Skip to main content

Bryomonitoring of Environmental Pollution

  • Chapter
  • First Online:
Biotic and Abiotic Stress Tolerance in Plants

Abstract

Biological monitoring has become an important tool for evaluating the negative blow of human activities on the atmosphere. Due to ever-increasing population alongside other environmental problems, introduction of heavy metals in our surroundings is a huge drawback to the sustainable environment. Heavy metal pollution of the biosphere has augmented piercingly since 1900. These metals, though being deposited constantly in minute amounts, may build up in the surroundings over extended periods of time and will most likely create potential ecological and human wellbeing hazards in upcoming future. Thus, it appears very imperative to develop and perk up an enduring reflexive monitoring method to evaluate the nature and intensity of heavy metal and gaseous pollutions. In this review, the potential of bryophytes has been discussed in light of notable researches in this direction worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboal JR, Real C, Fernandez JA, Carballeira A (2006) Mapping the results of extensive surveys: the case of atmospheric biomonitoring and terrestrial mosses. Sci Total Environ 356:256–274

    Article  CAS  PubMed  Google Scholar 

  • Alam A (2013) Bio-monitoring of metal deposit ion in Ranthambore National Park (Rajasthan), India using Plagiochasma rupestre (G. Frost) Stephani. Arch Bryol 186:1–10

    Google Scholar 

  • Alam A (2014) Bio-monitoring of metal deposition in Ranthambore National Park (Rajasthan), India using Riccia aravalliensis Pande et Udar. Elixir Bio Tech 69:22838–22842

    Google Scholar 

  • Alam A, Sharma V (2012) Seasonal variation in accumulation of heavy metals in Lunularia cruciata (Linn.) Dum. at Nilgiri hills, Western Ghats. Int J Biol Sci Eng 3(2):91–99

    Google Scholar 

  • Alam A, Srivastava SC (2009) Marchantia paleacea Bert.- as an indicator of heavy metal pollution. Indian J For 32(3):465–470

    Google Scholar 

  • Aničić UM (n.d.) http://www.envpl.ipb.ac.rs/bio2.htm. Accessed on 25th Oct 2017

  • Bargagli R (1998) Trace element in terrestrial plants. A ecophysiological approach to biomonitoring and Biorecovery. Springer, Berlin, p 324

    Google Scholar 

  • Bargagli R, Cateni D, Nelli L, Olmastroni S, Zagarese B (1997) Environmental impact of trace element emissions from geothermal power plants. Arch Environ Contam Toxicol 33:172–181

    Article  CAS  PubMed  Google Scholar 

  • Bates JW (1992) Influence of chemical and site factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. J Ecol 80:163–179

    Article  Google Scholar 

  • Berg T, Røyset O, Steinnes E (1995) Moss hylocomium splendens used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos Environ 29:353–360

    Article  CAS  Google Scholar 

  • Berg T, Hjebrekke AG, Larseen R (2001) Heavy metals and POPs within the EMEP region 1999. EMEP/CCC Report 9/2001. Norwegian Institute for Air Research

    Google Scholar 

  • Brown DH (1982) Mineral nutrition. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 383–444

    Chapter  Google Scholar 

  • Brown DH, Bates JW (1990) Bryophyte and nutrient cycling. Bot J Linn Soc 104:129–147

    Article  Google Scholar 

  • Brown DH, Brûmelis G (1996) A biomonitoring method using the cellular distribution of metals in mosses. Sci Total Environ 187:153–161

    Article  CAS  Google Scholar 

  • Brûmelis G, Brown DH (1997) Movement of metals to new growing tissues on the Moss Hylocomium Splendens (Hedw). BSG. Ann Bot 79:679–686

    Article  Google Scholar 

  • Buse A, Norris D, Harmens H (2003) Heavy metal in European Mosses: 2000/2001 Survey. UNECE ICP Vegetation. Centre for Ecology and Hydrology, Bangor, UK p 45

    Google Scholar 

  • Calasans C, Malm O (1997) Elemental mercury contamination survey in a chlor-alkali plant by the use of transplanted Spanish moss, Tillandsia usneoides (L.) Sci Total Environ 208:165–177

    Article  CAS  PubMed  Google Scholar 

  • Carballeira A, Fernández JA (2002) Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant A geotopographical predictive model for mercury. Chemosphere 47:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Carpi A, Weinstein LH, Ditz DW (1994) Bioaccumulation of mercury by Sphagnum moss near a municipal solid waste incinerator. Air Waste 44:669–672

