Skip to main content

Bio-intensive Integrated Management of Termites

  • Chapter
  • First Online:
Termites and Sustainable Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Various viable options in termite management are termite baits (novaluron, hexaflumuron), the use of synthetic pesticides/insecticides/termiticides (bifenthrin, chlorpyrifos, cypermethrin, fenvalerate, Imidachloprid, permethrin, dexamethasone, ibuprofen, aldrin, Dieldrin, etc.), chemicals (boric acid, ibuprofen sodium salt), or botanicals (Withania somnifera, Croton tiglium, Hygrophila auriculata, Trachyspermum ammi, Pimenta dioica, Carum carvi, Anethum graveolens, Pelargonium graveolens, Litsea cubeba, Croton urucurana, Melia azedarach, Crotalaria burhia, and Anacardium occidentale). Further, natural enemies include mammals, birds, insects (ants, reduviids), Araneae (spiders), microbes–bacteria [Bacillus thuringiensis], fungi [Conidiobolus sp., Aspergillus flavus, Metarhizium anisopliae, Beauveria bassiana, B. pseudobassiana, and Isaria fumosorosea), and nematodes (Heterorhabditis sp., Steinernema sp.). Other methods such as dug trench are also available for termite management. In addition, many commercial products are available in the market (e.g., Bioblast). No one has integrated more than two or three individual components for termite control that are environmentally safe and effective. Here we discuss how to utilize many integrated pest management components, to save crops and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed, N., Huma, Z., Rehman, S. U., Ullah, M., & Ahmed, S. (2016). Effect of different plant extracts on termite species (Heterotermis indicola). Journal of Bioresource Management, 3, 9–16.

    Google Scholar 

  • Al-Fazairy, A. A., & Hassan, F. A. (1988). Infection of termites by Spodoptera littoralis nuclear polyhedrosis virus. International Journal of Tropical Insect Science, 9, 37–39.

    Article  Google Scholar 

  • Assefa Gebre-Amlak. (1990). Maize stalkborer research in Ethiopia. In: Gebrekidan B (ed) Maize improvement, production and protection in Eastern and Southern Africa Regional. Proceedings of the 3rd eastern and southern Africa Regional Maize Workshop. 18–22 September 1989, Nairobi, Kenya, pp 239–252.

    Google Scholar 

  • Atkinson, P. R., Nixon, K. M., & Shaw, M. J. P. (1992). On the susceptibility of eucalyptus species and clones to attack by Macrotermes natalensis Havilland (Isoptera: Termitidae). Forest Ecology and Management, 48, 15–30.

    Article  Google Scholar 

  • Atu, U. G. (1993). Cultural practices for the control of termite (Isoptera) damage to yams and cassava in South-eastern Nigeria. International Journal of Pest Management, 39, 462–466.

    Article  Google Scholar 

  • Azam, I., Sarwar, M. K., Waheed, I., Nadia, I., & Fareeha, A. (2015). Studies on population density and diversity of termites of district Gujranwala, Pakistan. Journal of Entomology and Zoology Studies, 3, 160–163.

    Google Scholar 

  • Bajya, D., Manoharan, T., Sridharan, S., & Kuttalam, S. (2015). Repellent efficacy of Crotalaria burhia and Anacardium occidentale against Odontotermes obesus (Isoptera: Termitidae) under laboratory conditions. Indian Journal of Agricultural Science, 85, 1234–1236.

    Google Scholar 

  • Bedoukian, R. H., & Raina, A. (2015). US Patent No. 9,021,738. Washington, DC: US Patent and Trademark Office.

    Google Scholar 

  • Bigger, M. (1966). The biology and control of termites damaging field crops in Tanganyika. Bulletin of Entomological Research, 56, 417–444.

    Article  CAS  Google Scholar 

  • Castilhos-Fortes, R. D., Matsumura, A. T., Diehl, E., & Fiuza, L. M. (2002). Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Brazilian Journal of Microbiology, 33(3), 219–222.

    Article  Google Scholar 

  • Chouvenc, T., & Su, N. Y. (2010). Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events – The limits and potential for biological control. Journal of Economic Entomology, 103, 1327–1337.

    Article  PubMed  Google Scholar 

  • Chouvenc, T., NY, S., & Grace, J. K. (2011). Fifty years of attempted biological control of termites–Analysis of a failure. Biological Control, 59, 69–82.

