Skip to main content

The Laurencia Paradox: An Endless Source of Chemodiversity

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 102

Abstract

Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth’s surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to the MarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.

Red algae of the genus Laurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.

The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. Since mollusks feeding on Laurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed on Laurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.

The chapter addresses: (1) the “Laurencia complex”, the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2013) WHO traditional medicine strategy: 2014–2023. World Health Organization, Geneva

    Google Scholar 

  2. Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Org 63:965

    CAS  Google Scholar 

  3. Pascolutti M, Quinn RJ (2014) Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today 19:215

    Article  CAS  Google Scholar 

  4. Cragg GM, Newman DJ (2005) International collaboration in drug discovery and development from natural sources. Pure Appl Chem 77:1923

    CAS  Google Scholar 

  5. Bergmann W, Burke DC (1955) Contribution to the study of marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 20:1501

    Article  CAS  Google Scholar 

  6. MarinLit (2015) http://pubs.rsc.org/marinlit. Royal Society of Chemistry, London

    Google Scholar 

  7. Sze P (1993) A biology of the algae. Wm. C Brown Publishers, Dubuque, IA

    Google Scholar 

  8. Darley WM (1982) Algal biology: a physiological approach. In: Wilkinson JF (ser ed) Basic microbiology, vol 9. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  9. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116, and previous reviews in this series

    Google Scholar 

  10. Erickson KL (1983) Constituents of Laurencia. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives, vol V. Academic Press, New York, p 131

    Chapter  Google Scholar 

  11. Kladi M, Vagias C, Roussis V (2004) Volatile halogenated metabolites from marine algae. Phytochem Rev 3:337

    Article  CAS  Google Scholar 

  12. Wang BG, Gloer JB, Ji NY, Zhao JC (2013) Halogenated organic molecules of Rhodomelaceae origin: chemistry and biology. Chem Rev 113:3632

    Article  CAS  Google Scholar 

  13. Ji NY, Wang BG (2014) Nonhalogenated organic molecules from Laurencia algae. Phytochem Rev 13:653

    Article  CAS  Google Scholar 

  14. Gribble GW (2010) Naturally occurring organohalogen compounds – a comprehensive update. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 91. Springer, Wien, and previous reviews in this series

    Google Scholar 

  15. Guiry MD in Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. August 2015

  16. Cabrita MT, Vale C, Pilar A (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301

    Article  CAS  Google Scholar 

  17. Cassano V, Oliveira MC, Gil-Rodríguez MC, Sentíes A, Díaz-Larrea J, Fujii MT (2012) Molecular support for the establishment of the new genus Laurenciella within the Laurencia complex (Ceramiales, Rhodophyta). Bot Mar 55:349

    Article  Google Scholar 

  18. Martin-Lescanne J, Rousseau F, De Reviers B, Payri C, Couloux A, Cruaud C, Le Gall L (2010) Phylogenetic analyses of the Laurencia complex (Rhodomelaceae, Ceramiales) support recognition of five genera: Chondrophycus, Laurencia, Osmundea, Palisada and Yuzurua stat. nov. Eur J Phycol 45:51

    Article  Google Scholar 

  19. Saito Y (1967) Studies on Japanese species of Laurencia, with special reference to their comparative morphology. Mem Fac Fish Hokkaido Univ 15:1

    Google Scholar 

  20. Nam KW, Maggs CA, Garbary DJ (1994) Resurrection of the genus Osmundea with an emendation of the generic delineation of Laurencia (Ceramiales, Rhodophyta). Phycologia 33:384

    Article  Google Scholar 

  21. Garbary DJ, Harper JT (1998) A phylogenetic analysis of the Laurencia complex (Rhodomelaceae) of the red algae. Cryptogamie Algol 19:185

    Google Scholar 

  22. Nam KW (1999) Morphology of Chondrophycus undulata and C. parvipapillata and its implications for the taxonomy of the Laurencia (Ceramiales, Rhodophyta) complex. Eur J Phycol 35:455

    Article  Google Scholar 

  23. Nam KW (2006) Phylogenetic re-evaluation of the Laurencia complex (Rhodophyta) with a description of L. succulenta sp. nov. from Korea. J Appl Phycol 18:679

    Google Scholar 

  24. Kylin H (1956) Die Gattungen der Rhodophyceen. CWK Gleerups Forlag, Lund, Sweden

    Google Scholar 

  25. McDermid KJ (1988) Section V. Laurencia (Rhodophyta, Rhodomelaceae). In: Abbott IA (ed) Taxonomy of economic seaweeds, with reference to some Pacific and Caribbean species, vol 2. California Sea Grant College Program, La Jolla, CA

    Google Scholar 

  26. Harper JT, Garbary DJ (1997) Marine algae of Northern Senegal: the flora and its biogeography. Bot Mar 40:129

    Article  Google Scholar 

  27. Serio D, Cormaci M, Furnari G (1999) Osmundea maggsiana sp. nov. (Ceramiales, Rhodophyta) from the Mediterranean Sea. Phycologia 38:277

    Article  Google Scholar 

  28. Nam KW, Choi HG (2000) A detailed morphological study of the type species of Osmundea (Rhodomelaceae, Rhodophyta). Bot Mar 43:291

    Article  Google Scholar 

  29. Yoneshigue-Valentin Y, Fujii MT, Gurgel CFD (2003) Osmundea lata (M. Howe & W.R. Taylor) comb. nov. (Ceramiales, Rhodophyta) from the Brazilian south-eastern continental shelf. Phycologia 42:301

  30. Fenical W, Norris JN (1975) Chemotaxonomy in marine algae: chemical separation of some Laurencia species (Rhodophyta) from the Gulf of California. J Phycol 11:104

    CAS  Google Scholar 

  31. Masuda M, Abe T, Suzuki T, Suzuki M (1996) Morphological and chemotaxonomic studies on Laurencia composita and L. okamurai (Ceramiales, Rhodophyta). Phycologia 35:550

    Article  Google Scholar 

  32. Barrow KD, Karsten U, King RJ, West JA (1995) Floridoside in the genus Laurencia (Rhodomelaceae: Ceramiales) – a chemosystematic study. Phycologia 34:279

    Article  Google Scholar 

  33. Fujii MT, Cassano V, Stein ÉM, Carvalho LR (2011) Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of the Laurencia complex (Ceramiales, Rhodophyta) from Brazil. Braz J Pharmacogn 21:268

    Article  CAS  Google Scholar 

  34. Fujii MT, Cassano V, Sentíes A, Díaz-Larrea J, Machín-Sánchez M, Candelaria Gil-Rodríguez M (2012) Comparative analysis of the corps en cerise in several species of Laurencia (Ceramiales, Rhodophyta) from the Atlantic Ocean. Braz J Pharmacogn 22:795

    Article  Google Scholar 

  35. Kuwano K, Matsuka S, Kono S, Ninomiya M, Onishi J, Saga N (1998) Growth and the content of laurinterol and debromolaurinterol in Laurencia okamurai (Ceramiales, Rhodophyta). J Appl Phycol 10:9

    Article  CAS  Google Scholar 

  36. Bischoff-Bäsmann B, Bartsch I, Xia B, Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P.R. China). Phycol Res 45:91

    Google Scholar 

  37. Horta PA, Vieira-Pinto T, Martins CDL, Sissini MN, Ramlov F, Lhullier C, Scherner F, Sanches PF, Farias JN, Bastos E, Bouzon JL, Munoz P, Valduga E, Arantes NP, Batista MB, Ruil P, Almeida RS, Paes E, Fonseca A, Schenkel EP, Rorig L, Bouzon Z, Barufi JB, Colepicolo P, Yokoya N, Copertino MS, de Oliveira EC (2012) Evaluation of impacts of climate change and local stressors on the biotechnological potential of marine macroalgae - a brief theoretical discussion of likely scenarios. Braz J Pharmacogn 22:768

    Article  Google Scholar 

  38. Rodrigues CL, Caeiro S, Raikar SV (1997) Marine macrophyte communities on the reef flat at Agatti Atoll (Lakshadweep, India). Bot Mar 40:557

    Article  Google Scholar 

  39. Jadeja RN, Tewari A (2011) Impact of discharge of soda ash industry effluent on abundance and community structure of rocky intertidal macroalgae of the Arabian Sea, Gujarat, India. Ind J Geo-Mar Sci 40:71

    CAS  Google Scholar 

  40. Turna II, Ertan ÖO, Cormaci M, Furnari G (2002) Seasonal variations in the biomass of macro-algal communities from the gulf of Antalya (north-eastern Mediterranean). Turk J Bot 26:19

    Google Scholar 

  41. Díez I, Secilla A, Santolaria A, Gorostiaga JM (1999) Phytobenthic intertidal community structure along an environmental pollution gradient. Mar Pollut Bull 38:463

    Article  Google Scholar 

  42. Nonomura AM, West JA (1980) Ultrastructure of the parasite Janczewskia morimotoi and its host Laurencia nipponica (Ceramiales, Rhodophyta). J Ultrastruct Res 73:183

    Article  CAS  Google Scholar 

  43. Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103

    Article  CAS  Google Scholar 

  44. Kilar JA, Lou RM (1984) Ecological and behavioral studies of the decorator crab, Microphrys bicornutus Latreille (Decapoda: Brachyura): a test of optimum foraging theory. J Exp Mar Biol Ecol 74:157

    Article  Google Scholar 

  45. Kilar JA, Lou RM (1986) The subtleties of camouflage and dietary preference of the decorator crab, Microphrys bicornutus Latreille (Decapoda: Brachyura). J Exp Mar Biol Ecol 101:143

    Article  Google Scholar 

  46. Stoner AW, Waite JM (1991) Trophic biology of Strombus gigas in nursery habitats: diets and food sources in seagrass meadows. J Mollusc Stud 57:451

    Article  Google Scholar 

  47. Boettcher AA, Targett NM (1996) Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J Exp Mar Biol Ecol 196:29

    Article  Google Scholar 

  48. Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-William R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107

    Article  Google Scholar 

  49. Suenaga K (2004) Bioorganic studies on marine natural products with bioactivity, such as antitumor activity and feeding attractance. Bull Chem Soc Jpn 77:443

    Article  CAS  Google Scholar 

  50. Wessels M, König GM, Wright AD (2000) New natural product isolation and comparison of the secondary metabolite content of three distinct samples of the sea hare Aplysia dactylomela from Tenerife. J Nat Prod 63:920

    Article  CAS  Google Scholar 

  51. Rogers CN, De Nys R, Charlton TS, Steinberg PD (2000) Dynamics of algal secondary metabolites in two species of sea hare. J Chem Ecol 26:721

    Article  CAS  Google Scholar 

  52. Yamamura S, Hirata Y (1963) Structures of aplysin and aplysinol, naturally occurring bromo-compounds. Tetrahedron 19:1485

    Article  CAS  Google Scholar 

  53. de Oliveira LS, Gregoracci GB, Silva GGZ, Salgado LT, Filho GA, Alves-Ferreira M, Pereira RC, Thomps FL (2012) Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 13:487

    Article  CAS  Google Scholar 

  54. Faulkner DJ (1995) Chemical riches from the oceans. Chem Br 31:680

    CAS  Google Scholar 

  55. Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180

    Article  CAS  Google Scholar 

  56. Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284:18577

    Article  CAS  Google Scholar 

  57. Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126:15060

    Article  CAS  Google Scholar 

  58. Suzuki M, Takahashi Y, Nakano S, Abe T, Masuda M, Ohnishi T, Noya Y, Seki K (2009) An experimental approach to study the biosynthesis of brominated metabolites by the red algal genus Laurencia. Phytochemistry 70:1410

    Article  CAS  Google Scholar 

  59. Salgado LT, Viana NB, Andrade LR, Leal RN, da Gama BAP, Attias M, Pereira RC, Amado Filho GM (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J Struct Biol 162:345

    Article  CAS  Google Scholar 

  60. Suzuki M, Kurosawa E (1979) Halogenated and non-halogenated aromatic sesquiterpenes from the red algae Laurencia okamurai Yamada. Bull Chem Soc Jpn 52:3352

    Article  CAS  Google Scholar 

  61. Suzuki M, Kurosawa E, Kurata K (1987) (E)-2-Tridecyl-2-heptadecenal, an unusual metabolite from the red alga Laurencia species. Bull Chem Soc Jpn 60:3793

    Google Scholar 

  62. Vairappan CS, Suzuki M, Abe T, Masuda M (2001) Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry 58:517

    Article  CAS  Google Scholar 

  63. Reis VM, Oliveira LS, Passos RMF, Viana NB, Mermelstein C, Sant’Anna C, Pereira RC, Paradas WC, Thompson FL, Amado-Filho GM, Salgado LT (2013) Traffic of secondary metabolites to cell surface in the red alga Laurencia dendroidea depends on a two-step transport by the cytoskeleton. PloS One 8:e63929

    Article  Google Scholar 

  64. Paradas WC, Salgado LT, Sudatti DB, Crapez MA, Fujii MT, Coutinho R, Pereira RC, Amado Filho GM (2010) Induction of halogenated vesicle transport in cells of the red seaweed Laurencia obtusa. Biofouling 26:277

    Article  Google Scholar 

  65. de Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162:79

    Article  Google Scholar 

  66. Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of surface and within-thallus elatol of Laurencia obtusa. J Chem Ecol 32:835

    Article  CAS  Google Scholar 

  67. Sudatti DB, Rodrigues SV, Coutinho R, da Gama BAP, Salgado LT, Amado Filho GM, Pereira RC (2008) Transport and defensive role of elatol at the surface of the red seaweed Laurencia obtusa (Ceramiales, Rhodophyta). J Phycol 44:584

    Article  Google Scholar 

  68. Howard BM, Nonomura AM, Fenical W (1980) Chemotaxonomy in marine algae: secondary metabolite synthesis by Laurencia in unialgal culture. Biochem Syst Ecol 8:329

    Article  CAS  Google Scholar 

  69. Masuda M, Kawaguchi S, Abe T, Kawamoto T, Suzuki M (2002) Additional analysis of chemical diversity of the red algal genus Laurencia (Rhodomelaceae) from Japan. Phycol Res 50:135

    Article  CAS  Google Scholar 

  70. Sudatti DB, Fujii MT, Rodrigues SV, Turra A, Pereira RC (2011) Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agarth (Ceramiales, Rhodophyta). Mar Biol 158:1439

    Google Scholar 

  71. Oliveira AS, Sudatti DB, Fujii MT, Rodrigues SV, Pereira RC (2013) Inter- and intrapopulation variation in the defensive chemistry of the red seaweed Laurencia dendroidea (Ceramiales, Rhodophyta). Phycologia 52:130

    Article  CAS  Google Scholar 

  72. de Carvalho LR, Farias JN, Riul P, Fujii MT (2015) An overview of global distribution of the diterpenes synthesized by the red algae Laurencia complex (Ceramiales, Rhodomelaceae). In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley, Weinheim

    Google Scholar 

  73. Kokkotou K, Ioannou E, Nomikou M, Pitterl F, Vonaparti A, Siapi E, Zervou M, Roussis V (2014) An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: dereplication and tracing of natural products. Phytochemistry 108:208

    Article  CAS  Google Scholar 

  74. Ji N-Y, Li X-M, Li K, Ding L-P, Gloer JB, Wang B-G (2007) Diterpenes, sesquiterpenes, and a C15 acetogenin from the marine red alga Laurencia mariannensis. J Nat Prod 70:1901

    Article  CAS  Google Scholar 

  75. Suzuki T, Furusaki A, Hashiba N, Kurosawa E (1977) Novel skeletal bromo ether from the marine alga Laurencia nipponica Yamada. Tetrahedron Lett 18:3731

    Article  Google Scholar 

  76. Suzuki M, Furusaki A, Kurosawa E (1979) The absolute configurations of halogenated chamigrene derivatives from the marine alga Laurencia glandulifera Kützing. Tetrahedron 35:823

    Article  CAS  Google Scholar 

  77. Suzuki M, Koizumi K, Kikuchi H, Suzuki T, Kurosawa E (1983) Epilaurallene, a new nonterpenoid C15-bromoallene from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 56:715

    Article  CAS  Google Scholar 

  78. Suzuki M, Segawa M, Kikuchi H, Suzuki T, Kurosawa E (1985) (5S,7R,10R)-Selin-4(14)-en-5α-ol, a sesquiterpene alcohol from the red alga Laurencia nipponica. Phytochemistry 24:2011

