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ABSTRACT 

The diversity, systematics and distribution of the red algal Laurencia complex 

(Rhodomelaceae, Rhodophyta) of South Africa were investigated, being generally poorly 

understood and taxonomically understudied. Prior to this study, ten currently recognised 

species in the Laurencia complex were recorded from South Africa: all were ascribed to the 

genus Laurencia J.V. Lamouroux (Laurencia sensu stricto). However, the diversity and 

distribution of the complex in South Africa, and the larger South Western Indian Ocean 

(SWIO), have not yet been reassessed following the numerous taxonomic changes in this 

group published over the last two decades.   

The taxonomy, phylogeny and biogeography of the Laurencia complex in South Africa and a 

part of the SWIO were reassessed by examining external morphology, vegetative anatomy 

(including corps en cerise counts) and analysing the plastid-encoded rbcL gene sequence data 

of recent collections. The collection encompassed more than 250 specimens, were primarily 

from the coastline of South Africa and to a lesser extent from Madagascar, Mozambique, 

Reunion, Mauritius and the Europa and Glorioso Islands in the SWIO. In addition, a few new 

collections were included from Western Australia and Japan. The genetic analyses were done 

under Bayesian inference using the GTR + I + G model, from which phylogenetic hypotheses 

were deduced and pairwise sequence divergences were calculated.  

The phylogenetic analyses provided support for the monophyly of the currently recognised 

six genera of the Laurencia complex as well as providing early molecular evidence for two 

new genera, one of which would be restricted to the SWIO. Nine of the previously recorded 

ten South African species of Laurencia sensu stricto species were validated through 

molecular and morpho-anatomical evidence. One of the nine species, Laurencia stegengae 

nom. nov. was renamed after the Dutch phycologist Dr. Herre Stegenga who first described 
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the species, following invalidation of the original species L. peninsularis Stegenga, Bolton 

and Anderson which had been used previously for a Californian species, L. peninsularis 

Taylor. The tenth species, Laurencia obtusa (Hudson) Lamouroux, was poorly-defined as a 

species, globally, and molecular analyses supported the exclusion of Laurencia obtusa from 

the flora of South Africa.  Five new species were described from South Africa (Laurencia 

dehoopiensis sp. nov., L. dichotoma sp. nov., L. digitata sp. nov., L. multiclavata sp. nov. and 

L. sodwaniensis sp. nov).  

New records of three other Laurencia complex genera, Chondrophycus, Laurenciella and 

Palisada, were reported from South Africa for the first time, and together with the 

aforementioned Laurencia sensu stricto species the Laurencia complex in South Africa now 

stands at 19 species. The diversity is likely greater, with six additional unidentified lineages 

found in this study and awaiting more study. Diversity within Laurencia sensu stricto in 

South Africa increases from west to east i.e. cool-to-warm-temperate, with higher endemicity 

in the warm-temperate regions of the south coast (5 spp.). Species common on the east coast 

(KwaZulu-Natal), Laurencia complanata, L. natalensis and L. multiclavata sp. nov., were 

shared with Madagascar and Glorioso Island. Laurencia natalensis appears as one of the most 

widely distributed species in the SWIO, alongside L. multiclavata sp. nov. and the 

undescribed lineage, L. sp. ‘morphotype K’. Species of the genus Palisada appeared to have a 

narrower distribution range in the SWIO, restricted either to the Mozambique Channel or 

around the Mascarene Islands. 

 The presence of Laurenciella marilzae on the south coast of South Africa, which prior to this 

study was recorded from Brazil, the Mexican Caribbean and Canary Islands in the north and 

central Atlantic Ocean only, provided early evidence supporting the Hommersand (1986) 

hypothesis which suggested South Africa as a gateway for Indian Ocean taxa to the Atlantic 

Ocean. This study highlighted the importance of incorporating South African and SWIO 
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floras when assessing global diversity in the Laurencia complex, and the significance of the 

South African flora when discussing distribution patterns and biogeographic relationships 

within this diverse assemblage of red algae. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Seaweeds 

The algae are an assemblage of oxygen-producing, photosynthetic organisms united 

superficially on the basis of their ecological similarity (Graham and Wilcox 2000) -  this is as 

a result of convergent evolution; the independent development of congruent features within 

taxa sharing a similar function, habitat and/or environment (De Clerck et al. 2005). Algae are 

found in most aquatic environments i.e.  marine, estuarine or freshwater, but they also inhabit 

sub-aerial environments such as tree bark as well as harsh environments such as desert soils 

and hot springs (e.g. van den Hoek et al. 1995; Graham and Wilcox 2000; Barsanti and 

Gaultieri 2006; and Lee 2008). In the marine environment, the microalgae – single-celled 

organisms which range from 0.2µm to a few hundred micrometres, and macroalgae (also 

called seaweeds) – multicellular organisms that can reach up to 45 metres such as the giant 

kelp, Macrocystis pyrifera (Linnaeus) C. Agardh (van den Hoek et al. 1995) can be separated 

into three major groups of algae are the Chlorophyta, the Phaeophyceae in the 

Heteronkontophyta and the Rhodophyta commonly referred to as the green, brown and red 

algae respectively (Lee 2008).  

 

From the macroalgal perspective the Rhodophyta are a highly diverse group present in 

marine environments throughout the world from polar, through temperate to tropical waters 

(Maggs et al. 2007, Robba et al. 2006). With more than 6,000 currently recognised seaweed 

species in the division, the rhodophytan seaweeds are significantly higher in number than 

either the Chlorophyta or the Phaeophyceae (Butterfield 2000, Guiry and Guiry 2014). 

Evolutionarily speaking they represent one of the major radiations of eukaryotes (Ragan et al. 
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1994, Robba et al. 2006) and the emergence of red algae is considered the most ancient event 

detected so far in the evolution of all eukaryotic organisms (Hori and Osawa 1987, Xiao et al. 

1998, Yoon et al. 2004; Robba et al. 2006).  

 

1.2 Economic and chemical importance of seaweeds: 

In many coastal countries marine resources form a fundamental part of the economy (Kildow 

and McIlgrom 2009). Marine macroalgae have long formed a significant part of these 

resources and are in fact a worldwide multi-billion dollar industry (Smit 2004, Dhargalkar 

and Verlecar 2009, FAO 2012) with the vast majority of the seaweed industry found in Asia. 

Edible seaweeds such as kombu (Saccharina japonica (Areschoug) C.E.Lane, C.Mayes, 

Druehl & G.W.Saunders), wakame (Undaria pinnatifida (Harvey) Suringar) and nori 

(Pyropia spp.) account for roughly 98.9% of the seaweed industry, grossing US$ 5.7 billion 

per annum (FAO 2012). Phycocolloids derived from red algae account for most of the 

remaining US$ 1 billion with carrageenan grossing US$ 240 million and agar around US$ 

132 million, while alginates from brown algae contribute around US$ 213 million (FAO 

2004).  

In South Africa, seaweeds are utilized as feed in the abalone industry. On average 5000 tons 

of kelp is harvested (Bolton et al. 2013), mainly Ecklonia maxima (Osbeck) Papenfuss, with 

someLaminaria pallida Greville (Troell et al. 2006, Anderson et al. 2007) as well as 2000t of 

Ulva spp. (Bolton et al. 2013) grown in aquaculture systems (Robertson-Andersson et al. 

2008, Bolton et al. 2009). There is no phycocolloid extraction in South Africa, but roughly 

500 tons of beach-cast kelp (Ecklonia maxima and Laminaria pallida) is collected, dried and 

exported annually for alginate extraction (Anderson et al. 2007) and around 80-100t of red 

algal species of the genus Gelidium is harvested for agar extraction (Anderson et al. 2003, 

DAFF Annual Report 2013). Smit (2004) stated that only in the last thirty years has the 
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commercial exploration of seaweed secondary metabolites increased significantly. This is not 

surprising as seaweed utilization shifts from edible seaweed species to those which produce 

compounds useful in industry (Dhargalkar and Verlecar 2009). Such metabolites within the 

Ceramiales (the order that includes Laurencia Lamouroux) are defined as “structurally 

elaborate halogenated natural products” (Gil-Rodriguez et al. 2009) and several studies both 

large-scale (Fuller et al. 1992, de S.F.-Tischer et al. 2006, Grünewald et al. 2009, Wang et al. 

2009) and small-scale (Knott et al. 2005, Mann et al. 2007, Saravanakumar et al. 2008) have 

isolated a number of biochemical compounds primarily produced by red algal species.  

A recent phytochemical study by Knott et al. (2005) into Plocamium corallorhiza (Turner) J. 

Hooker & Harvey, a red alga common on South African shores, revealed four compounds 

with cytotoxic effects on oesophageal cancer cells. Mann et al. (2007) screened P. 

corallorhiza from Kenton-on-Sea on the south coast of South Africa and discovered that it 

produced a number of unstable halogenated monoterpene aldehydes not found in west coast 

collections of the same species. In a recent review of the chemistry of the Rhodomelaceae by 

Wang et al. (2013) the chemistry of Laurencia sensu stricto species formed the basis on 

which almost all of the classes of organic molecules were reviewed. The genus contains over 

700 halogenated organic molecules also called secondary metabolities (see Erickson 1983, 

Gil-Rodriguez et al. 2009) ranging from diterpernes to sesquiterpenes, non-terpernoid C15 

acetogenins, indoles as well as other organic molecules and a number of these molecules 

have been tested for their bioactivity as anti-bacterial, anti-fungal and anti-viral agents 

(Erickson 1983, Wang et al. 2013). The occurrence of these secondary metabolites in 

members of the genus Laurencia sensu stricto, their chemistry and the application thereof has 

been the focus of several publications over the last decade or more (e.g. Takahashi et al. 

1998, 2002; Suzuki et al. 2005, Jung et al. 2008, Chatter et al. 2009, 2011; Stein et al. 2011, 
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Alarif et al. 2012, Campos et al. 2012, Wang et al. 2013). For example metabolites isolated 

from Laurencia undulata Yamada (= Chondrophycus undulatus (Yamada) Garbary & 

Harper) proved, in laboratory tests, to have anti-asthmatic properties (Jung et al. 2008), while 

Laurencia glandulifera (Kützing) Kützing (= Chondrophycus glandulifer (Kützing) Lipkin & 

P.C.Silva) produces a brominated diterpene with analgesic properties (Chatter et al. 2009). 

Potential for similar chemical studies exist in South Africa; for example Laurencia 

brongniartii J. Agardh, a species recorded from the east coast of South Africa, was reported 

to have anti-bacterial bioactivity by Horikawa et al. (1999). A firm taxonomic grounding is 

necessary to provide reliable identifications of species which might have interesting chemical 

properties.  

1.3 General biology and taxonomy of Rhodophyta 

Red algae are distinguished from the other lineages by the presence of several biochemical 

and ultrastructural features: they lack flagella, store food reserves as floridean starch, possess 

a combination of unique photosynthetic pigments as well as chloroplasts with non-aggregated 

thylakoids and lack an external endoplasmic reticulum (Woelkerling 1990, Graham and 

Wilcox 2000, Harper and Saunders 2001, Maggs et al. 2007).  

The absence of flagella, and therefore motility, was instrumental in the development of a 

unique complement of reproductive structures in aid of sexual reproduction and spore 

dispersal by red algae (Saunders and Hommersand 2004, Maggs et al. 2007). Male gametes 

have extracellular mucilaginous appendages which alter their hydrodynamic properties i.e. 

directly affect sperm transportation, and they contain species-specific cell recognition 

proteins. One of these proteins is rhodobindin, which attaches to the sessile female gametes, 

the carpogonia (Broadwater et al. 1991, Kim et al. 1996, Delivopoulos 2000, Kim et al. 

2005). Similarly female reproductive morphology (i.e. structures of the carpogonium and the 
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carpogonial branch) and post-fertilization development (i.e. presence and fate of the cells, 

orientation of the auxiliary cell(s) and pattern of zygote amplification) as described by 

Schmitz (1892) and refined by Kylin (1956) were crucial in red algal classification before 

DNA data became available and formed the basis for the taxonomic placement at ordinal rank 

in the most diverse rhodophyta class – the Florideophyceae (Maggs et al. 2007).  

Life History 

Florideophyte life-history phases can either be heteromorphic (different from one another) or 

isomorphic (similar to one another) (Hawkes 1990), but ultimately most of the red algae in 

this taxanomic group follow the same tri-phasic pattern.  The Florideophyte life-history 

phases are depicted in Figure 1.1 using the genus Laurencia sensu strico as an example. 

While all the genera in the  Laurencia  complex (of which Laurencia sensu stricto is a 

member) have isomorphic life-histories, each genus has a unique combination of reproductive 

structures, type of reproductive structure development and production of spores, be they 

carpospores or tetraspores (Martin-Lescanne et al. 2010). The life history of Laurencia sensu 

stricto is depicted in Figure 1.1. The features of the other genera are discussed in detail in 

section 1.4 of this chapter. Laurencia and the other genera of the Laurencia complex 

reproduce sexually and have typical tri-phasic isomorphic life histories i.e. their gametophyte, 

carposporophyte and tetrasporophyte life phases are similar in form (Cassano et al. 2009).  

While it has not been noted in literature published on the genus, collections of Laurencia 

sensu stricto on the coast of South Africa suggest that male and female plants are generally 

much rarer than sporophyte plants.  
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Figure 1.1: An illustration of the Laurencia sensu stricto life history. Purple and Blue text 

and arrows represents the diploid and haploid life stages, respectively. In the carpogonium 

with trichogyne image tr= trichogyne and cg = carpogonium. (Figure modified from Saunders 

and Harper 2004, using images from Gil-Rodriguez et al. (2009), Fujii et al. (2011) and RJ 

Anderson) 

Rhodophyte systematics: continuous improvement with technological advancement 

Perhaps the most significant anatomical feature in the  red algae is the pre- and post-

fertilization characteristics of female reproductive structures, particularly that of the 

carpogonial branch in the Florideophyceae, reported by Kylin (1956), which form the 

foundation of ordinal taxonomic  placement in this highly diverse class (Maggs et al. 2007).  
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Systematics is defined by Simpson (2010) as “a science that includes and encompasses 

traditional taxonomy, description, identification, nomenclature and classification of 

organisms and that has as its primary goal the reconstruction of a phylogeny, or evolutionary 

history, of life.” The author goes on to describe systematics as an evolving science which 

improves as our knowledge; methods (for example extensive sampling campaigns, SCUBA, 

deep-sea exploration) and tools for investigating biological diversity (for example 

microscopy, biochemistry, and molecular techniques) develop as well. This development is 

apparent in higher level (i.e. ordinal rank and above) red algal systematics which has 

undergone and will likely continue to undergo major changes as the relationships between the 

classes and orders are better understood (Garbary and Gabrielson 1990). Classification, 

which ideally is a reflection of the evolutionary relationships between groups of organisms 

(Yoon et al. 2006, 2010), will therefore undergo similar changes because taxonomic 

descriptions are dynamic in nature and based on the data available at the time (Garbary and 

Gabrielson 1990, Barsanti and Gualtieri 2006), the number of taxa sampled (Kuhner and 

Felsenstein 1994, Nylander 2001) and sometimes the methods of analyses applied to these 

data types e.g. model- versus non-model-based approaches (Pickett and Randle 2005, 

Wortley and Scotland 2006, Rindal and Brower 2011).    

Since the early1990s molecular studies have been widely used to re-assess the traditional 

systematic system. Using either nuclear or chloroplastic markers a number of studies have 

suggested a somewhat different phylogenetic placement of classes within the Rhodophyta 

than was traditionally recognised (Maggs et al. 2007). Saunders and Hommersand (2004) 

proposed three subphyla, namely Eurhodophytina, Rhodellophytina and Metarhodophytina, 

and a separate division including Cyanidiophyceae. But Yoon et al. (2006) proposed only 

two subphyla: Rhodophytina and Cyanidiophytina, while Le Gall and Saunders (2007) stated 
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that the Rhodophyta should be divided into six classes: Stylonematophyceae, 

Porphyridiophyceae, Rhodellophyceae, Compsopogonophyceae, Bangiophyceae and 

Florideophyceae. Class-level phylogenetic relationships in the Rhodophyta have been 

examined from both the morphological and molecular perspective. Of the six classes 

mentioned above, the two most extensively studied are the simple-structured Bangiophyceae 

and the morphologically complex Florideophyceae (Graham and Wilcox 2000, Harper and 

Saunders 2001). Ragan et al. (1994) stated that the key ‘traditional’, i.e. morphological 

characters used to distinguish these two classes (for example plastid number, pattern of cell 

division or thallus complexity) are not taxonomically stable or absolute. Indeed, using 

molecular markers, Yoon et al. (2010) identified seven lineages (classes in this instance), 

including the Bangiophyceae and the monophyletic Florideophyceae previously identified by 

Yoon et al. (2006). The smaller of the two classes, Bangiophyceae, contains four orders 

which are often described as structurally and reproductively simple seaweeds (for example 

the sheet-like genus Porphyra) (Maggs et al. 2007). Much of their description was 

determined by the absence of features associated with the Florideophytes (e.g. secondary pit 

connections between cells) or the presence of characters only found in some of the classes 

(e.g. single star-shaped plastids), i.e. there is a lack of positive synapomorphic (shared 

derived) traits amongst these orders (Freshwater et al. 1994, Ragan et al. 1994, Maggs et al. 

2007). Interestingly, Dixon (1963) discarded the absence of the secondary pit connections as 

a valid taxonomic distinction between Bangiophycean and Florideophycean algae as three 

genera (Rhodochaete, Compsopogon and Bangia) within the Bangiophyceae displayed pit 

connections, though of a less complex nature. It is generally accepted that poor taxonomic 

understanding of the Bangiophycean algae coupled with low taxon sampling has been 

reflected in the phylogenetically distant relationships between orders of this class as well as 
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their apparent polyphyly (Freshwater et al. 1994, Ragan et al. 1994, Graham and Wilcox 

2000, Saunders and Hommersand 2004 and Maggs et al. 2007). 

Unlike the Bangiophyceae, the orders within the Florideophycean algae have a strong 

monophyletic origin and it is postulated that they evolved much later than the Bangiophyceae 

(Freshwater et al. 1994, Ragan et al. 1994, Graham and Wilcox 2000, Harper and Saunders 

2001 and Maggs et al. 2007). The Florideophyceae encompass the vast majority of the 

species diversity within red seaweeds and are often morphologically complex and diverse. 

Nearly all of the 24 orders (according to the system of Harper and Saunders 2001) within this 

class are multicellular and have developed unique reproductive structures; for example 

tetrasporangia and gonimoblasts. Female reproductive anatomy before and after fertilization 

became the foundation of alpha taxonomic descriptions for the orders within the 

Florideophyta (see Kylin 1956). 

Rhodophyte taxonomy: from ultrastructure to DNA-based investigations 

The next major step in elucidating red algal taxonomy was the study of pit-plug ultrastructure 

within the Florideophyta (Pueschel and Cole (1982). Two features of these structures 

(presence and absence of the inner and outer cap layers and morphology of the outer cap) in 

combination proved taxonomically significant, changing the face of high level systematics 

within the florideophytes from the early 1980’s to the year 2000 (Maggs et al. 2007).  From 

the mid 1990’s until the present the use of molecular DNA in algal taxonomy and 

phylogenetics in general has gained popularity (Maggs et al. 2007) and for the red algae the 

works of Freshwater et al. (1994), Ragan et al. (1994), Saunders and Hommersand (2004) 

and Yoon et al. (2006) are important assessments of the taxonomic relationships of the red 

algae.   
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Rhodomelaceae: highly diverse and morphologically advanced red algae 

According to Saunders & Hommersand (2004) and Maggs et al. (2007) the Ceramiales is the 

most advanced order in the subclass Rhodymeniophycidae by virtue of its complex female 

reproductive structures and is the most diverse order in the Rhodophyta (Stegenga et al. 

1997). Nine families make up the Ceramiales, including the species-rich Rhodomelaceae with 

over 960 species and around 150 genera (Guiry and Guiry 2014).  

Studies on the systematics of the Florideophyceae and the other families in the Ceramiales 

have shown the Rhodomelaceae to be a well-supported, monophyletic clade (Philips et al. 

2000, Choi et al. 2002, Zuccarello et al. 2002 and Abbott et al. 2010). The Rhodomelaceae 

have varied morphological and anatomical features some of which include the thallus form - 

branched filamentous types, those with high levels of cortication and foliose types; the 

number of pericentral cells – four to twenty-four; the presence of trichoblasts (hair-like 

branches) in most species; spermatangia associated with the trichoblasts; cystocarps with a 

distinct pericarp and tetrasporangia generally borne on the pericentral cells (Stegenga et al. 

1997). A notable exception to the last rhodomelacean characteristic is the genus Laurencia 

Lamouroux in which tetrasporophytes are held in the thallus and according to Stegenga et al. 

(1997) “seemingly inserted on the cortical cells…” The second-largest genus in the 

Rhodomelaceae, Laurencia Lamouroux, has 130 species occurring world-wide excluding the 

poles (Stegenga et al. 1997, Guiry and Guiry 2014).  

 

1.4 Systematics of the genus Laurencia and the Laurencia complex 

The name Laurencia was first used in 1813 by the French botanist J.V. Lamouroux to 

describe a diverse group of eight red seaweeds in the order he called Floridées on the basis of 

their coralloid organisation and purple to reddish colouration (Lamouroux 1813). Lamouroux 

(1813) failed to designate a type for the genus, but this was later rectified by Schmitz (1889) 
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who formed the tribe Laurenciae and formally assigned the type species Laurencia obtusa 

(Hudson) Lamouroux to the genus. It must be noted that around the same time as Lamouroux, 

the English botanist John Stackhouse proposed the genera Osmundea (1809) and Pinnatifida 

(1816) both of which shared some morphological similarities with Laurencia. Osmundea was 

based on the type species O. expansa Stackhouse nom. illeg., which was later synonymised 

with Laurencia osmunda (S.G. Gmelin) Maggs & Hommersand (Silva 1952), while 

Pinnatifida vulgaris Stackhouse, the type species of Pinnatifida, is considered a synonym of 

Laurencia pinnatifida (Hudson) Lamouroux 1813. Both Stackhouse’s genera were rejected 

by Papenfuss (1947) - Osmundea as an earlier heterotypic synonym of Laurencia, and 

Pinnatifida as a later synonym of Osmundea - and Lamouroux’s ‘Laurencia’ was proposed 

for conservation by Papenfuss (1947) (Nam et al. 1994). 

 

 Between the work of Lamouroux (1813) and the designation of the type by Schmitz (1889) 

several species were added to the genus by various authors including Gaillon (1828), Greville 

(1830), J. Agardh (1841), Sonder (1845), J.D. Hooker & Harvey (1847), Kützing (1849, 

1865), Harvey (1855), Zanardini ex Fraudenfeld (1855), P.L.Crouan & H.M.Crouan in 

Schramm & Mazé (1865) and Martens (1871). Following this, authors such as Kylin (1923, 

1928), Yamada (1931), Saito (1967), Saito and Womersley (1974) and Garbary and Harper 

(1998) were instrumental in the development of key morphological (and later anatomical) 

features for the Laurencia classification. For example Saito (1967) and Saito and Womersley 

(1974) first noted the significance of the presence or absence of secondary pit connections 

between epidermal cells and described the subgenera Laurencia and Chondrophycus 

(J.Tokida & Y.Saito) Garbary & Harper to accommodate these features by moving all 

Laurencia species without secondary pit-connections into subgenus Chondrophycus while 

those with secondary pit-connections would be placed in subgenus Laurencia. These works 
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formed the foundations upon which later studies expanded the understanding of Laurencia as 

a genus, and then more recently as a complex of six genera (Laurencia complex).   

Laurencia is part of the tribe Laurenciae within the family Rhodomelaceae. The Laurenciae 

includes the Laurencia complex and the parasitic genus, Janczewskia Solms Laubach. The 

Rhodomelaceae includes ten other tribes including the tribe Chondriae based on the genus 

Chondria. The genus Chondria C. Agardh is phylogenetically closely related to the 

Laurencia complex (Nam and Choi 2001, Diaz-Larrea et al. 2007), so much so that some 

Laurencia species were previously ascribed to Chondria. For example, the South African east 

coast species Laurencia complanata (Suhr) Kützing was known as Chondria complanata 

Suhr prior to its transfer to the genus Laurencia (Silva et al. 1996).  

The advent of molecular methods in species delineation and their application to Laurencia 

taxonomy has lent strong support to the anatomical distinctions highlighted by the above 

authors and contributed significantly to the further characterisation and taxonomic 

understanding of the Laurencia complex. This is seen most clearly in the transition of the 

complex from three genera (Laurencia sensu stricto, Chondrophycus and Osmundea) 

proposed by Garbary and Harper (1998) and supported by the plastid molecular phylogeny of 

Abe et al. (2006), to four genera (Laurencia sensu stricto, Chondrophycus, Osmundea and 

Palisada Nam) supported by the chloroplastidic large subunit of the ribulose-bisphosphate 

carboxylase gene (rbcL) phylogenetic analyses of Nam (2006) and Diaz-Larrea et al. (2007). 

The complex was then increased to five genera with the addition of Yuzurua (Nam) Martin-

Lescanne as recognised by Martin-Lescanne et al. (2010) on the basis of the chloroplast rbcL 

gene and a combination of shared vegetative features such as non-palisade epidermal cells 

shared within the overall Laurencia complex (except Palisada) and the presence of secondary 

pit connections as in Laurencia sensu stricto and Osmundea. Most recently the complex was 
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increased to six genera with the addition of   Laurenciella Cassano, Gil-Rodríguez, Sentíes, 

Díaz-Larrea, Oliveira & Fujii, supported by the plastid-based phylogenetic analyses of 

Cassano et al. (2012).  Following these revisions, each genus in the Laurencia complex is 

now well circumscribed morphologically and phylogenetically (Figure 1.2).  With the 

exception of Lewis et al. (2008) and Sherwood et al. (2010), literature on the molecular 

systematics of the Laurencia complex is based on the plastid marker, rbcL. RbcL has been 

widely used in the Rhodophyta to answer phylogenetic questions and has been shown in 

several studies (Freshwater and Rueness 1994, Hommersand et al. 1994, Fredericq and 

Ramirez 1996, Gurgel and Fredericq 2004, Abe et al. 2006, Martin-Lescanne et al. 2010, 

Cassano et al. 2012) to provide a large proportion of sequence data with a high number of 

phylogenetically-informative sites owing to its relatively higher rate of mutation in 

comparison to the nuclear small subunit ribosomal marker (SSU) (Bailey and Freshwater 

1998). The usefulness of this marker has been exemplified in the Laurencia complex where it 

has been shown to provide good resolution at the genus and species level (Nam et al. 2000, 

Abe et al. 2006, Gil-Rodriguez et al. 2009, Martin-Lescanne et al. 2010, Cassano et al. 

2012). 
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Figure 1.2 Simplified phylogeny of the Laurencia complex, based on the rbcL gene region 

(Adapted from Cassano et al.  2012). 

 

General Classification (Guiry and Guiry 2014) 

Division: Rhodophyta 

Subdivision: Eurhodophytina 

Class: Florideophyceae 

Subclass: Rhodymeniophycidae G.W. Saunders & Hommersand 2004 

Order: Ceramiales Oltmanns, 1904: 683 

Family: Rhodomelaceae Areschoug (1847: 260)  
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Tribe: Laurencieae Schmitz (1889: 447)  

Genus complex: Laurencia Lamouroux 1813: 130 (= Laurencia sensu stricto) 

Chondrophycus (Tokida & Saito) Garbary & Harper, 1998: 194 

Osmundea Stackhouse 1809: 56. 79, 80 

Palisada Nam 2007: 53 

Yuzurua (Nam) Martin-Lescanne 2010: 59 

Laurenciella Cassano, Gil-Rodríguez, Sentíes, Díaz-Larrea, Oliveira & 

Fujii, 2012: 354 

Unifying features of the genera in the Laurencia complex 

Nam et al. (1994) and  later Garbary and Harper (1998) defined key vegetative and 

reproductive features representative of the genus Laurencia and two additional genera 

namely Osmundea Stackhouse (resurrected by Nam et al. 1994) and Chondrophycus (raised 

to genus level by Garbary and Harper 1998). The genus Osmundea is closely related to 

Chondrophycus, sharing some anatomical similarity outlined in further detail below (Garbary 

and Harper 1998). Several studies have focused on vegetative and to some extent 

reproductive anatomical reviews of the genera within the Laurencia complex (sometimes as 

subgenera within the genus Laurencia) and have delivered suitable additional generic 

morphological delimitations (Saito 1967, Nam et al. 1994, Garbary and Harper 1998, Nam et 

al. 1998, Masuda and Kogame 1998, Nam 2006, Martin-Lescanne et al. 2010, Cassano et al. 

2012). The six genera of the Laurencia complex share a typical Rhodomelacean morphology 

i.e. they have apical cells sunk in apical pits at the apices of branchlets, a central cell row that 

is recognisable only near the apical cell and an extensive cortex (Nam and Choi 2001). In 
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addition to these vegetative features, the procarp-bearing segments in the female reproductive 

structures of each genus generally have five pericentral cells, and the spermatangial branch 

pit is cup-shaped, though it is noteworthy that there are instances of pocket-shaped pits in 

some species of Osmundea (Martin-Lescanne et al. 2010). The individual features of the 

genera as described by the authors listed above are outlined in Table 1.1. 

 

1.5 Geographical distribution of the Laurencia complex 

Relatively little is known about the distribution of the Laurencia complex. Laurencia sensu 

stricto is a genus with a cosmopolitan distribution in temperate and tropical regions, with the 

bulk of the species occurring in the Southern Hemisphere (McDermid 1988). The other 

genera have distinct biogeographical distributions (Nam 2006). Osmundea has so far been 

demonstrated to have a disjunct distribution, with 17 species (Guiry and Guiry 2014) present 

in Pacific North America, Brazil, Atlantic Europe, the Mediterranean Sea and India (Nam et 

al. 2000, Furnari et al. 2004) and quite likely in Australia and Northern Africa as well (Nam 

2006). Chondrophycus has 17 currently accepted species distributed in the Indo-West Pacific 

marine province (Nam 1999, Guiry and Guiry 2014). The genus Palisada has 22 species 

(Guiry and Guiry 2014), the vast majority of which occur within the Pacific (Nam 2007) with 

three of these species also present on islands in the Indian Ocean (Guiry and Guiry 2014).  

 

The distribution of the single species in the genus Yuzurua, Y. poiteaui (J.V. Lamouroux) 

K.W. Nam, and the variety Y. poiteaui var. gemmifera (Harvey) M.J. Wynne, is similar to 

that of Palisada i.e. both Y. poiteaui and the aforementioned variety have been recorded in 

the Mexican Caribbean Sea, Western Atlantic, the Atlantic Islands, and the Indo-West Pacific 

(Guiry and Guiry 2014).
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Table 1.1: Distinguishing characters used to identify the different genera in the Laurencia complex following Martin-Lescanne et al. (2010) 

Abbreviations: EC: epidermal cells; NA: not applicable; NPa: non-palisadic; Pa: palisadic; PC: pericentral cells; SPC: sterile pericentral cells; 

STL: development of spermatangial branches from two laterals on suprabasal cell of trichoblast; SOL:  development of spermatangial branches 

from one of the two laters on suprabasal cell of trichoblast; ?: Unknown. 