    Article  Google Scholar 

  • Culliney, T. W., & Grace, J. K. (2000). Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bulletin of Entomological Research, 90, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300(2), 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Dippenaar-Schoeman, A. S., DeJager, M., & VandenBerg, A. (1996). Behaviour and biology of two species of termite-eating spiders, Ammoxenus amphalodes and A. penlheri (Araneae: Ammoxenidael, in South Africa). African Plant Protection, 2, 15–17.

    Google Scholar 

  • Dokurugu, M., Bernard, B. N., & Irunuoh, A. O. (2012). Indigenous knowledge of termite control: A case study of five farming communities in Gushegu district of northern Ghan. Journal of Entomology and Nematology, 4, 58–64.

    Google Scholar 

  • Eberhard, W. G. (1991). Chrosiotes tonala (Araneae, Theridiidae), a web-building spider, specializing on termites. Psyche, 98, 7–19.

    Article  Google Scholar 

  • Franca, T. S. F. A., França, F. J. N., Arango, R. A., Woodward, B. M., & Arantes, M. D. C. (2016). Natural resistance of plantation grown African mahogany (Khaya ivorensis and Khaya senegalensis) from Brazil to wood-rot fungi and subterranean termites. International Biodeterioration and Biodegradation, 107, 88–91.

    Article  Google Scholar 

  • Gordon, E. R., & Weirauch, C. (2016). Efficient capture of natural history data reveals prey conservatism of cryptic termite predators. Molecular Phylogenetics and Evolution, 94, 65–73.

    Article  PubMed  Google Scholar 

  • Gupta, A., Sharma, S., & Naik, S. N. (2011). Biopesticidal value of selected essential oils against pathogenic fungus, termites, and nematodes. International Biodeterioration and Biodegradation, 65, 703–707.

    Article  CAS  Google Scholar 

  • Haddad, C. R., Brabec, M., Pekar, S., & Fourie, R. (2016). Seasonal population dynamics of a specialized termite-eating spider (Araneae: Ammoxenidae) and its prey (Isoptera: Hodotermitidae). Pedobiologia, 59, 105–110.

    Article  Google Scholar 

  • Hanel, H., & Watson, J. A. L. (1983). Preliminary field tests on the use of Metarhizium anisopliae for control of Nasutitermes exitiosus (Hill) (Isoptera: Termitidae). Bulletin of Entomological Research, 73, 305–313.

    Article  Google Scholar 

  • Hoe, P. K., Bong, C. F. J., Jugah, K., & Rajan, A. (2009). Evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycete) isolates and their effects on subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae). American Journal of Agricultural and Biological Sciences, 4, 289–297.

    Article  Google Scholar 

  • Hussain, A., Ahmed, S., & Shahid, M. (2011). Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites. Neotropical Entomology, 40, 244–250.

    CAS  PubMed  Google Scholar 

  • Hwang, W. S., & Weirauch, C. (2012). Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): Insights from divergence dating and ancestral state reconstruction. PloS One, 7, e45523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jocque, R., & Dippenaar-Schoeman, A. S. (1992). Two new termite-eating Diores species (Araneae: Zodariidae) and some observations on unique prey immobilization. Journal of Natural History, 26, 1405–1412.

    Article  Google Scholar 

  • Joshi, P. K., Singh, N. P., Singh, N. N., Gerpacio, R. V., & Pingali, P. L. (2005). Maize in India: Production systems, constraints, and research priorities (p. 22). Mexico: D.F. CIMMYT.

    Google Scholar 

  • Keefer, T. C., Puckett, R. T., Brown, K. S., & Gold, R. E. (2015). Field trials With 0.5% Novaluron insecticide applied as a bait to control subterranean termites (Reticulitermes sp. and Coptotermes formosanus [Isoptera: Rhinotermitidae]) on structures. Journal of Economic Entomology, 108, 2407–2413.

    Article  CAS  PubMed  Google Scholar 

  • Khan, K., Jafri, R. H., & Ahmad, M. (1985). The pathogenicity and development of Bacillus thuringiensis in termites. Pakistan Journal of Zoology, 17, 201–209.

    Google Scholar 

  • Kramm, K. R., West, D. R., & Rockenbach, P. G. (1982). Termite pathogens: transfer of the entomopathogen Metarhizium anisopliae between Reticulitermis sp. termites. Journal of Invertebrate Pathology, 40, 1–6.

    Article  Google Scholar 

  • Lenz, M., & Runko, S. (1992). Use of microorganisms to control colonies of the coconut termite Neotermes rainbowi (Hill) on Vaitupu, Tuvalu. Commonwealth scientific and industrial research Organisation, Division of Entomology, Termite Group Report No. 92/16, pp 47.