    Google Scholar 

  79. Li XD, Ding W, Miao FP, Ji NY (2012) Halogenated chamigrane sesquiterpenes from Laurencia okamurai. Magn Reson Chem 50:174

    Article  CAS  Google Scholar 

  80. Howard BM, Fenical W (1976) 10-Bromo-α-chamigrene. Tetrahedron Lett 17:2519

    Article  Google Scholar 

  81. König GM, Wright AD (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J Nat Prod 60:967

    Article  Google Scholar 

  82. Wolinsky LE, Faulkner DJ (1976) A biomimetic approach to the synthesis of Laurencia metabolites. Synthesis of 10-bromo-α-chamigrene. J Org Chem 41:597

    Article  CAS  Google Scholar 

  83. Guella G, Öztunç A, Mancini I, Pietra F (1997) Stereochemical features of sesquiterpene metabolites as a distinctive trait of red seaweeds in the genus Laurencia. Tetrahedron Lett 38:8261

    Article  CAS  Google Scholar 

  84. Li XD, Miao FP, Yin XL, Liu JL, Ji NY (2012) Sesquiterpenes from the marine red alga Laurencia composita. Fitoterapia 83:1191

    Article  CAS  Google Scholar 

  85. Ji N-Y, Li X-M, Li K, Wang B-G (2009) Halogenated sesquiterpenes from the marine red alga Laurencia saitoi (Rhodomelaceae). Helv Chim Acta 92:1873

    Article  CAS  Google Scholar 

  86. Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M (2005) Cytotoxic sesquiterpenes from Aplysia dactylomela. J Nat Prod 68:1677

    Article  CAS  Google Scholar 

  87. Rovirosa J, Soto H, Cueto M, Dárias J, Herrera J, San-Martín A (1999) Sesquiterpenes from Laurencia claviformis. Phytochemistry 50:745

    Article  CAS  Google Scholar 

  88. Ji N, Li X, Li K, Gloer JB, Wang B (2008) Halogenated sesquiterpenes and non-halogenated linear C15 acetogenins from the marine red alga Laurencia composita and their chemotaxonomic significance. Biochem Syst Ecol 36:938

    Article  CAS  Google Scholar 

  89. Jongaramruong J, Blackman AJ, Skelton BW, White AH (2002) Chemical relationships between the sea hare Aplysia parvula and the red seaweed Laurencia filiformis from Tasmania. Aust J Chem 55:275

    Article  CAS  Google Scholar 

  90. Elsworth JF, Thomson RH (1989) A new chamigrane from Laurencia glomerata. J Nat Prod 52:893

    Article  CAS  Google Scholar 

  91. Wright AD, König GM, Sticher O (1991) New sesquiterpenes and C15 acetogenins from the marine red alga Laurencia implicata. J Nat Prod 54:1025

    Article  CAS  Google Scholar 

  92. Suzuki M, Matsuo Y, Masuda M (1993) Structures of laurenenyne A and B, novel halogenated acetogenins from a species of the red algal Laurencia. Tetrahedron 49:2033

    Article  CAS  Google Scholar 

  93. Takahashi Y, Suzuki M, Abe T, Masuda M (1998) Anhydroaplysiadiol from Laurencia japonensis. Phytochemistry 48:987

    Article  CAS  Google Scholar 

  94. Vairappan CS, Zanil II, Kamada T (2014) Structural diversity and geographical distribution of halogenated secondary metabolites in red algae, Laurencia nangii Masuda (Rhodomelaceae, Ceramiales), in the coastal waters of North Borneo Island. J Appl Phycol 26:1189

    Article  Google Scholar 

  95. Kimura J, Kamada N, Tsujimoto Y (1999) Fourteen chamigrane derivatives from a red alga Laurencia nidifica. Bull Chem Soc Jpn 72:289

    Article  CAS  Google Scholar 

  96. Suzuki T, Kikuchi H, Kurosawa E (1982) Six new sesquiterpenoids from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 55:1561

    Article  CAS  Google Scholar 

  97. Lyakhova EG, Kalinovsky AI, Kolesnikova SA, Vaskovsky VE, Stonik VA (2004) Halogenated diterpenoids from the red alga Laurencia nipponica. Phytochemistry 65:2527

    Article  CAS  Google Scholar 

  98. Alarif WM, Al-Lihaibi SS, Ayyad SEN, Abdel-Rhman MH, Badria FA (2012) Laurene-type sesquiterpenes from the Red Sea red alga Laurencia obtusa as potential antitumor-antimicrobial agents. Eur J Med Chem 55:462

    Article  CAS  Google Scholar 

  99. Ojika M, Shizuri Y, Yamada K (1982) A halogenated chamigrane epoxide and six related halogen-containing sesquiterpenes from the red alga Laurencia okamurai. Phytochemistry 21:2410

    Article  CAS  Google Scholar 

  100. Ji N-Y, Li X-M, Zhang Y, Wang B-G (2007) Two new halogenated chamigrane-type sesquiterpenes and other secondary metabolites from the marine red alga Laurencia okamurai and their chemotaxonomic significance. Biochem Syst Ecol 35:627

    Article  CAS  Google Scholar 

  101. Abou-Elnaga ZS, Alarif WM, Al-Iihaibi SS (2011) New larvicidal acetogenin from the red alga Laurencia papillosa. CLEAN 39:787

    CAS  Google Scholar 

  102. Kennedy DJ, Selby IA, Thomson RH (1988) Chamigrane metabolites from Laurencia obtusa and L. scoparia. Phytochemistry 27:1761

    Article  CAS  Google Scholar 

  103. König GM, Wright AD (1994) New C15 acetogenins and sesquiterpenes from the red alga Laurencia sp. cf. L. gracilis. J Nat Prod 57:477–485

    Article  Google Scholar 

  104. Howard BM, Fenical W (1975) Structures and chemistry of two new halogen-containing chamigrene derivatives from Laurencia. Tetrahedron Lett 16:1687

    Article  Google Scholar 

  105. Suzuki M, Kawamoto T, Vairappan CS, Ishii T, Abe T, Masuda M (2005) Halogenated metabolites from Japanese Laurencia spp. Phytochemistry 66:2787

    Article  CAS  Google Scholar 

  106. Suzuki M, Nakano S, Takahashi Y, Abe T, Masuda M, Takahashi H, Kobayashi K (2002) Brominated labdane-type diterpenoids from an Okinawan Laurencia sp. J Nat Prod 65:801

    Article  CAS  Google Scholar 

  107. San-Martín A, Darias J, Soto H, Contreras C, Herrera JS, Rovirosa J (1997) A new C15 acetogenin from the marine alga Laurencia claviformis. Nat Prod Lett 10:303

    Article  Google Scholar 

  108. Suzuki M, Kurosawa E, Furusaki A (1988) The structure and absolute stereochemistry of a halogenated chamigrene derivative from the red alga Laurencia species. Bull Chem Soc Jpn 61:3371

    Article  CAS  Google Scholar 

  109. Liang Y, Li XM, Cui CM, Li CS, Sun H, Wang BG (2012) Sesquiterpene and acetogenin derivatives from the marine red alga Laurencia okamurai. Mar Drugs 10:2817

    Article  Google Scholar 

  110. Fenical W (1976) Chemical variation in a new bromochamigrene derivative from the red seaweed Laurencia pacifica. Phytochemistry 15:511

    Article  CAS  Google Scholar 

  111. Suzuki M, Segawa M, Suzuki T, Kurosawa E (1983) Structure of halogenated chamigrene derivatives, minor constituents from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 56:3824

    Article  CAS  Google Scholar 

  112. Suzuki M, Kurosawa E, Irie T (1974) Glanduliferol, a new halogenated sesquiterpenoid from Laurencia glandulifera Kützing. Tetrahedron Lett 15:1807

    Article  Google Scholar 

  113. Suzuki M, Kurosawa E, Irie T (1974) Three new sesquiterpenoids containing bromine, minor constituents of Laurencia glandulifera Kützing. Tetrahedron Lett 15:821

    Article  Google Scholar 

  114. Wright AD, Coll JC, Price IR (1990) Tropical marine algae, VII. The chemical composition of marine algae from North Queensland waters. J Nat Prod 53:845

    Article  CAS  Google Scholar 

  115. Rovirosa J, Astudillo L, Ramirez ME, San-Martin A (1991) Chemical relationship between Aplysia dactylomela and Laurencia claviformis Borgesen from Easter Island. Bol Soc Chil Quim 36:153

    CAS  Google Scholar 

  116. Suzuki M, Kurosawa E (1978) Two new halogenated sesquiterpenes from the red alga Laurencia majuscula Harvey. Tetrahedron Lett 19:4805

    Article  Google Scholar 

  117. Suzuki M, Furusaki A, Hashiba N, Kurosawa E (1979) The structures and absolute stereochemistry of two halogenated chamigrenes from the red alga Laurencia majuscula Harvey. Tetrahedron Lett 20:879

    Article  Google Scholar 

  118. Palaniveloo K, Vairappan CS (2014) Chemical relationship between red algae genus Laurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. J Appl Phycol 26:1199

    Article  CAS  Google Scholar 

  119. Niwa H, Yoshida Y, Hasegawa T, Yamada K (1985) Total synthesis of (±)-(Z)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one, a brominated sesquiterpene of chamigrane type. Chem Lett 14:1687

    Google Scholar 

  120. Niwa H, Yoshida Y, Hasegawa T, Yamada K (1991) Total synthesis of (±)-(Z)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one, a brominated sesquiterpene of the chamigrane type. Tetrahedron 47:2155

    Google Scholar 

  121. Zhu JL, Huang PW, You RY, Lee FY, Tsao SW, Chen IC (2011) Total syntheses of (±)-(Z)- and (±)-(E)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one and (±)-majusculone. Synthesis 43:715

    Article  CAS  Google Scholar 

  122. Suzuki M, Kurosawa E, Kurata K (1987) Majusculone, a novel norchamigrane-type metabolite from the red alga Laurencia majuscula Harvey. Bull Chem Soc Jpn 60:3795

    Article  CAS  Google Scholar 

  123. Srikrishna A, Vasantha Lakshmi B, Mathews M (2006) Construction of spiro[5.5]undecanes containing a quaternary carbon atom adjacent to a spirocentre via an Ireland ester Claisen rearrangement and RCM reaction sequence. Total syntheses of (±)-α-chamigrene, (±)-β-chamigrene and (±)-laurencenone C. Tetrahedron Lett 47:2103

    Article  CAS  Google Scholar 

  124. Brennan MR, Erickson KL, Minott DA, Pascoe KO (1987) Chamigrane metabolites from a Jamaican variety of Laurencia obtusa. Phytochemistry 26:1053

    Article  CAS  Google Scholar 

  125. Kaiser CR, Pitombo LF, Pinto AC (2000) NMR analysis of a complex spin system from a spiro-chamigrene. Spectrosc Lett 33:457

    Article  CAS  Google Scholar 

  126. Machado FLD, Pacienza-Lima W, Rossi-Bergmann B, Gestinari LMD, Fujii MT, de Paula JC, Costa SS, Lopes NP, Kaiser CR, Soares AR (2011) Antileishmanial sesquiterpenes from the Brazilian red alga Laurencia dendroidea. Planta Med 77:733

    Article  CAS  Google Scholar 

  127. Capon RJ, Ghisalberti EL, Mori TA, Jefferies PR (1988) Sesquiterpenes from Laurencia spp. J Nat Prod 51:1302

    Article  CAS  Google Scholar 

  128. Díaz-Marrero AR, Brito I, de la Rosa JM, D’Croz L, Fabelo O, Ruiz-Perez C, Darias J, Cueto M (2009) Novel lactone chamigrene-derived metabolites from Laurencia majuscula. Eur J Org Chem 2009:1407

    Article  CAS  Google Scholar 

  129. González AG, Darias J, Díaz A, Fourneron JD, Martín JD, Pérez C (1976) Evidence for the biogenesis of halogenated chamigrenes from the red alga Laurencia obtusa. Tetrahedron Lett 17:3051

    Article  Google Scholar 

  130. González AG, Martín JD, Martín VS, Martínez-Ripoll M, Fayos J (1979) X-Ray study of sesquiterpene constituents of the alga L. obtusa leads to structure revision. Tetrahedron Lett 20:2717

    Article  Google Scholar 

  131. Gerwick WH, Lopez A, Davila R, Albors R (1987) Two new chamigrene sesquiterpenoids from the tropical red alga Laurencia obtusa. J Nat Prod 50:1131

    Article  CAS  Google Scholar 

  132. Martín JD, Caballero P, Fernández JJ, Norte M, Pérez R, Rodríguez ML (1989) Metabolites from Laurencia obtusa. Phytochemistry 28:3365

    Article  Google Scholar 

  133. Dorta E, Díaz-Marrero AR, Cueto M, D’Croz L, Maté JL, Darias J (2004) Chamigrenelactone, a polyoxygenated sesquiterpene with a novel structural type and devoid of halogen from Laurencia obtusa. Tetrahedron Lett 45:7065

    Article  CAS  Google Scholar 

  134. Davyt D, Fernández R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Coll J, Fujii MT, Manta E (2001) New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination and anthelmintic activity. J Nat Prod 64:1552

    Google Scholar 

  135. Díaz-Marrero AR, de la Rosa JM, Brito I, Darias J, Cueto M (2012) Dactylomelatriol, a biogenetically intriguing omphalane-derived marine sesquiterpene. J Nat Prod 75:115

    Article  CAS  Google Scholar 

  136. Perales A, Martínez-Ripoll M, Fayos J (1979) Structure of obtusol acetate, a halogenated chamigrene-type sesquiterpene. Acta Crystallogr B35:2771

    Article  Google Scholar 

  137. Waraszkiewicz SM, Erickson KL (1974) Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica: nidificene and nidifidiene. Tetrahedron Lett 15:2003

    Article  Google Scholar 

  138. Kikuchi H, Suzuki T, Kurosawa E, Suzuki M (1991) The structure of notoryne, a halogenated C15 nonterpenoid with a novel carbon skeleton from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 64:1763

    Article  CAS  Google Scholar 

  139. Brito I, Cueto M, Díaz-Marrero AR, Darias J, San Martín A (2002) Oxachamigrenes, new halogenated sesquiterpenes from Laurencia obtusa. J Nat Prod 65:946

    Article  CAS  Google Scholar 

  140. McPhail KL, Davies-Coleman MT, Copley RCB, Eggleston DS (1999) New halogenated sesquiterpenes from South African specimens of the circumtropical sea hare Aplysia dactylomela. J Nat Prod 62:1618

    Article  CAS  Google Scholar 

  141. Ali MS (2004) Algal halo-chamigranes. J Chem Soc Pak 26:310

    CAS  Google Scholar 

  142. Juagdan EG, Kalidindi R, Scheuer P (1997) Two new chamigranes from an Hawaiian red alga Laurencia cartilaginea. Tetrahedron 53:521

    Article  CAS  Google Scholar 

  143. Francisco MEY, Turnbull MM, Erickson KL (1998) Cartilagineol, the fourth lineage of Laurencia-derived polyhalogenated chamigrene. Tetrahedron Lett 39:5289

    Article  CAS  Google Scholar 

  144. Shubina LK, Fedorov SN, Kalinovskiy AI, Dmitrenok AS, Jin JO, Song MG, Kwak JY, Stonik VA (2007) Four new chamigrane sesquiterpenoids from the opistobranch mollusk Aplysia dactylomela. Russ Chem Bull 56:2109

    Article  CAS  Google Scholar 

  145. Ayyad SEN, Dawidar AAM, Dias HW, Howie RA, Jakupovic J, Thomson RH (1990) Three halogenated metabolites from Laurencia obtusa. Phytochemistry 29:3193

    Article  CAS  Google Scholar 

  146. Da Silva Machado FL, Ventura TLB, de Souza Gestinari LM, Cassano V, Resende JALC, Kaiser CR, Lasunskaia EB, Muzitano MF, Soares AR (2014) Sesquiterpenes from the Brazilian red alga Laurencia dendroidea J. Agarth. Molecules 19:3181

    Article  CAS  Google Scholar 

  147. Suescun L, Mombrú AW, Mariezcurrena RA, Davyt D, Fernández R, Manta E (2001) Two natural products from the algae Laurencia scoparia. Acta Crystallogr C57:286

    CAS  Google Scholar 

  148. Francisco MEY, Erickson KL (2001) Ma’iliohydrin, a cytotoxic chamigrene dibromohydrin from a Philippine Laurencia species. J Nat Prod 64:790