    Article  CAS  Google Scholar 

  • Čeburnis D, Valiulis D (1999) Investigation of absolute metal uptake efficiency from precipitation in Moss. Sci Total Environ 226:247–253

    Article  PubMed  Google Scholar 

  • Čeburnis D, Steinnes E, Kveitkus K (1999) Estimation of metal uptake efficiencies from assessment-a review. Environ Pollut 114:471–492

    Google Scholar 

  • Chakrabortty S, Jha SK, Paratkar GT, Puranik VD (2004) Distribution of trace elements in Moss biomonitors near Mumbai. Evansia 21(4):180–188

    Google Scholar 

  • Chakrabortty S, Jha SK, Puranik VD, Paratkar GT (2006) Use of Mosses and Lichens as biomonitors in the study of air pollution near Mumbai. Evansia 23:1–8

    Google Scholar 

  • Couto JA, Fernandez J, Aboal JR, Carballeira A (2004) Active biomonitorng of element uptake with terrestrial mosses: a comparison of bulk and dry deposition. Sci Total Environ 324:211–222

    Article  CAS  PubMed  Google Scholar 

  • Culicov OA, Frontasyeva MV, Steinnes E, Okina OS, Santa Z, Todoran R (2002) Atmospheric deposition of heavy metals around the lead and copper-zinc smelters in Baia Mare, Romania, studied by the moss biomonitoring technique, neutron activation analysis and flame atomic absorption spectrometry. J Radioanal Nucl Chem 254(1):109–115

    Article  CAS  Google Scholar 

  • Culicov OA, Mocanu R, Frontasyeva MV, Yurukova L, Steinnes E (2005) Active Moss biomonitoring applied to an industrial site in Romania: relative accumulation of 36 elements in Moss-bags. Environ Monit Assess 108:22

    Article  CAS  Google Scholar 

  • De Caritat P, Reimann C, Bogatyrev I, Chekuskin V, Finne TE, Halleraker JH, Kashulina G, Niskavaara H, Pavlov V (2001) Regional distribution of Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y in terrestrial Moss within a 188,000 km2 area of the central barents region: influence of geology, Seaspray, and Uuman activity. Appl Geochem 16:137–159

    Article  Google Scholar 

  • Fernández JA, Carballeira A (2001) A comparison of indigenous mosses and topsoils for use in monitoring atmospheric heavy metal deposition in Galicia (Northwest Spain). Environ Pollut 114(3):431–441

    Article  PubMed  Google Scholar 

  • Fernández JA, Aboal JR, Carballeira A (2000) Use of native and transplanted mosses as complementary techniques for biomonitoring mercury around an industrial facility. Sci Total Environ 256(2–3):51–61

    Google Scholar 

  • Fernández JÁ, Aboal JR, Real C, Carballeira A (2007) A new moss biomonitoring method for detecting sources of small scale pollution. Atmos Environ 41(10):2098–2110

    Article  CAS  Google Scholar 

  • Ford J, Landers D, Kugler D, Lasorsa B, Crecelius E, Martinson J (1995) Inorganic contaminants in Arctic Alaskan ecosystem: long range atmospheric transport or local point sources. Sci Total Environ 160:323–335

    Article  Google Scholar 

  • Gana MG, Yurukova LD (2006) Biomonitoring in running river water with aquatic bryophytes. Scientific Articles. Ecology, Part 2. 209–216

    Google Scholar 

  • Gecheva G, Yurukova L (2014) Water pollutant monitoring with aquatic bryophytes: a review. Environ Chem Lett 12(1):49–61

    Article  CAS  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R (2002) Element concentrations in the forest moss Hylocomium splendens: variations associated with altitude, net primary production and soil chemistry. Environ Pollut 116:129–135

    Article  CAS  PubMed  Google Scholar 

  • Giordana S, Sorbo S, Adamo P, Basile A, Spagnuola V, Castaldo Cobianchi R (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol 170:1–14

    Article  Google Scholar 

  • Giordano S, Adamo P, Sorbo S, Vingiani S (2005) Atmospheric trace metal pollution in the Naples urban area based on results from Moss and Lichen bags. Environ Pollut 136(3):431–442

    Article  CAS  PubMed  Google Scholar 

  • Gjengedal E, Steinnes E (1990) Uptake of metal ions in Moss from artificial precipitation. Environ Monit Assess 14:77–87

    Article  CAS  PubMed  Google Scholar 

  • Govindapyari H, Leleeka M, Nivedita M, Uniyal PL (2010) Bryophytes: indicators and monitoring agents of pollution. NeBIO 1(1):35–41

