationships in the ML phylogeny, with
high support values (Figure S1, Supplementary Materials). Despite the fact that only one
marker was utilized for defining the species, our results are comparable to those of other
publications that used multilocus approaches [60].

In the present study, we discovered 25 candidate species for Brazil using the consensus
reached by the methodologies, which included the ASAP, GMYC, and mPTP approaches.
In the state of Espírito Santo, 10 species of mealybugs were identified. With the exception
of Saccharicoccus sacchari (Cockerell), the other nine mealybug species were previously
identified on Coffea spp. However, in this study, one specimen of Dysmicoccus boninsis
(Kuwana) and two of S. sacchari (Cockerell) were the only species collected from sugarcane,
and one specimen of Ph. solenopsis was collected from okra.

The rapid screening and identification of mealybugs of commercial significance and
quarantine concern is made possible by COI barcodes [83]. Our findings suggest a suc-
cessful identification strategy that can facilitate pest management in the Brazilian coffee
industry. The closely related species Pl. citri and Pl. minor, which are both common and
abundant in Brazil, were identified. By using known natural enemies of the identified
species, coffee growers may also gain from species identification. For instance, the citrus
mealybug (Pl. citri) is attacked by a variety of natural enemies that have been identified
around the world, including a large number of hymenopteran parasitoids, predatory fly
larvae, lacewings, and ladybug beetles [84–88].

4. Conclusions

Because mealybugs are common and serious pests of many agriculture crops, the accurate
identification of mealybug species is essential to enable the integrated pest management
(IPM) of these insects. In addition, the accurate identification of mealybugs is necessary for
quarantine interceptions to prevent the spread of these pests to uninfested regions. In the
present study, a DNA barcode library for mealybug species was produced, using mealybug
species obtained mainly in Espírito Santo, Brazil, a major coffee-producing region.

Ten mealybug species were collected and identified from coffee plants in Espírito Santo,
and our results demonstrate that the molecular delimitation of species is useful to ascertain
the diversity of the species in this crop. Despite possible limitations in the mealybug database,
our results shows that two of the three delimitation strategies examined were reliable.

Accurate species identification is essential for integrated pest management. The Pseu-
dococcidae COI barcode library for the state of Espírito Santo obtained in the present study
provides an advantageous reference for the reliable and rapid identification of mealybug
species, particularly for closely related and cryptic species. In addition, coffee farming will
benefit from the ability to use recognized natural enemies to manage mealybugs in coffee
plantations identified by integrative taxonomy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15020305/s1, Figure S1: Phylogenetic relationships of mealybugs
(Hemiptera: Pseudococcidae) based on COI-gene haplotypes. This tree was estimated using Maximum
Likelihood with RaxML. Black dots in the nodes indicate bootstrap values (>50%). Nominal species in
bold indicate new sequences obtained in the present study and asterisks (*) indicate errors in the species
identification using the BOLD Systems database; Table S1: List of specimen samples used in this study,
geographic coordinates and Best ID in the BOLD Systems database; The alignments of COI sequences of
all specimens and haplotypes are available in fasta file.

Author Contributions: Conceptualization, P.V.O., M.J.F., J.A.V., M.P.C. and G.G.P.; methodology,
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investigation, P.V.O., E.L.O., K.B.B., F.A.N.d.A., V.C.P.d.S. and C.B.M.; resources, A.R.d.S., V.C.P.d.S.,
M.J.F., J.A.V. and M.P.C.; data curation, P.V.O., E.L.O., K.B.B., F.A.N.d.A., V.C.P.d.S. and C.B.M.;
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