    Article  CAS  Google Scholar 

  149. de Nys R, König G, Wright A, Sticher O (1993) Two metabolites from the red alga Laurencia flexilis. Phytochemistry 34:725

    Article  Google Scholar 

  150. Tan KL, Matsunaga S, Vairappan CS (2011) Halogenated chamigranes of red alga Laurencia snackeyi (Weber-van Bosse) Masuda from Sulu-Sulawesi Sea. Biochem Syst Ecol 39:213

    Article  CAS  Google Scholar 

  151. Fedorov SN, Reshetnyak MV, Shchedrin AP, Il’in GS, Struchkov YT, Stonik VA, Elyakov GB (1989) New halogenated chamigrane sesquiterpenoid from the mollusc Aplysia sp. Structure and absolute configuration. Dokl Akad Nauk SSSR 305:877

    Google Scholar 

  152. Li XD, Miao FP, Li K, Ji NY (2012) Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai. Fitoterapia 83:518

    Article  CAS  Google Scholar 

  153. de Nys R, Coll JC, Bowden BF (1992) Tropical marine algae. VIII. The structural determination of novel sesquiterpenoid metabolites from the red alga Laurencia majuscula. Aust J Chem 45:1611

    Google Scholar 

  154. Rashid MA, Gustafson KR, Cardellina JH II, Boyd MR (1995) Brominated chamigrane sesquiterpenes produce a novel profile of differential cytotoxicity in the NCI in vitro screen. Nat Prod Lett 6:255

    Article  CAS  Google Scholar 

  155. Vairappan CS, Anangdan SP, Lee KT, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305

    Article  CAS  Google Scholar 

  156. Schmitz FJ, Michaud DP, Schmidt PG (1982) Marine natural products: parguerol, deoxyparguerol and isoparguerol. New brominated diterpenes with modified pimarane skeletons from the sea hare Aplysia dactylomela. J Am Chem Soc 104:6415

    Google Scholar 

  157. Bansemir A, Just N, Michalik M, Lindequist U, Lalk M (2004) Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chem Biodivers 1:463

    Article  CAS  Google Scholar 

  158. Coll JC, Wright AD (1989) Tropical marine algae. III. New sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1591

    Google Scholar 

  159. Furusaki A, Matsumoto T, Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) X-ray structure determination of (–)-obtusane, a new sesquiterpene from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 56:3501

    Article  CAS  Google Scholar 

  160. Ji N-Y, Li X-M, Cui C-M, Wang B-G (2007) Terpenes and polybromoindoles from the marine red alga Laurencia decumbens (Rhodomelaceae). Helv Chim Acta 90:1731

    Article  CAS  Google Scholar 

  161. González AG, Martín JD, Martín VS, Norte M (1979) Carbon-13 NMR application to Laurencia polyhalogenated sesquiterpenes. Tetrahedron Lett 20:2719

    Article  Google Scholar 

  162. Vairappan CS, Phang S (2005) Morphology and halochamigrene metabolite content of Laurencia majuscula (Rhodomelaceae, Ceramiales) from the Spratly Islands. Malay J Sci 24:29

    CAS  Google Scholar 

  163. Guella G, Mancini I, Pietra F (1992) C15 acetogenins and terpenes of the sponge Spongia zimocca of Il Rogiolo: a case of seaweed-metabolite transfer to, and elaboration within, a sponge? Comp Biochem Physiol B 103:1019

    Google Scholar 

  164. Guella G, Chiasera G, Mancini I, Pietra F (1991) Conformational analysis of marine polyhalogenated β-chamigrenes through temperature-dependent NMR spectra. Helv Chim Acta 74:774

    Article  CAS  Google Scholar 

  165. Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M (2001) Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry 58:291

    Article  CAS  Google Scholar 

  166. Vairappan CS, Anangdan SP, Matsunaga S (2009) Diet-derived halogenated metabolite from the sea hare Aplysia parvula. Malay J Sci 28:269

    CAS  Google Scholar 

  167. Hegazy MEF, Moustfa AY, Mohamed AEHH, Alhammady MA, Elbehairi SEIE, Ohta S, Paré PW (2014) New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare Aplysia oculifera. Tetrahedron Lett 55:1711

    Article  CAS  Google Scholar 

  168. Martín JD, Pérez C, Ravelo JL (1986) Enantioselective ring construction: synthesis of halogenated marine natural spiro[5.5]undecane sesquiterpenes. J Am Chem Soc 108:7801

    Google Scholar 

  169. González AG, Martín JD, Martín VS, Norte M, Fayos J, Martínez-Ripoll M (1978) A new polyhalogenated sesquiterpene from Laurencia obtusa. Tetrahedron Lett 19:2035

    Article  Google Scholar 

  170. König GM, Wright AD (1997) Pulsed field gradient spectroscopy (PFGS): application to the structure elucidation of (+)-(10S)-10-bromo-β-chamigrene. Phytochem Anal 8:167

    Article  Google Scholar 

  171. Martín JD, Palazón JM, Pérez C, Ravelo JL (1986) Syntheses of marine molecules. Pure Appl Chem 58:395

    Article  Google Scholar 

  172. dos Santos AO, Veiga-Santos P, Ueda-Nakamura T, Dias BP, Sudatti DB, Bianco EM, Pereira RC, Nakamura CV (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8:2733

    Article  CAS  Google Scholar 

  173. Born FS, Bianco EM, da Camara CAG (2012) Acaricidal and repellent activity of terpenoids from seaweeds collected in Pernambuco, Brazil. Nat Prod Commun 7:463

    CAS  Google Scholar 

  174. Sims JJ, Lin GHY, Wing RM (1974) Marine natural products X. Elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett 15:3487

    Google Scholar 

  175. Lhullier C, Donnangelo A, Caro M, Palermo JA, Horta PA, Falkenberg M, Schenkel EP (2009) Isolation of elatol from Laurencia microcladia and its palatability to the sea urchin Echinometra lucunter. Biochem Syst Ecol 37:254

    Article  CAS  Google Scholar 

  176. Ji N, Li X, Ding L, Wang B (2007) Aristolane sesquiterpenes and highly brominated indoles from the marine red alga Laurencia similis (Rhodomelaceae). Helv Chim Acta 90:385

    Article  CAS  Google Scholar 

  177. Rose AF, Sims JJ (1977) Marine natural products XIV. 1-S-Bromo-4-R-hydroxyselin-7-ene, a metabolite of the marine alga Laurencia sp. Tetrahedron Lett 18:2935

    Article  Google Scholar 

  178. Jiménez-Romero C, Mayer AMS, Rodríguez AD (2014) Dactyloditerpenol acetate, a new prenylbisabolane-type diterpene from Aplysia dactylomela with significant in vitro anti-neuroinflammatory activity. Bioorg Med Chem Lett 24:344

    Article  CAS  Google Scholar 

  179. Suzuki M, Segawa M, Suzuki T, Kurosawa E (1985) Structures of two new halochamigrene derivatives from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 58:2435

    Article  CAS  Google Scholar 

  180. Waraszkiewicz SM, Erickson KL (1975) Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. II. Nidifidienol. Tetrahedron Lett 16:281

    Article  Google Scholar 

  181. Masuda M, Itoh T, Matsuo Y, Suzuki M (1997) Sesquiterpenoids of Laurencia majuscula (Ceramiales, Rhodophyta) from the Ryukyu Islands, Japan. Phycol Res 45:59

    Article  CAS  Google Scholar 

  182. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) The absolute configurations and biogenesis of some new halogenated chamigrenes from the sea hare Aplysia dactylomela. Helv Chim Acta 69:91

    Article  CAS  Google Scholar 

  183. McMillan JA, Paul IC, White RH, Hager LP (1974) Molecular structure of acetoxyintricatol: a new bromo compound from Laurencia intricata. Tetrahedron Lett 15:2039

    Article  Google Scholar 

  184. Cox PJ, Howie RA (1989) Structure of 2,10-dibromo-3-chloro-7R,8S-epoxychamigrene. Z Krist 188:1

    Article  CAS  Google Scholar 

  185. Bano S, Ali MS, Ahmad VU (1987) Marine natural products. VI. A halogenated chamigrene epoxide from the red alga Laurencia pinnatifida. Planta Med 53:508

    Google Scholar 

  186. Furusaki A, Katayama C, Matsumoto T, Suzuki M, Suzuki T, Kikuchi H, Kurosawa E (1982) The crystal and molecular structure of 7,8-epoxyhalochamigrene. Bull Chem Soc Jpn 55:3398

    Article  CAS  Google Scholar 

  187. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z (2010) Antibacterial activities of a new brominated diterpene from Borneon Laurencia spp. Mar Drugs 8:1743

    Article  CAS  Google Scholar 

  188. Bittner ML, Silva M, Paul VJ, Fenical W (1985) A rearranged chamigrene derivative and its potential biogenetic precursor from a new species of the marine red algal genus Laurencia (Rhodomelaceae). Phytochemistry 24:987

    Article  CAS  Google Scholar 

  189. Kaiser CR, Pitombo LF, Pinto AC (1998) C-13 and H-1 NMR assignments of the chamigrenes prepacifenol and dehydroxyprepacifenol epoxides. Spectrosc Lett 31:573

    Article  CAS  Google Scholar 

  190. Faulkner DJ, Stallard MO, Ireland C (1974) Prepacifenol epoxide, a halogenated sesquiterpene diepoxide. Tetrahedron Lett 15:3571

    Article  Google Scholar 

  191. Ireland C, Stallard MO, Faulkner DJ, Finer J, Clardy J (1976) Some chemical constituents of the digestive gland of the sea hare Aplysia californica. J Org Chem 41:2461

    Article  CAS  Google Scholar 

  192. Suzuki M, Kurosawa E (1985) A C-15 non-terpenoid from the red alga Laurencia okamurai. Phytochemistry 24:1999

    Article  CAS  Google Scholar 

  193. Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490

    Article  CAS  Google Scholar 

  194. Pitombo LF, Kaiser CR, Pinto AC (1996) Occurrence of chamigrenes in Aplysia dactylomela from Brazilian waters. Bol Soc Chil Quim 41:433

    CAS  Google Scholar 

  195. Masuda M, Kawaguchi S, Takahashi Y, Matsuo Y, Suzuki M (1997) A taxonomic study of the genus Laurencia (Ceramiales, Rhodophyta) from Vietnam. I. Laurencia caduciramulosa Masuda et Kawaguchi, sp. nov. Crypt Algol 18:71

    Google Scholar 

  196. Hall JG, Reiss JA (1986) Elatenyne - a pyrano[3,2-b]pyranyl vinyl acetylene from the red alga Laurencia elata. Aust J Chem 39:1401

    Article  CAS  Google Scholar 

  197. Fronczek FR, Caccamese S (1989) Redetermination of the absolute configuration of deoxyprepacifenol from the Mediterranean red alga Laurencia majuscula. Acta Crystallogr C45:1102

    CAS  Google Scholar 

  198. de Nys R, Coll JC, Bowden BF (1993) Tropical marine algae. IX. A new sesquiterpenoid metabolite from the red alga Laurencia marianensis. Aust J Chem 46:933

    Google Scholar 

  199. Kikuchi H, Suzuki T, Suzuki M, Kurosawa E (1985) A new chamigrane-type bromo diether from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 58:2437

    Article  CAS  Google Scholar 

  200. Watanabe K, Umeda K, Miyakado M (1989) Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada. Agric Biol Chem 53:2513

    CAS  Google Scholar 

  201. Mao SC, Guo YW (2010) Sesquiterpenes from Chinese red alga Laurencia okamurai. Chin J Nat Med 8:321

    Article  CAS  Google Scholar 

  202. Sims JJ, Fenical W, Wing RM, Radlick P (1973) Marine natural products. IV. Prepacifenol, a halogenated epoxy sesquiterpene and precursor to pacifenol from the red alga Laurencia filiformis. J Am Chem Soc 95:972

    Google Scholar 

  203. Kurata K, Furusaki A, Katayama C, Kikuchi H, Suzuki T (1981) A new labile sesquiterpene diol having bromine from the marine red alga Laurencia nipponica Yamada. Chem Lett 10:773

    Article  Google Scholar 

  204. Kigoshi H, Shizuri Y, Niwa H, Yamada K (1981) Laurencenyne, a plausible precursor of various nonterpenoid C15-compounds and neolaurencenyne from the red alga Laurencia okamurai. Tetrahedron Lett 22:4729

    Article  CAS  Google Scholar 

  205. Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Suehiro K, Matsumoto T, Katayama C (1983) Structures of two new halogenated chamigrane-type sesquiterpenoids from the red alga Laurencia nipponica Yamada. Chem Lett 12:561

    Article  Google Scholar 

  206. Caccamese S, Compagnini A, Toscano RM, Nicolo F, Chapuis G (1987) A new labile bromoterpenoid from the red alga Laurencia majuscula: dehydrochloroprepacifenol. Tetrahedron 43:5393

    Article  CAS  Google Scholar 

  207. González AG, Martín JD, Norte M, Pérez R, Weyler V, Perales A, Fayos J (1983) New halogenated constituents of the digestive gland of the sea hare Aplysia dactylomela. Tetrahedron Lett 24:847

    Article  Google Scholar 

  208. Ahmad VU, Ali MS (1991) Pinnatifinone, a new halogenated chamigrene from the red alga Laurencia pinnatifida. Sci Pharm 59:243

    CAS  Google Scholar 

  209. White RH, Hager LP (1975) A biogenetic sequence of halogenated sesquiterpenes from Laurencia intricata. Phys Chem Sci Res Rep 1:633

    CAS  Google Scholar 

  210. Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hare Aplysia californica - II. Chemical transformations. Comp Biochem Physiol 49Β:37

    Google Scholar 

  211. Selover SJ, Crews P (1980) Kylinone, a new sesquiterpene skeleton from the marine alga Laurencia pacifica. J Org Chem 45:69

    Article  CAS  Google Scholar 

  212. Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hare Aplysia californica - I. Importance of diet. Comp Biochem Physiol 49B:25

    Google Scholar 

  213. Kaiser CR, Pitombo LF, Pinto AC (2001) Complete 1H and 13C NMR assignments of chamigrenes from Aplysia dactylomela. Magn Reson Chem 39:147

    Article  CAS  Google Scholar 

  214. Ji NY, Li XM, Wang BG (2010) Sesquiterpenes and other metabolites from the marine red alga Laurencia composita (Rhodomelaceae). Helv Chim Acta 93:2281

    Article  CAS  Google Scholar 

  215. Waraszkiewicz SM, Erickson KL (1976) Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. IV. Nidifocene. Tetrahedron Lett 17:1443

    Article  Google Scholar 

  216. Waraszkiewicz SM, Erickson KL, Finer J, Clardy J (1977) Nidifocene: a reassignment of structure. Tetrahedron Lett 18:2311

    Article  Google Scholar 

  217. Iwata C, Akiyama T, Miyashita K (1988) An approach to the stereoselective synthesis of nidifocene: regio- and stereoselective synthesis of vic-trans-bromochlorocyclohexane ring system. Chem Pharm Bull 36:2878

    Article  CAS  Google Scholar 

  218. Miyashita K, Yoneda K, Akiyama T, Koga Y, Tanaka M, Yoneyama T, Iwata C (1993) An approach to the stereoselective synthesis of nidifocene. III. Total syntheses of stereoisomers of (±)-nidifocene from (±)-dehalogenonidifocene. Chem. Pharm Bull 41:465

    Article  CAS  Google Scholar 

  219. Ahmad VU, Ali MS (1991) Terpenoids from marine red alga Laurencia pinnatifida. Phytochemistry 30:4172

    Article  CAS  Google Scholar 

  220. Cassano V, De-Paula JC, Fujii MT, Da Gama BAP, Teixeira VL (2008) Sesquiterpenes from the introduced red seaweed Laurencia caduciramulosa (Rhodomelaceae, Ceramiales). Biochem Syst Ecol 36:223

    Article  CAS  Google Scholar 

  221. Dias DA, Urban S (2011) Phytochemical studies of the southern Australian marine alga Laurencia elata. Phytochemistry 72:2081

    Article  CAS  Google Scholar 

  222. Caccamese S, Compagnini A, Toscano RM (1986) Pacifenol from the Mediterranean red alga Laurencia majuscula. J Nat Prod 49:173

    Article  CAS  Google Scholar 

  223. Fronczek FR, Caccamese S (1986) Redetermination of pacifenol, a halogenated sesquiterpene from the Mediterranean red alga Laurencia majuscula. Acta Crystallogr C42:1649