 

 

Genus 

Vegetative structure Male reproductive structure: 
spermatangial branch 

Female reproductive 
structure 

PC 

Secondary 
pit 

connections 
Corps en 

cerise 

Position of 
the 1st PC 
relative to 

the TB. 
EC 

arrangement Development Production Pit-shape 

Auxiliary 
cell-

timing 

Pro-carp 
bearing 
segment 

Laurencia 

sensu stricto 
Fourc,e Presenta Presentb,e Underneathg NPaf Trichoblast 

typed SOLg Cupd Normale,g 5th PCd 

Chondrophycus Twoc,e Absenta Absente Sideg NPaf Trichoblast 
typed STLg Cupd Delayede,g 5th PCd 

Osmundea Twoc,e Pres./Abs.a Absentb,d Sideg NPaf Filament 
typed Absenteg Pocket/Cupd Normale,g 5th/6th PCd 

Palisada Twof Absentf Absentf Underneathh Pa,h Trichoblast 
typed SOLg Cupg Normale,g 4th/5th PCg 

Yuzurua Twof Absentf Absentf ? NPaf Trichoblast 
typef ? Cupg ? 5th PCg 

Laurenciella Fouri Presenti Presenti Underneathi NPai Trichoblast 
typei SOLi Cupi ? 5th PCi 
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Table 1.1(cont.): Distinguishing characters used to identify the different genera in the Laurencia complex following Martin-Lescanne et al. 

(2010) 

Genus 

Tetrasporangia 

Origin PC position Orientation 

Arrangement 
of 

tetrasporangia 

Presporangial 
cover cell 

arrangement 
Tetrasporangia 

axis 

Fertility 
on the 
2nd PC 

Additional 
tetrasporangial 

PC 

Laurencia sensu 

stricto 
Particular PCd 3rd, 4th c Abaxiald Parallela Transversed 2/3 SPCh Nog Nog 

Chondrophycus PCd Additional PCd Abaxiald Right-anglea Transversed 2 SPCg Nog Yesd 

Osmundea Epidermald Random 
Epidermald Laterald Parallela Paralleld NAg NAg NAg 

Palisada PCg Additional PCf Abaxialf Right-anglef Transversef 1 SPCg Yesg Yesd 

Yuzurua PCg Additional PCf Abaxialf Right-anglef Transversef 1 SPCg Yesg Yesg 

Laurenciella Particular PCi 3rd, 4th i Abaxiali Right-anglei Transversei 2 SPCi Noi Noi 

a Saito (1967); b McDermid (1988); c Nam & Saito (1991); d  Nam et al. (1994); e Garbary & Harper (1998); f Nam (1999); g Nam (2006), h 

Martin-Lescanne et al.(2010); i  Cassano et al. (2012) 
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Laurenciella, first described from the Canary Islands in the northeast Atlantic, has now been 

recorded from the western Atlantic as well and appears so far to be restricted to the Atlantic 

Ocean.   

Since the splitting of the Laurencia complex into a number of distinct genera within a 

complex, a fairly substantial body of work has been done in various marine regions to revise 

several species in accordance with the new generic circumscriptions (See Nam and Choi 

2001, Abe et al. 2006, Nam 1999, Nam 2006, Diaz-Larrea et al. 2007, Martine-Lescanne et 

al. 2010) but very few studies, if any, seem to have focussed on revising regional diversities. 

Furnari et al. (2001) is the closest to this scale of study in their assessment of the Laurencia 

complex in the Mediterranean Sea. Beyond this, most accounts of the Laurencia complex in 

regional studies are as part of marine benthic checklists, for e.g. Haroun et al. (2002), Wynne 

(2011). Silva et al. (1996) produced a catalogue of the marine benthic algae of the Indian 

Ocean including much of South Africa, but this catalogue was published before most of the 

major taxonomic changes in the Laurencia complex occurred. No work has been done since 

to determine which species are in which genera, limiting our understanding of distribution 

patterns of the complex in the Indian Ocean. To date there has been no regional study of the 

Laurencia complex that includes South Africa and/or the rest of the South-Western Indian 

Ocean and none that used molecular data either. 

 

1.6 South Africa and Laurencia 

South African marine biogeography 

The coastline of South Africa has a wide range of temperature conditions, from cool 

temperate as a result of the Benguela upwelling system in the west to tropical in the extreme 

northeast (Bolton et al. 2004, Smit et al. 2013). Several studies using different taxa have 



20 

 

supported the existence of at least three distinguishable major biogeographic regions along 

the coastline of South Africa (see Stephenson & Stephenson 1972, Brown & Jarman 1978, 

Emanuel et al. 1992, Stegenga & Bolton 1992, Bustamante & Branch 1996, Bolton & 

Anderson 1997, Turpie et al. 2000, Bolton et al. 2004, Sink et al. 2005). The system 

described by Bolton & Anderson (1997) was used in this study to define the marine 

biogeographic regions of South Africa using seaweed distributions, and is illustrated in 

Figure 1.2.  

South Africa has a highly diverse community of shallow-water species, on a global scale, and 

this diversity is reflected in the seaweed floras present along its coastline – three of the four 

major seaweed floras of sub-Saharan Africa are represented in South Africa (Bolton and 

Stegenga 2002, Bolton et al. 2004 and De Clerck et al. 2005). The west coast of South Africa 

has a cool-temperate flora which is shared with Namibia (Stegenga et al. 1997, Bolton and 

Stegenga 2002, De Clerck et al. 2005). The south coast has a unique warm-temperate 

seaweed flora with many endemic species (Stegenga & Bolton 1992, De Clerck et al. 2005, 

Anderson et al. 2009). The east coast is divided into the warm-temperate region of overlap on 

the southern and central east coast and the tropical Indo-West Pacific flora of the norther-east 

coast (Anderson & Bolton 1997). In terms of the distribution of diversity in the Laurencia 

complex, a general increase in species diversity from the west coast to the east coast is 

deduced from literature (Stegenga et al. 1997, De Clerck et al. 2005) which corresponds to 

the general Rhodophyta pattern outlined in Bolton and Stegenga (2002). Laurencia glomerata 

is the only species of the Laurencia complex present on the west coast proper while others 

namely L. flexuosa, L. natalensis, L. obtusa and L. peninsularis nom. illeg. occur in the 

western transition zone according to Stegenga et al. (1997). The east coast boasts five species 

(Laurencia brongniartii, L. complanata, L. flexuosa, L. natalensis and L. pumila), which with 

the exception of L. brongniartii also occur on the south coast of South Africa. At least three 
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of the South African Laurencia species (L. complanata, L. natalensis and L. pumila) are 

known to occur in other coastal regions of the South West Indian Ocean; all three species are 

reported to occur Mozambique(Silva et al. 1996), while L. natalensis is also recorded in 

Kenya (Silva et al. 1996, Bolton et al. 2007) and Mauritius (Silva et al. 1996).While we are 

limited in our knowledge of the Laurencia complex in the rest of the South West Indian 

Ocean, several taxonomic accounts of seaweeds for SWIO nations such as Mauritius 

(Børgesen 1945), Mozambique (Isaac 1958, Isaac and Chamberlain 1958) and Tanzania 

(Jaasund 1975, Oliveira et al. 2005) provide a platform from which we can begin to assess 

the distribution of species in the South West Indian Ocean. The catalogue of benthic algal 

diversity in the Indian Ocean by Silva et al. (1996) provides a general concept of Laurencia 

complex diversity in the SWIO, which is highest in the tropics with fourteen species recorded 

from Mauritius, Tanzania and the Seychelles, but decreases into the temperate regions with 

six species recorded in Mozambique and ten species in South Africa. 

 

No studies using molecular markers have yet re-assessed species of Laurencia in the South 

West Indian Ocean or in South Africa. Currently available records are limited to Laurencia 

sensu stricto (= subgenus Laurencia in Stegenga et al. 1997). With the exception of the 

record of Laurencia glomerata from several locations along the west coast as far north as 

McDougall Bay, Port Nolloth (29°16’23”S, 16°52’59”) as mentioned in Stegenga et al. 

(1997), the distribution of South African Laurencia spp. extends from the southern Cape 

Peninsula to the northernmost section of the East Coast in Kwa-Zulu Natal (Figure 1.3). The 

dominant species change as seawater temperatures become progressively warmer eastwards 

(De Clerck et al. 2005, Smit et al. 2013). It is noteworthy that Namibia, which forms part of 

the same marine system as the west coast of South Africa, has no records of Laurencia 

species (Engledow 1998, Lluch 2002). 
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Figure 1.3: Known distribution of Laurencia sensu stricto (red outline) along the southern 

African coast.  Cool-temperate, warm-temperate and tropical (Indo-West Pacific) seaweed 

floras and their overlapping regions in South Africa are shown respectively.  

 

South African Laurencia in the literature 

The first account of Laurencia in South Africa was by the German phycologist Friedrich T. 

Kützing (1849) who described Laurencia flexuosa Kützing and renamed two earlier species 

Chondria glomerata Kützing 1847 and C. complanata Suhr 1846 as Laurencia glomerata 

(Kützing) Kützing and L. complanata (Suhr) Kützing, respectively. In 1852, Kützing added 

another species, Laurencia corymbosa Kützing, to the list. This was followed 15 years later 

by the addition of L. pumila (Grunow) Papenfuss (as L. flexuosa var. pumila) by the German-

Austrian phycologist Albert Grunow (1867).   
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Between 1867 and 2005 only another five species were added to the South African Laurencia 

species list, namely Laurencia elata (C. Agardh) Hooker and Harvey, L. obtusa (Hudson) 

Lamouroux (Barton 1893), L. natalensis Kylin (1938), L. peninsularis Stegenga, Bolton & 

Anderson  nom. illeg. (Stegenga et al. 1997) and L. brongniartii J. Agardh by De Clerck et 

al. (2005).  Together this makes up a total of 10 species of Laurencia sensu stricto currently 

known for South Africa among which three are considered endemic and seven have their type 

locality in South Africa (Table 1.2).  

Members of Laurencia sensu stricto are a significant and often dominant component of the 

intertidal seaweed vegetation along the South African south and east coast shores (Bolton and 

Anderson 1997, De Clerck et al. 2005).  

The taxonomy of Laurencia in South Africa has been little studied and many species are 

therefore difficult to identify. Stegenga et al. (1997) reviewed the anatomy of west coast 

Laurencia species and remarked that the five species occurring on the west coast and in the 

western transition zone belonged to Laurencia subgenus Laurencia (= Laurencia sensu 

stricto) as described by Saito (1967) & Saito and Womersley (1974). De Clerck et al. (2005) 

recorded five species of Laurencia for the KwaZulu-Natal coast (two of these in common 

with the west coast) making a total of eight species. However, these studies were non-

comprehensive and are outdated in the context of the taxonomic changes which have 

occurred in the genus over the last two decades. Moreover, there is no descriptive work 

available for the rest of the coast of South Africa and there has never been a record of any of 

the other genera of the complex. Similarly, the most recent taxonomic accounts for the 

Laurencia complex in the South-Western Indian Ocean (SWIO) are Jaasund (1969-1979) and 

Oliviera et al. (2005) for Tanzania, Børgesen (1945) for Mauritius and De Clerck et al. 

(2004) for Rodrigues Island.  
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Table 1.2: Laurencia complex species recorded from South Africa prior to this study (from Seagrief 1984, Silva et al. 1996, Stegenga et al. 

1997 and De Clerck et al. 2005) showing whether or not they have been sequenced with the plastid gene, RbcL.  

 

Species Name Type Locality Sequence 
Reference 

rbcL sequence & locality 

Laurencia cf. brongniartii J. Agardh Martinique, West Indies Fujii et al. 
(2006) 

Taiwan & Australia 

Laurencia complanata (Suhr) Kützing Natal Bay, South Africa Fujii et al. 
(2006) 

South Africa 

Laurencia corymbosa J. Agardh 
 

Cape of Good Hope, South Africa - No 

Laurencia elata (C. Agardh) J. Hooker & 
Harvey 

King Island, Bass Strait, Australia - No 

Laurencia flexuosa Kützing “Ad Caput Bonae Spei”, South 
Africa 

Fujii et al. 
(2006) 

South Africa 

Laurencia glomerata (Kützing) Kützing 
 

“Cap” [South Africa]  No 

Laurencia natalensis Kylin Isipingo Beach, near Durban, South 
Africa 

Fujii et al. 
(2006) 

South Africa  

Laurencia obtusa (Hudson) Lamouroux Lectotype: unspecified [presumably 
Devon or Sussex, England] 

Fujii et al. 
(2006) 

Nam et al. 
(2000) 

Venezuela & Guadeloupe 
Ireland 

Laurencia pumila (Grunow) Papenfuss 
 

Port Natal [Durban], South Africa - No 

Laurencia peninularis Stegenga, Bolton & 
Anderson nom. illeg. 

Clovelly, Cape Peninsula, South 
Africa 

- No 
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The remaining coasts and islands have only been partially surveyed and neither publications 

on taxonomy nor checklists of species are available. No phylogenetic information has ever 

been produced for the genus complex in southern Africa or in the South-Western Indian 

Ocean region.  

 

Aims and hypotheses of the study  

With the exception of three plastid rbcL sequences deposited in Genbank and brief 

descriptions of known species in two South African seaweed floras (Stegenga et al. 1997, De 

Clerck et al. 2005) very little has been done on the taxonomy and the phylogeny of Laurencia 

in South Africa, and its diversity is currently most likely underestimated. Considering the 

significant changes that have taken place in the broader classification of the genus (and sister 

genera) in the last decade and the importance of Laurencia both ecologically and chemically, 

the main goal of the PhD was to reassess the diversity, systematics and biogeography of the 

South African Laurencia complex.  

To address this main goal, the project was focussed around three aims: 

1. Revising the South African Laurencia diversity and systematics using a combined 

analysis of the chloroplastidic rbcL DNA marker and morpho-anatomical characters 

based on new extensive collections along the coasts of all South African  marine 

regions [Chapter 2] 

2. Finding accurate morpho-anatomical characters to delineate species, and providing 

precise descriptions, illustrations and a key to identify South African species of the 

Laurencia complex.  [Chapter 3] 
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3. Assessing the biogeographical relationships of South African species of Laurencia in 

the South West Indian Ocean region using a rbcL-based phylogeny produced from 

new collections in the region. [Chapter 4] 

 

Questions/hypotheses which will be assessed in the thesis include: 

1. What is the diversity of the Laurencia complex in South Africa, and are all species 

referable to Laurencia sensu stricto, as reported in the literature? 

2. Are the 10 species reported in the literature to occur in South Africa supportable 

taxonomic entities, and are they distinct from other described species? 

3. Do the reported phylogenetic patterns and relationships between genera in the 

complex hold true following the addition of South African and South Western Indian 

Ocean specimens to the analyses.  

4. Do South African species have wider occurrence in the South Western Indian Ocean, 

and what are the phylogenetic affinities and biogeographic relationships of South 

African taxa? 
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CHAPTER 2 

MOLECULAR SYSTEMATICS OF THE LAURENCIA COMPLEX 

(RHODOMELACEAE, RHODOPHYTA) IN SOUTH AFRICA  

 

2.1 Introduction 

The taxonomic history of the Laurencia complex started with a genus of eight species, 

Laurencia J.V. Lamouroux, described just over 200 years ago (Lamouroux 1813, pg. 131-

132). It was subsequently divided into four sections based on morphological and anatomical 

features (Saito 1967 citing Yamada 1931b), then into two subgenera distinguished by the 

presence (or absence) of secondary pit-connections between epidermal cells (Saito 1967, 

Saito and Womersley 1974), and later into a three-genus complex (Laurencia, 

Chondrophycus and Osmundea) identified by vegetative and reproductive anatomy (Garbary 

and Harper 1998, Nam 1999). Based on molecular data, Nam et al. (2000), Martin-Lescanne 

et al. (2010), Fujii et al. (2011) and Cassano et al. (2012) proposed further taxonomic 

revisions supporting and expanding upon the previous taxonomic changes. The Laurencia 

complex is currently accepted as comprising six genera: Laurencia J.V. Lamouroux 

(Laurencia sensu stricto), Chondrophycus (J. Tokida & Y. Saito) Garbary & J.T. Harper, 

Osmundea Stackhouse, Palisada (Yamada) KW Nam, Yuzurua (KW Nam) Martin-Lescanne 

and Laurenciella V. Cassano, Gil-Rodríguez, Sentíes, Díaz-Larrea, M.C. Oliveira & M.T. 

Fujii. The most diverse of the six genera is Laurencia sensu stricto, which comprises 130 

currently recognised species distributed in temperate and tropical regions of all oceans (Guiry 

and Guiry 2014). Members of Laurencia sensu stricto are well known as they produce 

structurally elaborate halogenated natural products (Gil-Rodriguez et al. 2009) that have 

become the focus of many chemical studies (e.g. Masuda et al.1996, Abe et al. 1999, Chatter 

et al. 2009, Jung et al. 2009, Stein et al. 2011, Campos et al. 2012). This genus forms a 
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significant and ecologically important part of cool-to-warm temperate and tropical shore 

ecosystems throughout the world (McDermid 1988).  

The taxonomy of the Laurencia complex has been significantly improved by the combined 

use of anatomy and the plastid molecular marker RuBisCO (Ribulose-1,5-bisphosphate 

carboxylase/oxygenase) large sub-unit (rbcL), but it is still hampered by a lack of clearly 

defined morphological traits for species delineation. These identification difficulties might 

represent a major stumbling block considering the growing number of studies on Laurencia’s 

natural products and chemical properties (Jung et al. 2008, Chatter et al. 2009, Campos et al. 

2012, Alarif et al. 2012). Molecular markers have proven essential to revise and discover new 

(cryptic) diversity in several studies (Gil-Rodriguez et al. 2009, Martin-Lescanne et al. 2010, 

Cassano et al. 2009).With the exception of Lewis et al. (2008) who used the nuclear marker 

ITS1 and the plastid spacer rbcLS, all of the molecular studies on the Laurencia complex 

have used the chloroplast marker rbcL. Those studies have focussed chiefly on global 

phylogenies of the Laurencia complex (Martin-Lescanne et al. 2010) or on one of its genera 

(Nam et al. 2000, Machin-Sanchez et al. 2012) or, as is more often the case, a single species 

and the subsequent taxonomic implications (Nam 1999, 2006, Furnari et al. 2004, Díaz-

Larrea et al. 2007, Rocha-Jorge et al. 2010, Cassano et al. 2012). With the exception of two 

studies, one in the Mediterranean (Furnari et al. 2001) and another in Brazil (Fujii et al. 

2011), authors have seldom revised the species diversity of one region in particular and most 

of the molecular data available to date are focussed on species from North Atlantic regions.  

South Africa is an intriguing locality from the perspective of Laurencia taxonomy as out of a 

total of ten species, seven have their type locality in South Africa and, with the exception of 

Laurencia corymbosa J. Agardh and L. glomerata (Kützing) Kützing, five are considered 

South African or east and southern African endemics: L. complanata (Suhr) Kützing, L. 

flexuosa Kützing, L. natalensis Kylin, L. pumila (Grunow) Papenfuss, and L. peninsularis 
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Stegenga, Bolton & R.J. Anderson. nom. illeg. (Seagrief 1984, Silva et al. 1996, Stegenga et 

al. 1997, De Clerck et al. 2005). Based on morphological and anatomical examinations, some 

authors have discussed the presence or taxonomic status of several of these species 

(Papenfuss 1952, Saito and Womersley 1974, Womersley 2003), but no phylogenetic studies 

to date have examined the diversity of the Laurencia complex in South Africa and rbcL 

sequences for only three species, Laurencia natalensis, L. flexuosa and L. complanata, have 

been published (Fujii et al. 2006).  

The aim of this chapter was to contribute to the growing work on taxonomy and systematics 

of the Laurencia complex by revising the South African Laurencia diversity and systematics. 

To reach this aim, guided by previous work on the Laurencia complex, I analysed the 

chloroplastic rbcL sequences obtained from new extensive collections along the coastlines of 

all South African marine ecoregions.  

2.2 Materials and Methods 

Taxon sampling  

The present study analyses data from 155 specimens (Appendix: Table A1) collected along 

almost the entire coastline of South Africa (Figure 2.1 and 2.2) with an effort to collect from 

type localities. The coast of South Africa can be divided into  three  seaweed marine 

provinces, with transition zones between them: (i) the west coast (Benguela Marine Province) 

with a cool-temperate seaweed flora, (ii) the south coast (Agulhas Marine Province) with a 

warm-temperate seaweed flora and, (iii) the northern part of the east coast (Indo-West Pacific 

Marine Province) with a tropical seaweed flora (Bolton and Anderson 1997; Bolton et al., 

2004; Anderson et al., 2009). The Laurencia complex is rare on the west coast, with only a 

few populations of what Stegenga et al. (1997), with considerable doubt, referred to as 

Laurencia glomerata, but along the south and east coasts the complex is represented by ten 
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species (Stegenga et al. 1996, De Clerck et al. 2005). Collections were made from all of these 

marine provinces and their transition zones which are outlined in detail in Chapter 4.    

 

 

 

Figure 2.1: Sampling sites on the west coast and the western & central portion of the south 

coast. (29°40’S, 24°12’E to 33°36’S, 26°55’E).False Bay* includes Clovelly and Buffels 

Bay; Keurbooms includes Die Eiland and Platbank; De Hoop includes Koppie Alleen and 

Noetsie.  
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Figure 2.2: Sampling sites on the eastern portion of the south coast, and the east coast 

(33°58’S, 25°40’E to 27°0’00”S, 32°50’00”E). 

 

Sample processing & morphotype identification  

Subsamples of each specimen were (i) dried in silica granules for later DNA isolation, (ii) 

preserved in 4% formalin/seawater for later morpho-anatomical observations, and (ii) 

unpreserved material pressed dried on herbarium paper to serve as voucher. The voucher 

specimens were deposited in Bolus Herbarium (BOL) at the University of Cape Town.  

Formalin preserved samples were used for morphological and anatomical examination and 
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formed the basis for morphotypes discrimination. A new morphotype was considered when 

all morpho-anatomical characters were distinct for that entity. Fresh material was used to 

examine the presence and number of corps en cerise (following Fujii et al. 2012) which were 

photographed with an Olympus D50 digital camera mounted on a Leitz Diaplan compound 

microscope or by holding a digital camera up against the eyepiece of a compound microscope 

with a solar (mirror) reflector in collection localities without access to electricity. 

Morphotypes were initially identified to species using morphological characters, which 

currently include branching pattern, order of branching, axis width and other characters as 

described in Stegenga et al. (1997), De Clerck et al. (2005b) (for known South African 

species) and Gil-Rodriguez et al. (2009). For more detail on the morpho-anatomical analysis 

and species identification refer to Chapter 3. 

 

DNA extraction, PCR and Sequencing 

Total genomic DNA was isolated after automated grinding of silica-dried samples with the 

Mixer Mill MM400TM (Retsch GmbH, Haan, Germany) using the Qiagen Plant Mini Kit 

(Qiagen, Valencia, California, USA) following the manufacturers’ instructions. The plastid 

RuBisCO Large sub-unit (rbcL) was PCR amplified in three sections of approximately 500 

bp (base pair) each using primers published by Freshwater and Rueness (1994) to increase the 

likelihood of sequence fidelity through multiple regions of overlap. The PCRs were run in 50 

μl volumes using the same mix as in Nam et al. (2000) and a Kapa Taq DNA polymerase 

(Kapa Biosystems). The PCR profile had an initial denaturation phase of four minutes at 

94°C, followed by 35 cycles of 60 seconds of denaturation at 94°C, 60 seconds of annealing 

at 40°C, 90 seconds of extension at 72°C and 10 minutes of final extension at 72°C. The 

products of the PCR were run on a 1% agarose gel stained with ethidium bromide to evaluate 
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the success of the PCR amplification and the size of bands was determined by comparison to 

the 100 bp DNA ladder (Biolabs™). 

Successfully amplified PCR products were purified and sequenced in both directions by the 

Central Analytical Facility, DNA Sequencer of Stellenbosch University (South Africa) using 

the BigDye Terminator method. 

Phylogenetic analysis 

A total of 155 new rbcL sequences were generated in this study. Only specimens with more 

than 75% of the total expected sequence length (where total sequence length equals1467 base 

pairs) were retained and gaps coded as missing data. The final DNA matrix including data 

downloaded from the GenBank included 219 rbcL sequences. Sequences for Chondria 

dasyphylla (Woodward) C Agardh, Bostrychia radicans (Montagne) Montagne and Spyridia 

cupressina Kützing together with six undescribed South African Chondria species were used 

as outgroups, the latter being South African samples sequenced in this study. Outgroups were 

chosen in a similar manner as outgroups in publications such as Abe et al. (2006), Gil-

Rodriguez et al (2009) and Rocha-Jorge et al. (2010). Bostrychia and Chondria were chosen 

because they are closely related to the Laurencia complex and within the Rhodomelaceae; 

Spyridia was chosen because it is a genus distantly related to the Laurencia complex but still 

within the order Ceramiales. 

 

All sequences were edited and assembled using the Staden Package (Staden et al. 2003). 

Multiple sequence alignments were performed using BioEdit v7.1.11 (Hall 1999) using the 

CLUSTAL W algorithm (Thompson et al. 1994) and double-checked by eye. The 

phylogenetic relationships were inferred using Bayesian statistical inference method 

performed in MrBayes version 3.1.2 (Ronquist and Huelsenbeck 2003) on the CIPRES 

Science Gateway (Millar et al. 2010).  
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The model used in the Bayesian analysis (GTR+I+G) was selected based on the maximum 

likelihood ratio tests implemented in jModeltest version 3.3 (Posada and Crandall 1998) with a 

significance level of 0.01 by the Akaike Information Criterion. Four chains of the Markov 

Chain Monte Carlo (three heated and one cold chain) were set, sampling one tree every 1000 

generations for seven million generations and starting with a random tree. Calculation of 

posterior probabilities (PP) was performed after discarding 70,000 trees sampled during the 

‘burn-in period’. A 50% majority-rule consensus tree was determined after the burn-in phase.  

The range of rbcL pair-wise divergence values within and among species was computed using 

uncorrected ‘p’ distances and their standard error using MEGA version 6.05 (Tamura et al. 

2013). Standard error was estimated by the bootstrap method. A thousand replicates were 

tested with a random starting tree. 

 

2.3 Results 

Morphotype identification 

Twenty-five morphotypes were distinguished from our collections in South Africa. Nineteen 

of these morphotypes belonged to Laurencia sensu stricto, one morphotype to Chondrophycus, 

two morphotypes to Laurenciella and three morphotypes to Palisada. No morphotypes 

belonged to the remaining genera, Yuzurua and Osmundea. In Laurencia sensu stricto nine 

morphotypes were tentatively identified to the nine of the ten species previously recorded for 

South Africa: Laurencia brongniartii J. Agardh, L. complanata, L. cf. corymbosa, L. cf. elata, 

L. flexuosa, L. glomerata, L. natalensis, L. obtusa (Hudson) Lamouroux, L. peninsularis 

Stegenga, Bolton & R.J. Anderson nom. illeg., and L. pumila (Grunow) Papenfuss. Ten 

Laurencia sensu stricto morphotypes (A-J) remained unidentified as to our knowledge, no 

current species description fitted them; among these, five were represented only by one or two 

specimens (A & G-J) (Appendix: Table A1). Laurencia cf. corymbosa was represented by a 
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complex of specimens showing wide morphological variations. Within this complex I 

identified six “sub-morphotypes” (K-P). 

 

Phylogenetic reconstruction 

The Laurencia complex formed a strongly supported group which was subdivided into six 

strongly supported subgroups representing the six genera: Chondrophycus, Laurencia sensu 

stricto, Laurenciella, Osmundea, Palisada and Yuzurua. Five of the six genera, 

Chondrophycus, Osmundea, Palisada, Yuzurua and Laurenciella formed monophyletic 

clades and with the exception of the sister relationship between Chondrophycus and 

Osmundea their phylogenetic relationships were similarly well-supported (PP≥0.95) (Figure 

2.3).  Laurencia sensu stricto formed a fully supported clade if L. flexilis was excluded, as 

suggested by Abe et al. (2006) because this species shares morpho-anatomical features with 

both Laurencia sensu stricto and Palisada. 

Out of the 158 South African sequences included in the present study (155 produced in this 

study and 3 from Genbank), 145 grouped within the Laurencia sensu stricto clade, while 13 

grouped in three other clades in the Laurencia complex as follows: eight in Laurenciella, four 

in Palisada and a single sequence in the Chondrophycus clade. Chondrophycus and 

Osmundea were resolved as sister genera with a PP (Posterior Probability) of 0.99, while 

Palisada formed the most basal group in the Laurencia complex. Each genus in this basal 

group was monophyletic (with 1.0 PP each). No South African sequences were recovered in 

the Yuzurua and Osmundea clades.  

Within the Laurencia sensu stricto clade there were 14 well-supported subclades (PP≥0.95) 

of South African specimens, nine of which corresponded to nine of the ten species identified 

above. Intraspecific sequence divergence for these nine clades was low at less than 1% each 

of the nine species (see Table 2.1), within the levels reported for other studies on the  
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Figure 2.3: The 50% majority-rule Bayesian inference tree depicting the phylogenetic relationships between species of the South African 

Laurencia complex as inferred from the plastid rbcL gene region under a GTR + I + G model of sequence evolution. Posterior probabilities (PP) 

≥ 0.90 are depicted either adjacent to the relevant node or indicated by an arrowhead. ‘A’, ‘G-J’: unidentified morphotypes; ‘K-P”: Laurencia cf. 

corymbosa morphotypes; #: Laurencia obtusa morphotype. Species with sequences from or near type locality are underlined. Country codes are 

as follows: A – Australia, B – Brazil, C – Cuba, F – France, G – Guadalupe, I – Ireland, M – Mexico, NC – New Caledonia, P – Philippines, 

RSA – South Africa, S – Spain, USA – United States of America, T – Taiwan, V – Venezuela 
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complex. The morphotype tentatively identified as Laurencia obtusa, sensu Stegenga et al. 

(1997), from South Africa appeared polyphyletic with sequences spread throughout the tree 

(identified by # symbols in Figure 2.3). None of the South African sequences identified to 

this morphotype grouped with the Genbank sequence from Ireland, the only available proxy 

to the type locality which was unspecified but presumed to be Devon or Sussex in England 

(Silva et al. 1996). 

Laurencia cf. corymbosa was represented by a well-supported group of specimens 

(submorphotypes K to P) showing wide morphological variation, but the appropriate level of 

within-species sequence divergence (less than 1%, see Table 2.1). The remaining five 

subclades (at least two sequences each) were spread throughout the tree and represented 

morphotypes B to F (Figure 2.3).  

Of the 62 rbcL sequences downloaded from Genbank representing the Laurencia complex, 

29 grouped within the Laurencia sensu stricto clade and represented 17 species distributed 

throughout the tree. The three Genbank sequences available for Laurencia flexuosa, L. 

natalensis and L. complanata from South Africa grouped with newly obtained sequences for 

specimens morpho-anatomically identified to the same species (Appendix: Table A1). With 

the exception of two sequences from New Caledonia for specimens identified to Laurencia 

cf. kuetzingii and L. cf. nidifica, which appeared as the closest relatives to morphotypes E and 

F, no other published sequences clustered significantly with the sequences newly obtained in 

the present study.  

