Skip to main content

Microbial Symbionts of Plants

  • Chapter
Plant Biology and Biotechnology
  • 4377 Accesses

Abstract

Plants in nature always grow with soil microorganisms, and some become intimately associated with plants to form mutualistic symbiosis. Examples of such symbiotic microorganisms include mycorrhizal fungi, cyanobacteria, and N2-fixing prokaryotes, especially rhizobia. Looser symbiotic associations involve bacteria and soil microfauna within the rhizosphere. Their metabolic activities increase nutrient availability. All of these symbioses may affect rates of growth and eventually reproduction of plants compared with growth in the absence of such associations. A symbiotic association is therefore a potential selection pressure that can influence the evolutionary success of vascular plants and hence the composition of plant communities. Application of associative bacteria for sustainable agriculture holds immense potential. These bacteria are known to enhance growth and yield of plants by fixing atmospheric nitrogen, solubilization of phosphate, production of phytohormones and siderophores, possession of antagonistic activity, as well as reducing the level of stress ethylene in host plants. This review provides examples of associations and interactions between microorganisms and plants. The cyanobacterial association with various plants such as bryophyte, pteridophyte, gymnosperm, and angiosperm was illustrated. It also describes the actinorhizae, Frankia and Rhizobium, interaction with plants and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DG (2002) Cyanobacteria in symbiosis with hornworts and liverworts. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 117–135

    Google Scholar 

  • Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59:1047–1058

    CAS  PubMed  Google Scholar 

  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N (2011a) Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Ann Microbiol 62:805–810

    Google Scholar 

  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N (2011b) Endophytic bacteria from tomato and chilli, their diversity and antagonistic potential against Ralstonia solanacearum. Arch Phytopathol Pfl 45(3):344–355

    Google Scholar 

  • Anonymous (1984) Casuarinas: nitrogen-fixing trees for adverse sites. National Academies Press, Washington, DC

    Google Scholar 

  • Arnholdt-Schmitt B (1999) On the physiology of yield production in carrots-implications for breeding towards nutrient efficiency. Gartenbauwissenschaft 64:26–32

    Google Scholar 

  • Athar M, Johnson DA (1996) Influence of drought on competition between selected Rhizobium meliloti strains and naturalized soil rhizobia in alfalfa. Plant Soil 184:231–241

    CAS  Google Scholar 

  • Awasthi DD (1957) A new species of Parmelia from Kodaikanal, South India. Curr Sci 26:123–124

    Google Scholar 

  • Awasthi DD (1965) Catalogue of the lichens from India, Nepal, Pakistan, and Ceylon. Verlag von J Cramer, Weinheim

    Google Scholar 

  • Awasthi DD (1975) Lichen flora of pindari glacier valley. Geophytology 5:178–185

    Google Scholar 

  • Awasthi DD (1988) A key to the macro lichens of India and Nepal. J Hattori Bot Lab 65:207–302

    Google Scholar 

  • Awasthi DD (1991) A key to the microlichens of India, Nepal and Sri Lanka. Bibl Lichnenol 40:1–337

    Google Scholar 

  • Baker DD, Schwintzer CR (1990) Introduction. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 1–13

    Google Scholar 

  • Baker JA, Entsch B, McKay DB (2003) The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc. FEMS Microbiol Lett 229:43–47

    CAS  PubMed  Google Scholar 

  • Becking JH (1970) Frankiaceae, fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886. Int J Syst Bacteriol 20:201–220

    Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, New York, pp 241–261

    Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergman B (2002) Nostoc-Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 207–232

    Google Scholar 

  • Bergman B, Johansson C, Söderbäck E (1992) Tansley review No. 42: the Nostoc-Gunnera symbiosis. New Phytol 122(3):379–400

    Google Scholar 

  • Berry AM, Moreau RA, Jones AD (1991) Bacteriohopanetetrol: abundant lipid in Frankia cells and in nitrogen fixing nodule tissue. Plant Physiol 95:111–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci U S A 90(13):6091–6094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berthol RJ, Borowitzka MA, Mackay MA (1982) The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327–335

    Google Scholar 

  • Brehm U, Krumbein WE, Palinska K (2003) Microbial spheres: a novel cyanobacterial – diatom symbiosis. Naturwissenschaften 90:136–140

    CAS  PubMed  Google Scholar 

  • Buee MD, Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    CAS  Google Scholar 

  • Calvert HE, Pence MK, Peters GA (1985) Ultrastructural ontogeny of leaf trichomes in Azolla implies a functional role in metabolite exchange. Protoplasma 129:10–27