    Google Scholar 

  • Logan, J. W. M., Cowie, R. H., & Wood, T. G. (1990). Termite (Isoptera) control in agriculture and forestry by non-chemical methods: a review. Bulletin of Entomological Research, 80, 309–330.

    Article  Google Scholar 

  • Loko, Y. L., Agre, P., Orobiyi, A., Dossou-Aminon, I., Roisin, Y., Tamo, M., & Dansi, A. (2016). Farmers’ knowledge and perceptions of termites as pests of yam (Dioscorea spp.) in Central Benin. International Journal of Pest Management, 62, 75–84.

    Article  Google Scholar 

  • Lovei, G. L., & Sunderland, K. D. (1996). Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41, 231–256.

    Article  CAS  PubMed  Google Scholar 

  • Mahapatro, G. K., & Kumar, S. (2015). Review on the incidence and management of coconut termites. Indian Journal of Entomology, 77, 152–159.

    Article  Google Scholar 

  • Maniania, N. K., Ekesi, S., & Songa, J. M. (2002). Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. International Journal of Tropical Insect Science, 22, 41–46.

    Article  Google Scholar 

  • Mburu, D. M., Ochla, L., Maniania, N. K., Njagi, P. G. N., Gitonga, L. M., Ndungu, M. W., Wanjoya, A. K., & Hassanali, A. (2009). Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni. Journal of Insect Physiology, 55, 774–780.

    Article  CAS  PubMed  Google Scholar 

  • McMahan, E. A. (1983). Adaptations, feeding preferences, and biometrics of a termite-baiting assassin bug (Hemiptera: Reduviidae). Annals of the Entomological Society of America, 76, 483–486.

    Article  Google Scholar 

  • Meepagala, K., Osbrink, W., Sturtz, G., & Lax, A. (2006). Plant-derived natural products exhibiting activity against Formosan subterranean termites (Coptotermes formosanus). Pest Management Science, 62, 565–570.

    Article  CAS  PubMed  Google Scholar 

  • Milner, R. J., Staples, J. A., Hartley, T. R., Lutton, G. G., & Watson, J. A. L. (1996). Occurrence of the entomogenous fungus, Metarhizium anisopliae, in nests and feeding sites of Australian termites. Mycological Research, 102, 216–220.

    Article  Google Scholar 

  • Milner, R. J., Staples, J. A., & Lutton, G. G. (1998). The selection of an isolate of the hyphomycete fungus Metarhizium anisopliae, for control of termites in Australia. Biological Control, 11, 240–247.

    Article  Google Scholar 

  • Mora, P., Rouland, C., & Renoux, J. (1996). Foraging and nesting damage caused by Microtermes subhyalinus (Isoptera: Termitidae) in a sugar cane plantation in the Central African Republic. Bulletin of Entomological Research, 86, 387–395.

    Article  Google Scholar 

  • Niken, S., Yoshimurab, T., Rokhmanc, F., & Mastur, Z. (2015). Potential for subterranean termite attack against five bamboo species in correlation with chemical components. Procedia Environmental Sciences, 28, 783–788.

    Article  Google Scholar 

  • Nwilene, F. E., Nwanze, K. F., & Youdeowei, A. (2008a). Impact of IPM on food and horticultural crops in Africa – A review. Entomologia Experimentalis et Applicata, 128, 355–363.

    Article  Google Scholar 

  • Nwilene, F. E., Agunbiade, T. A., Togola, M. A., Youm, O., Ajayi, O., Oikeh, S. O., & Falola, O. O. (2008b). Efficacy of traditional practices and botanicals for the control of termites on rice at Ikenne, southwest Nigeria. International Journal of Tropical Insect Science, 28, 37–44.

    Article  Google Scholar 

  • Osbrink, W. L., Williams, K. S., Connick, W. J., Jr., Wright, M. S., & Lax, A. R. (2001). Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environmental Entomology, 30(2), 443–448.

    Article  Google Scholar 

  • Owusu, E. O., Akutse, K. S., & Afreh-Nuamah, K. (2008). Effect of some traditional plant components on the control of termites, Macrotermes spp (Isoptera: Termitidae). African Journal of Science and Technology, 9, 83–89.

    Google Scholar 

  • Pandey, A., Chattopadhyay, P., Banerjee, S., Pakshirajan, K., & Singh, L. (2012). Antitermitic activity of plant essential oils and their major constituents against termite Odontotermes assamensis Holmgren (Isoptera: Termitidae) of North East India. International Biodeterioration & Biodegradation, 75, 63–67.