Thirty-two of the remaining 33 Genbank sequences formed the core of the other genera in the 

complex, i.e. Chondrophycus, Laurenciella, Osmundea, Palisada and Yuzurua, while the 

single Laurencia flexilis sequence available from the Philippines resolved as sister to the 

genus Palisada.  
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Genetic Distances 

The intergeneric sequence divergence levels of the Laurencia complex ranged between 7.2% 

and 16.9% (Table 2.1). Excluding the comparison between Laurencia pumila and L. 

dehoopiensis sp. nov. which was markedly low (0.4-0.8%), the interspecific sequence 

divergence levels for each of the taxa in the Laurencia sensu stricto lineage ranged from 

1.3% to 8.4%. In Palisada it was between 3.6–9.2%, in Chondrophycus between 1.2–5.6% 

and Osmundea ranged from 2.0% to 8.9% (Table 2.1). Yuzurua and Laurenciella are 

monospecific genera and sequence divergence levels within each genus were less than 1% 

(Table 2.1). The intrageneric divergence levels obtained in this study for the Laurencia 

complex were comparable with those reported by other authors for Osmundea, Laurencia and 

Palisada (5–9%, Nam et al. 2000a; 2–9%, McIvor et al. 2002; 6–9%, Díaz-Larrea et al. 

2007; 3–10%, Cassano et al. 2009 and 1.3–9.7%, Rocha-Jorge et al. 2010). Sequence 

divergence between the Genbank sequence for Laurencia flexilis and sequences for species of 

Laurencia sensu stricto (7.9%-10.8%) was comparable to the intergeneric sequence 

divergence levels calculated in the present study. Intraspecific sequence divergence was less 

than 0.8% for Laurencia sensu stricto, Chondrophycus, Osmundea and Palisada (Table 2.1).  

 

Table 2.1: The intergeneric, interspecific and intraspecific divergence values obtained for 

rbcL sequences of the Laurencia complex in this study (*comparison between L. 

dehoopiensis sp. nov. and L. pumila excluded) 

Taxa Divergence values for rbcL sequences (%) 

Intergeneric   

Laurencia – Chondrophycus 8.4 - 9.2 

Laurencia – Palisada 9.6 - 14.5 

Laurencia – Osmundea 8.0 - 16.1 
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Laurencia – Laurenciella 7.2 - 13.3 

Laurencia – Yuzurua 10.4 - 11.6 

Chondrophycus – Palisada 10.4 - 13.3 

Chondrophycus – Yuzurua 10.8 - 11.6 

Chondrophycus – Osmundea 11.2 - 14.9 

Chondrophycus – Laurenciella 10.4 - 11.6 

Palisada - Yuzurua  10.0 - 14.1 

Palisada – Osmundea 12.9 - 16.5 

Palisada – Laurenciella 11.2 - 14.9 

Osmundea – Yuzurua 14.1 - 16.9 

Osmundea – Laurenciella 12.0 - 15.7 

Laurenciella – Yuzurua 10.8 - 11.2 

  

Interspecific  

Laurencia 1.3 - 8.4*  

Palisada 3.6 - 9.2 

Osmundea 2.0 – 8.9 

Chondrophycus 1.2 - 5.6 

Yuzurua n/a 

Laurenciella n/a 

  

Intraspecific  

Laurencia complex <0.8% 

  

 

Final species identification 
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A total of 14 out of the 25 South African morphotypes distinguished above based on morpho-

anatomical characters were confirmed by the molecular analyses. They all formed strongly 

supported clades with intraspecific and interspecific variations comparable to those reported 

previously. One of the morphotypes (L. obtusa) appeared polyphyletic. 

Nine of the morphotypes were identified to species previously recorded for South Africa: 

Laurencia brongniartii, L. complanata, L. cf. corymbosa, L. cf. elata, L. flexuosa, L. 

glomerata, L. natalensis, L. peninsularis nom. illeg. and L. pumila, while five represented 

unknown species which are considered to be new. They are described further in Chapter 3 as 

Laurencia dehoopiensis sp. nov., L. dichotoma sp. nov., L .digitata sp. nov., L. multiclavata 

sp. nov. and L. sodwaniensis sp. nov.  Despite the considerable variation in morphology 

observed between submorphotypes K-P, Laurencia cf. corymbosa is included in the above 

list because it formed a well-supported group in the phylogenetic analysis and showed low 

levels of sequence divergence (less than 1% between morphotypes). Molecular and morpho-

anatomical data for five morphotypes A and G to J were insufficient (only one specimen 

and/or one sequence each) to confirm them as distinct new lineages and more collections are 

needed to further assess their status. The specimens identified as Laurencia obtusa (see # in 

Figure 2.3) appeared polyphyletic in phylogenetic analyses; one specimen was representative 

of an undescribed species in the genus Chondria, another clustered with other sequences 

identified to Laurencia cf. corymbosa and the last specimen clustered with other sequences of 

the newly described species L. dehoopiensis sp. nov.  

Because Laurencia peninsularis Stegenga, Bolton and Anderson nom. illeg. described from 

the Cape Peninsula (Stegenga et al. 1997) is a latter homonym of Laurencia peninsularis 

Taylor (1945) we propose the new name Laurencia stegengae (Stegenga, Bolton and 

Anderson) Francis, Bolton, Anderson and Mattio nom. nov. (see Chapter 3). 
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2.4 Discussion 

Diversity of the Laurencia complex in South Africa 

The revised list resulting from this study records a total of 20 species for the Laurencia 

complex in South Africa. Nine of the ten previous records (Stegenga et al. 1997, De Clerck et 

al. 2005) were confirmed, five new species are proposed (Chapter 3) and six represent new 

records for South Africa. Our results further indicate that this diversity is underestimated: five 

additional morphotypes were distinguished, but more morphological and molecular data is 

required before they can be confirmed as distinct and new entities.   

Besides Laurencia cf. elata, which needs to be confirmed by the analysis of additional 

specimens (ideally from the type locality and the type specimen), L. obtusa represents the 

only previous record not confirmed in this study. The morphotype initially tentatively 

identified as Laurencia obtusa was revealed to be polyphyletic and to include at least three 

entitities: a representative of a new putative species of Laurencia sensu stricto, a specimen 

later identified as part of the Laurencia corymbosa species complex, another representative of 

a newly described species L. dehoopiensis and an entity belonging to the genus Chondria 

(Figure 2.3). These results highlight the lack of clear species boundaries delineating 

Laurencia obtusa. While Stegenga et al. (1997) provided a brief description for this species 

on the South African west coast; the authors noted its dubious taxonomic status worldwide 

and stated that variation amongst descriptions of this species is so large that it is unlikely to 

represent a single species: this has been borne out by the current study. For South African 

“Laurencia obtusa” there was no conceptual framework to distinguish it from other 

Laurencia taxa beyond the notion of ‘any relatively small Laurencia taxon that is sparsely 

branched.’ The type species of Laurencia obtusa is unspecified, but is presumed to be from 

Devon or Sussex, England (Silva et al. 1996). The closest proxy to this geographic location is 

the Genbank-sourced Laurencia obtusa sequence from Ireland (Figure 2.3). None of the 
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South African taxa identified during the present study were closely related to this taxon in 

Bayesian analyses, suggesting that L. obtusa is not present in South Africa.  

One of the most widely distributed Laurencia species in South Africa is Laurencia flexuosa. 

It is easily recognized by the characteristic flexuous main axis and regularly-alternate 

branching pattern.  A second similar species with an Australia type, Laurencia elata, is 

significantly alike L. flexuosa morphologically. It was listed by Barton (1893). However, 

Womersley (2003) mentioned that records of this species for Indian Ocean localities other 

than Australia need verification. Saito and Womersley (1974) noted that the taxon L. elata f. 

flexuosa from South Africa, which they attribute to Yamada (1931, p. 242), ‘appears closely 

related to L. elata, but requires a detailed study to establish its relationships’. Laurencia elata 

was not cited again in the South African literature and its presence in South Africa has 

remained questionable. The diagnosis of L. elata f. flexuosa by Yamada (1931) could not be 

accessed during the present study and is listed neither in Algaebase™ nor in the Index 

Nominum Algarum. We believe the validity of L. elata f. flexuosa is doubtful and we do not 

recognise it here. Our analysis demonstrated that two South African morphotypes clearly 

corresponding morphologically to the diagnoses of both L. flexuosa and L. elata appeared in 

different and well supported clades (Figure 2.3) with a between-species pairwise sequence 

divergence level (2.7-3.1%) equivalent to that recognised in previously published works for 

Laurencia (Nam et al. 2000a, McIvor et al. 2002, Diaz-Larrea et al. 2007, Cassano et al. 

2009, Rocha-Jorge et al. 2010). During the present study, the identification of South African 

specimens as L. flexuosa was confirmed morphologically by direct comparison to the type 

specimen; however the sequences produced may not be from the type locality (Cape of Good 

Hope, South Africa) as, historically, this locality encompasses the entire Cape Colony and not 

the Cape of Good Hope as it is known in present times. Identification to Laurencia cf. elata 

could only rely on comparison with specimens from Western Australia identified by Harvey 
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(TCD0015185,6). We noted that South-African specimens of Laurencia cf. elata can easily 

be mistaken for L. flexuosa and a clearer description of these species can be found in Chapter 

3. A direct comparison with the type specimen of Laurencia elata together with a sequence 

from an Australian specimen is necessary to confidently confirm the identification of the 

South African L. cf. elata.  

 

Laurencia corymbosa was described by J. Agardh (1852) from a specimen collected at the 

Cape of Good Hope in South Africa. The exact location of J. Agardh’s type specimen for this 

species is difficult to determine because the Cape of Good Hope at the time of description 

meant the Cape Colony and not the region of the Cape peninsula now referred to as the Cape 

of Good Hope. With this in mind from the collections, six “submorphotypes” (K-P) initially 

distinguished corresponding to the general morphology of the species as described by J. 

Agardh (1852). The eight specimens shared anatomical traits such as the number of corps en 

cerise and the shape of the epidermal cell and formed a well-supported clade with sequence 

divergence below 1%. This is within the range for within-species variation reported in other 

studies of the Laurencia complex as calculated during the present study (Table 2.1) and 

previously published, as discussed above.  These results indicate that despite the wide 

morphological range initially observed, L. cf. corymbosa represents a well-supported species 

in South Africa.    
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CHAPTER 3: 

DESCRIPTIONS OF AND KEY TO SOUTH AFRICAN SPECIES IN THE 

LAURENCIA COMPLEX, WITH THE ADDITION OF FIVE NEW SPECIES  

 

3.1 Introduction 

The genus Laurencia was described by J.V. Lamouroux in 1813 and included eight species 

(L. pinnatifida, L. obtusa, L. gelatinosa, L. cyanosperma, L. lutea, L. caespitosa, L. intricata 

and L. versicolor) of which Schmitz (1889) designated L. obtusa as the type. The current 

understanding of Laurencia is a complex of six genera known as the Laurencia complex 

(Garbary & Harper 1998, Nam 1994 and 2007, Martin-Lescanne et al. 2010 and Cassano et 

al. 2012) of which Laurencia sensu stricto represents the largest genus with 130 currently 

accepted species (Guiry and Guiry 2014). The remaining five genera in the complex, 

arranged in descending order of number of species, are Palisada (22 species), Osmundea (18 

species), Chondrophycus (17 species), Laurenciella (one species) and Yuzurua (one species).  

 

Laurencia sensu stricto is anatomically distinguished from other genera in the complex (with 

the exception of Laurenciella) by having four pericentral cells and cellular inclusions termed 

corps en cerise as well as other traits described by several authors, most notably Garbary and 

Harper (1998), Nam (1999, 2006), and Nam and Choi (2001). Laurenciella shares many traits 

with Laurencia sensu stricto and is distinguishable from the latter primarily by molecular 

data and the presence of corps en cerise in all cells of the thallus. Since its description, only a 

single species, distributed in the tropical and warm temperate Atlantic, has been formally 

assigned to it: Laurenciella marilzae (Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano et M.T. 

Fujii) Gil-Rodriguez, Senties, Diaz-Larrea, Cassano et M.T. Fujii, although two more 

putative species were distinguished based on molecular data which did not present with corps 
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en cerise throughout their thalli (Cassano et al. 2012). Chondrophycus is chiefly distributed 

in the tropical Indo-West Pacific and is distinguished from Laurencia sensu stricto by the 

presence of two pericentral cells and the absence of corps en cerise and secondary-pit 

connections between outermost cortical cells. The genus Osmundea has a disjunct 

distribution and is recorded from Pacific North America, Brazil, Atlantic Europe, the 

Mediterranean Sea and India (Nam et al. 2000a, McIvor et al. 2002, and Furnari et al. 2004) 

and probably from Australia (Nam 2006). Osmundea shares the general anatomical features 

of Chondrophycus but differs from it in male reproductive anatomy. Chondrophycus has 

trichoblast-type spermatangial development (like that of Laurencia sensu stricto) while 

Osmundea has filament-type spermatangial development. Palisada is characterised by 

palisade-like outermost cortical cells and also has trichoblast-type spermatangial 

development. Tetrasporangial development in Osmundea only occurs from particular cortical 

cells as opposed to any of the pericentral cells in all other genera of the Laurencia complex. 

The two taxa (one species and one variety) attributed to Yuzurua are found in tropical regions 

of all oceans. Yuzurua shares several anatomical traits with Palisada, but it lacks the 

characteristic palisade-like outermost cortical cells of Palisada and has a procarp that bears 

five pericentral cells as opposed to the four found in Palisada. Interestingly, Yuzurua is the 

only other genus in the complex to exhibit secondary pit-connections as seen in Laurencia 

sensu stricto. 

 

Taxonomic accounts, including species descriptions, are available for Laurencia sensu stricto 

species in a number of world regions, including southern Australia (Saito &Womersley 1974, 

Womersley 2003), Japan (Yamada 1931, Saito 1967), Hawaii & the Philippines (Saito 1969), 

Tanzania (Jaasund 1976), Britain (Maggs and Hommersand 1993) and parts of South Africa 

(Stegenga et al. 1997 and De Clerck et al. 2005). 
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Many of the diagnostic characteristics for the complex were developed at the genus level in a 

series of papers by Nam & Saito (1990, 1991a, b), Nam et al. (1994), Garbary and Harper 

(1998), Nam (1999, 2006), Martin-Lescanne et al. (2010) and Cassano et al. (2012). These 

papers focussed strongly on reproductive and vegetative anatomy as a means of 

distinguishing between the genera, and used characters that include the position of the first 

pericentral cell relative to the trichoblast, absence/presence of fertility of the second 

pericentral cells and number of sterile cells in the tetrasporangial axis, spermatangial 

branches produced from one or two laters on the suprabasal cell of trichoblast or not, 

presence/absence of additional tetrasporangium-bearing pericentral cells, the position of 

pericentral cells bearing tetrasporangia, the number of pericentral cells of the procarp-bearing 

segment and trichoblasts versus filament-type spermatangial development, the shape of the 

outermost cortical cells, the number of pericentral cells and the presence/absence of corps en 

cerise in the outermost cortical cells and/or the whole thallus.  

The earliest record of Laurencia sensu stricto in South Africa was of L. complanata (Suhr) 

Kützing (as Chondria complanata Suhr) by Suhr in Krauss (1846) based on material from 

Durban [Natal Bay], KwaZulu-Natal. Kützing (1849) added two species to the list: Laurencia 

flexuosa and Laurencia glomerata, with type localities around the Cape Peninsula (near Cape 

Town).  Thereafter, seven more species were attributed to the genus in South Africa, namely 

Laurencia corymbosa J. Agardh, L. elata (C. Agardh) Kützing, L. natalensis Kylin, L. pumila 

(Grunow) Papenfuss, L. obtusa (Hudson) Lamouroux, L. peninsularis Stegenga, Bolton et 

Anderson nom. illeg. and L. brongniartii J. Agardh (Seagrief 1984, Silva et al. 1996, 

Stegenga et al. 1997 and De Clerck et al. 2005) (See Table 1.2; pg. 24), making up a total of 

10 species of which three are South African or southern African endemics (Guiry & Guiry 

2014). The most recent accounts of the seaweed flora in South Africa (Stegenga et al. 1997, 

De Clerck et al. 2005), covering half of the South African coast, however did not list 
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Laurencia elata nor L. corymbosa. As mentioned in Chapter 1, the epithets Laurencia 

corymbosa and L. elata and the remaining eight species were only been briefly described by 

the aforementioned authors.  

Results of the molecular studies presented in Chapter 2 suggested that the diversity of the 

Laurencia complex in South Africa had previously been underestimated and that at least five 

more species should be added to the list. Morpho-anatomical observations confirmed nine of 

the 10 Laurencia sensu stricto species known for South Africa in the literature while five did 

not correspond to any described species known to us and five represented new records for 

SA, including species belonging to other genera of the Laurencia complex. Results further 

highlighted the presence of six possible additional species which remained to be confirmed. 

The primary aim of the present chapter was to provide a detailed taxonomic account of 

species comprising South African Laurencia sensu stricto including morphological 

descriptions, illustrations and a dichotomous key for facilitated identification. A secondary 

aim was to provide provisional descriptions for the remaining unidentified morphotypes and 

new records of the other genera of the Laurencia complex as a baseline for future studies. 

3.2 Material and Methods 

Taxon sampling; sample preservation & preparation 

A total of  211 specimens were collected from around the coast of South Africa (see Chapter 

2 for details of sampling locations) in the period 2008 to 2013 and 155 of them were pressed 

as vouchers on herbarium sheets and  housed in the Bolus Herbarium (University of Cape 

Town) (Appendix: Table A1) . When possible a small subsample of fresh material, 

approximately 1cm in length, was ‘squashed’ between two glass slides for the observation of 

corps en cerise. A drop of water was added to the specimen and a cover slip was put on 

before mounting on the glass slide. If corps en cerise (a French term meaning ‘cherry body’) 

were present they were counted and photographed with an Olympus D50 digital camera 
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mounted on a Leitz Diaplan compound microscope, or sometimes (in remote localities with 

no electricity) with a hand-held digital camera through the eyepiece of a small portable 

compound microscope. 

Subsamples of the specimens were preserved in 4% formaldehyde/seawater for anatomical 

analyses. Liquid-preserved subsamples were sectioned by hand or with a freezing microtome. 

Samples were embedded in a clear glue solution prior to freezing microtome section. Sections 

were generally ca. 5 μm thick and mounted on glass slides in a 40% Karo solution. For some 

specimens staining with 1% aniline blue was necessary to aid clearer visualization of 

vegetative structures. Photographs were taken with an Olympus D50 digital camera mounted 

on a Leitz Diaplan compound microscope or Leica Wild M10 stereo microscope.  

In addition to specimens collected over the course of this project specimens from the Bolus 

Herbarium, University of Cape Town were examined where available to produce the species 

descriptions for South African Laurencia sensu stricto species. Usually five or more 

specimens were examined for morphological and anatomical description; however for some 

of the new species discovered specimens were limited. 

Morpho-anatomical characters analysis 

The features used to describe species were a combination of those currently used by 

taxonomists who have studied the Laurencia complex or genera within the Laurencia 

complex: Saito and Womersley (1974), Nam and Sohn (1994), Nam et al. (1994) Nam and 

Saito (1995), Garbary and Harper (1998), Womersley (2003) and Gil-Rodriguez et al. (2009). 

The morphological features include branching pattern, order of branching, length intervals 

between branches on the axis, axis width, extent of thallus compression, branch basal 

constriction, and number of corps en cerise in the outermost cortical cells. 
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3.3 Results & Discussion 

As a result of the present study, fourteen Laurencia sensu stricto species were described and 

illustrated below, including five new to science together with a dichotomous key to assist in 

identification. Further notes and morpho-anatomical details, excluding sexual reproductive 

structures as there was no fertile material in the study collection, are provided for the 

remaining unidentified morphotypes as well as for the rest of the Laurencia complex species, 

all representing new records for SA. The revised list of species for the South African 

Laurencia complex is as follows:  

South African Laurencia sensu stricto species and new records of other members of the 

Laurencia complex based on evidence presented in this dissertation. 

Division: Rhodophyta 

Subdivision: Eurhodophytina 

Class: Florideophyceae 

Subclass: Rhodymeniophycidae 

Order: Ceramiales 

Family: Rhodomelaceae  

Tribe: Laurencieae Schmitz (1889: 447)  

Genus: Laurencia Lamouroux 1813: 130 (=Laurencia sensu stricto) 

  Laurencia brongniartii J. Agardh 1841: 20-21 

  Laurencia complanata (Suhr) Kützing 1849: 857 

  Laurencia cf. corymbosa J. Agardh 1852: 747 

  Laurencia cf. elata (C. Agardh) Hooker & Harvey 1847:401 

  Laurencia flexuosa Kützing 1849:856 

  Laurencia glomerata Kützing 1849:857 
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  Laurencia natalensis Kylin 1938:24 

Laurencia stegengae Francis, Bolton, Mattio & Anderson submitted 

  Laurencia pumila (Grunow) Papenfuss 1943: 91-92  

Laurencia dehoopiensis Francis, Bolton, Mattio & Anderson submitted 

Laurencia dichotoma Francis, Bolton, Mattio & Anderson submitted 

Laurencia digitata Francis, Bolton, Mattio & Anderson submitted 

Laurencia multiclavata Francis, Bolton, Mattio & Anderson submitted 

Laurencia sodwaniensis Francis, Bolton, Mattio & Anderson submitted 

 Laurenciella Cassano et al. 2012: 349-357 

Laurenciella marilzae (Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano et M.T. 

Fujii) Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano et M.T. Fujii 

Palisada Nam 2007: 53 

  Palisada sp. 1  

  Palisada sp. 2 

  Palisada cf. corallopsis (Montagne) Sentíes, M.T. Fujii et Díaz-Larrea 

 Chondrophycus (Tokida et Saito) Garbary et Harper 1998: 194 

  Chondrophycus sp. 1 

 

Morphological descriptions & illustrations of South African Laurencia sensu stricto 

species in South Africa 

 
Laurencia brongniartii J. Agardh 1841: 20-21 

Synonyms:  

Laurencia concinna Montagne 1842a: 6 

Laurencia grevilleana Harvey 1855b: 545  

Misapplied name: 
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Laurencia distichophylla – Harvey 1855b:545 (according to Saito and Womersley 1974) 

Type Locality: Martinique, West Indies (Agardh 1841: 20-21) 

Etymology: ‘brongniartii’ named for the French naturalist, Adolphe Brongniart 

Habitat: Marine epilithic species present on subtidal reefs from a few to at least 37 metres 

depth (De Clerck et al. 2005) 

Specimens examined: 

KwaZulu-Natal: Saxon Reef, north of Bhanga Nek (Coppejans et al. 14.viii.1999: BOL 

21990); Aliwal Reef, 50km south of Durban (Coppejans et al. 4.viii.1999: BOL 21989); 

Aliwal Shoal (Anderson 04.viii.1999: BOL21988), 2 Mile Reef, Sodwana Bay (this study, 

22.ii.2011: D978)  

Description: 

External morphology: 

(Figure 3.1A): Plants dark red, fleshy, between (2.7-) 3 and 5 cm high attached by discoid 

holdfast, with one to several percurrent axes slightly bent toward the substrate, complanately 

and regularly pinnately branched up to 2 (-4) orders inserted every 0.2-1 mm; axes strongly 

compressed, (1.5-) 2 to 3 mm wide and 0.5 – 1 mm thick, decreasing to short ultimate 

branchlets 0.5-0.7 mm wide near the base , with truncated apices; branches on the adaxial 

sides much more developed than those on the abaxial sides of the axes; branch basal 

constriction absent. First order branches inserted at regular intervals (2-5 mm), branch length 

increasing in length towards the holdfast to 2-10 mm. Secondary and higher order branches 

much shorter. 

Internal structure:  

In cross-section axial and pericentral cells not distinguishable. Medullary cells often with 

lenticular thickenings; cortical cells with secondary pit connections in the longitudinal 
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direction; medullary and innermost cortical cells larger than outermost cortical cells (Figure 

3.1B); outermost cortical cells with 2 corps en cerise (Figure 3.1C).    

Distribution:  

South Africa: Protea Banks southern KwaZulu-Natal to Saxon Reef near the Mozambican 

border (De Clerck et al. 2005); Australia, Indonesia (Flores), Madagascar, & Sri Lanka (Silva 

et al. 1996) 

Notes 

Laurencia brongniartii was placed in synonymy with L. concinna Montagne by Seagrief 

(1984) based on a record of Barton (1893). However, Papenfuss (1943a) considered 

Laurencia concinna to be representative of the morphologically much larger L. complanata. 

The description of Laurencia brongniartii from Australia by Saito and Womersley (1974) 

suggests specimens significantly larger than the South African and Japanese (or Pacific) 

forms and is more in line with the description of L. complanata of which it could represent a 

misidentification.  

 

Laurencia complanata (Suhr) Kützing 1849: 857 

Basionym: Chondria complanata Suhr 1846: 211 

Misapplied name: Laurencia concinna – Barton 1893:174 (according to Papenfuss 1943a) 

Type Locality: Durban ‘Natal Bay’, KwaZulu-Natal, South Africa (Suhr in Krauss 1846: 

211) 

Etymology: Complanata: Adjective (Latin), meaning flattened out, usually in one plane 

(Stearn 1973) 

Habitat: epilithic species present in intertidal pools and the shallow subtidal 

Specimens examined: 
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Eastern Cape: Mzamba (Stegenga, 21.viii.2005: BOL 9435); Hluleka (Stegenga, 14.ix.1983: 

BOL 21405); Mkambati (Stegenga, 08.x.2002: BOL 21994).  

KwaZulu-Natal: Ramsgate (Simons, 23.ix.1960: BOL 21999); Palm Beach (De Clerck 

21.xii.1999: BOL 21992), Salt Rock (this study, 09.xii.2010: D859), Port Edward (this study, 

28.ix.2011: D1053) 

Description: 

External morphology: 

(Figure 3.2A) Plants  dark  red, between (5-) 6 and 20 (-22) cm high attached by discoid 

holdfast, with one to several axes, complanately and regularly pinnately branched up to 3 (-4) 

orders; axes strongly compressed, (1-)2 to 3.5 mm wide and 0.5 – 1mm thick, decreasing to 

short ultimate branchlets 0.5-2.2 (-3) mm wide near the base, with truncated apices; branches 

on the adaxial and abaxial sides of the axes equally developed; branch basal constriction 

absent. First order branches inserted at regular intervals (2-5mm), increasing in branch length 

towards the holdfast between (1-) 2 and 22 (-35mm). Secondary and higher order branches 

much shorter. 

Internal structure: 

In cross-section axial and pericentral cells not distinguishable: Medullary cells sometimes 

with lenticular thickenings; cortical cells isodiametric to higher than wide in cross-section 40-

50μm and 25-40μm with secondary pit connection in the longitudinal direction (Figure 3.2B); 

medullary and innermost cortical cells larger than outermost cells (Figure 3.2C); outermost 

cortical cells 15-30μm across, visibly darker than cortical and medullary cells, polygon-

shaped and contain 1 to 2 corps en cerise (Figure 3.2D).   

 
Distribution:  

South Africa: From Hluleka, Eastern Cape Province (Bolton & Stegenga 1987) northward, to 

Inhaca Is., southern Mozambique (Isaac 1957); southern Madagascar (see next Chapter) 
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Notes 

Laurencia complanata is distinguished from the other pinnate South African species L. 

brongniartii by its relatively large size and largely lower-intertidal ecological niche in the 

warm temperate to tropical waters of South Africa. Laurencia brongniartii is similar to L. 

complanata in appearance and number of corps en cerise (generally two), but has only been 

recorded subtidally on shallow to deep reef systems in tropical waters in northern KwaZulu-

Natal (De Clerck et al. 2005). A polytomy between between Laurencia complanata and L. 

brongniartii was recovered in the phylogenetic analyses in Chapter 2 (PP=0.99) showing 

poor resolution of the relationship between these two species. However, there is an 8% 

genetic distance between the two species in the rbcL gene region and this, together with the 

circular shape of the outermost cortical cells at surface view (versus distinctively polygonal 

in L. brongniartii) supports recognition of L. complanata as a distinct species. 

 

Laurencia cf. corymbosa J. Agardh (1852: 747) 

Misapplied name (fide Papenfuss notes in Silva et al. 1996): 

Laurencia virgata – Delf & Mitchell (1921: 211) 

Type Locality: Cape of Good Hope, South Africa (J. Agardh 1852: 747) 

Etymology: Corymbosa: Adjective (Latin), meaning corymbose (Stearn 1973)  

Habitat: Marine epilithic species present in the intertidal and subtidal (this study) 

Specimens examined: 

Western Cape: Koppie Alleen, De Hoop Marine Protected Area (this study, 19.xii.2008: 

D164; 17.ii.2011: D903); East of Koppie Alleen, De Hoop Marine Protected Area (this study, 

18.ii.2011: D926) 
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Eastern Cape: Double Mouth (this study, 14.vii.2010: D768); Port Elizabeth (this study, 

14.xii.2012: D1181, D1188); Port Alfred (this study, 07.vii.2008: D31); Three Sister (this 

study, 27.ii.2013: D1257) 

Description: 

External morphology: 

Plants maroon-red to sometimes dark purple when fresh, fleshy, between (5.5) -6 and 14 (-

15.4) cm high (Figure 3.3A), attached to substrata by discoid holdfast, generally percurrent 

axes irregularly alternately branched up to 2 (-4) orders, higher order laterals suboppositely 

branched; axes terete, up to 1.5 mm wide,  ultimate branchlets subverticillate with truncated 

apices; branch basal constriction absent. First order branches inserted at irregular intervals, 

branch length increasing in length towards the holdfast to 2-14 mm for some. Secondary and 

higher order branches much shorter and typically corymbose when fertile (Figure 3.3B). 

Internal structure :  

In cross-section axial and pericentral cells not distinguishable. Outermost cortical cells dome 

shaped 15-47 µm x 9-35 with one corps en cerise per cell (Figure 3.3D). Cortical cells with 

secondary pit connections in the longitudinal direction; medullary and innermost cortical 

cells larger than outermost cortical cells with spaces evident between the cells (Figure 3.3C);  

Distribution:  

South Africa: De Hoop to Port Alfred (this study); Seychelles (Kalugina-Gutnik et al. 1992); 

Vietnam (Pham-Hoàng 1969); Fiji (N'Yeurt et al. 1996, South & Skelton 2003). 

Notes 

Laurencia cf. corymbosa is represented by eight specimens that exhibit wide morphological 

variation and habitat (Figure A1). Shared traits include the irregularly alternate (sometimes 

polystichous) branching pattern and single corps en cerise in the dome-shaped outermost 

cortical cell. At least three of these specimens [Laurencia sp. (D164, D903, D926)] were 
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collected from around the Cape Colony, the broad type locality of the Laurencia corymbosa. 

Morphological comparisons to the original material of Laurencia corymbosa (BM000774817 

& BM000774816, Natural History Museum (BM)) revealed similarities in branching pattern 

and axis width. The type specimens also exhibit the characteristic corymbose appearance of 

the secondary laterals for which the species was named. However, in South African 

specimens the corymbose nature of the branches seems to be evident only when the 

specimens are fertile. When non-fertile, specimens tend to remain sparsely branched and are 

easily mistaken for Laurencia obtusa. While the morphology of the specimens varies 

significantly, their DNA sequence divergence levels are low (< 1%) and there is full 

molecular support for this clade (Chapter 2: Figure 2). It is proposed that the specimens be 

referred to as Laurencia cf. corymbosa pending further investigation.  