    CAS  Google Scholar 

  224. Suzuki T (1980) Two new sesquiterpene alcohols containing bromine from the marine alga Laurencia nipponica Yamada. Chem Lett 9:541

    Article  Google Scholar 

  225. Sims JJ, Fenical W, Wing RM, Radlick P (1971) Marine natural products. I. Pacifenol, a rare sesquiterpene containing bromine and chlorine from the red alga Laurencia pacifica. J Am Chem Soc 93:3774

    Google Scholar 

  226. Argandona VH, San-Martín A, Rovirosa J (1993) Halogenated sesquiterpenes pacifenol and pacifenol derivatives on the aphid Schizaphis graminum. Phytochemistry 32:1159

    Article  CAS  Google Scholar 

  227. Rovirosa J, Darias J, Manriquez V, Brito I, Lara N, Argandona V, San Martin A (1994) Structure and insecticidal activities of chamigrene derivatives. Bol Soc Chil Quim 39:193

    CAS  Google Scholar 

  228. Rao CB, Satyanarayana C, Rao DV (1994) A new chamigrane derivative from Aplysia dactylomela of the Indian Ocean. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. Indo-United States conference, Bangalore, July 1992. AA Balkema, Rotterdam

    Google Scholar 

  229. Li XD, Miao FP, Liang XR, Wang BG, Ji NY (2013) Two halosesquiterpenes from Laurencia composita. RSC Adv 3:1953

    Article  CAS  Google Scholar 

  230. Sims JJ, Fenical W, Wing RM, Radlick P (1972) Marine natural products III. Johnstonol, an unusual halogenated epoxide from the red alga Laurencia johnstonii. Tetrahedron Lett 13:195

    Google Scholar 

  231. Irie T, Suzuki M, Hayakawa Y (1969) Isolation of aplysin, debromoaplysin and aplysinol from Laurencia okamurai Yamada. Bull Chem Soc Jpn 42:843

    Article  CAS  Google Scholar 

  232. Sun J, Shi DY, Ma M, Li SA, Wang SJ, Han LJ, Yang YC, Fan X, Shi JG, He L (2005) Sesquiterpenes from the red alga Laurencia tristicha. J Nat Prod 68:915

    Article  CAS  Google Scholar 

  233. Atta-ur-Rahman, Ahmad VU, Bano S, Abbas SA, Alvi KA, Ali MS, Lu HSM, Clardy J (1988) Pinnatazane, a bridged cyclic ether sesquiterpene from Laurencia pinnatifida. Phytochemistry 27:3879

    Article  Google Scholar 

  234. Aknin M, Ahond A, Chiaroni A, Poupat C, Riche C, Kornprobst JM (1989) Isolation, détermination structurale et configuration absolue de l’almadioxyde. Tetrahedron Lett 30:559

    Article  CAS  Google Scholar 

  235. Bano S, Ali MS, Ahmad VU (1988) Marine natural products, IX. A new halogenated sesquiterpene pinnatifidone from the red alga Laurencia pinnatifida. Z Naturforsch 43B:1347

    Google Scholar 

  236. Taber DF, Sikkander IMI, Storck PH (2007) Enantioselective synthesis of (+)-majusculone. J Org Chem 72:4098

    Article  CAS  Google Scholar 

  237. Iwata C, Akiyama T, Miyashita K (1988) Synthesis of four possible isomers of 9-(bromomethylene)-1,2,5-trimethyspiro[5.5]undeca-1,7-dien-3-one: structure elucidation of a brominated rearranged chamigrane-type sesquiterpene. Chem Pharm Bull 36:2872

    Google Scholar 

  238. Suzuki M, Daitoh M, Vairappan CS, Abe T, Masuda M (2001) Novel halogenated metabolites from the Malaysian Laurencia pannosa. J Nat Prod 64:597

    Article  CAS  Google Scholar 

  239. Liang Y, Li XM, Cui CM, Li CS, Wang BG (2009) A new rearranged chamigrane sesquiterpene from Laurencia okamurai. Chin Chem Lett 20:190

    Article  CAS  Google Scholar 

  240. Fedorov SN, Shubina LK, Kalinovsky AI, Lyakhova EG, Stonik VA (2000) Structure and absolute configuration of a new rearranged chamigrane-type sesquiterpenoid from the sea hare Aplysia sp. Tetrahedron Lett 41:1979

    Article  CAS  Google Scholar 

  241. Atta-ur-Rahman (1989) Isolation and structural studies on new natural products of potential biological importance. Pure Appl Chem 61:453

    Article  CAS  Google Scholar 

  242. Fukuzawa A, Shea CM, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Spironippol, new sesquiterpene from the marine alga Laurencia nipponica Yamada. Tetrahedron Lett 22:4087

    Article  CAS  Google Scholar 

  243. Kazlauskas R, Murphy PT, Quinn RJ, Wells RT (1976) New laurene derivatives from Laurencia filiformis. Aust J Chem 29:2533

    Article  CAS  Google Scholar 

  244. Irie T, Yasunari Y, Suzuki T, Imai N, Kurosawa E, Masamune T (1965) A new sesquiterpene hydrocarbon from Laurencia glandulifera. Tetrahedron Lett 6:3619

    Article  Google Scholar 

  245. Irie T, Suzuki T, Ito S, Kurosawa E (1967) The absolute configuration of laurene and α-cuparenone. Tetrahedron Lett 8:3187

    Article  Google Scholar 

  246. Irie T, Suzuki T, Yasunari Y, Kurosawa E, Masamune T (1969) Laurene, a sesquiterpene hydrocarbon from Laurencia species. Tetrahedron 25:459

    Article  CAS  Google Scholar 

  247. Suzuki M, Kurosawa E (1978) New aromatic sesquiterpenoids from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 19:2503

    Article  Google Scholar 

  248. Wratten SJ, Faulkner DJ (1977) Metabolites of the red alga Laurencia subopposita. J Org Chem 42:3343

    Article  CAS  Google Scholar 

  249. Findlay JA, Li GQ (2002) Novel terpenoids from the sea hare Aplysia punctata. Can J Chem 80:1697

    Article  CAS  Google Scholar 

  250. Srikrishna A, Sundarababu G (1990) A radical cyclisation based strategy to cuparenoids: synthesis of (±)-α-cuparenone, (±)-epilaurene and laurenes. Tetrahedron 46:3601

    Article  CAS  Google Scholar 

  251. Bailey WF, Jiang XL, McLeod CE (1995) Conformational control in the cyclization of an unsaturated vinyllithium: synthesis of (±)-laurene. J Org Chem 60:7791

    Article  CAS  Google Scholar 

  252. Kulkarni MG, Pendharkar DS (1997) An efficient total synthesis of (±)-laurene. J Chem Soc Perkin Trans 1:3127

    Article  Google Scholar 

  253. Oh CH, Han JW, Kim JS, Um SY, Jung HH, Jang WH, Won HS (2000) A short synthesis of (±)-laurene: mechanistic reinvestigation in palladium-catalyzed cycloreductions of 1,6-enynes. Tetrahedron Lett 41:8365

    Article  CAS  Google Scholar 

  254. Nemoto H, Nagamochi M, Fukumoto K (1993) Chiral cyclobutanones as versatile synthons: the first enantioselective total synthesis of (+)-laurene. J Chem Soc Perkin Trans 1:2329

    Article  Google Scholar 

  255. Kladi M, Xenaki H, Vagias C, Papazafiri P, Roussis V (2006) New cytotoxic sesquiterpenes from the red algae Laurencia obtusa and Laurencia microcladia. Tetrahedron 62:182

    Article  CAS  Google Scholar 

  256. Izac RR, Sims JJ (1979) Marine natural products. 18. Iodinated sesquiterpenes from the red algal genus Laurencia. J Am Chem Soc 101:6136

    Google Scholar 

  257. Dias DA, White JM, Urban S (2009) Laurencia filiformis: phytochemical profiling by conventional and HPLC-NMR approaches. Nat Prod Commun 4:157

    CAS  Google Scholar 

  258. Suzuki M, Kurosawa E (1979) Halogenated sesquiterpene phenols and ethers from the red alga Laurencia glandulifera Kützing. Bull Chem Soc Jpn 52:3349

    Article  CAS  Google Scholar 

  259. König GM, Wright AD (1997) Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa. Planta Med 63:186

    Article  Google Scholar 

  260. Appleton DR, Babcock RC, Copp BR (2001) Novel tryptophan-derived dipeptides and bioactive metabolites from the sea hare Aplysia dactylomela. Tetrahedron 57:10181

    Article  CAS  Google Scholar 

  261. Gewali MB, Ronald RC (1982) Synthesis of allolaurinterol. J Org Chem 47:2792

    Article  CAS  Google Scholar 

  262. Kladi M, Vagias C, Papazafiri P, Furnari G, Serio D, Roussis V (2007) New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron 63:7606

    Article  CAS  Google Scholar 

  263. Caccamese S, Hager LP, Rinehart KL, Setzer RB (1979) Characterization of Laurencia species by GC-MS. Bot Mar 22:41

    Article  CAS  Google Scholar 

  264. Blunt JW, Lake RJ, Munro MHG (1984) Sesquiterpenes from the marine red alga Laurencia distichophylla. Phytochemistry 23:1951

    Article  CAS  Google Scholar 

  265. Irie T, Suzuki M, Kurosawa E, Masamune T (1970) Laurinterol, debromolaurinterol and isolaurinterol, constituents of Laurencia intermedia Yamada. Tetrahedron 26:3271

    Article  CAS  Google Scholar 

  266. Harrowven DC, Lucas MC, Howes PD (2001) The synthesis of a natural product family: from debromoisolaurinterol to the aplysins. Tetrahedron 57:791

    Article  CAS  Google Scholar 

  267. Mao S, Guo Y (2005) Cuparene-derived sesquiterpenes from the Chinese red alga Laurencia okamurai Yamada. Helv Chim Acta 88:1034

    Article  CAS  Google Scholar 

  268. Ryu G, Park SH, Choi BW, Lee NH, Hwang HJ, Ryu SY, Lee BH (2002) Cytotoxic activities of brominated sesquiterpenes from the red alga Laurencia okamurai. Nat Prod Sci 8:103

    CAS  Google Scholar 

  269. Ji N-Y, Li X-M, Li K, Ding L-P, Wang B-G (2008) Laurane-derived sesquiterpenes from the marine red alga Laurencia tristicha (Rhodomelaceae). Nat Prod Res 22:715

    Article  CAS  Google Scholar 

  270. Schmitz FJ, Gopichand Y, Michaud D, Prasad RS, Remaley S, Hossain MB, Rahman A, Sengupta PK, van der Helm D (1981) Recent developments in research on metabolites from Caribbean marine invertebrates. Pure Appl Chem 51:853

    Google Scholar 

  271. Angawi RF, Alarif WM, Hamza RI, Badria FA, Ayyad SEN (2014) New cytotoxic laurene-, cuparene- and laurokamurene-type sesquiterpenes from the red alga Laurencia obtusa. Helv Chim Acta 97:1388

    Article  CAS  Google Scholar 

  272. González AG, Arteaga JM, Fernández JJ, Martín JD, Norte M, Ruano JZ (1984) Terpenoids of the red alga Laurencia pinnatifida. Tetrahedron 40:2751

    Article  Google Scholar 

  273. Irie T, Fukuzawa A, Izawa M, Kurosawa E (1969) Laurenisol, a new sesquiterpenoid containing bromine from Laurencia nipponica Yamada. Tetrahedron Lett 10:1343

    Article  Google Scholar 

  274. Kladi M, Vagias C, Furnari G, Moreau D, Roussakis C, Roussis V (2005) Cytotoxic cuparene sesquiterpenes from Laurencia microcladia. Tetrahedron Lett 46:5723

    Article  CAS  Google Scholar 

  275. Yu XQ, He WF, Liu DQ, Feng MT, Fang Y, Wang B, Feng LH, Guo YW, Mao SC (2014) A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 103:162

    Article  CAS  Google Scholar 

  276. Ahmad VU, Ali MS, Bano S (1990) Marine natural products. Part 12. Laurol, a new metabolite from the red alga Laurencia pinnatifida. Sci Pharm 58:299

    Google Scholar 

  277. Rao CB, Satyanarayana C, Rao DV, Fahy E, Faulkner DJ (1989) Metabolites of Aplysia dactylomela from the Indian Ocean. Indian J Chem B28:322

    Google Scholar 

  278. Shizuri Y, Yamada A, Yamada K (1984) Laurequinone, a cyclolaurane sesquiterpene from the red alga Laurencia nidifica. Phytochemistry 23:2672

    Article  CAS  Google Scholar 

  279. Mao S, Guo Y (2006) A laurane sesquiterpene and rearranged derivatives from the Chinese red alga Laurencia okamurai Yamada. J Nat Prod 69:1209

    Article  CAS  Google Scholar 

  280. Yamada K, Yazawa H, Uemura D, Toda M, Hirata Y (1969) Total synthesis of (±)-aplysin and (±)-debromoaplysin. Tetrahedron 25:3509

    Article  CAS  Google Scholar 

  281. Feutrill GI, Mirrington RN, Nichols RJ (1973) The total synthesis of (±)-laurinterol and related compounds. Aust J Chem 26:345

    Article  CAS  Google Scholar 

  282. Ronald RC (1976) A new stereoselective synthesis of (±)-debromoaplysin and (±)-aplysin. Tetrahedron Lett 17:4413

    Article  Google Scholar 

  283. Biswas S, Ghosh A, Venkateswaran RV (1990) Stereocontrolled synthesis of (±)-debromoaplysin, (±)-aplysin, (±)-debromoaplysinol, (±)-aplysinol and (±)-isoaplysin. J Org Chem 55:3498

    Article  CAS  Google Scholar 

  284. Laronze JY, Boukili RE, Patigny D, Dridi S, Cartier D, Levy J (1991) The rearrangement of some cyclopentanone-aryloximes: synthesis of (±)-aplysin, (±)-filiformin and of their debromo analogues. Tetrahedron 47:10003

    Article  CAS  Google Scholar 

  285. Ronald RC, Gewali MB, Ronald BP (1980) Total synthesis of (–)-aplysin and (–)-debromoaplysin. J Org Chem 45:2224

    Article  CAS  Google Scholar 

  286. Takano S, Moriya M, Ogasawara K (1992) Enantiocontrolled syntheses of the cuparene sesquiterpenes, (–)-herbertene, (+)-β-cuparenone, (–)-debromoaplysin and (–)-aplysin. Tetrahedron Lett 33:329

    Article  CAS  Google Scholar 

  287. Nemoto H, Nagamochi M, Ishibashi H, Fukumoto K (1994) A remarkable substituent effect on the enantioselectivity of tandem asymmetric epoxidation and enantiospecific ring expansion of cyclopropylidene alcohols: a new enantiocontrolled synthesis of (–)-debromoaplysin and (–)-aplysin. J Org Chem 59:74

    Article  CAS  Google Scholar 

  288. Srikrishna A, Chandrasekhar Babu N (2001) An enantiospecific formal total sunthesis of (–)-aplysin and (–)-debromoaplysin. Tetrahedron Lett 42:4913

    Article  CAS  Google Scholar 

  289. Fletcher CJ, Blair DJ, Wheelhouse KMP, Aggarwal VK (2012) The total synthesis of (–)-aplysin via a lithiation-borylation-propenylation sequence. Tetrahedron 68:7598

    Article  CAS  Google Scholar 

  290. Sun J, Shi D-Y, Li S, Wang S-J, Han L-J, Fan Z, Yang Y-C, Shi J-G (2007) Chemical constituents of the red alga Laurencia tristicha. J Asian Nat Prod Res 9:725

    Article  CAS  Google Scholar 

  291. Miyamoto T, Ebisawa Y, Higuchi R (1995) Aplyparvunin, a bioactive acetogenin from the sea hare Aplysia parvula. Tetrahedron Lett 36:6073

    Article  CAS  Google Scholar 

  292. Cameron AF, Ferguson G, Robertson JM (1967) The crystal structure and absolute stereochemistry of laurinterol. The absolute stereochemistry of aplysin. J Chem Soc Chem Commun 271

    Google Scholar 

  293. Cameron AF, Ferguson G, Robertson JM (1969) Laurencia natural products II. Crystal structure and absolute stereochemistry of laurinterol acetate, a bicyclo[3.1.0]hexane derivative. J Chem Soc B:692