    Article  CAS  Google Scholar 

  • Qureshi, N. A., Ashraf, A., Afzal, M., Ullah, N., Iqbal, A., & Haleem, S. (2015). Toxic potential of Melia azedarach leaves extract against Odontotermes obesus and Microtermes obesi. International Journal of Biosciences, 6, 120–127.

    Google Scholar 

  • Ramakrishnan, R., Suiter, D. R., Nakatsu, C. H., Humber, R. A., & Bennett, G. W. (1999). Imidacloprid-enchanced Reticulitermes flavipes (Isoptera: Rhinotermitidae) susceptibility to the entomopathogen Metarhizium anisopliae. Journal of Economic Entomology, 92, 1125–1132.

    Article  CAS  Google Scholar 

  • Rath, A. C. (2000). The use of entomopathogenic fungi for control of termites. Biocontrol Science and Technology, 10, 563–581.

    Article  Google Scholar 

  • Rathour, K. S., Ganguly, S., Das, T. K., Singh, P., Kumar, A., & Somvanshi, V. S. (2014). Biological management of subterranean termites (Odontotermes obesus) infesting wheat and pearl millet crops by entomopathogenic nematodes. Indian Journal of Nematology, 44, 97–100.

    Google Scholar 

  • Reddy, P. S., & Ghewande, M. P. (1986). Major insect pests of groundnut and their management. Pesticides, 20, 52–56.

    Google Scholar 

  • Ruan, G., Song, X., Hu, Y., Han, N., & Zhang, D. (2015). Foraging activities of Coptotermes formosanus in subtropical areas in China. Journal of Economic Entomology, 108, 701–706.

    Article  PubMed  Google Scholar 

  • Sajap, A. S., Amin, M. J., & Ouimette, D. (2002). Above -ground baiting for controlling Coptotermes termites in Selangor, Malaysia. Sociobiology, 39, 345–352.

    Google Scholar 

  • Singha, D., Singha, B., & Dutta, B. K. (2010). In vitro pathogenicity of Bacillus thuringiensis against tea termites. Journal of Biological Control, 24, 279–281.

    Google Scholar 

  • Su, N. Y. (2015). A fluid bait for remedial control of subterranean termites. Journal of Economic Entomology, 108, 274–276.

    Article  PubMed  Google Scholar 

  • Su, N. Y., Thoms, E. M., Ban, P. M., & Scheffrahn, R. H. (1995). A monitoring/baiting station to detect and eliminate foraging populations of subterranean termites (Isoptera: Rhinotermitidae) near structures. Journal of Economic Entomology, 88, 932–936.

    Article  Google Scholar 

  • Su, N. Y., Ban, P. M., & Scheffrahn, R. H. (1997). Remedial baiting with hexaflumuron in above-ground stations to control structure-infesting populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 90, 809–817.

    Article  Google Scholar 

  • Umeh, V. C., & Ivbijaro, M. F. (1999). Effects of termite damage to maize of seed extracts of Azadirachta indica and Piper guineense in farmers’ fields. The Journal of Agricultural Science, 133, 403–407.

    Article  Google Scholar 

  • UNEP/FAO/Global IPM Facility Expert Group on Termite Biology and Management. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite management, online at www.chem.unep.ch/pops/termites/termite_ch4.htm

  • Verma, A. N. (1980). Effect of number of irrigations on termite damage in wheat crop. Haryana Agricultural University.

    Google Scholar 

  • Wang, C., & Powell, J. E. (2004). Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera: Rhinotermitidae). Biological Control, 30, 523–529.

    Article  Google Scholar 

  • Wesolowska, W., & Cumming, M. S. (2002). Mashonarus guttatus, gen and sp n., the second termitivorous jumping spider from Africa (Araneae: Salticidae). Bulletin of the British Arachnological Society, 12, 165–170.

    Google Scholar 

  • Yii, J. E., Bong, C. F. J., King, J. H. P., & Kadir, J. (2016). Synergism of entomopathogenic fungus, Metarhizium anisopliae incorporated with fipronil against oil palm pest subterranean termite, Coptotermes curvignathus. Plant Protection Science, 52, 35–44.

    Article  Google Scholar 

  • Zhu, B. C., Henderson, G., Chen, F., Maistrello, L., & Laine, R. A. (2001). Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). Journal of Chemical Ecology, 27, 523–531.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges laboratory assistance and support by the management people of St. Xavier’s College, Palayamkottai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sahayaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahayaraj, K. (2018). Bio-intensive Integrated Management of Termites. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-68726-1_7

Download citation

Publish with us

Policies and ethics