 

Laurencia dehoopiensis Francis, Bolton, Mattio et Anderson (Francis et al. submitted)   

Holotype: BOL150571, East of Koppie Alleen, De Hoop Marine Protected Area, Western 

Cape, South Africa (34°26’03”S 20°32’52” E)  

Etymology: “dehoopiensis” - after the type locality, De Hoop Marine Protected Area, 

Western Cape, South Africa,  

Habitat: subtidal, epiphytic on the brown alga Phloiocaulon suhrii (J.Agardh) P.C. Silva 

Specimens examined: 

Western Cape: Koppie Alleen, De Hoop Marine Protected Area (this study, 18.xiii.2008: 

D139; 19.xiii.2008: D154) 

Eastern Cape: Saltvlei, Port Alfred (this study, 25.ii.2013: D1213); Three Sister (this study, 

27.ii.2013: D1253) 

Description:  

External morphology:  
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(Figure 3.4A): Plants epiphytic, up to 9 (-14) cm high, reddish, attached by discoid holdfast, 

with several percurrent axes; axes terete, up to 1.5 mm in diameter; branching polystichous 

and up to 3 orders, second order lateral arrangement can vary from pinnate to opposite to 

alternate (Figure 3.4B), length of lateral increases in a proximal direction away from apices; 

ultimate laterals very short, wart-like towards apices and branching pattern is either alternate 

or subverticillate; ultimate branchlets longer than wide, apices sunken, branch basal 

constriction absent. 

Internal structure: 

Axial and pericentral cells visible in cross section(Figure 3.4C) ; Innermost cortical and 

medullary cells at least two times larger than outermost cortical cells; Outermost cortical cells 

longer than they are wide, approximately 18-25 µm in width (Figure 3.4D) and having a 

single corps en cerise in each outermost cortical cell (Figure 3.4E).  

 

Distribution: So far found only on the south coast of South Africa at Koppie Alleen, De Hoop 

Nature Research and the Port Alfred.  

Notes 

Laurencia dehoopiensis forms a sister relationships in the rbcL analysis of the South African 

Laurencia complex alongside L. pumila. The latter species is found in the intertidal; however, 

Laurencia dehoopiensis occupies a different ecological niche and is found in the subtidal. 

Laurencia dehoopiensis is much larger than L. pumila and thus far found only on the south 

coast of South Africa. The proposal for the new species Laurencia dehoopiensis sp. nov. is 

further substantiated by the ecological niche this species occupies as an epiphyte on the 

brown seaweed Phloiocaulon suhrii (J.Agardh) P.C. Silva in Silva et al. (1996) in the shallow 

subtidal warm temperate waters at De Hoop, on the South African south coast, while L. 

pumila and L. digita are found in warmer waters. 
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Laurencia dichotoma Francis, Bolton, Mattio et Anderson (Francis et al. submitted)  

Holotype: BOL 150568 South Africa, KwaZulu-Natal, Sodwana Bay, Jesser Point 

(27°31’59”S, 32°40’59”E), intertidal. Date collected 22.iii.2010. 

Etymology: Adjective (Latin) – split in half. Named for the distinctive equal splitting of 

second order branches in this species. 

Habitat: mid to low intertidal in northern KwaZulu-Natal. 

Specimens examined:  

KwaZulu-Natal: Jesser Point, Sodwana Bay (Francis et al. submitted, 23.iii.2010: 

BOL57729); Bhanga Rock, Bhanga Nek (Bolton, Mattio & Anderson, 4.x.2013: D1583) 

Description:  

External morphology: 

(Figure 3.5A): Plants caespitose, small (up to 4 cm tall), light brown,  cartilaginous, with 

several percurrent axes; main axes terete, up to 0.7 mm in diameter, with dichotomous 

branching evident in second order branches (Figure 3.5B). Thallus sparsely branched, 

ultimate branches blunt with sunken apices, branch basal constriction absent;  

Internal structure:  

Axial and pericentral cells distinguishable in cross section (Figure 3.5E); Innermost cortical 

and medullary cells two to three times larger than outermost cortical cells; outermost cortical 

cells  as long as broad, approximately 15-25 µm in width, darker (Figure 3.5C) and 

containing a single corps en cerise in both the outermost cortical and trichoblast cells (Figure 

3.5D).  

 

Distribution: collected from Sodwana Bay and Bhanga Nek in northern Kwazulu-Natal. 

Notes: 
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Laurencia dichotoma is the only cartilaginous species in the South African Laurencia flora 

and appears distinct molecularly from its nearest relative, an undescribed Laurencia species, 

by 4.7-5%. The species exhibits distinctive dichotomous branching at the tips, unlike any 

other South African species in the genus, is a distinctly yellow-brown colour and is generally 

sparsely branched.  

 

Laurencia digitata Francis, Bolton, Mattio et Anderson, sp. nov. (Francis et al. submitted)  

Holotype: BOL150572 South Africa, KwaZulu-Natal, Cape Vidal. Date collected: 

20.iii.2011. 

Etymology: Adjective (Latin) – having fingers. This species has finger-like laterals below 

apices. 

Habitat: mid to low intertidal in exposed situations such as the edges of rocky overhangs  

Specimens examined:  

Western Cape: Nature’s Valley (Francis et al. submitted, 08.iv.2008: BOL57730); East of 

Koppie Alleen, De Hoop Marine Protected Area (this study, 18.ii.2011: D930, D932); 

Swartvlei near Sedgefield (this study, 15.xii.2012: D1195) 

Eastern Cape: Storms River, Tsitsikamma National Park (this study, 13.xii.2012: D1174) 

KwaZulu-Natal: Cape Vidal (this study, 25.ix.2011: D1027); Bhanga Rock, Bhanga Nek 

(this study, Bolton, Mattio & Anderson 07.x.2013: D1669) 

Description:  

External morphology: 

(Figure 3.6A): Plants epilithic, bushy yet small (up to 4 cm in height), turf-like in appearance, 

thallus reddish brown, several percurrent axes attached by small tangled, rhizoidal holdfast; 2 

sometimes 3 orders of branching, branching throughout thallus generally alternate but some 

branches appear subopposite and/or subverticillate at the tips (Figure 3.6B), finger-like 
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laterals below apices; axes terete, up to 0.5 mm wide with truncated apices; ultimate branches 

with sunken apices, branch basal constriction absent.  

Internal structure:  

Axial and pericentral cells distinguishable in cross section (Figure 3.6 E); Innermost cortical 

and medullary cells at least two times larger than outermost cortical cells; outermost cortical 

cells approximately 18-22 µm across, darker (because of pigmentation) and containing a 

single corps en cerise  per cell (Figure 3.6 C and D); intercellular spaces not evident in 

cortex.  

 

Distribution: South African endemic: South coast (from De Hoop) extending eastward into 

northern KwaZulu-Natal (as far as Bhanga Nek for the present study). 

Notes: 

At first glance this species appears similar to Laurencia pumila in both morphology, presence 

of a single corps en cerise per outermost cortical cell and habitat, however Laurencia digitata 

is entirely reddish brown, branched throughout the thallus and the laterals are longer (4-9 

mm) than those of L. pumila (2-6 mm). Molecular analyses places this species in a sister-

relationship with L. cf. kuetzingii (Kuetzing) Millar (with a genetic difference of 2.1-2.9%), a 

species collected from New Caledonia.  

 

Laurencia cf. elata (C. Agardh) Hooker & Harvey 1847:401 

Basionym: Chondria pinnatifida var. elata C. Agardh 1822: 340 

Homotypic synonyms: 

Chondria pinnatifida var. elata C. Agardh 1822: 340; 1824:202 

Laurencia pinnatifida var. elata (C. Agardh) Sonder 1846:177 
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Heterotypic Synonyms: 

Laurencia elata var. luxurians Harvey 1863 

Laurencia luxurians (Harvey) J. Agardh 1876:659 

Laurencia pinnatifida sensu Sonder 1880:30 

Laurencia elata f. luxurians (Harvey) Yamada 1931 

Type Locality: King Island, Bass Strait, Australia (C. Agardh 1822:340) 

Etymology: Adjective (Latin), tall 

Specimens examined 

Western Cape: Grootbank, near Keurboomstrand (this study, 04.x.2008: D55) 

Eastern Cape: Double Mouth, (this study, 14.vii.2010: D767); Cape St Francis, (this study, 

29.iii.2010: D686); Kowie, (Becker 26.xi.1895, BOL21453); Port Alfred, Piano Rocks, 

(Stegenga 21.x.1987; BOL21886); Port Alfred, Piano Rocks, (Stegenga 03.xi.1987; 

BOL21887); Port Alfred, Shark Bay, (Stegenga 03.xi.1987; BOL21885); Saltvlei, Port Alfred 

(this study, 25.ii.2013: D1214, D1215) 

Habitat: Epilithic species occurring from just below low tide level.  
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Description: 

External morphology: 

(Figure 3.7A): Plants medium to dark red, between (9-)10 and 29 (-40) cm high with one to 

several erect axes, attached by stoloniferous holdfast. Axes compressed, (1-2) (-3) mm wide 

and 0.5 – 1 mm thick, complanate and alternately branched up to 2-3 (-4) orders, distance 

between first order branches on the same side of main axis highly variable; ultimate 

branchlets wider (1-2.5 (-4) mm) than they are long (1-1.2 (-2) mm), with truncated apices; 

branches slightly constricted at the base. 

Internal structure: 

In cross-section axial and pericentral cells not distinguishable. Innermost cortical cells more 

extensive laterally with secondary pit connection in the longitudinal direction; medullary and 

innermost cortical cells larger than outermost cortical (Figure 3.7B); outermost cortical cells 

10-60 μm across, visibly darker than innermost cortical and medullary cells, contain 5 or 6 

small corps en cerise (Figure 3.7C). 

 

Distribution:  

South Africa: Grootbank to Port Alfred (South Coast) (this study); New Zealand and 

Australia (Saito and Womersley 1974) 

Notes 

It was suggested by Saito and Womersley (1974) and Womersley (2003) that the inclusion of 

South Africa (and other Indian Ocean localities) in the distribution of Laurencia elata would 

require further investigation. Limited knowledge pertaining to the diagnostic features of 

Laurencia elata as well as the high degree of morphological similarity and partial overlap in 

habitat between L. flexuosa (a South African endemic) and L. elata had previously masked 

the presence of the latter on the coasts of South Africa. In the absence of an Australian 
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specimen of Laurencia elata to verify the number of corps en cerise this study tentatively 

calls the clade of South African specimens Laurencia cf. elata on the basis of the 

morphological and anatomical (i.e. dimensions of the cell layers) similarities between South 

African specimens and the description of Saito and  Womersley (1974). In addition the 

phylogenetic arrangement and genetic distance between Laurencia flexuosa and L. cf. elata  

discussed in Chapter 2 provides further evidence for the distinction of these clades. The high 

degree of morphological similarity between L. flexuosa and L. cf. elata may be indicative of 

convergent evolution in a response to environmental conditions on the warm temperate south 

coast of South Africa.   

 

 

 

Laurencia flexuosa Kützing 1849: 856 

Synonym: none 

Misapplied names – (see Seagrief 1984: 38-39): 

Chondria pinnatifida – Suhr1834:733 

Laurencia pinnatifida – Barton 1893:174. – Delf & Michell 1921:113 

Chondria pinnatifida (Hudson) C. Agardh var. angusta. – Krauss 1846:211 

Laurencia elata – Delf & Michell 1921:113 

Type Locality: Cape of Good Hope, South Africa (Kützing 1849: 856) 

Etymology: flexuosa: Adjective (Latin), zigzag, refers to alternating branching pattern 

(Stearn 1973). 

Specimens examined: 

Western Cape: Kalk Bay, (Bolton, 02.v.1985: BOL 21462); Kalk Bay, (Stegenga, 

07.xii.1984: BOL 21476); Muizenberg-St. James, (Stegenga, 22.xi.1984: BOL 21474); St. 
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James, (Stegenga, 26.iii.1983: BOL 21473); Natures Valley (this study, 04.iv.2008: D57; 

12.xii.2012: D1157); Koppie Alleen, De Hoop Marine Protected Area (this study, 

18.viii.2008: D140; 17.ii.2011: D904); the Eiland near Keurboomstrand, (this study, 

22.ix.2010: D862); East of Koppie Alleen, De Hoop Marine Protected Area (this study, 

18.ii.2011: D928); Knysna Heads (this study, 12.xi.2012: D1133), Swartvlei near Sedgefield 

(this study, 15.xii.2012: D1192) 

Eastern Cape: Port St Johns, (Simons, 27.vii.1965: BOL 21465); Haga Haga (this study, 

22.xi.2012: D1120); Storms River, Tsitsikamma National Park (this study, 13.xii.2012: 

D1167); Port Elizabeth (this study, 14.xii.2012: D1191); Kenton-on-Sea (this study, 

26.ii.2013: D1237); Three Sisters (this study, 27.ii.2013: D1252); Hluleka Nature Reserve 

(this study, 21.viii.2013: D1332; 23.viii.2013: D1336) 

KwaZulu-Natal: Mabibi, intertidal (Engeldow, 11.viii.1999: BOL 21458); Zinkwazi Main 

Beach & Black Rock Park, (Coppejans et al. 30.viii.1999: BOL 2160); Mission Rocks (this 

study, 19.iii.2011: D958; 26.ix.2011: D1036); Palm Beach (this study, 28.ix.2011: D1063, 

D1057) 

Habitat: Mid-to-low intertidal of wave-exposed coasts, forming stands as turfs or isolated 

tufts. 

Description: 

External morphology: 

(Figure 3.8A): Plants dark red, between (3-) 5 and 12 cm high attached by stoloniferous 

holdfast, with one to several axes, flexuous, complanate and irregularly alternately branching  

in up to 3 orders; axes slightly compressed, (0.5-) 1 to 1.5 mm wide and 0.5 – 1 mm thick, 

short ultimate branchlets 0.5-2 (-3) mm wide near the base, with truncated apices; branch 

basal constriction absent. Distance between first order branches on same side of main axis 
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(1.5-) 2 – 5 (-10) mm; laterals increasing in length towards the holdfast to between (4-) 5 and 

20 (-40) mm. Secondary and higher order branches much shorter (Figure 3.8B).  

Internal structure: 

In cross-section axial and pericentral cells not distinguishable: medullary cells without 

lenticular thickenings, innermost cortical cells taller than wide in cross-section 22-64 μm 

long and 18-34 μm wide, with secondary pit connections in the longitudinal direction; 

medullary and innermost cortical cells larger than outermost cortical cells (Figure 3.8C); 

outermost cortical cells 16.5-20 μm across, visibly darker than innermost cortical and 

medullary cells, usually containing 1 to 3 small corps en cerise but (Figure 3.8D). 

Trichoblasts with single corps en cerise per cell (Figure 3.8E).  

 
Distribution:  

South Africa: False Bay and around the whole south coast, eastward into KwaZulu-Natal at 

least up to Mabibi; South African endemic. 

 

Notes 

Stegenga et al. (1997) compared L. flexuosa to L. elata – an Australian species with similar 

morphological features. The description of L. flexuosa in Stegenga et al. (1997) closely 

resembles that of L. elata as described by Saito & Womersley (1974:837-838) and 

Womersley (2003:475-477). On the other hand, Saito and Womersley (1974) and Womersley 

(2003) had hinted that the inclusion of South Africa (and other Indian Ocean localities) in the 

distribution of Laurencia elata required further investigation. The results of the phylogenetic 

analyses presented in Chapter 2 pointed to a genetic distance of 2.9% to 3.5% between the 

two South African morphotypes identified to L. flexuosa and L. cf. elata.  The distinctiveness 

of the two species was further confirmed by anatonomical differences, particularly that L. 

flexuosa has 1-3 corps en cerise (while L. cf. elata has 5-6 corps en cerise) and the outermost 
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cortical cells of L. flexuosa are smaller than those of L. cf. elata. As a result, Laurencia 

flexuosa must be considered to be distinct from L. cf. elata. 

 

Laurencia glomerata Kützing 1849: 857 

Basionym: Chondria glomerata Kützing 1847: 2 

Heterotypic Synonym(s): 

Chondria obtusa var. virgata C.Agardh 1822 

Laurencia virgata (C.Agardh) J.Agardh 1852 

Misapplied names: 

Laurencia obtusa var. pyramidalis Harvey 1849: 83 

Laurencia papillosa Barton 1893: 174 

Type Locality: Cape Peninsula, South Africa (Kützing 1847a:2) 

Etymology: glomerata Adjective (Latin), clustered in a round mass. 

Specimens examined 

Western Cape: Mauritz Bay (Rothman et al., 02.03.2011: D1003, D1005), Stillbaai, 

(Stegenga, 18.x.2001: BOL21937), Goukamma Marine Reserve, (Stegenga, 13.x.2001: BOL 

21939); Grootbank, near Keurboomstrand (this study, 04.x.2008: D56); Koppie Alleen, De 

Hoop Marine Protected Area (this study, 18.viii.2008: D125; 17.ii.2011: D902, D908, D909, 

D910); the Eiland near Keurbooms (this study, 22.ix.2010: D863); Nature’s Valley (this 

study, 12.xii.2012: D1161, D1163, D1164, D1164, D1165, D1166) 

Eastern Cape: Haga Haga (Stegenga, 26.x.1999: BOL 21942); Hluleka (Bolton, 26.vi.1983, 

BOL21952); Port Alfred (this study, 03.ix.2009: D317); Cape St. Francis (this study, 

29.iii.2010: D685); Storms River, Tsitsikamma National Park (this study, 13.xii.2012: 

D1178, D1179a); Port Elizabeth (this study, 14.xii.2012: D1190); Saltvlei, Port Alfred (this 

study, 25.ii.2013: D1211, D1212); Three Sisters (this study, 27.ii.2013: D1251) 
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KwaZulu-Natal: Island Rock, (Coppejans et al.17.viii.1999, BOL21944) 

Habitat: Epilithic species present in the lower intertidal and shallow subtidal in exposed 

habitats.  

Description: 

External morphology:  

(Figure 3.9A): Plants dark red, between 6 and 15 (-40) cm high, bushy with several erect 

axes, epilithic and attached by a basal coralloid holdfast. Axes terete, 1 to 3 mm wide, 

branched up to 3 orders, branching pattern varied between orders: first order branching spiral 

or polystichous; second and higher order branches much shorter and branching distichous, 

subopposite or subverticillate (Figure 3.9B), plants pyramidal in outline; first order branches 

increasing in length basipetally; ultimate branchlets approximately 0.5 mm wide and 1 mm 

long, with truncated apices; branch basal constrictions absent. 

 

Internal structure: 

In cross-section axial and pericentral cells not distinguishable: some medullary cells with 

lenticular thickenings, innermost cortical cells wider than high with secondary pit connection 

in the longitudinal direction; medullary and innermost cortical cells larger than outermost 

cortical cells (Figure 3.9C); outermost cortical cells longer than wide and containing 1 (rarely 

2) corps en cerise per cell (Figure 3.9D). 

 
Distribution:  

South Africa: From Port Nolloth on the west coast into northern KwaZulu-Natal (this study) 

Notes 

Laurencia glomerata is the only species of the genus which occurs on the west coast of South 

Africa. West coast specimens (from Mauritz Bay) were much larger in size than specimens of 

the south and east coasts, but a genetic difference of only 0.1 to 0.3% confirmed them as L. 
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glomerata. West coast specimens tend to grow subtidally in rather sheltered bays. De Clerck 

et al. (2005) noted that fertile and bushy L. flexuosa may be confused with L. glomerata on 

the east coast, however the latter species is more crowded in higher order branches and 

branching often appears whorled. Phylogenetically, L. glomerata emerges as a distinct 

species.  

 

 

 

Laurencia multiclavata Francis, Bolton, Mattio et Anderson, sp. nov. (Francis et al., 

submitted) 

Holotype: BOL 150569 South Africa, Western Cape, De Hoop, Koppie Alleen (34°26’03”S 

20°32’52” E), intertidal Date collected 17.ii.2011 

Etymology: Adjective (Latin) – ‘many studs’. This species is named for the several short, 

stud-like ultimate ramuli present on higher-order branches. 

Specimens examined:  

Western Cape: East of Koppie Alleen, De Hoop Marine Protected Area (Francis et al. 

submitted, 18.ii.2011: BOL 57723); Koppie Alleen, De Hoop Marine Protected Area (this 

study, 18.viii.2008: D127); Knysna Heads (this study,12.xi.2012: D1135); Nature’s Valley 

(this study 12.xii.2012: D1159); Swartvlei, Port alfred (this study, 15.xii.2012: D1194) 

Eastern Cape: Cape St. Francis (this study, 29.iii.2010: D687); Port Elizabeth (this study, 

14.xii.2012: D1185); Kenton-on-Sea (this study, 26.ii.2013: D1239); Hluleka, (this study, 

21.viii.2013: D1335) 

KwaZulu-Natal:  Cape Vidal (Francis et al. submitted, 20.iii.2011: BOL 57724; 25.ix.2011: 

D1024); Jesser Point, Sodwana Bay (Francis et al. submitted, 22.iii.2011: BOL 57725; 
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D981); Mission Rocks (this study, 19.iii.2011: D960); Bhanga Rock, Bhanga Nek (this study, 

4.x.2013: 1602)  

Habitat: mid to low intertidal on exposed ledges 

Description: 

External morphology: 

(Figure 3.10A): Plants epilithic, caespitose to erect, green with purple to pale-pink apices, up 

to 6 (-8) cm high, attached by a stoloniferous holdfast, with several primary axes, branches 

polystichously arranged, rarely up to 3 orders, branching subopposite to subverticillate with 

highest order short and wart-like; axes terete, 0.5 - 1 mm wide, short ultimate branchlets half 

the width of the main axes, with truncated apices; branch basal constriction absent.  

Internal structure:  

(Figure 3.10B) In cross-section axial and pericentral cells easily distinguishable. Innermost 

cortical and medullary cells two to three times larger than outermost cortical cells; innermost 

cortical cells ovoid with intercellular spaces visible. Lenticular cell wall thickenings not 

observed. Outermost cortical cells generally containing on average 3, but sometimes 2 or 4 

corps en cerise per cell (Figure 3.10C); trichoblasts with 2 (sometimes 3) corps en cerise per 

cell (Figure 3.10D).  

 

Distribution: South African endemic: south coast (from De Hoop extending eastward into 

northern KwaZulu-Natal.  

Notes: 

Laurencia multiclavata is superficially similar in morphology to L. natalensis Kylin and is 

therefore can be mistaken for the latter species in the field. Closer inspection has shown that 

L. multiclavata has a generally wider, polystichous branching pattern as opposed to the 

narrow, radial branching pattern of L. natalensis. Most notably Laurencia multiclavata lacks 
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the pyramidal outline and has fewer orders of branching than L. natalensis. The number of 

corps en cerise per outermost cortical cell (2 to 4) is also different to that of Laurencia 

natalensis (only 1 corps en cerise). Molecularly, Laurencia multiclavata is distinct and 

closely related to a sequence of Laurencia cf. nidifica J. Agardh from New Caledonia (with 

genetic distance 1.6-2.0%) and not to Laurencia natalensis (differing genetically by 3.3-

5.8%).  

 

Laurencia natalensis Kylin 1938: 24 

Homotypic Synonym(s): 

Laurencia obtusa var. natalensis (Kylin) Børgesen 1945 

Misapplied names: 

Chondria obtusa var. gracilis Suhr 1834:177 (fide Papenfuss notes in Silva et al.1996) 

Laurencia obtusa Hohenacker 1862: no 569 (fide Papenfuss notes in Silva et al. 1996) 

Laurencia hybrida Barton 1893: 174 – Delf & Mitchell 1921: 113 (fide Papenfuss notes) 

Type Locality: Isipingo, KwaZulu-Natal, South Africa (Kylin 1938: 24) 

Etymology: (Adjective) Latin: from the (then) Natal Province  

Specimens examined: 

Western Cape: Knysna Estuary (this study, 04.vii.2008: D50); Swartvlei near Sedgefield 

(this study, 15.xii.2012: D1193); Nature’s Valley, (Stegenga, 19.vi.1987: BOL21738; this 

study, 12.xii.2012: D1155) 

Eastern Cape: Tsitsikamma, (Stegenga, 17.x.1997: BOL 21746); Port Alfred (Stegenga, 

31.vii.1997: BOL 21736; this study, 03.ix.2009: D316); Port Alfred, Piano Rocks, (Stegenga, 

04.xi.1997: BOL21735); Port Elizabeth (this study, 14.xii.2012: D1186); Kenton-on-Sea (this 

study, 26.ii.2013: D1238) 
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KwaZulu-Natal: Zinkwazi, (Coppejans et al., 30.viii.1999: BOL 21734); Jesser Point, 

Sodwana Bay (this study, 10.vi.2009: D587; 09.xi.2010 : D800; 09.ix.2010: D820); 

Maphelane (this study, 09.xi.2010: D836, D853, D857); Mission Rocks (this study, 

19.iii.2011: D960), Cape Vidal (this study, 25.ix.2011: D1022); Bhanga Rock, Bhanga Neck 

(this study 04.x.2013: D1603) 

Habitat: Epilithic in mid to low intertidal zones in warm-temperate to tropical waters, often 

associated with sand-affected rock. 

Description: 

External morphology:  

(Figure 3.11A): Plants epilithic, caespitose to erect, green with bright orange-red apices, up to 

6 (-8) cm high, attached by stoloniferous holdfast, with several primary axes, branches 

radially arranged, branching up to 3 orders with higher order branching subopposite and/or 

subverticillate giving the thallus a pyramidal outline (Figure 3.11B); axes terete, 0.5 - 1 mm 

wide, laterals inserted at regular intervals of 1-3(-5) mm, distance between laterals increasing 

basipetally; short ultimate branchlets half the width of the main axes, with truncated apices; 

branch basal constriction absent. 

Internal structure: 

In cross-section axial and pericentral cells easily distinguishable: some medullary cells have 

lenticular thickenings, innermost cortical cells more extensive laterally with secondary pit 

connection in the longitudinal direction; medullary and innermost cortical cells larger than 

outermost cortical cells; outermost cortical cells wider than they are long and containing one 

corps en cerise per cell (Figure 3.11C). Trichoblasts with 1 corps en cerise per cell (Figure 

3.11D) 
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Distribution: South Africa: From Pearly Beach eastward (Stegenga et al. 1997), along the 

whole south and east coasts, extending into southern Mozambique (Isaac 1958, Isaac & 

Chamberlain 1958, this study); Kenya, southern Madagascar (this study), Mauritius.  

Notes 

Laurencia natalensis is readily recognised by its bright orange-red apices and radial 

branching that lends the thallus a pyramidal outline. Amongst South African Laurencia 

species, Laurencia natalensis is significantly narrower all other taxa except L. sodwaniensis. 

Molecularly, Laurencia natalensis appeared sister to the clade including Laurencia 

glomerata Kützing, Laurencia venusta Yamada, Laurencia dichotoma sp. nov. and a single 

specimen referred to as Laurencia sp. morphotype A (Figure 2, Chapter 2). It is molecularly 

distinct from the species mentioned previously, differing genetically by 1.8-4.1%.  

 

Laurencia pumila (Grunow) Papenfuss 1943: 91-92 

Basionym: Laurencia flexuosa var. pumila Grunow 1867: 87-88 

Type Locality: Port Natal (Durban), South Africa (Grunow 1867: 87-88) 

Etymology: Pumila - Adjective (Latin), dwarf. 

Specimens: 

Eastern Cape: Mzamba, (Simons, 29.vi.1962: BOL21796) 

KwaZulu-Natal: Ramsgate (Simons, 23.ix.1960: BOL21794); Jesser Point, Sodwana Bay 

(this study, 10.xi.2009: D588; 06.xi.2010: D803; 09.ix.2010: D822); Cape Vidal (this study, 

25.ix.2011: D1028); Bhanga Rock, Bhanga Neck (this study, 04.x.2013: D1604; 07.x.2013: 

D1665)  

Habitat: Epilithic in mid-intertidal regions of wave exposed coasts 

Description: 

External morphology: 
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(Figure 3.12A) Plants green with purple apices, up to 2.5 cm high, attached by small rhizoidal 

holdfast, with several axes that have club-shaped tips, unbranched when young, mature thalli 

branched up to 2 orders (Figure 3.12B); axes terete, 1-1.5 mm wide;  short ultimate 

branchlets 0.5-2.2 (-3) mm wide near the base, with truncated apices; branch basal 

constriction absent. 

Internal structure:  

(Figure 3.12C) In cross-section axial and pericentral cells indistinguishable. Innermost 

cortical and medullary cells two to three times larger than outermost cortical cells; Innermost 

cortical cells round with visible intercellular spaces. Lenticular cell wall thickenings not 

observed. Outermost cortical cells generally containing 1 corps en cerise per cell (Figure 

3.12D). 

 
Distribution: South Africa: From Tsitsikamma eastward into northern KwaZulu-Natal (De 

Clerck et al. 2005); southern Mozambique (this study – see Chapter 4) 

Notes 

Laurencia pumila (Grunow) Papenfuss is morphologically distinguished from all other South 

African Laurencia sensu stricto species by the distinctive club-shaped apices of its axes and 

generally sparsely-branched thallus. Molecular analyses place Laurencia pumila in a sister-

relationship with Laurencia dehoopiensis sp. nov. (Figure 2.3, Chapter 2) with a genetic 

distance of 0.4-0.8%. While the genetic differentiation between these two species is low, they 

occupy two different habitats – Laurencia pumila is common on the intertidal, while L. 

dehoopiensis sp. nov. is found subtidally as an epiphyte on Phloiocaulon suhrii . Laurencia 

pumila and L. dehoopiensis are also geographically separated with the former being 

distributed along the east coast and the latter on the south coast. The habitat differentiation 

and geographical separation alongside the significant morphological difference and molecular 
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evidence presented in Chapter 2 supports the designation of Laurencia pumila and L. 

dehoopiensis sp. nov. as distinct species in the South African flora.  

 

Laurencia sodwaniensis Francis, Bolton, Mattio et Anderson, sp. nov. (Francis et al. 

submitted)  

Holotype: BOL150570 South Africa, KwaZulu-Natal, Sodwana Bay, Jesser Point 

(27°31’59”S, 32°40’59”E), intertidal. Date collected 20.iii.2011 

Etymology: “sodwaniensis” – after the type locality, Sodwana Bay (KwaZulu-Natal)  

Habitat: Mid to low intertidal of the northern KwaZulu-Natal coast.  

Description: 

External morphology: 

(Figure 3.13A): Plants epilithic, small, turf-like in appearance, up to 5 cm in height, attached 

by a discoid holdfast, thallus light pink in colour; main axes terete, 0.5 – 1 mm in diameter, 

laterals radially arranged and inserted at regular intervals, laterals increasing in length 

basipetally giving thalli a pyramidal outline (Figure 3.13B) tending to curve toward main 

axis; well-branched in higher orders, branching pattern from subopposite to subverticillate 

and truncated; branch basal constriction absent.  

Internal structure:  

Axial and pericentral cells distinguishable in cross section (Figure 3.13 E); innermost cortical 

and medullary cells at least two times larger than outermost cortical cells; outermost cortical 

cells longer than broad, approximately 18-25 µm in width, darker (Figure 3.13C) and 

containing on average 3, but sometimes 2 or 4 corps en cerise per outermost cortical cell 

(Figure 3.13D).  

 

Distribution: South African endemic: Sodwana Bay, Northern KwaZulu-Natal 
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Notes: 

This species was only collected from Northern KwaZulu-Natal. Turf-like, with a light pink 

thallus, it shares certain morphological features with Laurencia natalensis and L. glomerata, 

such as a pyramidal outline as a result of their radial branching with branch length increasing 

basipetally. Unlike L. natalensis and L. glomerata, the branching pattern of L. sodwaniensis 

is not as neat and the ultimate laterals are not as distinctly wart-like as in L. natalensis. While 

sharing some morphological traits with the aforementioned species, molecularly this species 

is distinct and not closely-related to either of them (differing genetically by 5.6-7.4%). The 

closest rbcL relative (with genetic distance 1.6-1.9%) is a sequence of Laurencia dendroidea 

from Spain.  