    Google Scholar 

  294. Sun J, Han LJ, Shi DY, Fan X, Wang SJ, Li S, Yang YC, Shi JG (2005) Sesquiterpenes from red alga Laurencia tristicha. Chin Chem Lett 16:1611

    CAS  Google Scholar 

  295. Sun J, Han LJ, Shi DY, Fan X, Wang SJ, Li S, Yang YC, Shi JG (2006) Sesquiterpene components of Laurencia tristicha. Chin Trad Herb Drugs 37:329

    CAS  Google Scholar 

  296. Suzuki M, Kurata K, Kurosawa E (1986) The structure of isoaplysin, a brominated rearranged cuparane-type sesquiterpenoid from the red alga Laurencia okamurai Yamada. Bull Chem Soc Jpn 59:3981

    Article  CAS  Google Scholar 

  297. McMillan JA, Paul IC, Caccamese S, Rinehart KL (1976) Aplysinol from Laurencia decidua: crystal structure and absolute stereochemistry. Tetrahedron Lett 17:4219

    Article  Google Scholar 

  298. Wu Z (1989) Chemical constituents of marine algae Laurencia okamurai. Chin J Mar Drugs 8:1

    Google Scholar 

  299. Copley RCB, Davies-Coleman MT, Edmonds DR, Faulkner DJ, McPhail KL (2002) Absolute stereochemistry of ibhayinol from a South African sea hare. J Nat Prod 65:580

    Article  CAS  Google Scholar 

  300. Nemoto H, Hakamata H, Nagamochi M, Fukumoto K (1994) An efficient route to chiral benzooxabicyclo[3.2.1]octane ring system-the first enantiocontrolled total synthesis of (–)-filiformin. Heterocycles 39:467

    Google Scholar 

  301. Suzuki M, Kurosawa E (1976) New bromo-compounds from Laurencia glandulifera Kützing. Tetrahedron Lett 17:4817

    Article  Google Scholar 

  302. Yoo S, Suh JH, Yi KY (1998) Total synthesis of (±)-filiforminol and (±)-bromoether A. Synthesis 30:771

    Article  Google Scholar 

  303. Su S, Sun WS, Wang B, Cheng W, Liang H, Zhao YY, Zhang QY, Wu J (2010) A novel brominated cuparene-derived sesquiterpene ether from the red alga Laurencia sp. J Asian Nat Prod Res 12:916

    Article  CAS  Google Scholar 

  304. Izac RR, Drage JS, Sims JJ (1981) Caraibical, a new aromatic sesquiterpene from the marine alga Laurencia caraibica. Tetrahedron Lett 22:1799

    Article  CAS  Google Scholar 

  305. Ichiba T, Higa T (1986) New cuparene-derived sesquiterpenes with unprecedented oxygenation patterns from the sea hare Aplysia dactylomela. J Org Chem 51:3364

    Article  CAS  Google Scholar 

  306. Srikrishna A, Krishnan K (1992) Total syntheses of (±)-cyclolaurene, (±)-epicyclolaurene and (±)-β-cuparenones. Tetrahedron 48:3429

    Article  CAS  Google Scholar 

  307. Irie T, Suzuki M, Kurosawa E, Masamune T (1966) Laurinterol and debromolaurinterol, constituents from Laurencia intermedia. Tetrahedron Lett 7:1837

    Article  Google Scholar 

  308. Okamoto Y, Nitanda N, Ojika M, Sakagami Y (2001) Aplysiallene, a new bromoallene as an Na+, K+-ATPase inhibitor from the sea hare Aplysia kurodai. Biosci Biotechnol Biochem 65:474

    Article  CAS  Google Scholar 

  309. Tsukamoto S, Yamashita Y, Ohta T (2005) New cytotoxic and antibacterial compounds isolated from the sea hare Aplysia kurodai. Mar Drugs 3:22

    Article  CAS  Google Scholar 

  310. Masuda M, Abe T, Kogame K, Kawaguchi S, Phang SM, Daitoh M, Sakai T, Takahashi Y, Suzuki M (2002) Taxonomic notes on marine algae from Malaysia. VIII. Three species of Laurencia (Rhodophyceae). Bot Mar 45:571

    Google Scholar 

  311. Takahashi H, Tonoi Y, Matsumoto K, Minami H, Fukuyama Y (1998) Total synthesis of (–)-laurequinone. Chem Lett 27:485

    Article  Google Scholar 

  312. Shizuri Y, Yamada K (1985) Laurebiphenyl, a dimeric sesquiterpene of the cyclolaurane-type from the red alga Laurencia nidifica. Phytochemistry 24:1385

    Article  CAS  Google Scholar 

  313. Srikrishna A, Khan IA, Babu RR, Sajjanshetty A (2007) The first total synthesis of (±)-laurokamurene B. Tetrahedron 63:12616

    Article  CAS  Google Scholar 

  314. Srikrishna A, Beeralah B, Babu RR (2008) Enantioselective total synthesis and assignment of the absolute configuration of (+)-laurokamurene B. Tetrahedron Asymm 19:624

    Article  CAS  Google Scholar 

  315. Sun J, Shi D, Ma M, Li S, Wang S, Han L, Yang Y, Fan X, Shi J, He L (2008) Addition and correction to “Sesquiterpenes from the red alga Laurencia tristicha”. J Nat Prod 71:296

    Article  CAS  Google Scholar 

  316. Chen P, Wang J, Liu K, Li C (2008) Synthesis and structural revision of (±)-laurentristich-4-ol. J Org Chem 73:339

    Article  CAS  Google Scholar 

  317. Howard BM, Fenical W (1976) α- and β-Snyderol: new bromo-monocyclic sesquiterpenes from the seaweed Laurencia. Tetrahedron Lett 16:41

    Google Scholar 

  318. González AG, Martín JD, Norte M, Rivera P, Ruano JZ (1984) Two new C15 acetylenes from the marine red alga Laurencia obtusa. Tetrahedron 40:3443

    Article  Google Scholar 

  319. Topcu G, Aydoğmuş Z, Imre S, Gšren AC, Pezzuto JM, Clement JA, Kingston DGI (2003) Brominated sesquiterpenes from the red alga Laurencia obtusa. J Nat Prod 66:1505

    Article  CAS  Google Scholar 

  320. Howard BM, Fenical W (1978) Obtusadiol, a unique bromoditerpenoid from the marine red alga Laurencia obtusa. Tetrahedron Lett 18:2453

    Article  Google Scholar 

  321. Imre S, Aydoğmuş Z (1997) Secondary metabolites from the red alga Laurencia obtusa. Pharmazie 52:883

    CAS  Google Scholar 

  322. González AG, Martín JD, Pérez C, Ramírez MA (1976) Bromonium ion-induced cyclization of methyl farnesate: application to the synthesis of snyderol. Tetrahedron Lett 17:137

    Article  Google Scholar 

  323. Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2001) New bromoterpenes from the red alga Laurencia luzonensis. J Nat Prod 64:696

    Article  CAS  Google Scholar 

  324. Kuniyoshi M, Wahome PG, Miono T, Hashimoto T, Yokoyama M, Shrestha KL, Higa T (2005) Terpenoids from Laurencia luzonensis. J Nat Prod 68:1314

    Article  CAS  Google Scholar 

  325. Su H, Shi D-Y, Li J, Guo S-J, Li L-L, Yuan Z-H, Zhu X-B (2009) Sesquiterpenes from Laurencia similis. Molecules 14:1889

    Article  CAS  Google Scholar 

  326. Ioannou E, Nappo M, Avila C, Vagias C, Roussis V (2009) Metabolites from the sea hare Aplysia fasciata. J Nat Prod 72:1716

    Article  CAS  Google Scholar 

  327. Norte M, González R, Padilla A, Fernández JJ, Vázquez JT (1991) New halogenated sesquiterpenes from the red alga Laurencia caespitosa. Can J Chem 69:518

    Article  CAS  Google Scholar 

  328. Paul VJ, Fenical W (1980) Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from Laurencia cf. palisada. Tetrahedron Lett 21:2787

    Google Scholar 

  329. Masuda M, Takahashi Y, Okamoto K, Matsuo Y, Suzuki M (1997) Morphology and halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) stat. nov. (Ceramiales, Rhodophyra). Eur J Phycol 32:293

    Google Scholar 

  330. Vairappan CS, Kamada T, Lee WW, Jeon YJ (2013) Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1805

    Google Scholar 

  331. de Nys R, Wright AD, König GM, Sticher O, Alino PM (1993) Five new sesquiterpenes from the red alga Laurencia flexilis. J Nat Prod 56:877

    Article  Google Scholar 

  332. König GM, Wright AD (1994) X-ray crystal structure of 3,4-epoxypalisadin A. J Nat Prod 57:151

    Article  Google Scholar 

  333. Su J, Zhong Y, Zeng L, Wu H, Ma K (1995) Terpenoids from Laurencia karlae. Phytochemistry 40:195

    Article  CAS  Google Scholar 

  334. Makhanu DS, Yokoyama M, Miono T, Maesato T, Maedomari M, Wisespongpand P, Kuniyoshi M (2006) New sesquiterpenes from the Okinawan red alga Laurencia luzonensis. Bull Fac Sci Univ Ryukuyus 81:115

    CAS  Google Scholar 

  335. Su H, Yuan Z-H, Li J, Guo S-J, Deng L-P, Han L-J, Zhu X-B, Shi D-Y (2009) Sesquiterpenes from the marine red alga Laurencia saitoi. Helv Chim Acta 92:1291

    Article  CAS  Google Scholar 

  336. Huang Y, Hu S, Zhong Y, Su J (1994) Structure of palisadin B, C15H24Br2O. Chin J Struct Chem 13:48

    CAS  Google Scholar 

  337. Vairappan CS, Anangdan SP, Lee TK (2007) Additional halogenated secondary metabolites from the sea hare Aplysia dactylomela. Malay J Sci 26:57

    CAS  Google Scholar 

  338. Couladouros EA, Vidali VP (2004) Novel stereocontrolled approach to syn- and anti-oxepene-cyclogeranyl trans-fused polycyclic systems: asymmetric total synthesis of (–)-aplysistatin, (+)-palisadin A, (+)-palisadin B, (+)-12-hydroxypalisadin B and the AB ring system of adociasulfate-2 and toxicol A. Chem Eur J 10:3822

    Article  CAS  Google Scholar 

  339. Vairappan CS, Lee TK (2005) Halogenated secondary metabolites from sea hare Aplysia dactylomela. Malay J Sci 24:17

    CAS  Google Scholar 

  340. Tanaka J, Kuniyoshi M, Tanaka C, Issa HH, Balansa W, Otsuka M, Githige WR, Higa T (2005) Diverse metabolites of coral reef organisms. Pure Appl Chem 77:83

    Article  CAS  Google Scholar 

  341. Capon R, Ghisalberti EL, Jefferies PR, Skelton BW, White AH (1981) Sesquiterpene metabolites from Laurencia filiformis. Tetrahedron 37:1613

    Article  CAS  Google Scholar 

  342. Sun LL, Wang CY, Dai HF, Shao CL, Mei WL, Tao-Liu MZD (2011) Chemical constituents of Chondrophycus papillosus and their cytotoxicity in vitro. Chem Nat Comp 47:650

    Article  CAS  Google Scholar 

  343. Pettit GR, Herald CL, Allen MS, Von Dreele RB, Vanell LD, Kao JPY, Blake W (1977) The isolation and structure of aplysistatin. J Am Chem Soc 99:262

    Article  CAS  Google Scholar 

  344. White JD, Nishiguchi T, Skeean RW (1982) Stereoselective, biogenetically patterned synthesis of (±)-aplysistatin. J Am Chem Soc 104:3923

    Article  CAS  Google Scholar 

  345. Hoye TR, Caruso AJ, Dellaria JF, Kurth MJ (1982) Two syntheses of dl-aplysistatin. J Am Chem Soc 104:6704

    Article  CAS  Google Scholar 

  346. Gosselin P, Rouessac F (1983) Polycyclisations cationiques de polyenes via leurs bromohydrines — II. Synthese de la (±) aplysistatine. Tetrahedron Lett 24:5515

    Article  CAS  Google Scholar 

  347. Shieh H-M, Prestwich GD (1982) Chiral, biomimetic total synthesis of (–)-aplysistatin. Tetrahedron Lett 23:4643

    Article  CAS  Google Scholar 

  348. Faulkner DJ (1976) 3β-Bromo-8-epicaparrapi oxide, the major metabolite of Laurencia obtusa. Phytochemistry 15:1993

    Article  Google Scholar 

  349. Suzuki M, Takahashi Y, Matsuo Y, Guiry MD, Masuda M (1997) Scanlonenyne, a novel halogenated C15 acetogenin from the red alga Laurencia obtusa in Irish waters. Tetrahedron 53:4271

    Article  CAS  Google Scholar 

  350. Recsei C, Chan B, McErlean CSP (2014) Synthesis of (+)-luzofuran and (−)-ancistrofuran. J Org Chem 79:880

    Article  CAS  Google Scholar 

  351. Horsley SB, Cardellina JH, Meinwald J (1981) Secondary metabolites from a red alga (Laurencia intricata): sesquiterpene alcohols. J Org Chem 46:5033

    Article  CAS  Google Scholar 

  352. Schmitz FJ, McDonald FJ, Vanderah DJ (1978) Marine natural products: sesquiterpene alcohols and ethers from the sea hare Aplysia dactylomela. J Org Chem 43:4220

    Article  CAS  Google Scholar 

  353. Sun HH, Waraszkiewicz SM, Erickson KL (1976) Sesquiterpenoid alcohols from the Hawaiian marine alga Laurencia nidifica. III. Tetrahedron Lett 17:585

    Article  Google Scholar 

  354. Howard BM, Fenical W, Finer J, Hirotsu K, Clardy J (1977) Neoconcinndiol hydroperoxide, a novel marine diterpenoid from the red alga Laurencia. J Am Chem Soc 99:6440

    Article  CAS  Google Scholar 

  355. Oppolzer W, Briner PH, Snowden RL (1980) A short synthesis of 3-methyl-5-(2,3,6-trimethylphenyl)-1-penten-3-ol, a sesquiterpene isolated from Laurencia nidifica. Helv Chim Acta 63:967

    Article  CAS  Google Scholar 

  356. Schmitz FJ, McDonald FJ (1974) Marine natural products: dactyloxene-B, a sesquiterpene ether from the sea hare Aplysia dactylomela. Tetrahedron Lett 15:2541

    Article  Google Scholar 

  357. Maurer B, Hauser A, Thommen W, Schulte-Elte KH, Ohloff G (1980) Synthesis and configuration of the eight diastereoisomeric racemates of dactyloxene-B. The relative configuration of dactyloxene-B and -C. Helv Chim Acta 63:293

    Article  CAS  Google Scholar 

  358. Maurer B, Hauser A, Ohloff G (1980) Synthesis and absolute configuration of naturally occurring dactyloxene-B and -C. Helv Chim Acta 63:2503

    Article  CAS  Google Scholar 

  359. Paquette LA, Lord MD, Negri JT (1993) Enantioselective synthesis of natural (+)-dactyloxene B and C by actuation of oxonium ion-initiated pinacol rearrangement. Tetrahedron Lett 34:5693

    Article  CAS  Google Scholar 

  360. Lord MD, Negri JT, Paquette LA (1995) Oxonium ion-initiated pinacolic ring expansion reactions. Application to the enantioselective synthesis of the spirocyclic sesquiterpene ethers dactyloxene-B and C. J Org Chem 60:191

    Google Scholar 

  361. Chattopadhyay SK, Karmakar S, Sarkar K (2005) Short new route to the chiral spiro-tetrahydrofuran subunit common to some terpenoids. Synth Commun 35:2125

    Article  CAS  Google Scholar 

  362. Ayyad SN, Jakupovic J, Abdel-Mogib M (1994) A sesquiterpene ether from Laurencia obtusa. Phytochemistry 36:1077

    Article  CAS  Google Scholar 

  363. Suzuki T, Kikuchi H, Kurosawa E (1980) (E)-γ-Bisabolen-8,9-epoxide and isocycloeudesmol, two new sesquiterpenoids from Laurencia nipponica Yamada. Chem Lett 9:1267

    Google Scholar 

  364. Martín JD, Pérez C, Ravelo JL (1985) Stereocontrolled syntheses of (E)- and (Z)-γ-bisabolene 8,9-epoxide. J Am Chem Soc 107:516