    Google Scholar 

  • Carballo JL, Vila E (2004) Population dynamics of a mutualistic interaction between the sponge Haliclona caerulea and the red alga Jania adherens. Mar Ecol Prog Ser 279:93–104

    Google Scholar 

  • Carpenter EJ (2002) Marine cyanobacterial symbioses. Biol Environ 102(B):15–18

    Google Scholar 

  • Carpenter EJ, Janson S (2000) Intracellular cyanobacterial symbiont in the marine diatom Climacodium frauenfeldianum. J Phycol 36:540–544

    Google Scholar 

  • Cheshire AC, Wilkinson CR, Seddon S, Westphalen G (1997) Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef. Mar Freshw Res 48:589–599

    Google Scholar 

  • Chopra GL (1934) Lichens of the Himalayas, pt. I. Lichens of Darjeeling and Sikkim Himalayas. Punjab University, Lahore

    Google Scholar 

  • Costa JL, Lindblad P (2002) Cyanobacteria in symbiosis with cycads. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 195–205

    Google Scholar 

  • Costa JL, Paulsrud P, Lindblad P (1999) Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol Ecol 28:85–91

    CAS  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G et al (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102:5074–5078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    CAS  PubMed  Google Scholar 

  • Dawson JO (1986) Actinorhizal plants: their use in forestry and agriculture. Outlook Agric 15:202–208

    Google Scholar 

  • Dawson JO (1990) Interactions among actinorhizal and associated plant species. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 299–316

    Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    CAS  PubMed  Google Scholar 

  • DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson MC (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152:121–130

    PubMed  Google Scholar 

  • Deyoe HR, Lowe RL, Marks JL (1992) Effects of nitrogen and phosphorus on the endo symbiont load of Rhopalodia gibba and Epithemia turgida Bacillariophyceae. J Phycol 28:773–777

    CAS  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 317–342

    Google Scholar 

  • Dommergues YR (1995) Nitrogen fixation by trees in relation to soil nitrogen economy. Fertil Res 42:215–230

    CAS  Google Scholar 

  • Dommergues YR (1997) Contribution of actinorhizal plants to tropical soils productivity and rehabilitation. Soil Biol Biochem 29:931–941

    CAS  Google Scholar 

  • Dommergues Y, Duhoux E, Diem HG (1999) Les arbres fixateurs d’azote. ESPACES, Montpellier

    Google Scholar 

  • Duff RJ, Villarreal JC, Cargill DC, Renzaglia KS (2007) Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110:214–243

    Google Scholar 

  • Erwin PM, Thacker RW (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17:2937–2947

    CAS  PubMed  Google Scholar 

  • Fagg CW, Stewart JL (1994) The value of Acacia and Prosopis in arid and semi-arid environments. J Arid Environ 27:3–25

    Google Scholar 

  • Fedorova EE, Zhiznevskaya GY, Kalibernaya ZV, Artemenko EN, Izmailov SF, Guskov AV (2000) IAA metabolism during development of symbiosis between Phaseolus vulgaris and Rhizobium phaseoli. Russ J Plant Physiol 47:203–206

    CAS  Google Scholar 

  • Feldmann J (1935) Sur quelques cyanophycees vivant dans le tissu des eponges de banyules.Second volume jubilaire Tome 75, p. 331 a’ 404.1er De’cembre 1933. Arch de zoologie expe’rimentale et ge’ne’rale 75:381

    Google Scholar 

  • Felker P, Clark PR, Leag AE, Pratt PF (1981) Salinity tolerance of the tree legumes: mesquite (Prosopis glandulosa var. torreyana, P. velutina and P. articulata), algarrobo (P. chilensis), kiawa (P. pallida) and tamarufo (P. amarugo) grown in sand culture on nitrogen-free media. Plant Soil 61:311–317

    Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    CAS  Google Scholar 

  • Franche C, Bougusz D, Le Van Q, Phelep M, Duhoux E (1994) Genetic transformation of trees in the Casuarinaceae family. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 257–273

    Google Scholar 

  • Franche C, Laplaze L, Duhoux E, Bogusz D (1998) Actinorhizal symbiosis: recent advances in plant molecular and genetic studies. Crit Rev Plant Sci 17:1–28

    CAS  Google Scholar 

  • Franche C, N’Diaye A, Gobe C, Alloneau C, Bogusz D, Duhoux E (1999) Genetic transformation of Allocasuarina verticillata. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 1–14