 

Laurencia stegengae Francis, Bolton, Mattio et Anderson, nom. nov. (Francis et al. 

submitted)  

Basionym: Laurencia peninsularis Stegenga, Bolton et R.J. Anderson nom. illeg., 

Contributions from the Bolus Herbarium, 18: 538. 1987.  

Holotype: BOL150062/G190 South Africa, Western Cape, Cape Peninsula, Clovelly, 

intertidal. Date collected 13.x.2000 

Etymology of new name “stegengae” – after Dr. Herre Stegenga, Dutch phycologist who has 

made enormous contributions to our knowledge of South African seaweeds. 

Specimens examined:  

Western Cape:  Stilbaai (Stegenga et al., 18.x.2001: BOL21788); Nuwebaai (Stegenga et 

al., 16.x.2001: BOL21787); Koppie Alleen, De Hoop Marine Protected Area (this study, 

18.viii.2008: D126, D159; 17.ii.2011: D900, D901); Buffels Bay (this study, 17.ix.2008: 

D181); Clovelly (this study, 18.iii.2010: D680); Platbank Keurboomstrand (this study, 
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23.ix.2010: D872); Langebaan Leentjies (this study, 26.iii.2012: D1073, D1074); Knysna 

Heads (this study, 12.xi.2012: D1134); Nature’s Valley (this study, 12.xii.2012: D1156) 

Eastern Cape: Cape Padrone (Stegenga et al., 26.x.2003: BOL21785); Storms River, 

Tsitsikamma National Park (this study, 13.xii.2012: D1170); Three Sister (this study, 

27.ii.2013: D1254) 

Habitat: Wave-exposed situations in the mid to lower intertidal. 

Description: 

External morphology: 

(Figure 3.14A) Plants generally caespitose to sometimes erect, olive green to greyish violet, 

up to 4 cm high, epilithic, attached by tangled holdfast, with one to several axes, first order 

branches polystichously arranged; 2 orders of branching, secondary laterals very short, 

ultimate branchlets small, wart-like and crowded (Figure 3.14B); axes terete, up to 1.5mm in 

diameter, apices truncated; slight constriction at the base of branches.  

Internal structures:  

Axial and pericentral cells not observed. Medullary and innermost cortical cells up to two 

times larger than outermost cortical cells (Figure 3.14C); innermost cortical cells ovoid; 

medullary cells without lenticular cell wall thickenings; outermost cortical cells containing a 

single corps en cerise per cell (Figure 3.14D). 

 
Distribution: South African endemic; from False Bay to East London (Stegenga et al. 1997; 

this study) 

 

Notes 

This endemic South African species was originally described by Stegenga et al. (1997) and 

named Laurencia peninsularis. However, this name had been used by Taylor (1945) for a 

different taxon which rendered the epithet of the South African species illegitimate. We 
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propose the new name Laurencia stegengae. Molecular analyses in this study have shown 

this Laurencia sensu stricto species to be genetically distinct; it differed from its closest 

relative, Laurencia cf. corymbosa, by 3.3% to 3.5%. There may be some geographic genetic 

distinction between populations on the southwest and south coasts, but more studies are 

needed to confirm the observed pattern.  

 

Taxonomic Key to the South African species of Laurencia sensu stricto 

1. Axes and laterals slightly to strongly compressed …………………………………..…2 

Axes and laterals terete ………………………………………………………………..5 

2. Axes oppositely branched………………………………………...…………………….3 

Axes alternately branched……………………………………….……………………..4 

3. Three to four orders of branching, thallus between (5-) 6 and 20 (-22) cm in length 

..……...……………………………............................................ Laurencia complanata 

Two to three orders of branching, thallus between (2.7-) 3 and 5 cm in length 

..…….…………….……...........................................................  Laurencia brongniartii 

4. Irregularly alternate branching pattern, outermost cortical cells with 1-3 corps en 

cerise  ………………………………………………………………   Laurencia flexuosa 

Alternate branching pattern, outermost cortical cells with 5-6 corps en cerise 

………………………………………………........................................... Laurencia cf. elata 

5. Thalli usually larger than 7cm in length with coralloid holdfasts 

…..……………………..……………..……….…..………………………………..…..6 

Thalli no larger than 7cm in length with discoid, rhizoidal or stoloniferous holdfasts 

……………………….…..………………………………..…………………….…….. 8 
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6. Primary laterals spirally arranged, whorled or alternate branching in higher order 

laterals …………...………………………………….………….. Laurencia glomerata 

Plants with polystichous branching pattern, alternate to opposite in higher order 

laterals …………….…..………………………………………………………………7 

7. Plants epiphytic on Phloiocaulon sp. in the subtidal, ultimate branchlets very short, 

wart-like ……………………………………….…. Laurencia dehoopiensis sp. nov. 

Plants epilithic, forming turfs in the intertidal, ultimate branchlets exceptionally 

corymbose at times ...……………………………………….. Laurencia cf. corymbosa 

8. Thallus cartilaginous ………………………………..… Laurencia dichotoma sp. nov. 

Thallus fleshy ……………………………………………………………………...….9 

9. Axis width up to 1.5 mm ………………………………………………………….….10 

Axis width equal to or less than 1 mm ………………………………………...….….11 

10. Plants olive-brown, generally caespitose with short, closely-branched primary laterals 

bearing wart-like ultimate branchlets ...………….… Laurencia stegengae nom. nov. 

Plants olive with purple distal ends, erect with club-shaped apices; unbranched when 

young, distal end of branchlet with subverticillate branching in mature plant 

………………………………………………..…………..................  Laurencia pumila 

11. Laterals mostly adaxially arranged on axes, branching pattern alternate to 

subverticillate ..………………………….……………..….  Laurencia digitata sp. nov 

Laterals radially arranged on axes, branching subopposite to subverticillate in higher 

orders ………………………………………………………………………………... 12 

12. Plants epilithic, erect with pink thalli, laterals tend to curve strongly up toward central 

axis …………………………………………………. Laurencia sodwaniensis sp. nov. 

Plants epilithic, often caespitose with bi-coloured thalli, laterals with very little to no 

curvature towards central axis ………………………….………………………….. 13  
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13. Pyramidal outline, usually 3 orders of branching, 1 corps en cerise per outermost 

cortical cell ……………......………………....................................................  

Laurencia natalensis 

Bushy, rarely 3 orders of branching, 2-4 corps en cerise per outermost cortical cell 

…...……………...........................................................  Laurencia multiclavata sp. nov 

 

New records for the Laurencia complex and additional notes   

In addition to the fourteen Laurencia sensu stricto species described above, five 

specimens corresponding to five morphotypes could not be identified to any known species 

and additional specimens are needed to confirm them as different and new species. These are 

Laurencia sp. morphotype A (D991), Laurencia sp. morphotype G (D821), Laurencia sp. 

morphotype H (D1240& D1255), Laurencia sp. morphotype I (D1337) and Laurencia sp. 

morphotype J (D1339). Five new records, three for the genus Palisada (Palisada sp. 1 D819, 

Palisada sp. 2 D1361 & D1669 and Palisada cf. corallopsis), two for Laurenciella 

(Laurenciella marilzae and Laurenciella sp. D1077 & D1160) and one for Chondrophycus 

(Chondrophycus sp. D802) were also recorded (see Chapter 2).  

 

While the above taxa are mostly not identified to species level nor described in text above, a 

table of morphological and anatomical features as well as representative pictures (as far as 

possible) are provided for reference (See Table 3.1 and Figure 3.15). Images of the sections 

for Laurencia sp. ‘morphotype H’ and Palisada sp. 2 and P. cf. corallopsis are not suppplied
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Table 3.1: Morphology and anatomy of additional undescribed South African taxa in the Laurencia complex Abbreviations: u.t.: up to, M: 

Marked constriction, S: Slight constriction, N: No constriction, PC: Pericentral cell, A: Absent, P: Present, CeC: Corps en Cerise, Co: Cortical, 

Me: Medullary S: Subtidal, I: Intertidal. Distribution abbreviations: SDW: Sodwana Bay, DM: Double Mouth, DH: De Hoop, PA: Port Alfred, 

PE: Port Elizabeth, TS: Three Sisters, HLU: Hluleka, BN: Bhanga Nek, KoS: Kenton-on-Sea, BR: Bordjiesrif.   

Taxa 

Characters 
 Substratum Size of 

mature 
thallus 
(cm) 

Thallus colour Holdfast Axes 
terete or 
flattened 

Main 
Axis 
width 
(mm) 

Branch 
basal 

constriction 
(M/S/N) 

General 
branching 

pattern 

Branching 
pattern 

2nd Order 
Laterals 

PC 
No. 

Laurencia sp. A Epilithic u.t. 3 Pink-red Discoid Terete u.t. 1 N Polystichous Scattered 4 
Laurencia sp. G Epilithic u.t. 4 Olive green, 

pink tips 
? Terete u.t. 0.7 N Polystichous to 

alternate 
Scattered, tips 
subverticillate 

4 

Laurencia sp. H Epilithic u.t. 3 Dark red-purple Discoid Terete u.t. 1.2 N Polystichous (Sub)opposite 
to alternate 

? 

Laurencia sp. I Epilithic u.t. 3 Dark red-purple ? Terete u.t. 0.5 N Alternate Opposite 4 
Laurencia sp. J Epilithic u.t. 3 Dark purple ? Terete u.t. 1 N Alt. to sub-opp. Opposite 4 
Palisada sp. 1 Epilithic 2 Dark Red Discoid Terete u.t.0.9 M Polystichous scattered 2 
Palisada sp. 2 Epilithic 4.9-7.1 Dark Red Discoid Terete u.t. 2 S Pinnate opposite ? 
Palisada cf. 
corallopsis 

Epilithic u.t 10.9 Dark Red Discoid Terete u.t. 1.5 S Dichotomous Dichotomous ? 

Chondrophycus 
sp. 

Epilithic 1.5 Dark Red ? Terete u.t. 3 N Polystichous Dichotomous/ 
wartlike 

2 

Laurenciella 
marilzae 

Epilithic u.t. 7 Red with light 
orange tips 

Discoid Terete u.t. 0.8 N Irreg. alternate 
to opposite 

(sub-)opposite 4 
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Table 3.1: Morphology and anatomy of additional undescribed South African taxa in the Laurencia complex (continued): Abbreviations: u.t.: up 

to, M: Marked constriction, S: Slight constriction, N: No constriction, PC: Pericentral cell, A: Absent, P: Present, CeC: Corps en Cerise, Co: 

Cortical, Me: Medullary S: Subtidal, I: Intertidal. Distribution abbreviations: SDW: Sodwana Bay, DM: Double Mouth, DH: De Hoop, PA: Port 

Alfred, PE: Port Elizabeth, TS: Three Sisters, HLU: Hluleka, BN: Bhanga Nek, KoS: Kenton-on-Sea, BR: Bordjiesrif.   

 
 

Taxa 

Characters 
 

Corps en 
cerise  

No. 
of 

CeC 

Outermost 
cortical cell 

shape 

Cell Size (µm) Space 
between Co 
& Me cells 

2nd Pit 
conn. Distribution Habitat Outermost 

cortical cell 
Length x Width 

Innermost Cortical 
Length x Width 

Laurencia sp. A P 1 Dome 26.5-41x11-29 38-50x35-70 Yes P SDW S 
Laurencia sp. G P 2-3 Dome 23.5-41x21-29 41-67.6x53-85 Yes P SDW I 
Laurencia sp. H ? ? ? ? ? ? ? HLU I 
Laurencia sp. I P 1 Dome 26-50x9-20.5 47-76x23.5-50 Yes P KoS-TS I 
Laurencia sp. J P 1 Dome 20.5-29x23-35 44-73.5x47-79 Yes P HLU I 
Palisada sp. 1 A - Elongated, 

Palisade  
17.6-110x9-21 ? No A SDW I 

Palisada sp. 2 - - ?  ? ? ? ? BN I 
Palisada cf. 
corallopsis 

- - ? ? ? ? ? TS I 

Chondrophycus 
sp. 

A - Round-Oval 18-26.5x9-23.5 ? No A SDW I 

Laurenciella 
marilzae 

P 1 Oval  29-47x29-61 ? No A BR-KoS I 
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Figure 3.1: Laurencia brongniartii: A) Habit. (1x) Scale Bar: 1cm = 8.2mm B) Cross section of the thallus at (40x) C) Two corps en cerise in 

each outermost cortical cell (40x) Scale bar: 1cm=30µm 
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Figure 3.2: Laurencia complanata: A) Habit (1x) Scale 1 cm= 5 mm B) Secondary pit-connections between cortical cells (40x). C) Transverse 

section of thallus showing outermost cortical and cortical cells (20x). D) One to two corps en cerise per outermost cortical cell (20x) 
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Figure 3.3: Laurencia cf. corymbosa morphotype ‘M’: A) Habit (1x) Scale 1 division =  1mm B) Branching pattern with corymbose second 

order laterals (8x) Scale bar: 1cm = 360µm C) Cross section through thallus showing outermost cortical cells and spaces between medullary and 

cortical cells D) One corps en cerise per cell at (40x) 

B 

C 

A 
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Figure 3.4: Laurencia dehoopiensis sp. nov. A) Habit. B) Polystichous branching pattern (8x). Scale: 1cm = 360µm. C) Pericentral (p) and axial 

(a) cells (20x) D) Outermost cortical and cortical cells (20x). E) A single corps en cerise per cell (40x) 
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Figure 3.5: Laurencia dichotoma sp. nov.: A) Habit. B) Branching pattern with dichotomous branching in second order laters (8x) Scale : 1cm =  

85µm C) Outermost cortical and cortical cells (20x)  D) One corps en cerise per outermost cortical cell. (40x) Scale : 1cm = 20µm E) Axial (a) 

and pericentral cells (p) (40x) 
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Figure 3.6: Laurencia digitata sp. nov. : A) Habit (8x) Scale: 1cm = 62µm. B) Subverticillate branching pattern at apices (8x) Scale: 1cm = 

62µm C) A single corps en cerise per cell (40x). D) Cross section of thallus showing outermost cortical and cortical cells (20x) E) Axial (a) and 

pericentral cells (p) (40x) 
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Figure 3.7: Laurencia cf. elata: A) Habit. B) Cross section through the thallus showing outermost cortical cells and elongated medullary cells 

(40x) C) 5-6 corps en cerise per outermost cortical cell (40x) 
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Figure 3.8: Laurencia flexuosa: A) Habit. B) Short higher order branching (x8). Scale bar 1cm = 360µm C) Transverse section through thallus 

(40x). D) One to three corps en cerise per outermost cortical cell (20x) E) Trichoblasts with a single corps en cerise. (40x) 
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Figure 3.9: Laurencia glomerata: A) Habit. B) Branching pattern (x8). Scale bar: 1cm=360µm C) Transverse section of thallus showing 

outermost cortical cells (with corps en cerise) and cortical cells (20x) D) One corps en cerise per outermost cortical cell (40x) 
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Figure 3.10: Laurencia multiclavata sp. nov. : A) Thallus; showing dark pink tips (8x) Scale: 1cm = 240um. B) Transverse section of thallus 

(10x). C) 2-3 corps en cerise per outermost cortical cell (40x). D) Trichoblasts with two corps en cerise per cell (20x) 
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Figure 3.11: Laurencia natalensis: A) Habit. B) Subopposite to subverticillate branching pattern (x8). Scale bar: 1cm = 200µm C) Transverse 

section through thallus showing outermost cortical and cortical cells. (40x) D) One corps en cerise per outermost cortical cell (40x) E) 

Trichoblasts with single corps en cerise per cell (20x) 
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Figure 3.12: Laurencia pumila: A) Habit. B) Club-shaped apices on ultimate branchlets (8x). Scale bar: 1cm = 220µm C) Cross section through 

the thallus showing outermost cortical cell as well as cortical and medullary cells (20x) D) One corps en cerise per outermost cortical cell (40x) 
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Figure 3.13: Laurencia sodwaniensis sp. nov.: A) Habit. B) Branching pattern (8x) Scale : 1cm = 240µm C) Outermost cortical and cortical 

cells (20x) D) 2-4 Corps en cerise per cell (40x) Scale 1cm = 20µm. E) Axial (a) and pericentral (p) cells (40x) 
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Figure 3.14: Laurencia stegengae nom. nov.: A) Habit B) Polystichous branching with wart-like higher order branching (x8). Scale bar: 1cm = 

200µm C) Cross section of thallus showing outermost cortical and cortical cells (20x) D) One corps en cerise per outermost cortical cell (40x) 
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Figure 3.15: Undescribed morphotypes of the Laurencia complex. A-C: Laurencia sp. ‘morphotype A’ –A) Habit (8x) Scale Bar: 1cm=120µm; 

B) Cross section of thallus (20x); C) One corps en cerise per outermost cortical cell (20x). Scale Bar: 1cm = 30µm. D) Laurencia 

sp.’morphotype I’: Cross section of thallus (20x); E-G: Laurencia sp. ‘morphotype G’: E) Habit (8x) Scale Bar: 1cm = 360µm; F) Cross section 

of thallus (20x); G) two to three corps en cerise per outermost cortical cell Scale bar: 1cm = 30µm. H) Laurencia sp. ‘morphotype J’: Cross 

section of thallus (20x)  
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Figure 3.15: Undescribed morphotypes of the Laurencia complex. I-K: Laurenciella marilzae: I) Habit (x2) Scale 1cm = 20mm; J) Cross 

section of  thallus showing corps en cerise in cortical and medullary cells (20x); K) One corps en cerise per outermost cortical cell (40x). L) 

Chondrophycus sp. 1: Thallus cross section (20x); M) Palisada sp. 1: Thallus cross section (20x) 
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CHAPTER 4:  

BIOGEOGRAPHY AND PHYLOGENETIC DIVERSITY OF THE LAURENCIA 

COMPLEX, WITH EMPHASIS ON THE SOUTH WEST INDIAN OCEAN 

 

4.1 Introduction: 

The South Western Indian Ocean (SWIO) defined as “the waters bounded by the eastern 

coast of Africa between Kenya and South Africa and as far east as 65°E longitude” by Muths 

et al. (2011) includes island nations such as The Mascarene Islands (Mauritius, Reunion), 

Madagascar, the Comoros, and the Seychelles as well as the French Scattered Islands. The 

SWIO is considered to be one of the potential marine biodiversity hotspots in the world 

(Reaka and Lombardi 2011, Hoareau et al. 2013). In comparison to some other regions, 

marine biodiversity in the SWIO is not as well known (Wafar et al. 2011), yet based on high 

endemism for reef fishes and corals on the east coast of Africa and the Mascarene Islands, as 

well as species diversity in reef-building corals in the Western Indian Ocean, three 

biodiversity hotspots have been identified within the SWIO alone (Roberts et al. 2002, Obura 

2012). Studies such as these highlight the importance of this region of the Indian Ocean for 

marine biodiversity and the evolutionary processes that bring about this diversity. 

Geographical shifts in species distributions in response to factors such as changes in water 

temperature, ocean acidification, extreme climatic events or changes in local and global 

ocean circulation patterns (which are a few of the known consequences of anthropogenically-

exacerbated climate change) have been the focus of several studies in ocean regions of the 

world (for example Kaustav et al. 2001, Perry et al. 2005, Lima et al. 2007, Sorte et al. 2010, 

Doney et al. 2012, Smale and Wernberg 2013). Being able to describe biogeographic 

patterns, knowing the present day distributions of species and being able predict  shifts in the 

distribution of plant and animal species under changing climate conditions is important for 
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developing priorities in marine conservation (Lourie and Vincent 2004). Bolton et al. (2004) 

proposed that seaweeds are ideal organisms to use for biogeographic studies in shallow, 

marine rocky environments because  they are ubiquitous, benthic, easy to collect, represent 

three major phyla, and have “relatively similar species numbers in any one large region from 

temperate to tropical regions”.   

With the exception of Mauritius, which has the best known seaweed flora in the tropical 

Indian Ocean (Bolton et al. 2012) and South Africa (Stegenga et al. 1997, De Clerck et al. 

2002, 2005), the diversity of the seaweeds in the SWIO is still in need of further 

investigation, and most taxonomic investigations, checklists and records predate molecular 

taxonomic methods (e.g. Kylin, 1938, Børgesen 1940 - 1954a&b; Isaacs 1967, 1968, 1971; 

Jaasund 1969, 1970a-c, 1976, 1977a-d, 1979; Silva et al. 1996; Stegenga et al. 1997, De 

Clerck et al. 2005, Bolton et al. 2007).   

The rhodomelacean Laurencia complex is a closely-related assemblage of seaweed genera 

with the most speciose genus Laurencia sensu stricto distributed widely across temperate and 

tropical waters primarily in the southern hemisphere (Guiry and Guiry 2014). In terms of the 

Laurencia complex, the SWIO is home to a total of 41 species (Guiry and Guiry 2014) 

representing just under a quarter of all the Laurencia complex species in the world, making it 

a relatively high-diversity region. However, with the exception of a few genus name changes 

for Tanzanian Laurencia species in Oliveira et al. (2005), and the taxonomic revision of the 

South African species presented in Chapters 2 and 3, the rest of the SWIO has not yet been 

re-assessed under the revised and phylogenetically-based taxonomic system for the Laurencia 

complex. As a consequence of the outdated taxonomy and confusing identification based on 

morpho-anatomical characters, accurate assessments of the biogeographic ranges and 

affinities for the species and genera in the SWIO of this complex are lacking. The most recent 

publication to mention biogeography of Laurencia species linked to the SWIO is that of De 
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Clerck et al. (2005), in which the authors briefly mention the distributions of at least three of 

the South African Laurencia species (Laurencia complanata, Laurencia natalensis and 

Laurencia pumila) dominant on the east coast, which extend into Mozambique. The most 

comprehensive account of the Laurencia complex in terms of distribution is the Silva et al. 

(1996) catalogue of benthic marine algae of the Indian Ocean. The authors recorded 39 

Laurencia species (now divided amongst four genera: Laurencia sensu stricto: 28, 

Chondrophycus: 5, Palisada: 5 and Yuzurua: 1) most of which have multiple collection 

localities in the SWIO. Some are, however, endemic to island nations (for example: 

Laurencia verruculosa Børgesen in Mauritius, Palisada surculigera (Tseng) Nam and 

Chondrophycus articulatus (Tseng) Nam in the Seychelles) or continental nations (for 

example Laurencia stegengae nom. nov. Francis et al. (in prep.) in South Africa).  

The highly diverse and ecologically important Laurencia complex provides an ideal study 

group from which a clearer understanding of the evolutionary biogeography of the SWIO can 

begin to develop. The abundant molecular data produced in Chapter 2 for South Africa 

together with new significant collections for several localities of the tropical SWIO provide 

material to produce the first oceanic-region phylogeny of the Laurencia complex. The 

growing amount of molecular data available for the complex globally on Genbank (nearly 

100 sequences available for rbcL) and additional collections included here from Japan and 

Western Australia provide material for the construction of a global phylogeny in which to 

position the SWIO diversity.  

The principal aim of the present chapter was to assess the diversity and biogeography of the 

Laurencia complex in the SWIO region and analyse its relationships to other oceanic regions. 

To reach this aim, the largest (to date) Laurencia complex phylogenies were produced. The 

distribution of the diversity revealed by phylogenetic analyses was analysed in detail for the 



100 
 

SWIO region, and globally. One expected result is a preliminary understanding of the global 

biogeography of the Laurencia complex. 

4.2 Materials & Methods: 

Two studies were conducted to address the questions on the phylogenetic relationships and 

biogeography of the Laurencia complex in the South Western Indian Ocean (SWIO). One 

study analyses specimens of the Laurencia complex of the South Western Indian Ocean 

specifically, while the other analyses the complex in a broader global context. All newly 

collected samples were sequenced according to the methods presented in Chapter 2. 

Taxon sampling and species identification 

South Western Indian Ocean 

The SWIO study analysed rbcL sequence data from a reduced, yet representative, set of 108 

specimens covering all South African species studied in Chapter 2 (and collected along 

almost the entire coastline) alongside 35 sequences from specimens newly collected from the 

following localities in the SWIO: Scattered Islands (Europa Island, Glorioso Island), 

Madagascar, Mauritius, Mayotte, Mozambique and Reunion (Figure 4.1). Sampling was not 

comprehensive for each locality – Madagascar, Mauritius and Mozambique had five or fewer 

sampling localities while the most extensively sampled localities in the SWIO were the 

Scattered Islands (Appendix: Table A2).  

 

Samples for DNA extraction were mostly preserved in silica-gel, with a few in ethanol. Those 

preserved in silica-gel extracted and sequenced well, while those in stored in ethanol were not 

as successful resulting in a limited number of available sequences even for localities that 

were comprehensively sampled (e.g. Europa Is., Glorioso Is., Mayotte and Reunion). No 

DNA sequences were obtained from Mayotte specimens. In addition to sequences produced 

in Chapter 2 and here, 35 sequences were included from Genbank which either were  
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Figure 4.1: Map of the South Western Indian Ocean displaying collection localities (check 

marks). (Adapted from Muths et al. 2011) RSA: South Africa, EUR: Europa Island, GLO: 

Glorioso Islands, MAY: Mayotte, MAU: Mauritius, RUN: Reunion. South African collection 

sites are outlined in Chapter 2. 



102 
 

collected from localities in the SWIO or were representatives of the various genera in the 

Laurencia complex.  

A total of 178 specimens were used in the SWIO analysis (Appendix: Table A1 and A2). 

With the exception of those specimens collected in South Africa for which detailed 

morphological data were available, the SWIO specimens were assigned to the  

Laurencia complex on the basis of limited morphological data: a combination of having 

either only pressed material available, or no formalin-preserved specimens for anatomical 

analysis, and/or no assessment of the number of corps en cerise upon collection. As such the 

identification of the SWIO specimens was achieved based on molecular analysis and the 

findings corroborated using the available morphological information when possible. 

In contrast with the studied region of the SWIO, South African collections were extensive, 

with 47 sites from along the coastline being sampled (see Chapter 2 for details). 

 

Global (oceanic region) analysis  

The global phylogeny dataset was designed to contain sequences for as many species and 

localities worldwide as possible. The SWIO dataset described above was used as a base and 

complemented by sequences obtained from new collections in Japan (14 - Hokkaido & 

Okinawa) and Western Australia (16 – Exmouth to Peron, and White Rock near Perth) as 

well as a selection of 35 sequences downloaded from the Genbank (Table A2 and A3). The 

full dataset included a total of 213 sequences representing 19 different countries and 8 

different oceanic regions (Table 4.1).  
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Table 4.1: World oceanic regions and the specimen localities/nations which defined them for 

the purposes of this study 

Ocean Regions Locations/Nations 

SWIO: South Western Indian Ocean Europa Is., Glorioso Is., Madagascar, Mauritius, 

Mozambique, Reunion, South Africa 

SEIO:  South Eastern Indian Ocean Western Australia  

NWPO: North Western Pacific Ocean Japan (Hokkaido and Okinawa Is..) 

SWPO: South Western Pacific Ocean New Caledonia 

NEPO: North Eastern Pacific Ocean USA 

SEAO: South Eastern Atlantic Ocean South Africa 

NEAO: North Eastern Atlantic Ocean Canary Islands, Spain, France 

NWAO: North Western Atlantic Ocean  Cuba, Guadeloupe, Mexico, USA, Venezuela  

 

No voucher specimens were kept for the Australian specimens and all morphological 

verifications had to be conducted based only on photographs of specimens captured before 

preservation for DNA isolation. Samples from Western Australia (SEIO) were donated to this 

study by Dr H. Verbruggen and Miss J. Costa (University of Melbourne, Australia). This 

limited genus-level identification extended to most of the Japanese specimens as well because 

accurate identification to species requires more detailed morpho-anatomical analyses. 

Japanese specimens were identified to genus level by determining the presence or absence of 

corps en cerise as well as assessing the habit and gross morphology. Gross morphology 

included traits such as the branching pattern, orders of branching and whether the specimen 

was cartilaginous or fleshy.  
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Molecular procedure 

DNA extraction, PCR and Sequencing 

The procedure for DNA extraction, PCR and sequencing is the same as outlined in Chapter 2. 

 

Phylogenetic analysis 

A total 65 new rbcL sequences (35 for the SWIO, 14 for Japan and 16 for Western Australia) 

were newly generated in this study. Only specimens with more than 75% of the total expected 

sequence length (at least 1100 base pairs) were retained and gaps coded as missing data. The 

final DNA matrices, including data downloaded from GenBank, totalled 178 rbcL sequences 

for the SWIO analysis and 230 rbcL sequences for the global oceanic region analysis.  

Outgroups for each analysis differed slightly. For the SWIO analysis, Chondria dasyphylla 

(Woodward) C Agardh from the USA and Chondria capensis (Harvey) Askenasy were used 

as outgroups, the latter being a South African specimen sequenced in this study. Specimens in 

the genus Chondria were chosen as outgroup for the SWIO analysis to minimise genetic 

distance between the ingroup (members of the Laurencia complex) and the outgroup. This 

was expected to highlight the diversity and phylogenetic relationships of taxa within the 

Laurencia complex for the SWIO. The global (oceanic region) analysis used the same 

outgroups as in Chapter 2, namely species of Bostrychia and Chondria in the Rhodomelaceae 

and Spyridia in the Ceramiaceae. This selection process for outgroups follows that of other 

publications focussed on the Laurencia complex as referenced in Chapter 2. 

 

All sequences were edited and assembled using Staden Package (Staden et al. 2003). Multiple 

sequence alignments were performed using BioEdit v7.1.11 (Hall 1999) using the CLUSTAL 

W algorithm (Thompson et al. 1994) and double-checked by eye. The phylogenetic 

relationships were inferred using the Bayesian statistical inference method performed in 
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MrBayes version 3.1.2 (Ronquist and Huelsenbeck 2003) on the CIPRES Science Gateway 

(Millar et al. 2010). The model used in the Bayesian analysis for both datasets (GTR+I+G) 

was selected based on the maximum likelihood ratio tests implemented in jModeltest version 

3.3 (Posada and Crandall 1998) with a significance level of 0.01 by the Akaike Information 

Criterion. Four chains of the Markov Chain Monte Carlo (three heated and one cold chain) 

were set, sampling one tree every 1000 generations for seven million generations and starting 

with a random tree. Calculation of posterior probabilities (PP) was performed after discarding 

70,000 trees sampled during the ‘burn-in period’. A 50% majority-rule consensus tree was 

determined after the burn-in phase.  

 

4.3 Results: 

South Western Indian Ocean Analysis 

The Bayesian SWIO phylogeny (Figure 4.2) supports of five clades fully (PP=1.00) which 

corresponds to five of the six genera in the Laurencia complex namely, Chondrophycus, 

Laurencia, Laurenciella, Osmundea and Yuzurua. The remaining genus Palisada had 

moderate support (PP=0.89), and was nested within a larger, weakly-supported clade 

alongside several specimens tentatively identified as Laurencia flexilis Setchell, Laurencia 

sp. and Chondrophycus sp. (Figure 4.2). These specimens grouped in two well supported 

subclades hereafter referred to as Laurencia flexilis subclades 1 and 2. Laurencia flexilis and 

its questionable placement in the genus Laurencia was discussed earlier (Chapter 2).  