    Article  Google Scholar 

  365. Vazquez JT, Chang M, Nakanishi K, Martin JD, Martin VS, Perez R (1988) Puertitols: novel sesquiterpenes from Laurencia obtusa. Structure elucidation and absolute configuration and conformation based on circular dichroism. J Nat Prod 51:1257

    Google Scholar 

  366. Davyt D, Fernandez R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Fujii MT, Manta E (2006) Bisabolanes from the red alga Laurencia scoparia. J Nat Prod 69:1113

    Article  CAS  Google Scholar 

  367. Norte M, Fernández JJ, Padilla A (1992) Bisabolane halogenated sesquiterpenes from Laurencia. Phytochemistry 31:326

    Article  CAS  Google Scholar 

  368. Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M (2006) Aplysiadiol from Aplysia dactylomela suggested a key intermediate for a unified biogenesis of regular and irregular marine algal bisabolene-type metabolites. Tetrahedron 62:9655

    Article  CAS  Google Scholar 

  369. Chang M, Vazquez JT, Nakanishi K, Cataldo F, Estrada DM, Fernandez J, Gallardo A, Martin JD, Norte M, Perez R (1989) Regular and irregular sesquiterpenes containing a halogenated hydropyran from Laurencia caespitosa. Phytochemistry 28:1417

    Article  CAS  Google Scholar 

  370. Lhullier C, Falkenberg M, Ioannou E, Quesada A, Papazafiri P, Horta PA, Schenkel EP, Vagias C, Roussis V (2010) Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. J Nat Prod 73:27

    Article  CAS  Google Scholar 

  371. Hollenbeak KH, Schmitz FJ, Hossain MB, van der Helm D (1979) Marine natural products. Deodactol, antineoplastic sesquiterpenoid from the sea hare Aplysia dactylomela. Tetrahedron 35:541

    Article  CAS  Google Scholar 

  372. Gopichand Y, Schmitz FJ, Shelly J, Rahman A, Van Der Helm D (1981) Halogenated acetylenic ethers from the sea hare Aplysia dactylomela. J Org Chem 46:5192

    Article  CAS  Google Scholar 

  373. De Carvalho LR, Fujii MT, Roque NF, Lago JHG (2006) Aldingenin derivatives from the red alga Laurencia aldingensis. Phytochemistry 67:1331

    Article  CAS  Google Scholar 

  374. Takahashi S, Yasuda M, Nakamura T, Hatano K, Matsuoka K, Koshino H (2014) Synthesis and structural revision of a brominated sesquiterpenoid, aldingenin C. J Org Chem 79:9373

    Article  CAS  Google Scholar 

  375. González AG, Darias J, Martín JD (1973) Caespitol, a new halogenated sesquiterpene from Laurencia caespitosa. Tetrahedron Lett 14:2381

    Article  Google Scholar 

  376. González AG, Darias J, Martín JD, Pérez C (1974) Revised structure of caespitol and its correlation with isocaespitol. Tetrahedron Lett 15:1249

    Article  Google Scholar 

  377. Masuda M, Kogame K, Arisawa S, Suzuki M (1998) Morphology and halogenated secondary metabolites of three Gran Canarian species of Laurencia (Ceramiales, Rhodophyra). Bot Mar 41:265

    Google Scholar 

  378. de Carvalho LR, Fujii MT, Roque NF, Kato MJ, Lago JHG (2003) Aldingenin A, new brominated sesquiterpene from red algae Laurencia aldingensis. Tetrahedron Lett 44:2637

    Article  CAS  Google Scholar 

  379. Mukhina OA, Koshino H, Crimmins MT, Kutateladze AG (2015) Computationally driven reassignment of the structures of aldingenins A and B. Tetrahedron Lett 56:4900

    Article  CAS  Google Scholar 

  380. Schmitz FJ, Michaud DP, Hollenbeak KH (1980) Marine natural products: dihydroxydeodactol monoacetate, a halogenated sesquiterpene ether from the sea hare Aplysia dactylomela. J Org Chem 45:1525

    Article  CAS  Google Scholar 

  381. González AG, Martín JD, Pérez C, Ramírez MA, Ravelo F (1980) Total synthesis of 8-desoxy-isocaespitol, a new polyhalogenated sesquiterpene from Laurencia caespitosa. Tetrahedron Lett 21:187

    Article  Google Scholar 

  382. González AG, Darias J, Martín JD, Pérez C, Sims JJ, Lin GHY, Wing RM (1975) Isocaespitol, a new halogenated sesquiterpene from Laurencia caespitosa. Tetrahedron 31:2449

    Article  Google Scholar 

  383. González AG, Martín JD, Melián MA (1976) Synthesis of marine terpenoids III. Synthesis of (±)-isocaespitol. Tetrahedron Lett 17:2279

    Article  Google Scholar 

  384. González AG, Darias V, Estévez E (1982) Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae. Planta Med 44:44

    Article  Google Scholar 

  385. Yang J, Tummatorn J, Slegeris R, Tlais SF, Dudley GB (2011) Synthesis of the tricyclic core of aldingenin B by oxidative cyclo-ketalization of an alkyne-diol. Org Lett 13:2065

    Article  CAS  Google Scholar 

  386. Crimmins MT, Hughes CO (2012) Total synthesis of the proposed structure of aldingenin B. Org Lett 14:2168

    Article  CAS  Google Scholar 

  387. Estrada DM, Martín JD, Pérez R, Rivera P, Rodríguez ML, Ruano JZ (1987) Furocaespitane and related C12 metabolites from Laurencia caespitosa. Tetrahedron Lett 28:687

    Article  CAS  Google Scholar 

  388. González AG, Darias J, Martín JD (1973) Furocaespitane, a new furan from Laurencia caespitosa. Tetrahedron Lett 14:3625

    Article  Google Scholar 

  389. González AG, Martín JD, Norte M, Pérez R, Rivera P, Ruano JZ, Rodríguez ML, Fayos J, Perales A (1983) X-Ray structure determination of new brominated metabolites isolated from the red seaweed Laurencia obtusa. Tetrahedron Lett 24:4143

    Article  Google Scholar 

  390. Erickson KL, Beutler JA, Gray GN, Cardellina JH II, Boyd MR (1995) Majapolene A, a cytotoxic peroxide, and related sesquiterpenes from the red alga Laurencia majuscula. J Nat Prod 58:1848

    Article  CAS  Google Scholar 

  391. Monde K, Taniguchi T, Miura N, Vairappan CS, Suzuki M (2006) Absolute configurations of brominated sesquiterpenes determined by vibrational circular dichroism. Chirality 18:335

    Article  CAS  Google Scholar 

  392. Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M (2007) Corrigendum to “Aplysiadiol from Aplysia dactylomela suggested a key intermediate for a unified biogenesis of regular and irregular marine algal bisabolene-type metabolites”. Tetrahedron 63:3908

    Article  CAS  Google Scholar 

  393. Iliopoulou D, Roussis V, Pannecouque C, De Clercq E, Vagias C (2002) Halogenated sesquiterpenes from the red alga Laurencia obtusa. Tetrahedron 58:6749

    Article  CAS  Google Scholar 

  394. González AG, Darias J, Martín JD (1977) Biomimetic interconversions of two new types of metabolite from Laurencia perforata. Tetrahedron Lett 18:3375

    Article  Google Scholar 

  395. Howard BM, Fenical W (1979) Guadalupol and epiguadalupol, rearranged sesquiterpene alcohols from Laurencia snyderiae var. guadalupensis. Phytochemistry 18:1224

    Google Scholar 

  396. González AG, Darias J, Martín JD, Melián MA (1978) Total synthesis of racemic perforenone and 3-debromo-perforatone. Tetrahedron Lett 19:481

    Google Scholar 

  397. Majetich G, Ringold C (1987) A stereospecific synthesis of (±)-perforenone. Heterocycles 25:271

    Article  CAS  Google Scholar 

  398. González AG, Aguiar JM, Martín JD, Norte M (1975) Three new sesquiterpenoids from the marine alga Laurencia perforata. Tetrahedron Lett 16:2499

    Article  Google Scholar 

  399. Wright AD, Goclik E, König GM (2003) Three new sesquiterpenes from the red alga Laurencia perforata. J Nat Prod 66:435

    Article  CAS  Google Scholar 

  400. González AG, Aguiar JM, Darias J, González E, Martín JD, Martín VS, Pérez C, Fayos J, Martínez-Ripoll M (1978) Perforenol, a new polyhalogenated sesquiterpene from Laurencia perforata. Tetrahedron Lett 19:3931

    Article  Google Scholar 

  401. González AG, Aguiar JM, Martín JD, Rodríguez ML (1976) Perforene, a new halogenated sesquiterpene from the red alga Laurencia perforata. Tetrahedron Lett 17:205

    Article  Google Scholar 

  402. Coll JC, Skelton BW, White AH, Wright AD (1989) Tropical marine algae V. The structure determination of two novel sesquiterpenes from the red alga Laurencia tenera (Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1695

    Google Scholar 

  403. Wright AD, König GM, Sticher O, Rüegger H (1992) The application of two-dimensional nuclear magnetic resonance methodologies to the structure solution of the new natural product tenerol acetate from Laurencia tenera. Phytochem Anal 3:263

    Article  CAS  Google Scholar 

  404. Caccamese S, Amico V, Neri P (1990) Two new rearranged sesquiterpenoids from the red alga Laurencia obtusa. J Nat Prod 53:1287

    Article  CAS  Google Scholar 

  405. Iliopoulou D, Vagias C, Galanakis D, Argyropoulos D, Roussis V (2002) Brasilane-type sesquiterpenoids from Laurencia obtusa. Org Lett 4:3263

    Article  CAS  Google Scholar 

  406. Stallard MO, Fenical W, Kittredge JS (1978) The brasilenols, rearranged sesquiterpene alcohols isolated from the marine opisthobranch Aplysia brasiliana. Tetrahedron 34:2077

    Article  CAS  Google Scholar 

  407. Manzo E, Ciavatta ML, Gavagnin M, Puliti R, Mollo E, Guo YW, Mattia CA, Mazzarella L, Cimino G (2005) Structure and absolute stereochemistry of novel C15-halogenated acetogenins from the anaspidean mollusc Aplysia dactylomela. Tetrahedron 61:7456

    Article  CAS  Google Scholar 

  408. Greene AE, Serra AA, Barreiro EJ, Costa PRR (1987) Expeditious, stereocontrolled syntheses of racemic and natural brasilenol through intramolecular asymmetry transfer. Absolute stereochemistry of brasilenol. J Org Chem 52:1169

    Google Scholar 

  409. Greene AE, Coelho F, Barreiro EJ, Costa PRR (1986) A selective synthesis of brasilenol, a novel sesquiterpene from the sea hare Aplysia brasiliana and the red alga Laurencia obtusa. J Org Chem 51:4250

    Article  CAS  Google Scholar 

  410. Amico V, Caccamese S, Neri P, Russo G, Foti M (1991) Brasilane-type sesquiterpenoids from the Mediterranean red alga Laurencia obtusa. Phytochemistry 30:1921

    Article  CAS  Google Scholar 

  411. Mihopoulos N, Vagias C, Scoullos M, Roussis V (1999) Laurencienyne B, a new acetylenic cyclic ether from the red alga Laurencia obtusa. Nat Prod Lett 13:151

    Article  CAS  Google Scholar 

  412. Tori M, Nakashima K, Seike M, Asakawa Y, Wright AD, König GM, Sticher O (1994) Revised structure of a brasilane-type sesquiterpene isolated from the red alga Laurencia implicata and its absolute configuration. Tetrahedron Lett 35:3105

    Article  CAS  Google Scholar 

  413. Aydoğmuş Z, Imre S, Ersoy L, Wray V (2004) Halogenated secondary metabolites from Laurencia obtusa. Nat Prod Res 18:43

    Article  CAS  Google Scholar 

  414. Suzuki T, Suzuki M, Kurosawa E (1975) α-Bromocuparene and α-isobromocuparene, new bromo compounds from Laurencia species. Tetrahedron Lett 16:3057

    Google Scholar 

  415. Coll JC, Wright AD (1989) Tropical marine algae IV. Novel metabolites from the red alga Laurencia implicata (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1685

    Google Scholar 

  416. Wright AD, König GM, de Nys R, Sticher O (1993) Seven new metabolites from the marine red alga Laurencia majuscula. J Nat Prod 56:394

    Article  CAS  Google Scholar 

  417. Sun HH, Erickson KL (1978) Sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. 7. (+)-Selin-4,7(11)-diene. J Org Chem 43:1613

    Article  CAS  Google Scholar 

  418. Fukuzawa A, Aye M, Takaya Y, Masamune T, Murai A (1990) A sesquiterpene alcohol from the red alga Laurencia nipponica. Phytochemistry 29:2337

    Article  CAS  Google Scholar 

  419. Dieter RK, Kinnel R, Meinwald J, Eisner T (1979) Brasudol and isobrasudol, two bromosesquiterpenes from a sea hare (Aplysia brasiliana). Tetrahedron Lett 20:1645

    Article  Google Scholar 

  420. Brennan MR, Erickson KL (1982) Austradiol acetate and austradiol diacetate, 4,6-dihydroxy-(+)-selinane derivatives from an Australian Laurencia sp. J Org Chem 47:3917

    Article  CAS  Google Scholar 

  421. Rochfort SJ, Capon RJ (1996) Parguerenes revisited: new brominated diterpenes from the southern Australian marine red alga Laurencia filiformis. Aust J Chem 49:19

    CAS  Google Scholar 

  422. Suzuki M, Takahashi Y, Mitome Y, Itoh T, Abe T, Masuda M (2002) Brominated metabolites from an Okinawan Laurencia intricata. Phytochemistry 60:861

    Article  CAS  Google Scholar 

  423. Alarif WM, Al-Footy KO, Zubair MS, Halid PHM, Ghandourah MA, Basaif SA, Al-Lihaibi SS, Ayyad SEN, Badria FA (2016) The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal-antitumour agents. Nat Prod Res 30:1150

    Article  CAS  Google Scholar 

  424. Howard BM, Fenical W (1977) Structure, chemistry and absolute configuration of (–)-(1S,4R)-bromo-hydoxy-selin-7-ene from a marine red alga Laurencia sp. J Org Chem 42:2518

    Article  CAS  Google Scholar 

  425. Rose AF, Sims JJ, Wing RM, Wiger GM (1978) Marine natural products. XVII. The structure of (1S,4R,7R)-1-bromo-4-hydroxy-7-chloroselinane, a metabolite of the marine alga Laurencia sp. Tetrahedron Lett 19:2533

    Article  Google Scholar 

  426. Kazlauskas R, Murphy PT, Wells RJ, Daly JJ, Oberhänsli WE (1977) Heterocladol, a halogenated selinane sesquiterpene of biosynthetic significance from Laurencia filiformis: its isolation, crystal structure and absolute configuration. Aust J Chem 30:2679

    Article  CAS  Google Scholar 

  427. Baker B, Ratnapala L, Mahindaratne MPD, de Silva ED, Tillekeratne LMV, Jeong JH, Scheuer PJ, Seff K (1988) Lankalapuol A and B: two cis-eudesmanes from the sea hare Aplysia dactylomela. Tetrahedron 44:4695

    Article  CAS  Google Scholar 

  428. Suzuki T, Furusaki A, Kikuchi H, Kurosawa E, Katayama C (1981) The absolute configuration of cycloeudesmol from the red alga Laurencia nipponica Yamada. Tetrahedron Lett 22:3423

    Article  CAS  Google Scholar 

  429. Fenical W, Sims JJ (1974) Cycloeudesmol, an antibiotic cyclopropane containing sesquiterpene from the marine alga Chondria oppositiclada Dawson. Tetrahedron Lett 15:1137

    Article  Google Scholar 

  430. Guella G, Skropeta D, Mancini I, Pietra F (2002) The first 6,8-cycloeudesmane sesquiterpene from a marine organism: the red seaweed Laurencia microcladia from the Baia di Calenzana, Elba Island. Z Naturforsch 57B:1147

    Google Scholar 

  431. Li C, Li X, Cui C, Wang B (2010) Brominated metabolites from the marine red alga Laurencia similis. Z Naturforsch 65B:87

    Google Scholar 

  432. Kamada T, Vairappan CS (2013) New bioactive secondary metabolites from Bornean red alga Laurencia similis (Ceramiales). Nat Prod Commun 8:287