    Google Scholar 

  • Gauthier DL, Frioni HG, Diem, Dommergues Y (1984) The Colletia spinosissima – Frankia symbiosis. Acta Oecol Oecol Plant 5:231–239

    Google Scholar 

  • Gebhardt JS, Nierzwicki-Bauer SA (1991) Identification of a common cyanobacterial symbiont associated with Azolla spp. through molecular and morphological characterization of free-living and symbiotic cyanobacteria. Appl Environ Microbiol 57:2141–2146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehringer MM, Adler L, Roberts AA, Moffitt MC et al (2012) Nodularin, a cyanobacterial toxin, is synthesized in plants by symbiotic Nostoc sp. ISME J 6:1834–1847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gentili F, Nilsson MC, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56:3121–3127

    CAS  PubMed  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann Bot 85:921–928

    CAS  Google Scholar 

  • Goetting-Minesky MP, Mullin BC (1994) Differential gene expression in an actinorhizal symbiosis: evidence for a nodule- specific cysteine proteinase. Proc Natl Acad Sci U S A 91:9891–9895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez F, Furuya K, Takeda S (2005) Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the Western Pacific Ocean. J Plankton Res 27:323–330

    Google Scholar 

  • Grobbelaar N, Scott WE, Hattingh W, Marshall J (1987) The identification of the coralloid endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. S Afr J Bot 53:111–118

    Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44(2):136–142

    CAS  Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach AM (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    CAS  Google Scholar 

  • Hariharan GN (1991) The lichens of Shervaroy. PhD thesis, Bharathidasan University, Tiruchirappalli

    Google Scholar 

  • Hariharan GN, Krishnamurthy KV, Upreti DK (2003) Lichens of Shervaroy hills of Eastern Ghats, India. Phytotaxonomy 3:1–23

    Google Scholar 

  • Heinbokel JF (1986) Occurrence of Richelia intracellularis (cyanophyta) within the diatoms Hemiaulus haukii and H. membranaceus of Hawaii. J Phycol 22:399

    Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heusser LE, Shackleton NJ (1979) Direct marine continental correlation: 150,000-year oxygen isotope-pollen record from the North Pacific. Science 204:837–838

    CAS  PubMed  Google Scholar 

  • Hibbs DE, Cromack K Jr (1990) Actinorhizal plants in Pacific Northwest forest. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 343–363

    Google Scholar 

  • Hill K, Osborne R (2001) Cycads of Australia. Kangaroo Press, Sydney, pp 63–112

    Google Scholar 

  • Hirose E, Hirose M, Neilan BA (2006) Localization of symbiotic cyanobacteria in the colonial ascidian Trididemnum miniatum (Didemnidae, Ascidiacea). Zool Sci 23:435–442

    PubMed  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janson S (2002) Cyanobacteria in symbiosis with diatoms. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Jenkins MB, Virginia RA, Jarrel WM (1987) Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl Environ Microbiol 33:36–40

    Google Scholar 

  • Jha PK, Nair S, Gopinathan MC, Babu CR (1995) Suitability of rhizobia inoculated wild legumes Argyrolobium flaccidum, Astragalus graveolens, Indigofera gangetica and Lespedeza stenocarpa in providing a vegetational cover in an unreclaimed limestone quarry. Plant Soil 177:139–149

    CAS  Google Scholar 

  • Joshi PA, Caetano-Anolles G, Graham ET, Gresshoff PM (1993) Ultrastructure of transfer cells in spontaneous nodules of alfalfa (Medicago sativa). Protoplasma 172:64–76

    Google Scholar 

  • Kaasalainen U, Jokela J, Fewer DP, Sivonen K, Rikkinen J (2009) Microcystin production in the tripartite cyanolichen Peltigera leucophlebia. Mol Plant Microbe Interact 22:695–702

    CAS  PubMed  Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2012) Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc Natl Acad Sci USA 109:5886–5891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kannan K, Vijayan D, Ali DM, Praveenkumar R, Parveez AA, Thajuddin N (2014) Evidence-based analysis of novel symbiotic and epiphytic cyanobacteria associated with Azolla by cyto and molecular taxonomy. Biotechnology 13(20):46–53

    Google Scholar 

  • Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER et al (2010) Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol 154(3):1381–1389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiran GS, Thajuddin N, Hema TA, Idhayadhulla A, Surendar KR, Selvin J (2010) Optimization and characterization of rhamnolipid biosurfactant from sponge associated marine fungi Aspergillus sp. MSF1. Desalination Water Treat 24:257–265