 

Out of the 149 SWIO sequences included in the present study (115 from South Africa, 31 

from the rest of the SWIO and 3 from Genbank), 110 grouped within the Laurencia sensu 

stricto clade, while 21 grouped in five other clades in the Laurencia complex: Seven 

sequences each in Laurenciella and Palisada, three sequences in Laurencia flexilis subclade 
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2, and two each in the Chondrophycus and Laurencia flexilis subclade 1. Chondrophycus and 

Osmundea were resolved as sister genera with a PP of 1.00 and at the deeper node the genera 

of the Laurencia complex collapsed into a polytomy (Figure 4.2). The remaining 12 SWIO 

sequences produced in this study grouped with the outgroup genus Chondria, six of which 

were tentatively identified as Laurencia complex morphotypes prior to the molecular 

analysis. No SWIO sequences were recovered in the Yuzurua and Osmundea clades.  

Within the Laurencia sensu stricto clade there were 19 well-supported subclades, 8 of which 

were restricted to South Africa while Reunion and Madagascar had one endemic sub-clade 

each. Eight lineages of Laurencia sensu stricto were included specimens from multiple 

localities in the SWIO and other oceanic regions. Fourteen of the Laurencia sensu stricto 

subclades corresponded to the South African species identified in Chapter 2. While the South 

African morphotypes G and J, represented by only a single sequence in Chapter 2 (Figure 

4.2), formed well-supported subclades with specimens from the rest of the SWIO.  

Of the 35 Laurencia complex rbcL sequences downloaded from Genbank, 6 sequences 

belonged to the genus Laurencia sensu stricto and represented 5 species distributed 

throughout the tree. One specimen from New Caledonia, Laurencia cf. kuetzingii was the 

closest relative to Laurencia digitata together with a specimen from Glorioso Island (GLO-

315, Appendix: Table A2) sequenced in this study. Twenty-seven of the remaining 29 

Genbank sequences formed the core of the other genera in the complex, i.e. Chondrophycus, 

Laurenciella, Osmundea, Palisada and Yuzurua, while the single Laurencia flexilis sequence 

from the Philippines resolved within the L. flexilis sub-clade 1 (with two Laurencia 

specimens from the SWIO) as sister to the genus Palisada.  

 

Six of the SWIO specimens grouped within sub-clades of South African Laurencia sensu 

strico species or morphotypes identified in Chapter 2 and 3, namely Laurencia complanata, 
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L. multiclavata, L. natalensis, L. pumila, L. sp. morphotype G and morphotype K. Direct 

morphological comparisons with South African specimens supported conspecificity of the 

SWIO specimens. A Laurencia sensu stricto specimen from Glorioso Island (GLO-315, 

Appendix: Table A2 resolved in a well-supported subclade with Laurencia cf. kuetzingii  

from New Caledonia (Figure 4.2) but further morpho-anatomical details are required for 

confirmation of the specimen as Laurencia kuetzingii. 

In addition, it should be noted that Metti et al. (2013) placed Laurencia kuetzingii in 

synonymy of L. dendroidea, but one of the analyses presented in Chapter 2 (Figure 2.4) did 

not support this synonymy and the original specimen name should be conserved.  

The remaining SWIO specimens in Laurencia sensu stricto and the other genera of the 

Laurencia complex which formed unique sub-clades could not be identified and were 

labelled as unidentified taxa (sp.) of their respective genera. Where more than one distinct 

sub-clade occurred in a particular locality, they were labelled with consecutive numbers to 

distinguish these taxa from each other (Figure 4.2).  
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Figure 4.2: The 50% majority consensus Bayesian phylogeny of the Laurencia complex in the SWIO inferred from the plastid marker rbcL. 
RSA: South Africa; USA: United States of America, N: Northern; S: Southern 
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Genetic Distances 

The uncorrected-p pairwise distance calculation of Laurencia sensu stricto taxa 

included in this study (Table 4.2) exhibited marked nucleotide sequence variation between 

morphotypes (sequence divergence: 1.2-9.4%). Within-morphotype sequence divergence was 

less than 0.9% and the intergeneric sequence divergence levels of the Laurencia complex 

ranged between 7.2% and 14.2%. The Laurencia flexilis sub-clades 1 and 2 showed levels of 

sequence divergence between one another (9.4-11.3%) and also between each other and 

Laurencia sensu stricto (sub-clade 1: 9.1-12.7%; sub-clade 2: 8.9-13.0%) comparable to 

intergeneric sequence divergence in this study (Table 4.2). 

 

Table 4.2: The intergeneric and interspecific divergence values obtained for rbcL sequences 

of the Laurencia complex with emphasis on the SWIO in this study. (*: based on 1 species 

set; ‡: no multiples of one species in dataset+) 

Taxa Divergence values for rbcL sequences (%) 

Intergeneric   

Laurencia – Chondrophycus 9.2 – 12.9 

Laurencia – Palisada 8.1 – 13.8 

Laurencia – Osmundea 9.2 – 14.2 

Laurencia – Laurenciella 8.1 – 11.7 

Laurencia – Yuzurua 9.1 – 12.1 

Laurencia – L. flexilis sub-clade 1 9.1 – 12.7 

Laurencia – L. flexilis sub-clade 2 8.9 – 13.0 

Chondrophycus – Palisada 9.5 – 11.5 

Chondrophycus – Yuzurua 10.5 – 11.0 
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Chondrophycus – Osmundea 9.2 – 12.2 

Chondrophycus – Laurenciella 10.9 – 11.9 

Chondrophycus - L. flexilis sub-clade 1 10.5 – 11.7 

Chondrophycus - L. flexilis sub-clade 2 9.9 – 11.3 

Palisada - Yuzurua  9.4 – 11.8 

Palisada – Osmundea 9.6 – 13.0 

Palisada – Laurenciella 8.9 – 11.6 

Palisada – L. flexilis sub-clade 1 7.8 – 11.5 

Palisada – L. flexilis sub-clade 2 7.2 – 11.4 

Osmundea – Yuzurua 10.0 - 12.9 

Osmundea – Laurenciella 11.4 – 13.2 

Osmundea – L. flexilis sub-clade 1 11.8 – 13.1 

Osmundea – L. flexilis sub-clade 2  10.7 – 12.8 

Laurenciella – Yuzurua 10.1 – 10.7 

Laurenciella – L. flexilis sub-clade 1 10.0 – 11.8  

Laurenciella – L. flexilis sub-clade 2 10.6 – 12.1 

Yuzurua – L. flexilis sub-clade 1 9.7 – 10.7 

Yuzurua – L. flexilis sub-clade 2 10.4 – 12.0 

L. flexilis sub-clade 1 – L. flexilis sub-clade 2 9.4 –– 11.3 

  

Interspecific  
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Laurencia sensu stricto 1.2 – 9.4  

Palisada 1.2 – 7.7 

Osmundea 2.4 - 12.0 

Chondrophycus 1.2 - 5.6 

Yuzurua n/a 

Laurenciella n/a 

L. flexilis sub-clade 1 n/a 

L. flexilis sub-clade 2 1.7 – 4.4 

  

Intraspecific  

Laurencia sensu stricto  0.0 - 0.9 

Chondrophycus 0.0* 

Osmundea n/a‡ 

Palisada  0.1 – 0.6 

Yuzurua  0.0 – 0.1 

Laurenciella 0.0 – 1.0 

L. flexilis sub-clade 1 0.0 

L. flexilis sub-clade 2 0.4 

  

 

Global Oceanic Region Analysis 

Terminal nodes for all subclades within Laurencia sensu stricto have been collapsed and 

locality expressed only in terms of the oceanic regions for those specimens (see list of 

abbreviations in Materials and Methods above). The terminal nodes in the other genera in the 
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Laurencia complex, except Laurenciella, have been fully collapsed to aid better viewing of 

the tree which would otherwise be too large (Figure 4.3).  

 

Four of the six genera in the Laurencia complex were fully supported (PP=1.00) in the 

Bayesian analysis, the exceptions being Laurencia and Palisada (Figure 4.3). The two sub-

clades of Laurencia flexilis, a species which has previously been pointed out by Abe et al. 

(2006) as independent entity in the Laurencia complex, were also fully supported. Support 

for the relationships between genera at the deeper nodes lack support, and the resolution 

within Laurencia sensu stricto was poor (Figure 4.3). Out of the 230 sequences included in 

the present study (175 produced in this study – Chapter 2 and 55 from Genbank), 150 

grouped within the Laurencia sensu stricto clade, while 62 grouped in five other clades in the 

Laurencia complex as follows: Twenty-six sequences in Palisada, eleven in Laurenciella, 

eight in Chondrophycus, seven in Osmundea, four in Yuzurua and three each in the Laurencia 

flexilis sub-clades 1 and 2. Chondrophycus and Osmundea were resolved as sister genera with 

a PP of 1.00, and at the deeper node the genera of the Laurencia complex collapsed into a 

polytomy (Figure 4.3). None of the sequences produced in this study belonged to the Yuzurua 

and Osmundea clades.  

 

Within the Laurencia sensu stricto clade there were 28 well-supported sub-clades, 21 of 

which were found in the SWIO and two of these sub-clades were shared with Western 

Australia (temperate SEIO) (L. sp. morphotype A and L. sodwaniensis) and a further two 

subclades (L. glomerata and L. stegengae) occur west of Cape Agulhas in the SEAO, though 

most of their distribution is in the SWIO. Sixteen of the subclades in Laurencia sensu stricto 

were restricted to one oceanic region and almost 82% of these subclades occurred in the 

SWIO (13 of 16 subclades) especially along the South African coast (six of the 13 SWIO 
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subclades) (Figure 4.3). Laurencia brongniartii recorded from South Africa, the United 

States of America and Taiwan was the only Laurencia sensu stricto taxon recorded from 

more than two oceanic regions, namely the SWIO, NWPO & NEPO (Figure 4.3).  

Three of the other genera in the Laurencia complex were also recorded from multiple oceanic 

regions, namely Laurenciella (NEAO, SEAO, SWAO & SWIO), Palisada (WPO, SWIO, 

SEIO & NWAO) and Chondrophycus (WPO & SWIO). Similarly, Laurencia flexilis sub-

clade 1 was recorded from the NWPO and SWIO. Yuzurua and Osmundea were restricted to 

the Atlantic Ocean, although the latter genus is recorded in the literature) to occur on the 

Pacific coast of the United States (in Abbott and Hollenberg 1976 as Laurencia sp., 

www.ucjeps.berkeley.edu/californiaseaweeds.html) and the Mediterranean Sea (Serio et al. 

1999). 

The Australian specimens could not be assigned a species name based on the examination of 

photographs which were the only available morphological information. In the case of the 

Japanese specimens, only those specimens collected from Sapporo Prefecture in northern 

Japan were identified by local phycologists (Dr. Kazuhiro Kogame, Hokkaido University and 

Dr. Shinya Uwai, Niigata University) while those collected in Okinawa were identified to 

genus level only and further anatomical analyses are required for species assignment. 
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Figure 4.3: The 50% majority consensus Bayesian phylogeny of the Laurencia complex in the ocean regions of the world inferred from the 
plastid marker rbcL. RSA: South Africa; USA: United States of America; N: Northern; S: Southern 
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4.4 Discussion:  

Diversity and distribution of the Laurencia complex in the SWIO  

This study is the first to investigate the phylogenetic diversity of the Laurencia complex in 

the SWIO. Results highlighted the fourteen South African Laurencia sensu stricto species 

identified in Chapter 2, five additional entities from other localities in the southern SWIO 

namely Glorioso Island, Mauritius and Madagascar (one each) and Reunion (two; though one 

is represented by a single specimen), as well as five Palisada species, two Chondrophycus 

species and Laurenciella marilzae for a total of 30 Laurencia complex species in the region. 

The remaining three entities belong to the two subclades of Laurencia flexilis - sub-clade one 

contains one while sub-clade two has two and is thus far confined to the SWIO. Our results 

further indicate that this diversity is underestimated: five additional Laurencia sensu stricto 

morphotypes (A, G-J) were distinguished from South African data (see Chapter 2), two of 

which (morphotype G and J) were also found in Madagascar (G& J) and Mozambique (J). 

More morphological and molecular data are required before these entities can be confirmed 

as distinct and new species.  

The highest diversity of the Laurencia complex was found in South Africa with 19 species 

belonging to 4 genera, followed by Madagascar with 3 genera and 8 species. It should be 

noted that the current analysis of Laurencia complex diversity in the SWIO, with the 

exception of South Africa, does not represent a full reflection of the phylogenetic diversity in 

the region. This is particularly true for Mauritius. Børgesen (1945, 1952-1954) reported a 

total of 11 Laurencia complex species, nine of which belong to Laurencia sensu stricto and 

one each to Palisada and Chondrophycus, but the current study only produced a single 

Mauritian Laurencia sensu stricto sequence (Figure 4.2).  That being  

said, the species and generic diversity found in this study places South Africa above 

Mauritius as the most speciose locality in terms of Laurencia complex diversity in the region. 
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The most diverse region of the South African coastline with respect to the Laurencia complex 

is the warm temperate south coast with 13 species (of the total of 19). In contrast 9 of the 19 

species occur in the tropical extreme northeast of South Africa (sensu Bolton et al. 2004) and 

only six of those species occur in the rest of the studied section of the tropical SWIO. Of the 

nine species with tropical distributions five (Laurencia digitata, Laurencia flexuosa, 

Laurencia natalensis, Laurencia multiclavata and Laurencia pumila) were also recorded 

from the south coast of South Africa. The results from this study suggest that the species 

diversity of the Laurencia complex decreases from the warm-temperate south coast into the 

tropical northeast coast of South Africa and the rest of the studied region of the SWIO. The 

study identified South Africa as the most diverse region (with four genera) and the only 

locality in the SWIO to have the recently described genus Laurenciella recorded 

Comparatively, Europa Island and Reunion, the best represented localities (on the basis of 

sequences produced vs. numbers of specimens) outside of South Africa, each have three 

genera of the Laurencia complex present on their shores. However, patterns of diversity for 

species and genera in the SWIO are difficult to describe confidently because collections in 

significant floristic regions such as Mauritius and Madagascar are limited, and it is therefore 

not possible to identify hotspots of diversity in the SWIO at present. 

This study identified 11 Laurencia sensu stricto sub-clades restricted to a single locality 

within the studied region of the SWIO (Figure 4.2). Nine of the eleven sub-clades are South 

African and represent 9 species (Laurencia cf. corymbosa, L. dehoopiensis, L. dichotoma, L. 

digitata, L. cf. elata, L. flexuosa, L. glomerata, L. sodwaniensis and L. stegengae). Thus far, 

five of the nine species are endemic to South Africa (L. dehoopiensis, L. dichotoma, L. 

digitata, L. sodwaniensis, L. stegenegae), and at least two species, L. dehoopiensis and L. 

stegengae, can be confirmed as endemic to the warm temperate south coast of South Africa, 

and in the case of L. stegengae to the southwest transition zone (see Figure 1.3, Chapter 1). 



117 
 

Laurencia dichotoma and L. sodwaniensis are endemic to the warm waters of north eastern 

KwaZulu-Natal. Laurencia digitata has the widest distribution of the South African endemic 

species, being recorded from the warm temperate south coast to the tropical east coast of 

KwaZulu-Natal (see Chapter 3 for distribution details). Literature on the Laurencia complex 

indicated that the four remaining South African species have wider distributions than 

represented in this study and were reported from localities outside of the SWIO including, 

amongst others, Indonesia (L. glomerata – Amadtja and Prud’homme van Reine 2012), 

Mauritania (L. flexuosa – John et al. 1994), Fiji (L. corymbosa – N’Yeurt and Keats 1996, 

South and Skelton 2003) and Australia (L. elata – Saito and Womerseley 1974, Womersley 

2003). Putative species from Reunion (Laurencia sp. 3) and Madagascar (1 – Laurencia sp. 

4) constitute the remaining two subclades (of the total eleven for Laurencia sensu stricto) and 

these entities appear endemic to their respective island.  

The remaining eight sub-clades in Laurencia sensu stricto, which represent six species (L. 

brongniartii, L. complanata, L. cf. kuetzingii, L. natalensis, L. multiclavata and L. pumila) 

and two putative species (L. sp. ‘G’ and L. sp. ‘J’) that are comparatively widely distributed, 

reveal some interesting patterns of distribution. The present study confirmed the distribution 

of Laurencia natalensis into Mozambique as reported by Isaac (1958) and Isaac and 

Chamberlain (1958) and is also the first record of this species from Madagascar (Figure 4.2). 

Laurencia natalensis and L. multiclavata, which are morphologically similar species, have 

interesting distribution patterns. Both species share a similar pattern of distribution within 

South Africa, i.e. from the temperate south coast into the tropical north east coast (see chapter 

2), while in the rest of the SWIO their distribution differs. Both are present in the southern 

end of the Mozambican channel (Mozambique and Madagascar) together with Laurencia 

natalensis, while L. multiclavata is also recorded from the northern reaches of the channel at 

Glorioso Island and in northern Madagascar. Considering the limited collections available 
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from Mozambique and Madagascar for the present study, it must however be noted that the 

sampling in SWIO is not comprehensive and the observed pattern may be an artefact, 

especially considering that Lawson (1980) has recorded L. natalensis from Kenya.  

 

Putative species of Palisada – P. sp. 1 and 2, were found along the warm temperate south 

coast and the tropical northeast coast of South Africa, respectively and the latter tropical 

species Palisada sp. 2, shares an affinity with a tropical Palisada sp. 4 (specimen #R69 – 

Table A2) from Reunion (Figure 4.2). While sequence representation is poor (1-2 sequences 

per putative species) at present all three putative species are endemic to the SWIO (Figure 

4.2). These results represent a range expansion for Palisada as before this study the furthest 

south the genus Palisada had been recorded was Madagascar (Silva et al., 1996). Similarly, a 

single putative species of Chondrophycus (represented by one DNA sequence each) was 

recorded from each of South Africa and Europa Island (Figure 4.2). While further morpho-

anatomical details are needed to identify these taxa to species level, both taxa are discussed 

briefly later in this chapter.  

 

New insights into the taxonomy of the Laurencia complex  

The phylogeny of the Laurencia complex in the SWIO produced in this study showed full 

support (PP=1) for all of the genera except Palisada (Figure 4.2). Palisada formed a group 

with two Laurencia lineages, Laurencia flexilis subclades 1 and 2, each of which were fully-

supported (PP=1) and had genetic differences ranging in the intergeneric level (see Table 4.2) 

supporting them as potential distinct genera. Laurencia flexilis was considered by Abe et al. 

(2006) to have intermediate morphology between Laurencia and Chondrophycus, exhibiting 

the diagnostic lack of secondary pit-connections of Chondrophycus and the four pericentral 

cells of Laurencia. Molecularly, Chondrophycus was separated into two distinct clades with 
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high bootstrap support in the rbcL analysis by Abe et al. (2006); the first clade contained the 

generitype of Chondrophycus, C. cartilagneus (Yamada) Garbary & J.T. Harper, while the 

second contained a collection of sequences from mostly tropical localities in the Philippines, 

Brazil and Japan. Subsequent work by Nam (2006, 2007) has shown this second 

Chondrophycus clade of Abe et al. (2006) - to which a sequence of Laurencia flexilis 

(AF489860) from the Philippines was most closely related - to be a distinct genus which they 

described and named Palisada. In the present study, the aforementioned Philippines 

Laurencia flexilis sequence clustered with two sequences from Europa Island and Glorioso 

Island (subclade 1, Figure 4.2) which appeared closely related to the Palisada subclade 

(Figure 4.2). A second subclade (subclade 2, Figure 4.2) including sequences from Reunion 

and northern Madagascar, tentatively identified as Laurencia flexilis, also grouped together 

(PP=1.00) and formed a weakly-supported clade (PP not shown) with subclade 1 and the 

Palisada subclade (Figure 4.2). Subclade 2 is the most basal group in the clade and the 

branch lengths in Figure 4.2 indicate this subclade is limited in sequence similarity to even its 

closest relatives - subclade 1 and the Palisada subclade. Comparing the genetic distance 

between each of the subclades (i.e. 1, 2 and Palisada) shows that the level of divergence is 

similar to those of Palisada and any of the other known genera in the Laurencia complex in 

this study (Table 2.1). In fact, the genetic distance between Laurencia flexilis subclade 1 and 

subclade 2 (9.4%-11.3%) is even higher on average than the distance between both sub-clade 

and Palisada (7.8%-11.5% and 7.2%-11.4% for subclades 1 and 2, respectively). These 

results provides early molecular evidence for two additional genera in the Laurencia 

complex, represented here as the two Laurencia flexilis subclades 1 and 2.  

Global biogeography of the Laurencia complex 

The global phylogeny produced in this chapter is the largest one to date and brings new 

insights into global distribution patterns of the sequenced Laurencia complex diversity. 
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Results from the phylogenetic analysis of a subset of taxa of the Laurencia complex in the 

oceanic regions of the world have revealed the following: Laurencia sensu stricto is recorded 

from both tropical and temperate waters in the Atlantic, Indian and Pacific Oceans with 30 of 

the 38 subclades of the genus (some of which represent groups of species) occurring in the 

southern hemisphere (Figure 4.3). In this analysis Laurencia sensu stricto comprises 

predominantly SWIO taxa (21 of the 28 subclades) and most of these are recorded from 

South Africa with a strong affinity for the temperate south coast flora (Agulhas marine 

province sensu Spalding et al. 2007). The endemicity of Laurencia complex species in the 

South African flora was discussed above, though this analysis highlights that a few species 

(including L. multiclavata and putative species such as L. sp. ‘G’ and L. sp. ‘J’ [Figure 4.3]) 

are common to studied regions of the SWIO. Two predominantly east coast species, 

Laurencia complanata and Laurencia sodwaniensis, are closely related (i.e. in the same sub-

clade) to specimens from temperate Western Australia (SEIO in Figure 4.3) which supports 

the proposal of Hommersand (1986) that the flora of KwaZulu-Natal shares affinities with 

that of the west (and south) coast(s) of Australia. The remaining seven subclades of 

Laurencia sensu stricto were spread across ecoregions in the Pacific and Atlantic Oceans and 

have affinities with temperate and tropical floras for both oceans (Figure 4.3). Taxa 

distributed in the Pacific have predominantly tropical affinities as a result of sampling efforts, 

even outside this study, being focussed in tropical habits (for e.g. Taiwan and New 

Caledonia) although a few are exclusively temperate such as Laurencia nipponica and L. 

okamurae from northern Japan (Figure 4.3). Conversely, Atlantic Ocean taxa are 

predominantly temperate in their floristic association with only two species from Atlantic 

Mexico, Laurencia caraibica and L. venusta, having tropical affinities (Figure 4.3).  

 The other five genera are not as common as Laurencia sensu stricto, however some patterns 

did arise. In Palisada, the second largest genus in the complex (22 species), the 18 taxa (for 
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which sequences are available) analysed in this study were distributed largely in the Pacific 

(number), with only six taxa in the Indian Ocean and two in the Atlantic. The species of the 

genus are predominantly recorded from warm-temperate and tropical shores (distributional 

data from Guiry and Guiry 2014), and in). In the present analysis the subclades (representing 

individual species of Palisada from the Pacific) had largely tropical affinities (see more 

details in Figure 4.2). Indian Ocean species often appeared to have affinities with species 

from the temperate floristic regions on the west coast of Australia and south coast of South 

Africa. The present study records Palisada for the first time in South Africa and so expands 

the distribution of the genus to the temperate Indian Ocean.  

Species of the genus Chondrophycus occur along the temperate and tropical shores of the 

Indo-West Pacific (Guiry and Guiry 2014). Prior to this study the known distribution of 

Chondrophycus in the SWIO region was limited to the records of Chondrophycus 

columellaris (Børgesen) E. Coppejans et A.J.K. Millar in Tanzania and Reunion (Guiry and 

Guiry 2014). The results of the present study expanded the distribution of the genus with two 

undescribed Chondrophycus entities: one from Europa Island which appeared closely related 

to C. tronoi (E. Gazon-Fortes) K.W. Nam from the Philippines, and the second one collected 

from Sodwana Bay in the north-east of KwaZulu-Natal, South Africa.  

The monospecific genus Laurenciella is recorded from tropical (Brazil and Mexico) and 

temperate (Tenerife and other islands of the Canary Islands, Spain and Portugal) floristic 

regions in the Atlantic Ocean (Guiry and Guiry 2014). Laurenciella marilzae was recorded in 

Chapter 2 for the first time on shores of the Indian Ocean from the temperate south coast of 

South Africa (Agulhas ecoregion viz. Spalding et al. 2010) (Chapter 2, Figure 4.2 and 4.3). 

Laurenciella marilzae is distributed in the warm temperate (Indian Ocean) region of the 

South African coast and is virtually indistinguishable from the specimens from the eastern 



122 
 

temperate and western tropical floras of the Atlantic Ocean. Laurenciella had never been 

recorded outside of the Atlantic Ocean before the present study.   

Biogeographical hypotheses 

In his development of a theoretical framework to explain the biogeography of South African 

red algae Hommersand (1986) stated that the Laurenciae amongst other families and tribes 

could have a primary distribution and origin in the Tethys Ocean. The Tethys was a tropical 

ocean (Poulsen et al. 1998) and therefore, accepting Hommersand’s deductions, the 

Laurenciae originated in warm water. Hommersand (1986) proposed two assemblages within 

the Tethyan flora: a southern Tethyan Ocean assemblage with a centre of diversity in present 

day west and South Australia and a Pacific Ocean assemblage with a present centre of 

diversity in Tasmania, South Australia and New Zealand. Saito and Womersley (1974) and 

Womersley (2003) recorded 16 species (of a total 61 for Australia according to Duretto 2014) 

for temperate Australia, making this floristic region an area of significant diversity for the 

Laurencia complex, fitting well with the model proposed by Hommersand (1986). Given the 

large number of South African specimens in the global data set for the Laurencia complex, 

and the fact that the warm-temperate flora of South Africa is potentially derived from 

multiple sources including Western Australia and Japan (Hommersand 1986), it could be 

useful to investigate these temperate phylogeographic connections. 

 

In the present study Laurencia flexuosa is one of the most widely distributed species within 

South Africa, occurring from False Bay on the temperate southwest coast eastward into 

KwaZulu-Natal. According to John et al. (2004) it is also part of the tropical floras on the 

shores of Mauritania, West Africa. In contrast, the morphologically similar Laurencia cf. 

elata was restricted to Cape St. Francis and other localities within a 200 km stretch of 

coastline (See Figure 2.2 in Chapter 2); it was not found elsewhere in the SWIO, yet 
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Laurencia elata is widely distributed along the temperate West and South coasts of Australia 

(see Saito and Womersley 1974 for distribution details).Although the molecular analysis does 

not include an Australian specimen, the morphology and anatomy of the SWIO specimens 

that were included, very closely matches the descriptions in Saito and Womersley (1974).  

Given the restricted range of South African Laurencia cf. elata it would be interesting to (1) 

confirm the South African specimens as Laurencia elata and (2) assess the degree of 

sequence divergence between these geographic populations given their contrasting 

distribution patterns and ultimately investigate if these populations fit the model time-frames 

proposed by Hommersand (1986).   

In Laurencia sensu stricto there were no links between Japan and South Africa (Figure 4.3), 

which is contrary to the expectations of Hommersand (1986) who postulated that the 

evidence for linkages between these two temperate floras may increase with our knowledge 

of the flora. However, the analysis did resolve a relationship between two temperate North 

Pacific taxa (Laurencia pacifica from the US and an undescribed Japanese Laurencia 

species) which were the most basal taxa in their clade together with the temperate south-east 

Australian species Laurencia rigida (Figure 4.3) and this provides evidence for a link 

between these temperate Pacific floras. While Hommersand (1986) focussed on the potential 

pathways for the development of the South African flora, the Austral Pacific Ocean migratory 

path (see Figure 3 in Hommersand (1986)) could be an explanation for the relatedness 

evident between the high latitude Northern Pacific taxa and the south-east Australian 

Laurencia rigida.  Also in Figure 4.3, Laurencia cf. majuscula is shared between temperate 

Western Australia (a single specimen from Coral Bay: Paradise Beach) and Okinawa, the 

largest of the Ryukyu Islands (several specimens from around Okinawa – see Table A2 for 

details). Sequence divergence levels for these specimens are less than 0.5% which is on par 

with the within-species divergence levels for confirmed species in the Laurencia complex, 



124 
 

and while the marine flora of Okinawa is tropical rather than mixed temperate-tropical such 

as in Western Australia, a link between this island and Western Australia was shown for 

echinoderms (Benzie 1999). 

The results of the global phylogeny suggest that there is still a significant amount of work to 

be done on the Laurencia complex. As more sequences from the Indo-Pacific are included in 

the global phylogeny the biogeography of the Laurencia complex will be better understood 

and the hypotheses proposed by Hommersand (1986) can be further tested. 
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CHAPTER 5: 

GENERAL DISCUSSION 

 

This study is the first to re-assess the diversity of the Laurencia complex species in South 

Africa and the South West Indian Ocean (SWIO) using molecular markers and to assess its 

biogeography globally.  Literature on the Laurencia complex prior to this study reported ten 

Laurencia sensu stricto species occurring along the South African coast (Stegenga et al. 

1997, De Clerck et al. 2005), only three of which (L. complanata, L. flexuosa and L. 

natalensis) had been sequenced (DNA sequences available on Genbank). The SWIO was 

comparatively much poorer; with the most comprehensive taxonomic accounts of Laurencia 

species for most locations being several decades old (e.g. Børgesen 1945, Isaac and 

Chamberlain 1958, Jaasund 1970, 1976) with no DNA sequences available.  

 

In terms of South African diversity, Chapter 2 examined the validity of the Laurencia 

complex taxa collected using morpho-anatomical and DNA sequence data, the combination 

of which confirmed that nine of the ten species (see Table 1.2, Chapter 1) were distinct in the 

genus Laurencia sensu stricto. The only species not confirmed was Laurencia obtusa which 

was found to be polyphyletic and highly variable in its morphology, and therefore unlikely to 

represent a single species as suggested previously with South African specimens by Stegenga 

et al. (1997). This study produced the first phylogeny of the Laurencia complex 

incorporating South African specimens, which represented most (67%) of the sequences 

analysed. Results of the analyses increased the number of known South African Laurencia 

sensu stricto species to fourteen, including five species newly described: Laurencia 

dehoopiensis, L. dichotoma, L. digitata, L. multiclavata and L. sodwaniensis. A further five 

Laurencia sensu stricto taxa representing putative new species were found, although 
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additional specimens are required to confirm them as distinct entities. In addition, the study 

identified five new records for South Africa in three other genera of the Laurencia complex, 

namely Laurenciella (1) Palisada (3) and Chondrophycus (1). The updated list for the 

Laurencia complex in South Africa thus includes 19 (potentially 24) species in total.  

 

In Chapter 3, the fourteen South African Laurencia sensu stricto species highlighted in 

Chapter 2 were fully described using morpho-anatomical features which for the first time 

incorporated the number of corps en cerise per epidermal cell. The corps en cerise proved to 

be a consistent taxonomic character, particularly useful in distinguishing species. For 

example, this study found two species in what had been considered the wide-spread and well-

known species, Laurencia flexuosa Kützing; one species had 2-3 corps en cerise (L. flexuosa) 

per epidermal cell while the other had 5-6 corps en cerise (L. cf. elata).   The first taxonomic 

key to the South African Laurencia sensu strico species was produced, following on the work 

of Stegenga et al. (1997) who had produced a key to the Laurencia species of the west coast 

and south-west transition zone of South Africa.  The remaining morphotypes (five Laurencia 

sensu stricto taxa) identified in this study for the Laurencia complex in South Africa remain 

formally undescribed, but morphological and anatomical data were captured for future study.  