    CAS  Google Scholar 

  433. Rahelivao MP, Gruner M, Andriamanantoanina H, Andriamihaja B, Bauer I, Knölker HJ (2015) Red algae (Rhodophyta) from the coast of Madagascar: preliminary bioactivity studies and isolation of natural products. Mar Drugs 13:4197

    Article  CAS  Google Scholar 

  434. Ji NY, Li XM, Ding LP, Wang BG (2007) Two new aristolane sesquiterpenes from Laurencia similis. Chin Chem Lett 18:178

    Article  CAS  Google Scholar 

  435. Imre S, Islimyeli S, Öztunc A, Thomson RH (1981) Obtusenol, a sesquiterpene from Laurencia obtusa. Phytochemistry 20:833

    Article  CAS  Google Scholar 

  436. González AG, Martín JD, Pérez C, Ramírez MA, Ravelo F (1981) Total synthesis of obtusenol. Tetrahedron Lett 22:5071

    Article  Google Scholar 

  437. Takeda S, Iimura Y, Tanaka K, Kurosawa E, Suzuki T (1990) A new naturally occurring racemic compound from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 19:155

    Article  Google Scholar 

  438. Suzuki T, Kurosawa E (1979) New bromo-acetal from the marine alga Laurencia nipponica Yamada. Chem Lett 8:301

    Article  Google Scholar 

  439. Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) Laureacetal-D and -E, two new secochamigrane derivatives from the red alga Laurencia nipponica Yamada. Chem Lett 12:557

    Article  Google Scholar 

  440. Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) Laureacetal-C, an unusual secochamigrane sesquiterpene from the red alga Laurencia nipponica Yamada. Chem Lett 12:29

    Article  Google Scholar 

  441. Fenical W, Schulte GR, Finer J, Clardy J (1978) Poitediol, a new nonisoprenoid sesquiterpene diol from the marine alga Laurencia poitei. J Org Chem 43:3628

    Article  CAS  Google Scholar 

  442. Schmitz FJ, Hollenbeak KH, Vanderah DJ (1978) Marine natural products: dactylol, a new sesquiterpene alcohol from a sea hare. Tetrahedron 34:2719

    Article  CAS  Google Scholar 

  443. Gadwood RC (1985) Stereoelectronic effects in cyclo-octanes: synthesis of (±)-dactylol and (±)-isodactylol. J Chem Soc Chem Commun:123

    Google Scholar 

  444. Feldman KS, Wu MJ, Rotella DP (1990) Total synthesis of (±)-dactylol and related studies. J Am Chem Soc 112:8490

    Article  CAS  Google Scholar 

  445. Molander GA, Eastwood PR (1995) Total synthesis of (+)-dactylol via a novel [3+5] annulation approach. J Org Chem 60:4559

    Article  CAS  Google Scholar 

  446. Fürstner A, Langemann K (1996) A concise total synthesis of dactylol via ring closing metathesis. J Org Chem 61:8746

    Article  Google Scholar 

  447. Gadwood RC, Lett RM, Wissinger JE (1984) Total synthesis of (±)-poitediol and (±)-4-epipoitediol. J Am Chem Soc 106:3869

    Article  CAS  Google Scholar 

  448. Hall SS, Faulkner DJ, Fayos J, Clardy J (1973) Oppositol, a brominated sesquiterpene alcohol of a new skeletal class from the red alga Laurencia subopposita. J Am Chem Soc 95:7187

    Article  CAS  Google Scholar 

  449. Fukuzawa A, Sato H, Masamune T (1987) Synthesis of (±)-prepinnaterpene, a bromoditerpene from the red alga Laurencia pinnata Yamada. Tetrahedron Lett 28:4303

    Article  CAS  Google Scholar 

  450. Kim D, Kim IH (1997) A stereoselective total synthesis of (±)-oppositol by a doubly diastereoselective intramolecular ester enolate alkylation. Tetrahedron Lett 38:415

    Article  CAS  Google Scholar 

  451. Wijesinghe WAJP, Kang MC, Lee WW, Lee HS, Kamada T, Vairappan CS, Jeon YJ (2014) 5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages. Algae 29:333

    Google Scholar 

  452. Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) Laurencial, a novel sesquiterpene α,β-unsaturated aldehyde from the red alga Laurencia nipponica Yamada. Chem Lett 12:299

    Article  Google Scholar 

  453. Miyashita K, Tanaka A, Shintaku H, Iwata C (1998) Regiospecific bromination-cyclization of spirocyclic cyclohexanones and its application to the synthesis of (±)-laurencial. Tetrahedron 54:1395

    Article  CAS  Google Scholar 

  454. Suzuki M, Kurosawa E, Irie T (1970) Spirolaurenone, a new sesquiterpenoid containing bromine from Laurencia glandulifera Kützing. Tetrahedron Lett 11:4995

    Article  Google Scholar 

  455. Suzuki M, Kowata N, Kurosawa E (1980) The structure of spirolaurenone, a halogenated sesquiterpenoid from the red alga Laurencia glandulifera Kützing. Tetrahedron 36:1551

    Article  CAS  Google Scholar 

  456. Murai A, Kato K, Masamune T (1982) Total synthesis of (±)-spirolaurenone. Tetrahedron Lett 23:2887

    Article  CAS  Google Scholar 

  457. Fukuzawa A, Matsue H, Masamune T, Furusaki A, Katayama C, Matsumoto T (1984) Laurenones A and B, new sesquiterpenes from the red alga Laurencia nipponica Yamada. Chem Lett 13:1349

    Article  Google Scholar 

  458. Gressler V, Stein EM, Dӧrr F, Fujii MT, Colepicolo P, Pinto E (2011) Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Braz J Pharmacogn 21:248

    Article  CAS  Google Scholar 

  459. Norte M, Fernández JJ, Souto ML (1994) Viridianol, a rearranged sesquiterpene with a novel carbon skeleton from Laurencia viridis. Tetrahedron Lett 35:4607

    Article  CAS  Google Scholar 

  460. Xu X, Zeng L, Su J (1997) Tricyclic sesquiterpene from Laurencia majuscula. Chem Res Chin Univ 13:176

    CAS  Google Scholar 

  461. Brito I, Cueto M, Dorta E, Darias J (2002) Bromocyclococanol, a halogenated sesquiterpene with a novel carbon skeleton from the red alga Laurencia obtusa. Tetrahedron Lett 43:2551

    Article  CAS  Google Scholar 

  462. Guella G, Skropeta D, Breuils S, Mancini I, Pietra F (2001) Calenzanol, the first member of a new class of sesquiterpene with a novel skeleton isolated from the red seaweed Laurencia microladia from the Bay of Calenzana, Elba Island. Tetrahedron Lett 42:723

    Article  CAS  Google Scholar 

  463. Guella G, Skropeta D, Mancini I, Pietra F (2003) Calenzanane sesquiterpenes from the red seaweed Laurencia microcladia from the Bay of Calenzana, Elba Island: acid-catalyzed stereospecific conversion of calenzanol into indene- and guaiazulene-type sesquiterpenes. Chem Eur J 9:5770

    Article  CAS  Google Scholar 

  464. Caccamese S, Amico V, Neri P, Foti M (1991) The structure of laurobtusol, a new rearranged sesquiterpenoid from the Mediterranean red alga Laurencia obtusa. Tetrahedron 47:10101

    Article  CAS  Google Scholar 

  465. Blanchfield JT, Chow S, Bernhardt PV, Kennard CHL, Kitching W (2004) Concerning the proposed structure of (+)-laurobtusol: spectral discrepancies with synthetic, racemic stereoisomers. Aust J Chem 57:673

    Article  CAS  Google Scholar 

  466. González AG, Martín JD, Martín VS, Pérez R, Drexler SA, Clardy J (1984) Structure of güimarediol, a new rearranged sesquiterpenoid from the red alga Laurencia sp. Chem Lett 13:1865

    Article  Google Scholar 

  467. Díaz-Marrero AR, Brito I, de la Rosa JM, Darias J, Cueto M (2008) Gomerones A-C, halogenated sesquiterpenoids with a novel carbon skeleton from Laurencia majuscula. Tetrahedron 64:10821

    Article  CAS  Google Scholar 

  468. Huwyler N, Carreira EM (2012) Total synthesis and stereochemical revision of the chlorinated sesquiterpene (±)-gomerone C. Angew Chem Int Ed 51:13066

    Article  CAS  Google Scholar 

  469. González AG, Martín JD, Martín VS, Pérez R, Tagle B, Clardy J (1985) Rhodolaureol and rhodolauradiol, two new halogenated tricyclic sesquiterpenes from a marine alga. J Chem Soc Chem Commun:260

    Google Scholar 

  470. González AG, Martín JD, Martín VS, Norte M, Pérez R (1982) Bioimetic approach to the syntheses of rhodolaureol and rhodolauradiol. Tetrahedron Lett 23:2395

    Article  Google Scholar 

  471. Fedorov SN, Radchenko OS, Shubina LK, Kalinovsky AI, Gerasimenko AV, Popov DY, Stonik VA (2001) Aplydactone, a new sesquiterpenoid with an unprecedented carbon skeleton from the sea hare Aplysia dactylomela, and its Cargill-like rearrangement. J Am Chem Soc 123:504

    Article  CAS  Google Scholar 

  472. Guella G, Chiasera G, Pietra F (1992) Conformational studies of marine polyhalogenated α-chamigrenes using temperature-dependent NMR spectra. Cyclohexene-ring flipping and rigid-chair cyclohexane ring in the presence of equatorial halogen atoms at C(8) and C(9). Helv Chim Acta 75:2012

    Google Scholar 

  473. Guella G, Chiasera G, Pietra F (1992) Conformational studies of marine polyhalogenated α-chamigrenes using temperature-dependent NMR spectra. Inverted-chair and twist-boat cyclohexane moieties in the presence of an axial halogen atom at C(8). Helv Chim Acta 75:2026

    Google Scholar 

  474. González AG, Darias J, Martín JD, Martín VS, Norte M, Pérez C, Perales A, Fayos J (1980) Laurencia sesquiterpene biogenetic-type interconversions. Tetrahedron Lett 21:1151

    Article  Google Scholar 

  475. Takeda S, Kurosawa E, Komiyama K, Suzuki T (1990) The structures of cytotoxic diterpenes containing bromine from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Bull Chem Soc Jpn 63:3066

    Article  CAS  Google Scholar 

  476. Bian WT, You ZJ, Wang CY, Shao CL (2014) Brominated pimarane diterpenoids from the sea hare Aplysia pulmonica from the South China Sea. Chem Nat Comp 50:557

    Article  CAS  Google Scholar 

  477. Kurata K, Taniguchi K, Agatsuma Y, Suzuki M (1998) Diterpenoid feeding-deterrents from Laurencia saitoi. Phytochemistry 47:363

    Article  CAS  Google Scholar 

  478. Tsukamoto S, Yamashita Y, Yoshida T, Ohta T (2004) Parguerol and isoparguerol isolated from the sea hare Aplysia kurodai induce neurite outgrowth in PC-12 cells. Mar Drugs 2:170

    Article  CAS  Google Scholar 

  479. Suzuki T, Takeda S, Hayama N, Tanaka I, Komiyama K (1989) The structure of brominated diterpene from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 18:969

    Article  Google Scholar 

  480. Ji NY, Li XM, Wang BG (2008) Halogenated terpenes and a C15 acetogenin from the marine red alga Laurencia saitoi. Molecules 13:2894

    Article  CAS  Google Scholar 

  481. Masuda M, Takahashi Y, Matsuo Y, Suzuki M (1997) A taxonomic study of the genus Laurencia (Ceramiales, Rhodophyta) from Vietnam. II. Laurencia lageniformis sp. nov. Crypt Algol 18:163

    Google Scholar 

  482. Higgs MD, Faulkner DJ (1982) A diterpene from Laurencia obtusa. Phytochemistry 21:789

    Article  CAS  Google Scholar 

  483. Takeda S, Matsumoto T, Komiyama K, Kurosawa E, Suzuki T (1990) A new cytotoxic diterpene from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 19:277

    Article  Google Scholar 

  484. Suzuki M, Kurosawa E, Kurata K (1988) Venustanol, a brominated labdane diterpene from the red alga Laurencia venusta. Phytochemistry 27:1209

    Article  CAS  Google Scholar 

  485. Yamamura S, Hirata Y (1971) A naturally-occurring bromo-compound, aplysin-20 from Aplysia kurodai. Bull Chem Soc Jpn 44:2560

    Article  CAS  Google Scholar 

  486. Matsuda H, Tomiie Y, Yamamura S, Hirata Y (1967) The structure of aplysin-20. Chem Commun:898

    Google Scholar 

  487. Yamaguchi Y, Uyehara T, Kato T (1985) Biogenetic type synthesis of (±)-concinndiol and (±)-aplysin 20. Tetrahedron Lett 26:343

    Article  CAS  Google Scholar 

  488. Murai A, Abiko A, Masamune T (1984) Total synthesis of (±)-aplysin-20. Tetrahedron Lett 25:4955

    Article  CAS  Google Scholar 

  489. Ojika M, Kigoshi H, Yoshikawa K, Nakayama Y, Tamada K (1992) A new bromo diterpene, epi-aplysin-20, and ent-isoconcinndiol from the marine mollusc Aplysia kurodai. Bull Chem Soc Jpn 65:2300

    Article  CAS  Google Scholar 

  490. Sims JJ, Lin GHY, Wing RM, Fenical W (1973) Marine natural products. Concinndiol, a bromo-diterpene alcohol from the red alga Laurencia concinna. J Chem Soc Chem Commun:470

    Google Scholar 

  491. Howard BM, Fenical W (1980) Isoconcinndiol, a brominated diterpenoid from Laurencia snyderae var. guadalupensis. Phytochemistry 19:2774

    Google Scholar 

  492. Rodríguez ML, Martín JD, Estrada D (1989) The absolute configuration of (+)-isoconcinndiol. Acta Crystallogr C45:306

    Google Scholar 

  493. Fujiwara S, Takeda K, Uyehara T, Kato T (1986) Structural revision of isoconcinndiol by its synthesis. Chem Lett 15:1763

    Article  Google Scholar 

  494. Fukuzawa A, Miyamoto M, Kumagai Y, Abiko A, Takaya Y, Masamune T (1985) Structure of new bromoditerpenes, pinnatols, from the marine red alga Laurencia pinnata Yamada. Chem Lett 14:1259

    Article  Google Scholar 

  495. González AG, Ciccio JF, Rivera AP, Martín JD (1985) New halogenated diterpenes from the red alga Laurencia perforata. J Org Chem 50:1261

    Article  Google Scholar 

  496. Yamamura S, Terada Y (1977) Isoaplysin-20, a natural bromine-containing diterpene, from Aplysia kurodai. Tetrahedron Lett 18:2171

    Article  Google Scholar 

  497. Imamura PM, Rúveda EA (1980) The C-13 configuration of the bromine-containing diterpene isoaplysin-20. Synthesis of debromoisoaplysin-20 and its C-13 epimer. J Org Chem 45:510

    Article  CAS  Google Scholar 

  498. Nishizawa M, Takenaka H, Hirotsu K, Higuchi T, Hayashi Y (1984) Synthesis and structure determination of isoaplysin-20. J Am Chem Soc 106:4290

    Article  CAS  Google Scholar 

  499. Nishizawa M, Takenaka H, Hayashi Y (1986) Chemical simulation of polycyclic diterpenoid biosynthesis using mercury (II) triflate/N, N-dimethylaniline complex: mechanistic aspects of a biomimetic olefin cyclization. J Org Chem 51:806

    Article  CAS  Google Scholar 

  500. Briand A, Kornprobst JM, Aleasa HS, Rizk AFM, Toupet L (1997) (–)-Paniculatol, a new ent-labdane bromoditerpene from Laurencia paniculata. Tetrahedron Lett 38:3399

    Google Scholar 

  501. Iliopoulou D, Mihopoulos N, Roussis V, Vagias C (2003) New brominated labdane diterpenes from the red alga Laurencia obtusa. J Nat Prod 66:1225

    Article  CAS  Google Scholar 

  502. Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2000) 3-Bromobarekoxide, an unusual diterpene from Laurencia luzonensis. Chem Commun:1155

    Google Scholar 

  503. Justicia J, Oller-Lopez JL, Campana AG, Oltra JE, Cuerva JM, Bunuel E, Cardenas DJ (2005) 7-endo radical cyclizations catalyzed by titanocene(III). Straightforward synthesis of terpenoids with seven-membered carbocycles. J Am Chem Soc 127:14911