    CAS  Google Scholar 

  • Kiran GS, Sabarathnam B, Thajuddin N, Selvin J (2014) Production of glycolipid biosurfactant from sponge-associated marine Actinobacterium Brachybacterium paraconglomeratum MSA21. J Surfactant Deterg 17:531–542

    CAS  Google Scholar 

  • Kluge M, Mollenhauer D, Wolf E, Schuessler A (2002) The Nostoc-Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 19–30

    Google Scholar 

  • Ladha JK, Dawe D, Ventura TS, Singh U, Ventura AW, Watanabe I (2000) Long-term effect of urea and green manure on rice yield and nitrogen balance under long-term green manure and mineral N application. Soil Sci Soc Am J 64:1993–2001

    CAS  Google Scholar 

  • Landsberg EC (1996) Hormonal regulation of iron–stress response in sunflower roots: a morphological and cytological investigation. Protoplasma 194:69–80

    CAS  Google Scholar 

  • Laplaze L, Duhoux E, Franche C, Frutz T, Svistoonoff S, Bisseling T, Bogusz D, Pawlowski K (2000a) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant Microbe Interact 13:107–112

    CAS  PubMed  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Bogusz D, Pawlowski K (2000b) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa AG12. Mol Plant Microbe Interact 13:113–117

    CAS  PubMed  Google Scholar 

  • Laplaze L, Bon MC, Sy MO, Simouni A et al (2000c) Molecular biology of tropical nitrogen fixing trees in the Casuarinaceae family. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer Academic Publishers, Dordrecht, pp 269–285

    Google Scholar 

  • Larkum L (1999) The cyanobacteria of coral reefs. Marine cyanobacteria. In: Charpy L, Larkum AWD (eds) Bull I’Inst oceanograph Monaco Num special 19. Oceanographic Institute, France, pp 149–167

    Google Scholar 

  • Larkum AWD, Kennedy IR, Muller WJ (1988) Nitrogen fixation on a coral reef. Mar Biol 98:143–155

    Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two stage process. Development 121:3303–3310

    CAS  PubMed  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1990) Systematics, isolation, and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, pp 35–60

    Google Scholar 

  • Lechevalier MP, Labeda DP, Ruan J (1987) Studies on Frankia sp. LLR02022 from Casuarina cunninghamiana and its mutant LLR02023. Physiol Plant 70:249–254

    CAS  Google Scholar 

  • Lechno-Yossef S, Nierzwicki-Bauer SA (2002) Azolla–Anabaena symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 153–178

    Google Scholar 

  • Lee YK, Lee JH, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264

    Google Scholar 

  • Legocki RP, Verma DP (1980) Identification of nodule-specific host proteins (nodulins) involved in the development of rhizobium-legume symbiosis. Cell 20:153–163

    CAS  PubMed  Google Scholar 

  • Lindblad P, Haselkorn R, Bergman B (1985) The cyanobacterium– Zamia symbiosis: C2H2-reduction and heterocyst frequency. Symbiosis 1:19–28

    CAS  Google Scholar 

  • Lopez MF, Fontaine MS, Torrey JG (1984) Levels of trehalose and glycogen in Frankia sp. HFPArI3 (Actinomycetales). Can J Microbiol 30:746–752

    CAS  Google Scholar 

  • Lotti F, Giovanetti L, Margheri MC, Ventura S, Materassi R (1996) Diversity of DNA methylation pattern and total DNA restriction pattern in symbiotic Nostoc. World Microbiol Biotechnol 12:38–42

    CAS  Google Scholar 

  • Maldonado M, Young CM (1998) Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Available: http://digital.csic.es/handle/10261/3243?mode=full&submit_simple=Show+full+item+record. Accessed 7 Aug 2012

  • Meeks JC (1990) Cyanobacterial-bryophyte associations. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, pp 43–63

    Google Scholar 

  • Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobacteria and plants. Bio Sci 48:266–276

    Google Scholar 

  • Meeks JC (2003) Symbiotic interactions between Nostoc punctiforme, a multicellular cyanobacterium, and the hornwort Anthoceros punctatus. Symbiosis 35:55–71

    CAS  Google Scholar 

  • Miadlikowska J, Lutzoni F (2000) Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci 161:925–958

    CAS  Google Scholar 

  • Montesinos E (2003) Plant associated microorganisms: a view from the scope of microbiology. Int Microbiol 6(4):221–223

    CAS  PubMed  Google Scholar 

  • Mort AP, Normand, Lalonde M (1983) 2-O-methyl-Dmannose, a key sugar in the taxonomy of Frankia. Can J Microbiol 29:993–1002

    CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633

    CAS  PubMed  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    CAS  PubMed  Google Scholar 

  • Nilsen ET, Virginia RA, Jarrall WH (1986) Water relations and growth characteristics of Prosopis glandulosa var. torreyana in a simulated phreatophytic environment. Am J Bot 73:430–433

    Google Scholar 

  • NRC (1984) Casuarinas: nitrogen-fixing trees for adverse sites. National Research Council, Washington, DC

    Google Scholar 

  • Obukowicz M, Schaller M, Kennedy GS (1981) Ultrastructure and phenolic histochemistry of the Cycas revoluta–Anabaena symbiosis. New Phytol 87:751–754

    Google Scholar 

  • Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    CAS  PubMed  Google Scholar 

  • Pabby A, Prasanna R, Nayak S, Singh PK (2003) Physiological characterization of the cultured and freshly isolated endosymbionts from different species of Azolla. Plant Physiol Biochem 41:73–79

    CAS  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979

    PubMed  Google Scholar 

  • Peret B, Swarup R, Jansen L, Devos G et al (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perrine-Walker F, Doumas P, Lucas M, Vaissayre V et al (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters GA, Mayne BC (1974) The Azolla-Anabaena azollae relationship. I. Initial characterization of the association. Plant Physiol 53:813–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters GA, Meeks JC (1989) The Azolla–Anabaena symbiosis: basic biology. Ann Rev Plant Physiol Plant Mol Biol 40:193–210

    Google Scholar 

  • Phongpaichit S, Rungjindamai N, Rukachaisirikul N, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48(3):367–372

    CAS  PubMed  Google Scholar 

  • Plazinski J, Zheng Q, Taylor R, Croft L, Rolfe BG, Gunning BES (1990) DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and a closer relationship to free-living Nostoc strains than to free living Anabaena strains. Appl Environ Microbiol 56:1263–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postma J, Van Veen JA, Walter S (1989) Influence of different initial soil moisture contents on the distribution and population dynamics of introduced Rhizobium leguminosarum biovar. trifolii. Soil Biol Biochem 21:437–442

    Google Scholar 

  • Praveenkumar R, Leo AM, Vijayan D, Muthukumar C, Thajuddin N (2007) Morphological diversity and phylogeny of cyanobionts from the coralloid roots of cycads. BDU J Sci Technol 1(2):169–176, in Tamil) & 177–184 (in English

    Google Scholar 

  • Praveenkumar D, Anupama PD, Singh RK, Thenmozhi R, Nagasathya A, Thajuddin N, Paneerselvam A (2012) Performance studies of free-living tomato (Lycopersicon exculentum L.) rhizospheric Bacillus for their multiple plant growth promoting activity. J Soil Sci Environ Mgmt 3(6):142–153

    Google Scholar 

  • Prema P, Anand N (2012) A novel diatom –cyanobacteria symbiosis. Phykos 42(1):72–75

    Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    CAS  PubMed  Google Scholar 

  • Quraishi AA (1928) Lichens of Western Himalayas. Proceedings of 15th Indian Science Congress, Kolkatta, Abst 228

    Google Scholar 

  • Radeva G, Jurgens G, Niemi M, Nick G, Suominen L, Lindström K (2001) Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol 24(2):192–205

    CAS  PubMed  Google Scholar 

  • Rai AN (1990) Cyanobacteria in symbiosis. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton

    Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    CAS  Google Scholar 

  • Rajalakshmi S, Thajuddin N, Jayakumar V (2013) Salt tolerance and nitrogen fixing properties of Rhizobium spp. associated with wild legumes found in coastal and forest areas of Andaman & Nicobar Islands. In: Balu A, Jayaraj RSC, Ragupathy A, Mohan V, Warrier RR, Raghunath TP, Krishnakumar N (eds) Forest health management. Institute of Forest Genetics and Tree Breeding, ICFRE, Coimbatore, pp 116–127

    Google Scholar 

  • Ramos MLG, Gordon AJ, Minchin FR, Sprent JI, Parsons R (1999) Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann Bot 83:57–63

    CAS  Google Scholar 

  • Rasmussen U, Johansson C, Bergman B (1994) Early communication in the Gunnera-Nostoc symbiosis: plant-induced cell differentiation and protein synthesis in the cyanobacterium. Mol Plant Microbe Interact 7(6):696–702