    Google Scholar 

  • Gupta A (1995) Heavy metal accumulation by three species of mosses in Shillong, North-Eastern India. Water Air Soil Pollut 82(3–4):751–756. https://doi.org/10.1007/BF00479424

    Article  CAS  Google Scholar 

  • Hutten M, Woodward A, Hutten K (2005) Inventory of the mosses, liverworts, hornworts, and lichens of Olympic National Park, Washington: species list, Scientific Investigations Report. 1–5240. U.S. Geological Survey, Reston, pp 1–86

    Google Scholar 

  • Jonathan SS, Lehman ME (2002) Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum. Atmos Environ 36:1611–1618

    Article  Google Scholar 

  • Kolon K, Samecka-Cymerman A, Kempers AJ, Alexander JK, Lucyna M (2010) Pleurozium schreberi of the Tatra mountains (Poland) used as a bioindicational system for observing long range atmospheric transport of chemical elements. J Atmos Chem 66:157–166. https://doi.org/10.1007/s10874-011-9198-x

    Article  CAS  Google Scholar 

  • Krommer V, Zechmeister HG, Roder I, Scharf S, Hanus-Illnar A (2007) Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere 67:1956–1966

    Article  CAS  PubMed  Google Scholar 

  • Lodenius M (1998) Dry and wet deposition near a chlor-alkali plant. Sci Total Environ 213:53–56

    Article  CAS  Google Scholar 

  • Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, Central Italy). Chemosphere 41:1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Lukáš Č, Oto K, Vítězslav P (2017) Modeling the distribution of rare and interesting moss species of the family Orthotrichaceae (Bryophyta) in Tajikistan and Kyrgyzstan. Acta Soc Bot Pol 86(2):35–43

    Google Scholar 

  • Macedo-Miranda G, Avila-Pérez P, Gil-Vargas P, Zarazúa G, Sánchez-Meza JC, Zepeda-Gómez C, Tejeda S (2016) Accumulation of heavy metals in mosses: a biomonitoring study. Springerplus 5(1):715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makholm MM, Mladenoff DJ (2005) Efficacy of a biomonitoring (moss bag) technique for determining element deposition on a mid-range (375) km scale. Environ Monit Assess 104(1–3):1–18

    Article  CAS  PubMed  Google Scholar 

  • Mäkinen A (1994) Biomonitoring of atmospheric deposition in the Kola Peninsula (Russia) and Finnish Lapland, based on the chemical analysis of mosses. Minist Environ Rapp 4:1–83

    Google Scholar 

  • Mankovska B (1994) Airborne sulphur and heavy metal pollution in the environment of a thermal plant. Ekologia (Bratislava) 13(2):207–217

    Google Scholar 

  • Marinova S, Yurukova L, Frotasyeva MV et al (2010) Air pollution studies in Bulgaria using the moss biomonitoring technique. Ecol Chem Eng S 17:37–52

    CAS  Google Scholar 

  • Markert B, Weckert V (1989) Time and site integrated long-term biomonitoring of chemicals by means of mosses. Toxicol Environ Chem 40:177–189

    Google Scholar 

  • Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals. In: Subramanian G, Iyengar V (eds) Environmental biomonitoring – exposure assessment and specimen banking, ACS Symposium Series 654. American Chemical Society, Washington, DC

    Google Scholar 

  • Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. J Radioanal Nucl Chem 240(2):425–429

    Article  CAS  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) In: Markert BA, Breure AM, Zechmeister HG (eds) Definitions, strategies, and principles for Bioindication/biomonitoring of the environment. Elsevier, Oxford, pp 3–39

    Google Scholar 

  • Martin MH, Coughtrey PJ (1982) Biological monitoring of heavy metal pollution. Land, and Air Appl Sci Publishers, London, pp 136–142

    Book  Google Scholar 

  • Nath V, Sinha S, Asthana AK, Sahu V (2010) A study on metal accumulation in two selected bryophytes. Env Sci Ind J 5(1):42–45

    CAS  Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279(5712):409–411

    Article  CAS  PubMed  Google Scholar 

  • Økland T, Økland RH, Steinnes E (1999) Element concentrations in the Boreal Forest Moss hylocomium splendens: variations related to gradients in vegetation and local environmental factors. Plant Soil 209:71–83

    Article  Google Scholar 

  • Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Neri R, Benco C, Serracca L (1997) Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring. J Environ Path Toxicol Oncol 16(2–3):175–190