 

In Chapter 4 the inclusion of SWIO specimens in the phylogenetic analyses produced a 

number of interesting results. For instance, specimens from Europa Island, Glorioso Island, 

Madagascar and Reunion, together with a sequence downloaded from Genbank (Laurencia 

flexilis AF489860, from the Philippines), were found to represent two putative new genera 

based on the level of sequence divergence between these specimens and all other taxa in the 

Laurencia complex. The distributions of South African Laurencia complex species were 

described (it should be noted that species distributions for Chondrophycus and Palisada were 
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inferred from relatively few and scattered specimens, see Chapter 4). The inclusion of 

specimens from the localities of the SWIO extended the distribution of several previously 

known, as well as newly-described South African Laurencia sensu stricto species. For 

example Laurencia natalensis and L. multiclavata were both recorded from Madagascar, 

while the latter species was also recorded form Glorioso Island. Similarly, Laurencia 

complanata which was recorded from South Africa and Mozambique before this study, has 

now also been recorded on the island of Madagascar.   

 

A proper assessment of the global diversity of the Laurencia complex would require a broad 

oceanic perspective. In Chapter 4 an assessment on this scale was produced for the first time 

incorporating sequences for taxa from as many oceanic regions as possible. Results from this 

analysis, while preliminary, identified links between Western Australian and South 

African/SWIO Laurencia sensu stricto taxa (see Figure 4.3, Chapter 4). The floristic 

affinities between South Africa and Western Australia fits well with the hypotheses of 

Hommersand (1986) who outlined three potential mechanisms which could explain the 

relationship between the taxa of these regions. The mechanisms suggested by Hommersand 

(1986) were:  

(1) They represent vicariant relics of a previously continuous distribution along the coast 

of Gondwanaland at a time when the connection between the coastlines of Africa and 

Australia were relatively continuous as far back as the Cretaceous period,  

(2) Their relatedness is a result of the separate evolution of species that share a common 

Tethyan or Indian Ocean (i.e. warm-water) ancestry that have evolved similar 

morphological adaptations in response to corresponding changes in climate,  

(3) Species clusters that evolved initially in Western and Southern Australia produced 

offspring that migrated through the Indian Ocean via the North Equatorial Current to 
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South Africa during periods of major global cooling corresponding to times of 

maximal glaciation in Antarctica as in, for example, the Pleistocene glaciation. 

 

Of the three hypotheses proposed by Hommersand (1986) the results of this study so far seem 

to support the third scenario (favoured by Hommersand himself) with some Western 

Australian taxa being closely-related to temperate and tropical South Africa taxa (namely 

Laurencia complanata, L. sodwaniensis and L. sp. ‘morphotype A’) and tropical species in 

the SWIO (Laurencia sp. ‘morphotype J’) (Figure 4.3 in Chapter 4). These results, as 

mentioned previously, are preliminary and further sampling (alongside additional analyses 

discussed further below) is required to verify these findings. 

 

A connection between the floras of South Africa and Atlantic North and Central America was 

also evident. At the species level the presence of Laurencia natalensis, which was recorded in 

Venezuela by Garcia-Soto & Lopez-Bautista (2013), fits in well with the hypothesis of 

Hommersand (1986) that South Africa would be a gateway for taxa to move from the Indian 

into the Atlantic Ocean (particularly north America and Europe), as prior to the work of the 

aforementioned authors this species had not been recorded outside of the Indian Ocean. At 

the generic level finding the monospecific genus Laurenciella on the south-west and south 

(Indian Ocean) coast of South Africa when it had only been recorded before from the western 

Atlantic Ocean (Senties et al. 2011) and the Canary Islands also support the migration/South 

African gateway hypothesis proposed by Hommersand (1986).  
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Future Perspectives 

Additional markers 

The plastid marker rbcL has been highly successful in delineating genera and species in the 

Laurencia complex; however, additional molecular markers are needed to confirm the 

phylogenetic relationships determined using this marker. Lewis et al. (2008) successfully 

amplified the plastid Rubisco spacer, nuclear internal transcribed spacers (ITS-1 and ITS-2) 

and rDNA (5.8S) for the Laurencia complex. They found that non-coding plastid (Rubisco) 

and nuclear (ITS) spacer sequence data were fairly successful at distinguishing species, while 

the coding nuclear marker 5.8S was generally only good at distinguishing between different 

genera. Despite its reported usefulness at identifying rhodophyte species (Hu et al. 2009), 

there have been no publications since Lewis et al. (2008) using nuclear ITS as a marker when 

analysing the Laurencia complex.  

 

Other markers to explore include the main barcoding marker for red algae, the 5’ region of 

cytochrome oxidase 1 (COI-5P), which has already been used successfully in analyses of two 

Laurencia complex species – Laurencia pyramidalis and Laurenciella marilzae, as well as 

cytochrome oxidase 2-3 spacer (cox 2-3) which has proven to be a useful marker for 

phylogeographic studies in red algae (Zuccarello and West 2002, Provan et al. 2005, 

Andreakis et al. 2007, Bolton et al. 2011, Paiano and Necchi 2013). The latter mitochondrial 

marker (cox 2-3 spacer) was suggested as the next marker to be sequenced for the Laurencia 

complex, after rbcL, by the International Laurencia complex Working Group which formed 

at the International Phyclogical Congress (IPC-10) in Orlando, Florida, USA in August 2013.  

 

The importance of sequencing barcoding makers as the next step for the Laurencia complex 

becomes apparent when assessing the representation of the group on the barcoding website 
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Barcode of Life Data Systems (BOLD; www.boldsystems.org). In the genus Laurencia sensu 

stricto there are only 101 records, representing 26 species. Fifty-four of the records are 

plastid rbcL sequences sourced from GenBank™ (www.ncbi.nlm.nih.gov.) and 47 are from 

Universidad de la Laguna (Canary Islands, Spain). The current records are from Spain (31), 

Portugal (22), Brazil (17), Mexico (11), Unspecified (*7), South Africa (4), Sri Lanka (3), 

United States (3), Cuba (2) and France (1). Similarly there are only 17 records of Palisada, 

all but two of those being rbcL sequences sourced from Genbank™. 

This poor and biased representation of the Laurencia complex is gives a good idea of the 

paucity of genetic work on the complex in general, despite the success of rbcL in 

phylogenetic analyses. 

 

Molecular phylogenetic dating 

In light of the some of the evidence found in this study which tentatively supports the 

Hommersand (1986) hypotheses for the origins of the South Africa flora, including the 

possible movement of South African Indian Ocean taxa into the Atlantic, the next step would 

be to test these hypotheses using molecular dating techniques for the Laurencia complex. 

These techniques would not only address biogeographical hypothesis testing but also 

evolutionary questions in regards to the species diversity of the Laurencia complex. Fleshy 

seaweeds, like those of the Laurencia complex, have very few fossil records against which 

calibration points for the molecular clock can be set; the clock, alongside rates of molecular 

change, are necessary for accurate dating of phylogenies. In their analysis of the Bostrychia 

calliptera - B. pinnata species complex, Zuccarello and West (2002) produced a dated 

molecular phylogeny which has formed the basis of later diversity and phylogeographic 

studies for the red algae (Andreakis et al. 2007, Payo et al. 2013). Perhaps the most notable 

of these is Payo et al. (2013) who found that the widely-distributed Portieria hornemanii 
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(Lyngbye) P.C. Silva previously believed to be the only species of the genus present 

throughout the Indo-Pacific was in fact representative of 21 cryptic species within the 

Philippines alone. Similar molecular techniques can be applied to the Laurencia complex to 

address questions of speciation particularly on a local scale when comparing 

species/molecular lineages that are genetically similar - as well as testing the if the 

evolutionary patterns of the Laurencia complex match the hypotheses proposed by 

Hommersand (1986). 

 

Sampling strategies 

A more comprehensive sampling in the SWIO is necessary for future study with the inclusion 

of specimens from Kenya, Tanzania, the Seychelles, and the Comoros, as well as more 

detailed collections in Madagascar, Mozambique and the Mascarene Islands which are likely 

to reveal more diversity than that currently known. Particularly important areas, alongside the 

SWIO localities mentioned above, are the northern Indian Ocean, especially the shores of 

India which has around 430 rhodophyte species (Kaladharan and Jayasankar 2003), twenty of 

which belong to the Laurencia complex (Guiry and Guiry 2014), but also the highly diverse 

Coral Triangle and much of Australia. Filling in these floristic gaps for the Laurencia 

complex will also prove useful for biogeographic studies and could test hypotheses for the 

origins (i.e. Tethyan or Indian Ocean) and pathways of distribution of the tropical and warm-

temperate floras of South Africa and the shores of East Africa, such as those proposed by 

Hommersand (1986).  

 

Chemotaxonomy 

In addition to DNA markers, chemotaxonomic separation of species has been well 

documented in the Laurencia complex, primarily from the genus Laurencia sensu stricto. 
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This started with the study of Fenical and Norris (1975) and has spanned  almost 40 years of 

research (e.g. Caccamese et al. 1979, Howard et al. 1980, Masuda et al. 1996, Pietra 2002, 

Gil-Rodriguez et al. 2009, Manchin-Sanchez et al. 2014) showing that Laurencia complex 

species can be distinguished on the basis of their secondary metabolites. For example 

Caccamese et al. (1979) found that using gas chromatography-mass spectrophotometry (GC-

MS) they were able to characterise the six Laurencia species used in their study on the basis 

of compounds unique to each species. Similarly, Masuda et al. (1996) reported that alongside 

detailed morpho-anatomical study, Laurencia composita and L. okamurae could be 

distinguished from one another on the basis of their chemical constituents; L. composita 

produces chamigrane-type sesquiterpenoids, whereas L. okamurae produces cyclolaurane-

type sesquiterpenoids. The most recent work using chemical analyses to discern species of 

the Laurencia complex is that of Machin-Sanchez et al. (2014) who, using capillary 

electrophoresis and mass spectrophotometry (CE-MS), were able to separate 28 species from 

Macaraonesia in the Laurencia complex, representing four of the six genera, from one 

another. From a South African perspective some preliminary evidence for species-level 

separation in Laurencia sensu stricto by means of gas-chromatography and nuclear magnetic 

resonance (NMR) spectroscopy was  shown by Knott (2013, pers. comm.), though this was 

based on a limited number of specimens. The relatively high diversity of Laurencia sensu 

stricto in South Africa, the potential limitations of morphology and anatomy in distinguishing 

species, and the value of an additional source of evidence for species delimitation coupled 

with the bio-prospecting potential of Laurencia sensu stricto warrants further research into 

the chemistry of these species. A chemotaxonomic review on the Brazilian species of the 

Laurencia complex (Fujii et al. 2011) identified two of the other genera in the complex, 

Palisada and Laurenciella (as Laurencia marilzae), and they also produced secondary 
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metabolites which displayed some bioactivity. Both of these genera occur in South Africa and 

should be included in future chemical analyses of the South African Laurencia complex. 
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Table A1: Collection details for specimens from South Africa sequenced in this study 

together with Genbank-sourced sequences (- : sequence not stored in Genbank yet) 

Samples Collection data/reference GenBank 
accession 
numbers 

Outgroups   

Bostrychia radicans (Montagne) Montagne USA, Mississippi, St Louis Bay, 
leg. CFD Gurgel, 11 Feb. 1998 

AS259497 

Chondria capensis (Harvey) Falkenberg South Africa, Western Cape, 
Mauritz Bay leg. M Rothman 02, 
Mar. 2011 (This study - #1004) 

- 

C. capensis South Africa, Western Cape, Cape 
of Good Hope (pool) leg. RJ 
Anderson & JJ Bolton 18 Nov. 
2009 (This study - #633) 

- 

C. dasyphylla (Woodward) C Agardh USA, North Carolina, New 
Hanover County, Wrightsville 
Beach 

U04021 

C. cf. dasyphylla  South Africa, Western Cape, 
Natures Valley. leg CM Francis 12 
Dec. 2012 (This study - #1162) 

- 

Chondria sp. South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
19 Aug. 2008 (This study - #166) 

- 

Chondria sp. South Africa, Western Cape, De 
Hoop, leg. RJ Anderson & JJ 
Bolton 18 Aug. 2008 (This study - 
#117) 

- 

Chondria sp. South Africa, Western Cape, De 
Hoop, leg. RJ Anderson & JJ 
Bolton  18 Aug. 2008 (This study - 
#118) 

- 

Chondria sp. South Africa, Western Cape, De 
Hoop, leg. RJ Anderson & JJ 
Bolton  20 Aug. 2009  (This study - 

- 
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#180) 

Chondria sp.  South Africa, Eastern Cape, 
Kenton-On-Sea leg. RJ Anderson & 
JJ Bolton 03 Oct. 2009 (This study 
- #335) 

- 

Chondria sp. (collected as Laurencia 
obtusa) 

South Africa, Eastern Cape, 
Waterloo Bay leg. RJ Anderson & 
JJ Bolton  07 Sep. 2009 (This study 
- #479) 

- 

Chondria sp.1 South Africa, KwaZulu-Natal, 
Bhanga Nek, Rabbit Rock leg RJ 
Anderson (This study - #1688) 

- 

Spyridia cupressina Kützing South Africa, Eastern Cape, Port 
Alfred, leg. RJ Anderson, JJ Bolton, 
07 Jul. 2008 (This study - #25) 

- 

   
Chondrophycus (Tokida & Saito) Garbary 
& Harper 

  

  C. undulatus (Yamada) Garbary & Harper New Caledonia, Loyalty Island, 
Maré leg. C Payri 22 Mar. 2005 
(Martin-Lescanne et al. 2010) 

FJ785307 

  C. undulatus New Caledonia, Loyalty Island, 
Maré leg. C Payri 22 Mar. 2005 
(Martin-Lescanne et al. 2010) 

FJ785308 

  C. tronoi (E. Gazon-Fortes)KW Nam [as 
L. tronoi] 

Philippines. AO Lluisma (Unpub.)  AF489864 

  Chondrophycus sp. New Caledonia, Loyalty Island, 
Lifou leg. C Payri 26 Mar. 2005 
(Martin-Lescanne et al. 2010) 

FJ785309 

  Chondrophycus sp. 1 South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt., leg. RJ 
Anderson & JJ Bolton  09 Jun. 
2010 (This Study - #802) 

- 

   
Laurencia Lamouroux   
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  L. cf. brongniartii J. Agardh Australia, Tarcoola Beach,leg S 
Fredericq, 1993 (unpub.) 

EF061654 

  L. cf. brongniartii  Taiwan, Makang Harbout. S. 
Fredericq, 11 Jul. 1993 (Fujii et al. 
2006) 

AF465814 

  L. cf. brongniartii  South Africa, KwaZulu-Natal, 
Sodwana Bay, 2 Mile Reef leg. RJ 
Anderson & JJ Bolton 22 Mar. 
2011 (This study - #978) 

- 

  L. cartilaginea Yamada Philippines. AO Lluisma (Unpub.) AF489859 

  L. complanata (Suhr) Kützing  South Africa, KwaZulu-Natal, Port 
Edward, leg. S Fredericq & O De 
Clerck, 8 Jul. 2001 (Fujii et al. 
2006) 

AF465813 

  L. complanata  South Africa, KwaZulu-Natal, Salt 
Rock, leg. RJ Anderson & JJ 
Bolton 09 Dec 2010 (This study -
#859) 

- 

  L. complanata South Africa, KwaZulu-Natal, Port 
Edward leg. CM Francis 28 Sep 
2011 (This study - #1053) 

- 

  L. cf. corymbosa J. Agardh South Africa, Eastern Cape, Three 
Sister leg. RJ Anderson & JJ Bolton 
27 Feb. 2013 (This study - #1257) 

- 

  L. cf. corymbosa  South Africa, Eastern Cape, Double 
Mouth leg. RJ Anderson & JJ 
Bolton 14 Jul. 2010 (This study - 
#768) 

- 

  L. cf. corymbosa South Africa, Eastern Cape, Port 
Alfred leg. RJ Anderson & JJ 
Bolton 07 Jul. 2008 (This study -
#31) 

- 

  L. cf. corymbosa South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #903) 

- 
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  L. cf. corymbosa South Africa, Western Cape, De 
Hoop, East of Koppie Alleen leg. 
RJ Anderson & JJ Bolton 18 Feb. 
2011 (This study - #926) 

- 

  L. cf. corymbosa South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
19 Aug. 2008 (This study - #164) 

- 

  L. dehoopiensis sp. nov.  Francis, Bolton, 
Anderson & Mattio [morphotype D] 

South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
18 Aug. 2008 (This study - #139) 

- 

  L. dehoopiensis sp. nov. [morphotype D] South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
19 Aug. 2008 (This study - #154) 

- 

  L. dehoopiensis sp. nov. [morphotype D] South Africa, Western Cape, De 
Hoop, East of Koppie Alleen leg 
CM Francis, RJ Anderson & JJ 
Bolton 18 Feb. 2011 (This study - 
#922/BOL150571) 

- 

  L. dendroidea J Agardh Brazil, Rio de Janerio, Rio das 
Ostras, Areias Negras leg. V 
Cassano 2005 

GU330237 

  L. dendroidea Brazil, Sao Paulo, Ubatuba, Praia 
de Felix leg. MT Fujii 31 Aug. 
2000 (Fujii et al. 2006) 

AF465810 

 L. dendroidea [as L. majuscula (Harvey) 
A.H.S. Lucas] 

Spain, Canary Islands, Tenerife, 
Punta del Hidalgo, Roca Negro leg. 
MC Gil-Rodriguez, 12 Jul. 2006 
(Gil-Rodriguez et al. 2009)* 

EF686000 

 L. dendroidea [as L. cf. majuscula] New Caledonia, Ile de Pins. Leg C 
Payri 2 Dec. 2005 (Martin-
Lescanne et al. 2010) 

FJ785312 

 L. dendroidea  (as L. obtusa (Hudson) 
Lamouroux) 

Guadeloupe, Pointe de la Verdure, 
leg. S Fredericq 20 Mar. 1994 (Fujii 
et al. 2006) 

AF465811 

 

L. dendroidea  (as L. obtusa) Venezuela, Isla Pelone, leg. C.F. 
Gurgel 26 Jun. 1999 (Fujii et al. 
2006) 

AF465812 
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  L. dichotoma sp. nov.  Francis, Bolton, 
Anderson & Mattio [morphotype B] 

South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
22 Mar. 2011 (This study - 
#977/BOL150568) 

- 

  L. dichotoma sp. nov. [morphotype B] South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
22 Mar. 2011 (This study - 
#989/57729) 

- 

  L. dichotoma sp. nov. [morphotype B] South Africa, KwaZulu-Natal, 
Bhanga Nek, Bhanga Rock leg. JJ 
Bolton, RJ Anderson 04 Oct. 2010 
(This study - #1583 

- 

  L. digitata sp. nov. Francis, Bolton, 
Anderson & Mattio [morphotype E] 

South Africa, Western Cape, 
Natures Valley leg. RJ Anderson & 
JJ Bolton 04 Jul. 2008 (This study - 
#52) 

- 

  L. digitata sp. nov. [morphotype E] South Africa, Western Cape, De 
Hoop, East of Koppie Alleen leg. 
CM, Francis, RJ Anderson & JJ 
Bolton 18 Feb. 2011 (This study - 
#930) 

- 

  L. digitata sp. nov. [morphotype E] South Africa, De Hoop, East of 
Koppie Alleen leg. CM Francis, RJ 
Anderson & JJ Bolton 18 Feb. 2011 
(This study - #932) 

- 

  L. digitata sp. nov. [morphotype E] South Africa, KwaZulu-Natal, Cape 
Vidal leg. CM Francis, RJ 
Anderson & JJ Bolton 20 Mar. 
2011 (This study - 
#971/BOL150572) 

- 

  L. digitata sp. nov. [morphotype E] South Africa, KwaZulu-Natal, 
Bhanga Nek, Bhanga Rock leg. CM 
Francis, RJ Anderson & JJ Bolton 
18 Feb. 2011 (This study - #1669) 

- 

  L. digitata sp. nov. [morphotype E] South Africa, KwaZulu-natal, Cape 
Vidal leg. CM Francis, RJ 

- 
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Anderson & JJ Bolton 18 Feb. 2011 
(This study - #1027) 

  L. digitata sp. nov. [morphotype E] South Africa, Eastern Cape, Storms 
River leg. CM Francis, RJ 
Anderson & JJ Bolton 18 Feb. 2011 
(This study - #1174) 

- 

  L. cf. elata (C Agardh) Hooker & Harvey South Africa, Eastern Cape, Cape 
St Francis leg. RJ Anderson 29 
Mar. 2010 (This study - #686) 

- 

  L. cf. elata South Africa, Eastern Cape, Double 
Mouth leg. RJ Anderson & JJ 
Bolton 14 Jul. 2010 (This study - 
#767) 

- 

  L. cf. elata  South Africa, Western Cape, 
Grootbank, leg. RJ Anderson & JJ 
Bolton 04 Jul. 2008 (This study -
#55) 

- 

  L. cf. elata South Africa, Eastern Cape, Port 
Alfred, Saltvlei leg CM Francis 25. 
Feb. 2013 (This study - #1214) 

- 

  L. cf. elata South Africa, Eastern Cape, Port 
Alfred, Saltvlei leg CM Francis 25 
Feb. 2013 (This study - #1214) 

- 

  L. flexuosa Kützing South Africa, KwaZulu-Natal, Palm 
Beach, leg. S Fredericq & O De 
Clerck, 7 Feb. 2001 (Fujii et al. 
2006) 

AF465815 

  L. flexuosa South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
18 Aug. 2008 (This study - #140) 

- 

  L. flexuosa South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #904) 

- 

  L. flexuosa South Africa, Western Cape, De 
Hoop, East of Koppie Alleen  leg. 
RJ Anderson & JJ Bolton  18 Feb. 

- 
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2011 (This study - #928) 

  L. flexuosa South Africa, KwaZulu-Natal, Palm 
Beach  leg. RJ Anderson & JJ 
Bolton  28 Sep. 2012 (This study - 
#1063) 

- 

  L. flexuosa South Africa, KwaZulu-Natal, Palm 
Beach leg. RJ Anderson & JJ 
Bolton  28 Sep. 2012 (This study - 
#1057) 

- 

  L. flexuosa South Africa, KwaZulu-Natal, Port 
Edward  leg. RJ Anderson & JJ 
Bolton  28 Sep. 2012 (This study - 
#1053) 

- 

  L. flexuosa South Africa, Eastern Cape, Storms 
River  leg. RJ Anderson & JJ 
Bolton  12 Dec. 2012 (This study - 
#1167) 

- 

  L. flexuosa South Africa, Western Cape, 
Natures Valley leg. RJ Anderson & 
JJ Bolton  13 Dec. 2012 (This study 
- #1157) 

- 

  L. flexuosa South Africa, Eastern Cape, Haga 
Haga  leg. RJ Anderson & JJ 
Bolton  22 Jun. 2011 (This study - 
#1120) 

- 

  L. flexuosa South Africa, Western Cape, 
Knysna Heads 11 Dec. 2012  leg. 
RJ Anderson & JJ Bolton  18 Feb. 
2011 (This study -#1133) 

- 

  L. flexuosa South Africa, Eastern Cape, Port 
Elizabeth  leg. RJ Anderson & JJ 
Bolton  14 Dec. 2012 (This study - 
#1191) 

- 

  L. flexuosa South Africa, Western Cape, 
Sedgefield, Swartvlei  leg. RJ 
Anderson & JJ Bolton  15 Dec. 
2012 (This study - #1192) 

- 
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  L. flexuosa South Africa, Eastern Cape, 
Kenton-on-Sea  leg. RJ Anderson & 
JJ Bolton  26 Feb. 2013 (This study 
- #1237) 

- 

  L. flexuosa South Africa, Eastern Cape, Three 
Sisters. RJ Anderson & JJ Bolton  
27 Feb. 2013 (This study - #1252) 

- 

  L. flexuosa South Africa, Eastern Cape, 
Hluleka  leg. RJ Anderson & JJ 
Bolton  23 Aug. 2013 (This study - 
#1336) 

- 

  L. flexuosa South Africa, Western Cape, De 
Hoop, East of Koppie Alleen  leg. 
RJ Anderson & JJ Bolton  18 Feb. 
2011 (This study - #1332) 

- 

  L. flexuosa South Africa, KwaZulu-Natal, 
Mission Rocks leg. RJ Anderson & 
JJ Bolton 19 Mar. 2011 (This study 
- #958) 

- 

  L. flexuosa South Africa, Western Cape, 
Nature's Valley leg. RJ Anderson & 
JJ Bolton 04 Apr. 2008 (This study 
- #57) 

- 

  L. flexilis Setchell Philippines. AO Lluisma (Unpub.) AF489860 

  L. glomerata Kützing South Africa, Western Cape, De 
Hoop Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb 2011 
(This study - #902) 

- 

  L. glomerata  South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #908) 

- 

  L. glomerata South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #909) 

- 

  L. glomerata South Africa, Western Cape, De - 
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Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #910) 

  L. glomerata South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 18 Feb. 2011 
(This study - #927) 

- 

  L. glomerata South Africa, Western Cape, De 
Hoop, Noetsie leg. RJ Anderson & 
JJ Bolton 19 Feb. 2011 (This study 
- #943) 

- 

  L. glomerata South Africa, Western Cape,  
Grootbank leg. RJ Anderson & JJ 
Bolton  04 Jul. 2008 (This study - 
#56) 

- 

  L. glomerata South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
18 Aug. 2008 (This study - #125) 

- 

  L. glomerata South Africa, Eastern Cape, Port 
Alfred leg. RJ Anderson & JJ 
Bolton  03 Mar. 2009 (This study - 
#317) 

- 

  L. glomerata South Africa, Eastern Cape, Cape 
St Francis leg. RJ Anderson 29 
Mar. 2010 (This study - #685) 

- 

  L. glomerata South Africa, Western Cape, 
Keurbooms, Die Eiland 22 Sep. 
2010 (This study - #863) 

- 

  L. glomerata South Africa, Western Cape, 
Mauritz Bay leg. M. Rothmann, C. 
Boothroyd & F. Kemp 02 Mar. 
2011 (This study - #1003) 

- 

  L. glomerata South Africa, Western Cape, 
Mauritz Bay leg. M. Rothmann, C. 
Boothroyd & F. Kemp 02 Mar. 
2011 (This study - #1005) 

- 

  L. glomerata South Africa, Western Cape, - 



178 
 

Natures Valley leg. CM Francis 12 
Dec. 2012 (This study - #1161) 

  L. glomerata South Africa, Western Cape, 
Natures Valley leg. CM Francis 12 
Dec. 2012 (This study - #1163) 

- 

  L. glomerata South Africa, Western Cape, 
Natures Valley leg. CM Francis 12 
Dec. 2012 (This study - #1164) 

- 

  L. glomerata South Africa, Western Cape, 
Natures Valley leg. CM Francis 12 
Dec. 2012 (This study - #1166) 

- 

  L. glomerata South Africa, Eastern Cape, Port 
Elizabeth leg. CM Francis 14 Dec. 
2012 (This study - #1190) 

- 

  L. glomerata South Africa, Eastern Cape, Storms 
River leg. CM Francis 13 Dec. 
2012 (This study - #1178) 

- 

  L. glomerata South Africa, Eastern Cape, Storms 
River leg. CM Francis 13 Dec. 
2012 (This study - #1179a) 

- 

  L. glomerata South Africa, Eastern Cape, Port 
Alfred leg. CM Francis 25 Feb. 
2013 (This study - #1211) 

- 

  L. glomerata South Africa, Eastern Cape, Port 
Alfred leg. CM Francis 25 Feb. 
2013 (This study - #1212) 

- 

  L. glomerata South Africa, Eastern Cape, Three 
Sister, leg  CM Francis 27 Feb. 
2013 (This study - #1251) 

- 

  L. cf. kuetzingii A Millar New Caledonia, Loyalty Island, 
Ouvéa leg C Payri. 31 Mar. 2005 
(Martin-Lescanne et al. 2010)   

FJ785322 

  L. cf. mariannensis Yamada New Caledonia, Lagon Sud-Ouest, 
Ilot Lagènére leg C Payri 11 Jul. 
2003 (Martin-Lescanne et al. 2010)   

FJ785313 
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  L. cf. mcdermidae IA Abbott New Caledonia, Ile de Pins leg C 
Payri 29 Jun. 2005 (Martin-
Lescanne et al. 2010) 

FJ785314 

  L. multiclavata sp. nov.  Francis, Bolton, 
Anderson & Mattio [morphotype F] 

South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
18 Aug. 2008 (This study - #127) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Eastern Cape, Cape 
St Francis leg. RJ Anderson 29 
Mar. 2010 (This study - #687) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Western Cape, De 
Hoop leg. CM Francis, RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #906/BOL150569) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, KwaZulu-Natal, Cape 
Vidal leg. CM Francis, RJ 
Anderson & JJ Bolton 20 Mar. 
2011 (This study - #969) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
22 Mar. 2011 (This study - #979) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
22 Mar. 2011 (This study - #981) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Eastern Cape, 
Hluleka. leg. JJ Bolton, RJ 
Anderson & CM Francis 23 Aug. 
2013 (This study - #1335) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, KwaZulu-Natal, 
Bhanga Nek, Bhanga Rock leg. JJ 
Bolton, RJ Anderson 04 Oct. 2013 
(This study - #1602) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, KwaZulu-Natal, Cape 
Vidal. leg. JJ Bolton, RJ Anderson 
25 Sep. 2011 (This study - #1024) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Western Cape, - 
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Knysna Heads leg. JJ Bolton, RJ 
Anderson & CM Francis 11 Nov. 
2012 (This study - #1135) 

  L. multiclavata sp. nov. [morphotype F] South Africa, Western Cape, 
Natures Valley leg. JJ Bolton, RJ 
Anderson & CM Francis 12 Dec. 
2012 (This study - #1159) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Eastern Cape, Storms 
River, leg. JJ Bolton, RJ Anderson 
& CM Francis 13 Dec. 2012 (This 
study - #1171) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Eastern Cape, Port 
Elizabeth leg. JJ Bolton, RJ 
Anderson & CM Francis 14 Dec. 
2012 (This study - #1185) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Western Cape, 
Sedgefield, Swartvlei. JJ Bolton, RJ 
Anderson & CM Francis 15 Dec. 
2012 (This study - #1194) 

- 

  L. multiclavata sp. nov. [morphotype F] South Africa, Eastern Cape, 
Kenton-on-Sea leg. JJ Bolton, RJ 
Anderson & CM Francis 26 Feb. 
2013 (This study - #1239) 

- 

  L. natalensis Kylin South Africa, KwaZulu-Natal, Palm 
Beach, leg. S Fredericq & O De 
Clerck, 7 Feb. 2001 (Fujii et al. 
2006) 

AF465816 

  L. natalensis  South Africa, Western Cape, 
Knysna Estuary leg. RJ Anderson 
& JJ Bolton 04 Jul. 2008 (This 
study - #50) 

- 

  L. natalensis South Africa, Eastern Cape, Port 
Alfred leg. RJ Anderson & JJ 
Bolton 03 Sept. 2009 (This study -
#316) 

- 

  L. natalensis South Africa KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. RJ 
Anderson & JJ Bolton 10 Jun. 2009 

- 
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(This study - #587) 

  L. natalensis South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. RJ 
Anderson & JJ Bolton 09 Jun. 2010 
(This study - #800) 

- 

  L. natalensis South Africa, KaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. RJ 
Anderson & JJ Bolton 09 Sep. 2010 
(This study - #820) 

- 

  L. natalensis South Africa, KwaZulu-Natal, 
Mapalane leg. RJ Anderson & JJ 
Bolton  09 Nov. 2010 (This study  - 
#836) 

- 

  L. natalensis South Africa, KwaZulu-Natal, 
Mission Rocks leg. RJ Anderson & 
JJ Bolton 19 Mar. 2011 (This study 
- #960) 

- 

  L. natalensis South Africa, KwaZulu-Natal, Cape 
Vidal leg. RJ Anderson & JJ Bolton 
25 Sep. 2011 (This study - #1022) 

- 

  L. natalensis South Africa, Western Cape leg. RJ 
Anderson & JJ Bolton 12 Dec. 2012 
(This study - #1155) 

- 

  L. natalensis South Africa, Eastern Cape, Port 
Elizabeth leg. RJ Anderson & JJ 
Bolton 14 Dec. 2012 (This study - 
#1186) 

- 

  L. natalensis South Africa, Western Cape, 
Sedgefield, leg. RJ Anderson & JJ 
Bolton 15 Dec. 2012 (This study - 
#1193) 

- 

  L. natalensis South Africa, Eastern Cape, 
Kenton-on-Sea leg. RJ Anderson & 
JJ Bolton 26 Feb. 2013 (This study 
- #1238) 

- 

  L. natalensis South Africa, KwaZulu-Natal, 
Bhanga Nek, Bhanga Rock. leg. RJ 

- 
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Anderson & JJ Bolton 4 Oct. 2013 
(This study - #1603) 

  L. cf. nidifica J Agardh New Caledonia, Ile de Pins. leg C 
Payri 30 Nov. 2005 (Martin-
Lescanne et al. 2010) 

FJ785315 

  L. obtusa (Hudson) Lamouroux Ireland, Donegal, Fanad Head. leg. 
C Maggs 06 Dec. 1998 (Nam et al. 
2000) 

AF281881 

  L. pacifica Kylin USA, California, Moss Beach, 
Central Beach leg. S Fredericq 17 
Feb. 1992 

AY588411 

  L. pumila (Grunow) Papenfuss South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. RJ 
Anderson & JJ Bolton 10 Jun. 2009 
(This study - #588) 

- 

  L. pumila South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. RJ 
Anderson & JJ Bolton 09 Jun. 2010 
(This study - #803) 

- 

  L. pumila South Africa, KwaZulu-Natal, 
Bhanga Neck, Bhanga Rock. leg. 
RJ Anderson & JJ Bolton 04 Oct. 
2013 (This study - #1604) 

- 

  L. pumila South Africa, KwaZulu-Natal, 
Bhanga Neck, Bhanga Rock. leg. 
RJ Anderson & JJ Bolton 07 Oct. 
2013 (This study - #1665) 

- 

  L. pumila South Africa, KwaZulu-Natal, Cape 
Vidal leg. RJ Anderson & JJ Bolton 
25 Sep. 2011 (This study - #1028) 

- 

  L. pumila South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. RJ 
Anderson & JJ Bolton 09 Sep. 2010 
(This study - #822) 

- 

  L. pyramidalis Bory de Saint ex Kützing France, Brittany, Roscoff leg F. 
Rosseau. 5 Dec. 2002 (Martin-
Lescanne et al. 2010)  

FJ785316 
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  L. rigida J Agardh Australia, New South Wales, 
Botany Bay (Unpub.) 