    CAS  Google Scholar 

  • Ravikumar S, Gnanadesigan M, Thajuddin N, Deepan Charavarthy VS, Beula Banerjee M (2010) Anticancer property of sponge associated Actinomycetes along Palk Strait. J Pharm Res 3(10):2415–2417

    Google Scholar 

  • Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110:179–213

    Google Scholar 

  • Ribeiro A, Akkermans ADL, Van Kammen A, Bisseling T, Pawlowski K (1995) A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7:785–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ridley CP, John Faulkner D, Haygood MG (2005) Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl Environ Microbiol 71:7366–7375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 31–72

    Google Scholar 

  • Rikkinen J (2009) Relations between cyanobacterial symbionts in lichens and plants. In: Pawlowski K (ed) Prokaryotic symbionts in plants. Springer, Berlin, pp 265–270

    Google Scholar 

  • Rikkinen J (2013) Molecular studies. London, UK, 6:3–32

    Google Scholar 

  • Russelle MP (2008) Biological dinitrogen fixation in agriculture. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems. American Society of Agronomy, Madison, USA, pp 281–359

    Google Scholar 

  • Salt DE, Blaylock MJ, Kumar NPB, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  PubMed  Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49(3):155–179

    CAS  PubMed  Google Scholar 

  • Schultze DR, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    CAS  PubMed  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols?: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    CAS  PubMed  Google Scholar 

  • Shyamkumar R (2007) Diversity and characterization of cyanobionts in the lichens of Yercaud and Kolli hills, Tamil Nadu, India. PhD thesis, Bharathidasan University, Tiruchirappalli

    Google Scholar 

  • Shyamkumar R, Thajuddin N (2009a) Effect of salinity & pH on the growth of symbiotic cyanobacteria isolated from cyanolichens. Adv Biotechnol 8(11):35–38

    Google Scholar 

  • Shyamkumar R, Thajuddin N (2009b) Influence of temperature and light intensity on growth of symbiotic cyanobacteria isolated from cyanolichens. Res Rev Biosci 3(4):179–182

    Google Scholar 

  • Shyamkumar R, Thajuddin N, Upreti DK (2009) Additions to lichen flora of Yerkaud (Shervaroy Hills) Tamil Nadu, India. J Eco Taxon Bot 33(3):673–676

    Google Scholar 

  • Shyamkumar R, Thajuddin N, Venkateswari C (2010) Antibacterial activity of cyanolichen and symbiotic cyanobacteria against some selected microorganisms. Afr J Microbiol Res 4(13):1408–1411

    Google Scholar 

  • Shyamkumar R, Al-Harbi NA, Thajuddin N (2011a) Macromolecular and fatty acid profile studies on symbiotic cyanobacterial isolates of Cyanolichens. J Med Plants Res 5(17):4188–4193

    Google Scholar 

  • Shyamkumar R, Thajuddin N, Upreti DK (2011b) Diversity of Lichens in Kolli Hills of Tamil Nadu, India. Intl J Biodiver Conserv 3(2):36–39

    Google Scholar 

  • Shyamkumar R, Al-Hemaid FMA, Al-Dhabi NA, Muthukumar C, Ajmal Ali M, Thajuddin N (2013) Distribution of epiphytic cyanobacteria on lichens from Eastern Ghats of Tamil Nadu, India. J Pure Appl Microbiol 7(1):505–514

    Google Scholar 

  • Silvester WB (1976) Ecological and economic significance of the non-legume symbiosis. In: Newton WE, Nyman CJ (ed) Proceedings of the first international symposium on Nitrogen Fixation. Washington University Press, Seattle, USA, pp 489–506

    Google Scholar 

  • Silvester WB (1977) Dinitrogen fixation by plants associations excluding legumes. In: Hardy R, Silvester W (eds) A treatise of dinitrogen fixation. Academic, New York, pp 141–190

    Google Scholar 

  • Singh A (1980) Lichenology in Indian sub continent 1966–1977. EBIS, National Botanical Research Institute, Lucknow

    Google Scholar 

  • Singh KP (1984) Synopsis of lichens from Palni Hills. IndiaBiol Mem 9(2):105–150

    Google Scholar 

  • Singh SM, Singh P, Thajuddin N (2008) Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica. Acta Bot Malacitana 33:17–28

    Google Scholar 

  • Sivonen K, Carmichael WW, Namikoshi M, Rinehart KL, Dahlem AM, Niemela SI (1990) Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacterium Nostoc sp. strain 152. Appl Environ Microbiol 56:2650–2657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064