    CAS  Google Scholar 

  • Pant G, Tewari SD (1998) Bryophytes as biogeoindicators: Bryophytic Associations of Mineral enriched substrates in Kumaon Himalaya. In: Chopra RN (ed) Topics in Bryology. Allied Publishers Ltd, New Delhi, p 202

    Google Scholar 

  • Pesch R, Schroeder W (2006) Mosses as Bioindicators for metal accumulation: statistical aggregation of measurement data to exposure indices. Ecol Indic 6(1):137–152

    Article  CAS  Google Scholar 

  • Poikolainen J (2004) Mosses, epiphytic lichens and tree bark as biomonitors for air pollutants—specially for heavy metals in regional surveys. Dissertation, University of Oulu, Oulu

    Google Scholar 

  • Pott U, Turpin D (1996) Changes in atmospheric trace element deposition in Fraser Valley, B.C., Canada from 1960–1993 measured by Moss monitoring with Isothecium Stoloniferum. Can J Bot 74:1345–1353

    Article  CAS  Google Scholar 

  • Puckett KJ (1988) Bryophytes and lichens as monitor of metal deposition. Bibl Lichenol 30:231–267

    Google Scholar 

  • Rao DN (1982) Responses of bryophytes to air pollution. In: Smith AJE (ed) Bryophyte ecology. Springer, Dordrecht, pp 445–471

    Chapter  Google Scholar 

  • Rasmussen L (1978) Element content of epiphytic Hypnum cupressiforme related to element content of the bark of different species of phorophytes. Lindbergia 4:209–218

    CAS  Google Scholar 

  • Reimann C, Halleraker JH, Kashulina G, Bogatyrev I (1999) Comparison of plant and precipitation chemistry in catchments with different levels of pollution in Kola Peninsula, Russia. Sci Total Environ 243(244):169–191

    Article  Google Scholar 

  • Ross HB (1990) On the use of the mosses Hylocomium Splendens and Pleurozium schreberi for estimating atmospheric trace metal deposition. Water Air Soil Poll 50:63–76

    Article  CAS  Google Scholar 

  • Ruhling A (ed) (1994) Atmospheric heavy metal deposition in Europe – estimations based on moss analysis. Nordic Council of Ministers, Copenhagen, p 9

    Google Scholar 

  • Ruhling A, Tyler G (1968) An ecological approach to the lead problem. Bot Notiser 122:248–342

    Google Scholar 

  • Ruhling A, Tyler G (1970) Sorption and retention of heavy metals in the woodland Moss Hylocomium splendens. Oikos 21:92–97

    Article  CAS  Google Scholar 

  • Sahu V, Nath V, Asthana AK, Yunus M (2014) Marchantia paleacea Bertol. as quantitative biomonitor of atmospheric heavy metals deposition. J Recent Adv Appl Sci 29:22–27

    Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1995) Preliminary investigations into the bioaccumulation of mercury by the liverwort Scapania undulata (L.) Dum. Ecotoxicol Env Safety 31:57–61

    Article  CAS  Google Scholar 

  • Sawidis T, Zachariadis G, Stratis J, Eukakis L (1993) Mosses as biological indicators for monitoring of heavy metal pollution. Environ Bull 2:26–229

    Google Scholar 

  • Saxena A (2006) Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum. J Environ Biol 27:71–75

    PubMed  CAS  Google Scholar 

  • Saxena DK, Saxena A, Srivastava HS (2000) Biomonitoring of metal precipitation at petrol pumps and their effect on moss Sphagnum cuspidatum Hoffm. J Environ Stud Policy 3:95–102

    Google Scholar 

  • Saxena DK, Srivastava K, Singh S (2008) Biomonitoring of metal deposition by using moss transplant method through Hypnum cupressiforme (Hedw.) in Mussoorie. J Env Biol 29(5):683–688

    CAS  Google Scholar 

  • Saxena DK, Tuba Z, Arfeen MS (2010) Seasonal passive metal monitoring during year 2003 to 2006 in Nainital of Kumaon hills (INDIA) by moss Racomitrium crispulum. Acta Bot Hung 52(1–2):273–297

    Google Scholar 

  • Shakya K, Chettri MK, Swidis T (2004) Appraisal of some mosses for biomonitoring airborne heavy metals in Kathmandu valley. An Intl J Ecol 11(1). https://doi.org/10.3126/eco.v11i1.143

  • Singh S, Srivastava K, Gahtori D, Saxena DK (2017) Bryomonitoring of atmospheric elements in Rhodobryum giganteum (Schwaegr.) Par., growing in Uttarakhand region of Indian Himalayas. Aerosol Air Qual Res 17:810–820