AY920852 

  L. sodwaniensis sp. nov.  Francis, Bolton, 
Anderson & Mattio [morphotype C] 

South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
09 Sep. 2010 (This study - #818) 

- 

  L. sodwaniensis sp. nov. [morphotype C] South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
22 Mar. 2011 (This study - #987) 

- 

  L. sodwaniensis sp. nov. [morphotype C] South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
20 Mar. 2011 (This study - 
#968/BOL150570) 

- 

  Laurencia stegengae nom. nov. 
(Stegenga, Bolton and Anderson) Francis, 
Bolton, Anderson & Mattio 

South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton  
19 Aug. 2008 (This study - #126) 

- 

  L. stegengae nom. nov South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton  17 Feb. 
2011 (This study - #901) 

- 

  L. stegengae nom. nov. South Africa, Western Cape,  
Buffel's Bay leg. RJ Anderson & JJ 
Bolton 17/09/2008 (This study - 
#181) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton  
19 Aug. 2008 (This study - #159) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, False 
Bay, Clovelly leg. JJ Bolton 18 
Mar. 2010 (This study - #680) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, 
Keurbooms, Platbank leg. RJ 
Anderson & JJ Bolton 23 Sep. 2010 
(This study - #872) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, - 
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Keurbooms, Arch Rock leg. RJ 
Anderson & JJ Bolton 24 Sep. 2010 
(This study - #880) 

  L. stegengae nom. nov. South Africa, Western Cape, De 
Hoop, Koppie Alleen leg. RJ 
Anderson & JJ Bolton 17 Feb. 2011 
(This study - #900) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, 
Langebaan leg. RJ Anderson & JJ 
Bolton 26 Mar. 2012 (This study - 
#1073) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, 
Langebaan Koppie Alleen leg. RJ 
Anderson & JJ Bolton 26 Mar. 
2012 (This study - #1074) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, 
Knysna Heads leg. RJ Anderson & 
JJ Bolton 11 Dec 2012 (This study - 
#1134) 

- 

  L. stegengae nom. nov. South Africa, Western Cape, 
Natures Valley leg. RJ Anderson & 
JJ Bolton 12 Dec. 2012 (This study 
- #1156) 

- 

  L. stegengae nom. nov. South Africa, Eastern Cape, Storms 
River leg. RJ Anderson & JJ Bolton 
13 Dec. 2012 (This study - #1170) 

- 

  L. stegengae nom. nov. South Africa, Eastern Cape, Three 
Sisters leg. RJ Anderson & JJ 
Bolton 27Feb. 2013 (This study - 
#1254) 

- 

  L. venusta Yamada Mexico, Quintana Roo, Puerto 
Morelos, Punta Brava, leg. JD 
Larrea and A Senties, 18 Apr. 2004 

EF061655 

  L. viridis Gil-Rodriguez & Haroun Spain, Canary Islands, Tenerife, 
Punta del Hidalgo, Roca Negro leg. 
MC Gil-Rodriguez, 6 Oct. 2005 

EF685999 

  L. viridis Spain, Canary Islands, Tenerife, EF686004 
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Playa Paraiso leg MC Gil-
Rodriguez, A Senties & MT Fujii, 
14 Jul. 2006 (Gil-Rodriguez et al. 
2009) 

  Laurencia sp. morphotype A  South Africa, KwaZulu-natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
22 Mar. 2011 (This study - #991) 

- 

  Laurencia sp. morphotype G South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt., leg. RJ 
Anderson & JJ Bolton 09 Sep. 2010 
(This study - #821) 

- 

  Laurencia sp. morphotype H South Africa, Eastern Cape, 
Kenton-on-Sea & Three Sisters, 
leg. RJ Anderson & JJ Bolton 09 
Sep. 2010 (This study - #1240 & 
#1255) 

- 

  Laurencia sp. morphotype I South Africa, Eastern Cape, 
Hluleka leg. RJ Anderson & JJ 
Bolton 09 Sep. 2010 (This study - 
#1337) 

- 

  Laurencia sp. morphotype J South Africa, Eastern Cape, 
Hluleka leg. RJ Anderson & JJ 
Bolton 09 Sep. 2010 (This study - 
#1339) 

- 

   
Laurenciella V.Cassano, Gil-Rodríguez, 
Sentíes, Díaz-Larrea, M.C.Oliveira & 
M.T.Fujii 

  

  L. marilzae (Gil-Rodriguez, Senties, Diaz-
Larrea, Cassano & MT Fujii) Gil-
Rodriguez, Senties, Diaz-Larrea, Cassano 
& MT Fujii (as Laurencia marilzae) 

Spain, Canary Islands, Tenerife, 
Punta del Hidalgo, Roca Negro leg. 
MC Gil-Rodriguez, 12 Jul. 2006 
(Gil-Rodriguez et al. 2009) 

EF686002 

  L. marilzae  Spain, Canary Islands, Tenerife, 
Playa Paraiso leg MC Gil-
Rodriguez, A Senties & MT Fujii, 
14 Jul. 2006 (Gil-Rodriguez et al. 
2009)  

EF686001 
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  L. marilzae  Spain, Canary Islands, Tenerife, 
Punta del Hidalgo, Bahia Izquierda 
Faro leg. MC Gil-Rodriguez, 6 Oct. 
2005 (Gil-Rodriguez et al. 2009) 

EF686003 

  L. marilzae  South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
19 Aug. 2008 (This study - #155) 

- 

  L. marilzae  South Africa, Western Cape, De 
Hoop leg. RJ Anderson & JJ Bolton 
19 Aug. 2008 (This study - #168) 

- 

  L. marilzae  South Africa, Western Cape, De 
Hoop East of Koppie Alleen leg. RJ 
Anderson & JJ Bolton 18 Feb. 2011 
(This study - #923) 

- 

  L. marilzae  South Africa, Eastern Cape, 
Kenton-on-Sea leg. RJ Anderson & 
JJ Bolton 26 Feb. 2013 (This study 
- #1241) 

- 

  L. marilzae  South Africa, Western Cape, 
Bortjiesrif leg. RJ Anderson & JJ 
Bolton 22 Jun. 2012 (This study - 
#1078) 

- 

  L. marilzae  South Africa, Western Cape, 
Bortjiesrif leg. RJ Anderson & JJ 
Bolton 22 Jun. 2012 (This study - 
#1077) 

- 

  L. marilzae  South Africa, Eastern Cape, Storms 
River leg. RJ Anderson & JJ Bolton 
13 Dec. 2012 (This study - #1177) 

- 

   
Palisada Nam   

  P. coralloropsis (Montagne) Senties, MT 
Fujii & Diaz-Larrea 

Mexico, Quintana Roo, Cancún, 
Chaac-Mol Beach, leg. J. Díaz-
Larrea & A. Sentíes, 21 Aug. 2005 
(Díaz-Larrea et al. 2007) 

EF061646 

  P. cf. corallopsis South Africa, Eastern Cape, Three 
Sister leg. RJ Anderson & JJ Bolton 

- 
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27 Feb. 2013 (This study - #1247) 

  P. flagellifera (Kützing) Cassano, Senties, 
Gil-Rodriguez & MT Fujii [As 
Chondrophycus thuyoides] 

Spain, Canary Islands, Tenerife, 
Playa Paraiso leg MC Gil-
Rodriguez, A Senties & MT Fujii, 
12 Jul. 2006 (Gil-Rodriguez et al. 
2009) 

EF685998 

 P. thuyoides (Kützing) Cassano, Sentíes, 
Gil-Rodríguez & M.T. Fujii [as Laurencia 
paniculata (C. Agardh) J. Agardh 

Philippines. AO Lluisma (Unpub.) AF489863 

  P. papillosa (C Agardh) KW Nam [as 
Laurencia papillosa] 

Philippines. AO Lluisma (Unpub.) AF489861 

  P. patentiramea (Montagne) Cassano, 
Senties, Gil-Rodriguez & MT Fujii 

Philippines. AO Lluisma (Unpub.) AF489862 

  P. perforata (Bory) KW Nam Spain, Canary Islands, Tenerife, 
Puerto de la Cruz, San Telmo leg. 
MC Gil-Rodriguez, A Sentíes & 
MT Fujii 13 Jul. 2006 (Cassano et 
al.  2009) 

EU256329 

  P. perforata Mexico, Isla Mujares, Cancun, 
Quintana Roo, leg. A Senties & 
Gil-Rogriguez. 2007. (Cassano et 
al. 2009) 

EF658641 

  P. perforata  Brazil, Rio de Janerio, Rio das 
Ostras, Areias Negras leg. V 
Cassano & MBB Barreto 3 Aug. 
2005 (Cassano et al.  2009) 

EU256330 

  P. cf. robusta (Yamada) KW Nam New Caledonia, Lifou, leg. C Payri, 
23 Mar. 2005   

FJ785321 

  Palisada sp. 1  South Africa, KwaZulu-Natal, 
Sodwana Bay, Jesser Pt. leg. JJ 
Bolton, RJ Anderson & CM Francis 
09 Sep. 2010 (This study - #819) 

- 

  Palisada sp. 2 South Africa, KwaZulu-Natal, 
Bhanga Nek, BN3, 8m. leg RJ 
Anderson 03 Oct. 2013 (This study 
- #1361) 

- 



188 
 

  Palisada sp. 2 South Africa, KwaZulu-Natal, 
Bhanga Nek, Bhanga Rock. leg JJ 
Bolton, RJ Anderson 08 Oct. 2013 
(This study - #1667) 

- 

   
Osmundea Stackhouse   

  O. blinksii (Hollenberg & Abbott) Nam USA, California, San Mateo 
County, Año Nuevo, Greyhound 
Rock leg. MH Hommersand 17 Jul. 
1996 (McIvor et al. 2002) 

AY172575 

  O. hybrida (AP de Candolle) Nam Ireland, Donegal County, Fanad 
Head leg. CA Maggs 07 Nov. 1999 
(McIvor et al. 2002) 

AF281878 

  O. osmunda (SG Gmelin) KW Nam France, Brittany, Roscoff leg. F. 
Rosseau, 05. Dec. 2002 (Martin-
Lescanne et al. 2010) 

FJ785318 

  O. osmunda  Ireland, Donegal County, St John's 
Point leg. CA Maggs 12.Oct. 1999 
(McIvor et al. 2002) 

AF281877 

  O. pinnatifida (Hudson) Stackhouse Ireland, Donegal County, St John's 
Point leg. CA Maggs, 12 Oct. 1999 
(McIvor et al. 2002) 

AF281875 

  O. pinnatifida Ireland, Donegal County, St John's 
Point, epiphytic on Fucus serratus 
leg. CA Maggs, 12 Oct. 1999 
(McIvor et al. 2002) 

AF281876 

  O. pinnatifida Spain, Canary Islands, Tenerife, 
Puerto de la Cruz, San Telmo leg. 
MC Gil-Rodriguez, 07 Oct. 2005 
(Cassano et al.  2009) 

EF686005 

  O. pinnatifida [as Laurencia pinnatifida] Lin et al. (2001, unpublished) AF259495 

  O. ramosissima (Oeder) Athanasiadis Ireland, Donegal County, St John's 
Point, epilithic leg. CA Maggs 
12.Oct. 1999 (McIvor et al. 2002) 

AF281880 

  O. spectabilis var. spectabilis Mexico, Baja California, Punta 
Santa Thomas leg. MH 
Hommersand 02 Jul. 1996 (McIvor 

AY172574 
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et al. 2002) 

  O. splendens (Hollenberg) Nam Mexico, Baja California, Bahia 
Colnett, Drift leg. MH 
Hommersand & J Hughley 02 Jul. 
1996 (McIvor et al. 2002) 

AY172576 

  O. truncata (Kützing) Nam & Maggs Ireland, Cork County, Lough Hyne 
leg CA Maggs 11 Nov. 1999 
(McIvor et al. 2002) 

AF281879 

   
Yuzurua (Nam) Martin-Lescanne   

  Y. poiteaui var. poiteaui* (JV Lamouroux) 
Martin- Lescanne [As Chondrophycus 
poiteaui] 

Mexico, Quintana Roo, Playa del 
Carmen, leg. J. Díaz-Larrea & A. 
Sentíes, 15 Mar. 2005 (Díaz-Larrea 
et al. 2007) 

EF061653 

  Y. poiteaui var. poiteaui* [As C. poiteaui] USA, Florida, Long Key, Ocean 
Side, leg. S. Fredericq (Díaz-Larrea 
et al. 2007) 

EF061652 

  Y. poiteaui var. gemmifera (Harvey) MJ 
Wynne [As Chondrophycus gemmiferus] 

Cuba, La Havana, Rincon de 
Guanabo, leg. J. Díaz-Larrea & A. 
A. Mallea, 29 Jul. 2005 (Díaz-
Larrea et al. 2007) 

EF061650 

  Y. poiteaui var. gemmifera [As C. 
gemmiferus] 

Mexico, Yucatan, Cancun, Playa 
del Carmen, leg J Diaz-Larrea & A 
Senties. 2004. (Diaz-Larrea et al. 
2007) 

EF061649 

 

Table A2: Foreign specimens examined in this study (S: South; N: North; W: Western; ?: 

indicates uncertainty regarding genus placement) 

Locality Accession Field Identifications Site DNA 

Europa Island E010 Palisada cf. parvipapillata Platier station 1 NO 

Europa Island E028 Laurencia complex Plongée 1 NO 

Europa Island E046 Laurencia sp. Platier station 2 YES 
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Europa Island E047 Laurencia complex  Platier station 2 NO 

Europa Island E050 Chondrophycus sp.  Platier station 2 YES 

Europa Island E051 Laurencia complex  Platier station 2 NO 

Europa Island E053 Laurencia  Platier station 2 NO 

Europa Island E059 Laurencia cf. natalensis Platier station 2 NO 

Europa Island E067 Laurencia sp. Plongée 2 NO 

Europa Island E095 Palisada cf. parvipapillata Platier Station 3 NO 

Europa Island E290 Laurencia sp. Plongée 2 NO 

Europa Island E298 Palisada cf. parvipapillata Platier Station 1 

Mangrove 

NO 

Europa Island E299 Palisada cf. parvipapillata Platier Station 1 

Mangrove 

NO 

Europa Island E313 Laurencia sp. Plongée 1 NO 

Europa Island E319 Laurencia sp. Lagune NO 

Europa Island E328 Palisada cf. parvipapillata Point Joseph Sud NO 

Europa Island E337 Laurencia sp. Point Joseph Sud NO 

Europa Island E342 Palisada cf. perforata Point Joseph Sud NO 

Europa Island E343 Laurencia complex Point Joseph Sud NO 

Europa Island E345 Laurencia cf. natalensis Point Joseph Sud NO 

Europa Island E346 Laurencia complex  Point Joseph Sud YES 

Mozambique, 

Pemba 

P02 Palisada perforata Off Pemba, 

 reef in front of 

CEPAM 

NO 

Mozambique, 

Pemba 

P24 Laurencia sp. Off Pemba,  

reef in front of CEPAM 

NO 
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Mozambique, 

Pemba 

P31 Laurencia sp.2 Off Pemba, 

 reef in front of 

CEPAM 

YES 

Mozambique, 

Pemba 

P102 Laurencia sp.  Londo,  

3 to 5 m SCUBA dive 

YES 

Mozambique, 

Pemba 

P103 Laurencia sp. Londo, 

 3 to 5 m SCUBA dive 

YES 

Mozambique, 

Pemba 

P120 Palisada perforata Murrebue Mangrove NO 

Mozambique 
(S) MOZ003 Laurencia natalensis Xai-Xai Beach 

NO 

Mozambique 
(S) MOZ008 Laurencia natalensis Chidenguele 

NO 

Mozambique 
(S) MOZ009 Laurencia sp. 1 Chidenguele 

YES 

Mozambique 
(S) MOZ010 Laurencia sp. 2 Chidenguele 

YES 

Mozambique 
(S) MOZ023 Laurencia cf. columinaris Praia de Tofo 

NO 

Mozambique 
(S) MOZ024 Laurencia sp. Praia de Tofo 

NO 

Mozambique 
(S) MOZ025 Laurencia natalensis Praia de Tofo 

NO 

Madagascar (N) MD014 Laurencia sp.  Diego Suarez,  

Mer d'Emeraude 

YES 

Madagascar (N) MD024 Laurencia complex Diego Suarez,  

Mer d'Emeraude 

NO 

Madagascar (N) MD037 Laurencia sp.  Diego Suarez,  

Mer d'Emeraude 

YES 

Madagascar (N) MD066 Laurencia cf. decumbens Nosy be NO 

Madagascar (N) MD110 Palisada perforata Marovasa be NO 

Madagascar (N) MD138 Laurencia? Majunga YES 
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Madagascar (N) MD139 Chondria sp. Majunga NO 

Madagascar (N) MD140 Chondria? Majunga NO 

Madagascar (N) MD155 Chondrophycus sp.  Sainte Marie NO 

Madagascar (N) MD159 Chondria Sainte Marie YES 

Madagascar (N) MD164 Chondrophycus sp. 2 Sainte Marie NO 

Madagascar (N) MD184 Palisada perforata Sainte Marie NO 

Madagascar (N) MD190 Laurencia sp. 1 Sainte Marie YES 

Madagascar (N) MD191 Laurencia sp. 2 Sainte Marie NO 

Madagascar (N) MD194 Chondria sp.  Sainte Marie YES 

Madagascar (N) MD201 Chondrophycus? Sainte Marie NO 

Madagascar (N) MD205 Chondrophycus? Sainte Marie YES 

Madagascar (S) D780 Laurencia natalensis Fort Dauphin YES 

Madagascar (S) D781 Laurencia complanata Fort Dauphin YES 

Madagascar (S) D782 Laurencia sp. 1 Fort Dauphin YES 

Madagascar (S) D783 Laurencia natalensis Fort Dauphin YES 

Madagascar (S) KS5 Laurencia sp. 1 Fort Dauphin YES 

Madagascar (S) KS7 Laurencia sp. 2 Fort Dauphin YES 

Madagascar (S) KS21 Laurencia complanata Fort Dauphin YES 

Madagascar (S) KS25 Laurencia natalensis Fort Dauphin YES 

Mauritius MS003 Palisada perforata Pointe aux biches NO 

Mauritius MS004 Palisada perforata Trou aux biches NO 

Mauritius MS006 Laurencia cf. natalensis Poste Lafayette NO 

Mauritius MS010 Laurencia sp. Palmar public beach NO 

Mauritius MS018 Laurencia sp. Pointe aux cannoniers YES 

Mayotte LYD10- Chondria? Passe Acua NO 
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190 

Mayotte LYD10-

230 

Chondria? N'goudja inner barrier NO 

Mayotte LYD10-

312 

Laurencia sp. Basse prévoyante NO 

Mayotte LYD10-

376 

Laurencia sp. Passe bateaux, récif 

ouest extérieur 

NO 

Mayotte LYD10-

326 

Laurencia sp. Basse prévoyante NO 

Mayotte LYD10-

132 

Laurencia sp.  Banc du Boa NO 

Mayotte LYD10-

153 

Laurencia sp.  Bord passe Choazil 

intérieur 

NO 

Mayotte LYD10-

344 

Laurencia sp.  Ilot Choazil, face au 

banc de sable 

NO 

Reunion R037 Laurencia cf. flexilis Boucan Canot YES 

Reunion R078 Laurencia cf. flexilis Trois bassins YES 

Reunion R079 Palisada perforata Trois bassins NO 

Reunion R163 Chondrophycus columellaris Cap La Houssaye NO 

Reunion R169 Laurencia sp. 2 Cap La Houssaye YES 

Reunion R170 Laurencia sp. 3 Cap La Houssaye NO 

Reunion R171 Palisada sp. Cap La Houssaye NO 

Reunion R238 Palisada perforata Trois bassins NO 

Reunion R352 Laurencia sp. Saint Gilles NO 

Reunion R394 Laurencia complex R3 NO 
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Reunion R496 Laurencia sp. 1  Anse des cascades NO 

Reunion R612 Laurencia sp. 2  coulee 1977 YES 

Reunion R730 Laurencia sp. 1 Cap La Houssaye NO 

Reunion R731 Laurencia sp. 2 Cap La Houssaye NO 

Reunion R732 Chondrophycus columellaris Cap La Houssaye NO 

Reunion R733 Laurencia sp. 1 Cap La Houssaye NO 

Reunion R734 Palisada sp. Cap La Houssaye NO 

Reunion R735 Laurencia sp. 3 Cap La Houssaye NO 

Reunion R736 Laurencia cf. flexilis Cap La Houssaye YES 

Reunion R737 Laurencia sp. 1 Cap La Houssaye NO 

Reunion R746 Laurencia sp. 1 Boucan Canot NO 

Reunion R747 Laurencia sp. 2 Boucan Canot NO 

Reunion R748 Laurencia sp. 3 Boucan Canot NO 

Reunion R774 Laurencia sp. 1 Anse des cascades NO 

Reunion R776 Laurencia sp. 2 Anse des cascades YES 

Reunion R798 Laurencia complex coulée 2007 NO 

Reunion R811 Chondrophycus collumelaris coulée 2007 NO 

Reunion R817 Palisada cf. robusta coulée 2007 NO 

Reunion R818 Palisada perforata coulée 2007 YES 

Glorioso Island GLO-024 Laurencia sp.  Station 3 NO 

Glorioso Island GLO-252 Laurencia sp. Station 10 NO 

Glorioso Island GLO-258 Laurencia sp. Station 11 NO 

Glorioso Island GLO-263 Laurencia sp. 1 Station 12 NO 

Glorioso Island GLO-264 Laurencia sp. 2 Station 12 NO 

Glorioso Island GLO-265 Laurencia sp. 3 Station 12 NO 
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Glorioso Island GLO-266 Laurencia sp. 4 Station 12 NO 

Glorioso Island GLO-268 Laurencia sp. 5 Station 12 NO 

Glorioso Island GLO-284 Laurencia sp.  Station 13 YES 

Glorioso Island GLO-314 Laurencia sp. 1 Station 15 NO 

Glorioso Island GLO-315 Laurencia sp. 2 Station 15 YES 

Glorioso Island GLO-069 Palisada sp. Station 7 NO 

Glorioso Island GLO-163 Chondrophycus sp.  Station 2 YES 

Glorioso Island GLO-182 Palisada sp. Plongée 3 NO 

Japan (S) OKI-001 Palisada perforata Awase NO 

Japan (S) OKI-008 Chondrophycus sp. Awase NO 

Japan (S) OKI-029 Laurencia sp. Hanashiro NO 

Japan (S) OKI-030  Palisada perforata Hanashiro YES 

Japan (S) OKI-031 Laurencia tropica  Hanashiro NO 

Japan (S) OKI-032 Laurencia majuscula Onna YES 

Japan (S) OKI-037 Laurencia sp. Onna YES 

Japan (S) OKI-039 Laurencia tropica  Bise NO 

Japan (S) OKI-044 Palisada perforata Bise NO 

Japan (S) OKI-045 Palisada cf. concreta Bise NO 

Japan (S) OKI-059 Palisada perforata Teniya NO 

Japan (S) OKI-060 Chondrophycus sp. Teniya YES 

Japan (S) OKI-064 Laurencia sp. Teniya YES 

Japan (S) OKI-069 Laurencia majuscula Heshikiya  YES 

Japan (S) OKI-070 Palisada sp. Oura YES 

Japan (S) OKI-075 Chondrophycus sp. Oura NO 

Japan (S) OKI-076 Palisada perforata Oura YES 
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Japan (S) OKI-086 Laurencia sp. Sumnide YES 

Japan (S) OKI-087 Laurencia sp. 1 Sumnide YES 

Japan (S) OKI-089 Laurencia sp. 2 Sumnide YES 

Japan (S) OKI-090 Palisada perforata Sumnide NO 

Japan (S) OKI-091 Palisada sp. Sumnide NO 

Japan (N) JP-006 Laurencia okamurae Sapporo YES 

Japan (N) JP-007 Palisada intermedia Sapporo YES 

Japan (N) JP-008 Laurencia nipponica Sapporo YES 

Japan (N) JP-017 Laurencia nipponica Sapporo NO 

Australia (W) HV03577 Laurencia sp. 1 Coral Bay: Paradise 

Beach 

NO 

Australia (W) HV03579 Laurencia sp. 2 Coral Bay: Paradise 

Beach 

YES 

Australia (W) HV03590 Laurencia sp. 3 Coral Bay: Paradise 

Beach 

NO 

Australia (W) HV03619 Laurencia sp. 1 Coral Bay: Lotties NO 

Australia (W) HV03644 Laurencia sp. 2 Coral Bay: Lotties NO 

Australia (W) HV03659 Laurencia sp. 1 Coral Bay NO 

Australia (W) HV03660 Laurencia sp. 2 Coral Bay NO 

Australia (W) HV03687 Laurencia sp. 1 Coral Bay: Five Fingers 

lagoon 

YES 

Australia (W) HV03693 Laurencia sp. 2 Coral Bay: Five Fingers 

lagoon 

YES 

Australia (W) HV03695 Laurencia sp. 3 Coral Bay: Five Fingers 

lagoon 

NO 
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Australia (W) HV03730 Laurencia sp. 4 Coral Bay: Five Fingers 

lagoon 

NO 

Australia (W) HV03737 Laurencia sp. 5 Coral Bay: Five Fingers 

lagoon 

NO 

Australia (W) HV03752 Laurencia sp. 1 Exmouth NO 

Australia (W) HV03768 Laurencia sp. 2 Exmouth NO 

Australia (W) HV03771 Laurencia sp. 3 Exmouth YES 

Australia (W) JFC0020 Laurencia sp.  Shark Bay: Gladstone YES 

Australia (W) JFC0023 Laurencia sp. 4 Coral Bay: Paradise 

Beach 

NO 

Australia (W) JFC0032 Laurencia sp. 5 Coral Bay: Paradise 

Beach 

NO 

Australia (W) JFC0097 Laurencia sp. 1 Coral Bay: Bills 

Bommie 

NO 

Australia (W) JFC0099 Laurencia sp. 2 Coral Bay: Bills 

Bommie 

NO 

Australia (W) JFC0100 Laurencia sp. 3 Coral Bay: Bills 

Bommie 

NO 

Australia (W) JFC0207 Laurencia sp. 1 Peron: Cape Peron NO 

Australia (W) JFC0274 Laurencia sp. 2 Peron: Cape Peron YES 

Australia (W) JFC0285 Laurencia sp. 3 Peron: Cape Peron YES 

Australia (W) JFC0288 Laurencia sp. 4 Peron: Cape Peron NO 

Australia (W) JFC0290 Laurencia sp. 5 Peron: Cape Peron YES 

Australia (W) JFC0293 Laurencia sp. 6 Peron: Cape Peron NO 

Australia (W) JFC0294 Laurencia sp. 7 Peron: Cape Peron NO 
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Australia (W) JFC0295 Laurencia sp. 8 Peron: Cape Peron YES 

Australia (W) JFC0296 Laurencia sp. 1 Peron: White Rock YES 

Australia (W) JFC0297 Laurencia sp. 2 Peron: White Rock YES 

Australia (W) JFC0298 Laurencia sp. 3 Peron: White Rock YES 

Australia (W) JFC0299 Laurencia sp. 4 Peron: White Rock NO 

Australia (W) JFC0301 Laurencia sp. 5 Peron: White Rock NO 

Australia (W) JFC0302 Laurencia sp. 6 Peron: White Rock YES 

Australia (W) JFC0303 Laurencia sp. 7 Peron: White Rock YES 

Australia (W) JFC0321 Laurencia sp. 8 Peron: White Rock NO 

Australia (W) JFC0322 Laurencia sp. 9 Peron: White Rock YES 

Australia (W) JFC0330 Laurencia sp. 10 Peron: White Rock YES 
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Figure A1: Submorphotypes of Laurencia cf. corymbosa. (1x) Scale for K-M, O and P (1cm = 1.7cm); Scale for N 1 division = 1mm. 
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