    Google Scholar 

  • Snoejis P, Murasi LW (2004) Synopsis between the diatom and cyanobacterial colonies. Vie et Milieu 54(2–3):163–170

    Google Scholar 

  • Solheim B, Zielke M (2002) Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 37–152

    Google Scholar 

  • Subba Rao NS, Rodriguez-Barrueco C (1993) Symbiosis in nitrogen fixing trees. Oxford and IBH Publishing, New Delhi

    Google Scholar 

  • Sudhakar N, Thajuddin N, Murugesan K (2011) Plant growth-promoting rhizobacterial mediated protection of tomato in the field against cucumber mosaic virus and its vector Aphis gossypii. Biocontrol Sci Technol 21(3):367–386

    Google Scholar 

  • Sundström BG (1984) Observations on Rhizosolenia clevei Ostenfeld (Bacillariophyceae) and Richelia intracellularis Schmidt. Bot Mar 27:345–355

    Google Scholar 

  • Svenning MM, Eriksson T, Ramussen U (2005) Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microbiol 183:19–26

    CAS  PubMed  Google Scholar 

  • Swensen SM (1996) The evolution of actinorhizal symbiosis: evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512

    Google Scholar 

  • Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142:643–648

    CAS  Google Scholar 

  • Thajuddin N (1991) Marine cyanobacteria of the southern east coast of India – survey and ecobiological studies. PhD thesis, Bharathidasan University, Tiruchirappalli

    Google Scholar 

  • Thajuddin N, Subramanian G (1992) Survey of cyanobacterial flora of the southern east coast of India. Bot Mar 35:305–314

    Google Scholar 

  • Thajuddin N, Subramanian G (1994) Marine cyanobacterial flora of south India. In: Sharma TA, Saini SS, Trivedi ML, Sharma M (eds) Current researchers in plant sciences. Bisen Singh & Mahendra Pal Singh, Dehra Dun, pp 1–16

    Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Thajuddin N, Nierzwicki-Bauer SA, Subramanian G (2007) Cyanobacterial biodiversity and recent trends in their taxonomy. BDU J Sci Technol 1:15–28

    Google Scholar 

  • Thajuddin N, Muralitharan G, Sundaramoorthy G, Ramamoorthy R, Ramachandran S, Akbarsha MA, Gunasekaran M (2010) Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 50:254–265

    CAS  PubMed  Google Scholar 

  • Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337(6101):1546–1550

    CAS  PubMed  Google Scholar 

  • Tjepkema JD, Torrey JG (1979) Symbiotic nitrogen fixation in actinomycete-nodulated plants. Bot Gaz 140:1–11

    Google Scholar 

  • Tjepkema JD, Ormerod W, Torrey JG (1980) Vesicle formation and acetylene reduction activity in Frankia sp. CpI1 cultured in defined media. Nature 287:633–635

    CAS  Google Scholar 

  • Torrey JG (1978) Nitrogen fixation by actinomycete-nodulated angiosperms. BioScience 28:586–592

    Google Scholar 

  • Torrey JG (1985) The site of nitrogenase in Frankia in free-living culture and in symbiosis. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, Dordrecht, pp 293–299

    Google Scholar 

  • Tremblay FM, Perinet P, Lalonde M (1986) Tissue culture of Alnus spp. with regard to symbiosis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 87–100

    Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton, pp 39–92

    Google Scholar 

  • Upreti DK (1995) Lichenology in India-1994. Br Lich Soc Bull 77:18

    Google Scholar 

  • Upreti DK (1997) A review of lichenology in India during 1996. Br Lich Soc Bull 81:25–26

    Google Scholar 

  • Upreti DK, Nayaka S (2000) Lichenology in India (1996–2000). Br Lich Soc Bull 87:66–67

    Google Scholar 

  • Upreti DK, Nayaka S (2003) Review of lichenology in India during 2001–03. Br Lich Soc Bull 93:37–39

    Google Scholar 

  • Usher KM (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar Ecol 29:178–192

    Google Scholar 

  • Usher KM, Fromont J, Sutton DC, Toze S (2004) The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb Ecol 48:167–177

    CAS  PubMed  Google Scholar 

  • Van Hove C, Lejeune A (2002) Applied aspects of Azolla–Anabaena symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 179–193

    Google Scholar 

  • Vaz AB, Mota RC, Bomfim MR, Vieira ML, Zani CL, Rosa CA, Rosa LH (2009) Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol 55:1381–1391