    Article  CAS  Google Scholar 

  • Steinnes E (1977) Atmospheric deposition of trace elements in Norway studied by means of Moss analysis, Kjeller Report, KR 154. Institute for Atomenegri, Kjeller

    Google Scholar 

  • Steinnes E (1993) Some aspects of biomonitoring of air pollutants using mosses as illustrated by the 1976 Norwegian survey. In: Markert B (ed) Plants as biomonitors, indicators for heavy metals of the terrestrial environment. VCH Publishers, Weinheim, pp 381–339

    Google Scholar 

  • Steinnes E (1995) A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci Total Environ 160(161):243–249

    Article  Google Scholar 

  • Sucharová J, Suchara I (2004) Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques. Part I: relative and absolute current atmospheric deposition levels detected by Moss analysis. Water Air Soil Poll 153:205–228

    Article  Google Scholar 

  • Thöni L, Schnyder N, Kreig F (1996) Comparisons of metal concentrations in three species of mosses and metal freights in bulk precipitations. Fresenius J Anal Chem 354:703–708

    Google Scholar 

  • Tyler G (1970) Moss analysis-a method for surveying heavy metal deposition. In: Englaund HM, Berry WT (eds) Proceedings of the Second International Clean Air Congress. Academic, New York, pp 129–132

    Google Scholar 

  • Tyler G (1990) Bryophyte and heavy metals: a literature review. Bot J Linn Soc 104:231–253

    Article  Google Scholar 

  • Umweltbundesamt (2004) Recycling von phosphor verbessurn Presse-Information Nr. 103/2004. UBA-Berlin

    Google Scholar 

  • UNESCO (2016) United Nations environment programme, UNEP/POPS/POPRC. 12/11(2016) Report of the persistent organic pollutants review committee on the work of its twelfth meeting, 19–23 Sept 2016, Rome

    Google Scholar 

  • Walkenhorst A, Hagemeyer J, Breckle WS (1993) Passive monitoring of air borne pollutants, peculiarly trace metals, with tree bark. In: Markert B (ed) Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 523–540

    Google Scholar 

  • Wang S, Zhang Z, Wang Z (2015) Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Sci Total Environ 15(538):270–278. https://doi.org/10.1016/j.scitotenv.2015.08.049

    Article  CAS  Google Scholar 

  • Wappelhorst O, Kuhn I, Oehlmann J, Markert B (2000) Deposition and disease: a moss monitoring project as an approach to ascertaining potential connections. Sci Total Environ 249(1–3):243–256

    Article  CAS  PubMed  Google Scholar 

  • Wolterbeek HT, Bode P, Verburg TG (1996) Assessing the quality of biomonitoring via signal-to-noise ratio analysis. Sci Total Environ 180:107–116

    Article  CAS  Google Scholar 

  • Zawadzki K, Samecka-Cymerman A, Kolon K, Wojtuń B, Mróz L, Kempers AJ (2016) Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution. Environ Sci Pollut Res Int 23:11100–11108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmeister HG (1995) Correlation between altitude and heavy metal deposition in Alps. Environ Pollut 89:73–80

    Article  CAS  Google Scholar 

  • Zechmeister HG, Dirnböck T, Hülber K, Mirtl M (2007) Assessing airborne pollution effects on bryophytes lessons learned through long-term integrated monitoring in Austria. Environ Pollut 147:696–705

    Article  CAS  PubMed  Google Scholar 

  • Zeichmeister HG (1998) Annual growth of four pleurocarpous Moss species and their applicability for biomonitoring heavy metals. Environ Monit Assess 52:441–451

    Article  Google Scholar 

  • Zeichmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003a) In: Markert BA, Breure AM, Zeichmeister HG (eds) Bryophytes. Elsevier, Oxford, pp 329–375

    Google Scholar 

  • Zeichmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2003b) Variation in heavy metal concentrations in the Moss species Abietinella abietina (Hedw.) Fleisch according to sampling time, within site variability and increase in biomass. Sci Total Environ 301:55–65

    Article  Google Scholar 

  • Zechmeister HG, Dirnböck T, Hülber K, Mirtl M (2007) Assessing airborne pollution effects on bryophytes – lesson learned through long-term integrated monitoring in Austria. Environ Pollut 147:696–705

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, A. (2018). Bryomonitoring of Environmental Pollution. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_13

Download citation

Publish with us

Policies and ethics