    CAS  PubMed  Google Scholar 

  • Veys P, Waterkeyn L, Lejeune A, Van Hove C (1999) The pore of the leaf cavity of Azolla: morphology, cytochemistry and possible functions. Symbiosis 27:22–57

    Google Scholar 

  • Vijayalakshmi S, Panneerselvam A, Vijayakumar N, Savery MA, Thajuddin N (2014a) Diversity of endophytic and rhizosphere soil fungi of Suaeda monica in Maravakadu mangrove forest. Int J Curr Res 6(3):5343–5345

    Google Scholar 

  • Vijayalakshmi S, Panneerselvam A, Vijayakumar N, Savery MA, Thajuddin N (2014b) Diversity of endophytic and rhizosphere soil fungi of Avicennia marina in Maravakadu mangrove forest. IOSR J Phar Bio Sci 9(2):2319–3008

    Google Scholar 

  • Villareal TA (1990) Laboratory culture and preliminary characterization of the nitrogen-fixing Rhizosolenia-Richelia symbiosis. Mar Ecol 11:117–132

    CAS  Google Scholar 

  • Villareal TA (1992) Marine nitrogen-fixing diatom-cyanobacterial symbioses. In: Carpenter EJ, Capone DG, Reuter J (eds) Marine pelagic cyanobacteria. Trichodesmium and other diazotrophs. Kluwer Academic Press, Dordrecht, pp 163–175

    Google Scholar 

  • Villareal TA (1994) Widespread occurrence of the Hemiaulus-cyanobacteria symbiosis in the southwest North Atlantic Ocean. Bull Mar Sci 54:1–7

    Google Scholar 

  • Watanabe I, Roger PA (1984) Nitrogen fixation in wetland rice fields. In: Subba Rao NS (ed) Current developments in nitrogen fixation. Oxford IBH, New Delhi, pp 237–276

    Google Scholar 

  • Weeler CT, Miller IM (1990) Current and potential uses of actinorhizal plants in Europe. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, pp 365–389

    Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Micro 9:2707–2719

    CAS  Google Scholar 

  • Wilkinson CR (1978) Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49:161–167

    Google Scholar 

  • Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbiosis. Biopress, Bristol, pp 112–151

    Google Scholar 

  • Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    CAS  Google Scholar 

  • Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334

    Google Scholar 

  • Zahran HH (1998) Structure of root nodules and nitrogen fixation in Egyptian wild herb legumes. Biol Plant 41:575–585

    Google Scholar 

  • Zhang X, Benson DR (1992) Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol 158:256–261

    CAS  Google Scholar 

  • Zhao Z, Williams SE, Schuman GE (1997) Renodulation and characterization of Rhizobium isolates from Cicer milkvetch (Astragalus cicer L.). Biol Fertil Soils 25:169–174

    Google Scholar 

  • Zheng W, Rang L, Bergman B (2009) Structural characteristics of the cyanobacterium – Azolla symbioses. In: Pawlowski K (ed) Prokaryotic symbionts in plants. Springer, Dordrecht, pp 235–263

    Google Scholar 

  • Zhu C (1982) Fine structure of blue-green algae and the cells lined along the endophyte cavity in the coralloid root of Cycas. Acta Bot Sin 24:109–114

    Google Scholar 

  • Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on nitrogen fixation in different types of vegetation in the High arctic. Svalbard. Arct Antarct Alp Res 34:293–299

    Google Scholar 

  • Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res 37:372–378

    Google Scholar 

  • Zimmerman WJ, Bergman B (1990) The Gunnera symbiosis: DNA restriction fragment length polymorphism and protein comparisons of Nostoc symbionts. Microb Ecol 19:291–302

    CAS  PubMed  Google Scholar 

  • Zimmerman WJ, Rosen BH (1992) Cyanobiont diversity within and among cycads of one field site. Can J Microbiol 38:1324–1328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The first author is thankful to the Department of Biotechnology (Govt. of India) for the constant funding support, and all authors are thankful to the Department of Science and Technology (Govt. of India) for confocal microscopy facility sponsored through PURSE grant to Bharathidasan University, Tiruchirappalli – 620024. Visiting Professorship provided to Prof. N. Thajuddin by King Saud University, Riyadh, Kingdom of Saudi Arabia and Deanship of Scientific research, College of Science, Research Center, King Saud University, Kingdom of Saudi Arabia has been thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Thajuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Thajuddin, N., Muralitharan, G., Dhanasekaran, D., Muhammad Ilyas, M.H. (2015). Microbial Symbionts of Plants. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_11

Download citation

Publish with us

Policies and ethics