    Google Scholar 

  504. Howard BM, Fenical W (1978) Structures of the irieols, new dibromoditerpenoids of a unique skeletal class from Laurencia irieii. J Org Chem 43:4401

    Article  CAS  Google Scholar 

  505. Fukuzawa A, Takaya Y, Matsue H, Masamune T (1985) Structure of a new bromoditerpene, prepinnaterpene, from the marine red alga Laurencia pinnata Yamada. Chem Lett 14:1263

    Article  Google Scholar 

  506. Fenical W, Howard B, Gifkins KB, Clardy J (1975) Irieol A and iriediol, dibromoditerpenes of a new skeletal class from Laurencia. Tetrahedron Lett 16:3983

    Article  Google Scholar 

  507. Howard BM, Fenical W, Donovan SF, Clardy J (1982) Neoirieone, a diterpenoid of a new skeletal class from the red marine alga Laurencia cf. irieii. Tetrahedron Lett 23:3847

    Google Scholar 

  508. Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Matsumoto T, Katayama C (1982) Pinnaterpenes A, B and C, new dibromoditerpenes from the red alga Laurencia pinnata Yamada. Chem Lett 11:1389

    Article  Google Scholar 

  509. Ji NY, Li XM, Cui CM, Wang BG (2007) Two new brominated diterpenes from Laurencia decumbens. Chin Chem Lett 18:957

    Article  CAS  Google Scholar 

  510. Pettit GR, Herald CL, Einck JJ, Vanell LD, Brown P, Gust D (1978) Isolation and structure of angasiol. J Org Chem 43:4685

    Article  CAS  Google Scholar 

  511. Atta-ur-Rahman, Alvi KA, Abbas SA, Sultana T, Shameel M, Choudhary MI, Clardy JC (1991) A diterpenoid lactone from Aplysia juliana. J Nat Prod 54:886

    Article  CAS  Google Scholar 

  512. Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2010) Neoirietriol. Acta Crystallogr E66:o1795

    Google Scholar 

  513. Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M (2002) Halogenated metabolites from the new Okinawan red alga Laurencia yonaguniensis. J Nat Prod 65:395

    Article  CAS  Google Scholar 

  514. Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2007) Crystal structure and absolute stereochemistry of neoirietetraol. Anal Sci 23:x103

    Article  CAS  Google Scholar 

  515. Petraki A, Ioannou E, Papazafiri P, Roussis V (2015) Dactylomelane diterpenes from the sea hare Aplysia depilans. J Nat Prod 78:462

    Article  CAS  Google Scholar 

  516. Fernández JJ, Souto ML, Gil LV, Norte M (2005) Isolation of naturally occurring dactylomelane metabolites as Laurencia constituents. Tetrahedron 61:8910

    Article  CAS  Google Scholar 

  517. Estrada DM, Ravelo JL, Ruiz-Pérez C, Martín JD (1989) Dactylomelol, a new class of diterpene from the sea hare Aplysia dactylomela. Tetrahedron Lett 30:6219

    Article  CAS  Google Scholar 

  518. Guella G, Marchetti F, Pietra F (1997) Rogioldiol A, a new obtusane diterpene, and rogiolal, a degraded derivative, of the red seaweed Laurencia microcladia from Il Rogiolo along the coast of Tuscany: a synergism in structural elucidation. Helv Chim Acta 80:684

    Article  CAS  Google Scholar 

  519. Schmitz FJ, Hollenbeak KH, Carter DC, Hossain MB, van der Helm D (1979) Marine natural products: 14-bromoobtus-1-ene-3,11-diol, a new diterpenoid from the sea hare Aplysia dactylomela. J Org Chem 44:2445

    Article  CAS  Google Scholar 

  520. Guella G, Pietra F (1998) Antipodal pathways to secondary metabolites in the same eukaryotic organism. Chem Eur J 4:1692

    Article  CAS  Google Scholar 

  521. Mohammed KA, Hossain CF, Zhang L, Bruick RK, Zhou YD, Nagle DG (2004) Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J Nat Prod 67:2002

    Article  CAS  Google Scholar 

  522. Jung ME, Im G-YJ (2009) Total synthesis of racemic laurenditerpenol, an HIF-1 inhibitor. J Org Chem 74:8739

    Article  CAS  Google Scholar 

  523. Jung ME, Im G-YJ (2008) Convergent total synthesis of the racemic HIF-1 inhibitor laurenditerpenol. Tetrahedron Lett 49:4962

    Article  CAS  Google Scholar 

  524. Chittiboyina AG, Kumar GM, Carvalho PB, Liu Y, Zhou Y-D, Nagle DG, Avery MA (2007) Total synthesis and absolute configuration of laurenditerpenol: a hypoxia inducible factor-1 activation inhibitor. J Med Chem 50:6299

    Article  CAS  Google Scholar 

  525. Mukherjee S, Scopton AP, Corey EJ (2010) Enantioselective pathway for the synthesis of laurenditerpenol. Org Lett 12:1836

    Article  CAS  Google Scholar 

  526. Pitsinos EN, Athinaios N, Vidali VP (2012) Enantioselective total synthesis of (-)-laurenditerpenol. Org Lett 14:4666

    Article  CAS  Google Scholar 

  527. Mihopoulos N, Vagias C, Mikros E, Scoullos M, Roussis V (2001) Prevezols A and B: new brominated diterpenes from the red alga Laurencia obtusa. Tetrahedron Lett 42:3749

    Article  CAS  Google Scholar 

  528. Iliopoulou D, Mihopoulos N, Vagias C, Papazafiri P, Roussis V (2003) Novel cytotoxic brominated diterpenes from the red alga Laurencia obtusa. J Org Chem 68:7667

    Article  CAS  Google Scholar 

  529. Leung AE, Rubbiani R, Gasser G, Tuck KL (2014) Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity. Org Biomol Chem 12:8239

    Article  CAS  Google Scholar 

  530. Leung AE, Blair M, Forsyth CM, Tuck KL (2013) Synthesis of the proposed structures of prevezol C. Org Lett 15:2198

    Article  CAS  Google Scholar 

  531. Blair M, Forsyth CM, Tuck KL (2010) Towards the synthesis of prevezol C: total enantioselective synthesis of (–)-2-epi-prevezol C. Tetrahedron Lett 51:4808

    Article  CAS  Google Scholar 

  532. Guella G, Pietra F (2000) A new-skeleton diterpenoid, new prenylbisabolanes, and their putative biogenetic precursor, from the red seaweed Laurencia microcladia from Il Rogiolo: assigning the absolute configuration when two chiral halves are connected by single bonds. Helv Chim Acta 83:2946

    Article  CAS  Google Scholar 

  533. Chatter R, Kladi M, Tarhouni S, Maatoug R, Kharrat R, Vagias C, Roussis V (2009) Neorogioltriol: a brominated diterpene with analgesic activity from Laurencia glandulifera. Phytochem Lett 2:25

    Article  CAS  Google Scholar 

  534. Norte M, Souto ML, Fernández JJ (1996) Viridiols, two new diterpenes from Laurencia viridis. Nat Prod Lett 8:263

    Article  CAS  Google Scholar 

  535. Caccamese S, Toscano RM, Cerrini S, Gavuzzo E (1982) Laurencianol, a new halogenated diterpenoid from marine alga Laurencia obtusa. Tetrahedron Lett 23:3415

    Article  CAS  Google Scholar 

  536. Kladi M, Ntountaniotis D, Zervou M, Vagias C, Ioannou E, Roussis V (2014) Glandulaurencianols A-C, brominated diterpenes from the red alga Laurencia glandulifera and the sea hare Aplysia punctata. Tetrahedron Lett 55:2835

    Article  CAS  Google Scholar 

  537. Brennan MR, Kim IK, Erickson KL (1993) Kahukuenes, new diterpenoids from the marine alga Laurencia majuscula. J Nat Prod 56:76

    Article  CAS  Google Scholar 

  538. Chatter R, Cenac N, Roussis V, Kharrat R, Vergnolle N (2012) Inhibition of sensory afferents activation and visceral pain by a brominated diterpene. Neurogastroenterol Motil 24, e336

    Article  CAS  Google Scholar 

  539. Ojika M, Yoshida Y, Okumura M, Ieda S, Yamada K (1990) Aplysiadiol, a new brominated diterpene from the marine mollusc Aplysia kurodai. J Nat Prod 53:1619

    Article  CAS  Google Scholar 

  540. Niwa H, Ieda S, Inagaki H, Yamada K (1990) A biogenetic-type synthesis of (±)-aplysiadiol, a brominated diterpene isolated from the marine mollusc Aplysia kurodai. Tetrahedron Lett 31:7157

    Article  CAS  Google Scholar 

  541. Sun J, Han LJ, Yang RY, Shi DY, Uan ZH, Shi JG (2007) Studies on chemical constituents of Laurencia tristicha. Chin J Chin Mat Med 32:2610

    CAS  Google Scholar 

  542. Mahdi F, Falkenberg M, Ioannou E, Roussis V, Zhou YD, Nagle DG (2011) Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochem Lett 4:75

    Article  CAS  Google Scholar 

  543. Ji NY, Li XM, Xie H, Ding J, Li K, Ding LP, Wang BG (2008) Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (Rhodomelaceae). Helv Chim Acta 91:1940

    Article  CAS  Google Scholar 

  544. Suzuki T, Suzuki M, Furusaki A, Matsumoto T, Kato A, Imanaka Y, Kurosawa E (1985) Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26:1329

    Article  CAS  Google Scholar 

  545. Blunt JW, Hartshorn MP, McLennan TJ, Munro MHG, Robinson WT, Yorke SC (1978) Thyrsiferol, a squalene-derived metabolite of Laurencia thyrsifera. Tetrahedron Lett 19:69

    Article  Google Scholar 

  546. Blunt JW, McCombs JD, Munro MHG, Thomas FN (1989) Complete assignment of the 13C and 1H nmr spectra of thyrsiferyl acetate. Magn Reson Chem 27:792

    Article  CAS  Google Scholar 

  547. Sakemi S, Higa T, Jefford CW, Bernardinelli G (1986) Venustatriol, a new antiviral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 27:4287

    Article  CAS  Google Scholar 

  548. Fernández JJ, Souto ML, Norte M (1998) Evaluation of the cytotoxic activity of polyethers isolated from Laurencia. Bioorg Med Chem 6:2237

    Article  Google Scholar 

  549. Manzo E, Gavagnin M, Bifulco G, Cimino P, Di Micco S, Ciavatta ML, Guo YW, Cimino G (2007) Aplysiols A and B, squalene-derived polyethers from the mantle of the sea hare Aplysia dactylomela. Tetrahedron 63:9970

    Article  CAS  Google Scholar 

  550. Broka CA, Hu L, Lee WJ, Shen T (1987) Synthetic studies on thyrsiferol. Tetrahedron Lett 28:4993

    Article  CAS  Google Scholar 

  551. Broka CA, Lin Y (1988) Synthetic studies on thyrsiferol. Elaboration of the bromotetrahydropyran ring. J Org Chem 53:5876

    Article  CAS  Google Scholar 

  552. Hashimoto M, Kan T, Nozaki K, Yanagiya M, Shirahama H, Matsumoto T (1990) Total syntheses of (+)-thyrsiferol, (+)-thyrsiferyl 23-acetate, and (+)-venustatriol. J Org Chem 55:5088

    Article  CAS  Google Scholar 

  553. González IC, Forsyth CJ (2000) Total synthesis of thyrsiferyl 23-acetate, a specific inhibitor of protein phosphatase 2A and an anti-leukemic inducer of apoptosis. J Am Chem Soc 122:9099

    Article  CAS  Google Scholar 

  554. Norte M, Fernández JJ, Souto ML (1997) New polyether squalene derivatives from Laurencia. Tetrahedron 53:4649

    Article  CAS  Google Scholar 

  555. Cen-Pacheco F, Mollinedo F, Villa-Pulgarín JA, Norte M, Fernández JJ, Daranas AH (2012) Saiyacenols A and B: the key to solve the controversy about the configuration of aplysiols. Tetrahedron 68:7275

    Article  CAS  Google Scholar 

  556. Suzuki T, Hasegawa M, Hirayama Y, Takahashi Y, Matsuo Y (1995) The structure of squalene-derived polyether, 15(28)-anhydrothyrsiferyl 23-acetate isolated from the marine red alga Laurencia obtusa (Hudson) Lamouroux. J Hokkaido Univ Ed Sect II A 46:57

    Google Scholar 

  557. Suzuki T, Takeda S, Suzuki M, Kurosawa E, Kato A, Imanaka Y (1987) Cytotoxic squalene-derived polyethers from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 16:361

    Article  Google Scholar 

  558. Manríquez CP, Souto ML, Gavín JA, Norte M, Fernández JJ (2001) Several new squalene-derived triterpenes from Laurencia. Tetrahedron 57:3117

    Article  Google Scholar 

  559. Souto ML, Manríquez CP, Norte M, Fernández JJ (2002) Novel marine polyethers. Tetrahedron 58:8119

    Article  CAS  Google Scholar 

  560. Norte M, Fernández JJ, Souto ML, García-Grávalos MD (1996) Two new antitumoral polyether squalene derivatives. Tetrahedron Lett 37:2671

    Article  CAS  Google Scholar 

  561. Matsuo Y, Suzuki M, Masuda M, Iwai T, Morimoto Y (2008) Squalene-derived triterpene polyethers from the red alga Laurencia omaezakiana. Helv Chim Acta 91:1261

    Article  CAS  Google Scholar 

  562. Corey EJ, Ha D-C (1988) Total synthesis of venustatriol. Tetrahedron Lett 29:3171

    Article  CAS  Google Scholar 

  563. Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Martín MN, Fernández JJ, Hernádez Daranas AH (2011) New polyether triterpenoids from Laurencia viridis and their biological evaluation. Mar Drugs 9:2220

    Article  CAS  Google Scholar 

  564. Cen-Pacheco F, Santiago-Benítez AJ, García C, Álvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxasqualenoids from Laurencia viridis: combined spectroscopic-computational analysis and antifouling potential. J Nat Prod 78:712

    Article  CAS  Google Scholar 

  565. Ola ARB, Babey AM, Motti C, Bowden BF (2010) Aplysiols C-E, brominated triterpene polyethers from the marine alga Chondria armata and a revision of the structure of aplysiol B. Aust J Chem 63:907

    Article  CAS  Google Scholar 

  566. Suzuki M, Matsuo Y, Takahashi Y, Masuda M (1995) Callicladol, a novel cytotoxic bromotriterpene polyether from a Vietnamese species of the red algal genus Laurencia. Chem Lett 24:1045

    Article  Google Scholar 

  567. Vera B, Rodríguez AD, Avilés E, Ishikawa Y (2009) Aplysqualenols A and B: squalene-derived polyethers with antitumoral and antiviral activity from the Caribbean sea slug Aplysia dactylomela. Eur J Org Chem 2009:5327

    Article  CAS  Google Scholar 

  568. Norte M, Fernández JJ, Souto ML, Gavin JA, García-Grávalos MD (1997) Thyrsenols A and B, two unusual polyether squalene derivatives. Tetrahedron 53:3173

    Article  CAS  Google Scholar 

  569. Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ (2011) Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem 46:3302

    Article  CAS  Google Scholar 

  570. Cen-Pacheco F, Nordström L, Souto ML, Martín MN, Fernández JJ, Daranas AH (2010) Studies on polyethers produced by red algae. Mar Drugs 8:1178

    Article  CAS  Google Scholar 

  571. Hioki H, Motosue M, Mizutani Y, Noda A, Shimoda T, Kubo M, Harada K, Fukuyama Y, Kodama M (2009) Total synthesis of pseudodehydrothyrsiferol. Org Lett 11:579

    Article  CAS  Google Scholar 

  572. Clausen DJ, Wan S, Floreancig PE (2011) Total synthesis of the protein phosphatase 2A inhibitor lactodehydrothyrsiferol. Angew Chem Int Ed 50:5178

    Article  CAS  Google Scholar 

  573. Suenaga K, Shibata T, Takada N, Kigoshi H, Yamada K (1998) Aurilol, a cytotoxic bromoditerpene isolated from the sea hare Dolabella auricularia. J Nat Prod 61:515

    Article  CAS  Google Scholar 

  574. Morimoto Y, Nishikawa Y, Takaishi M (2005) Total synthesis and complete assignment of the stereostructure of a cytotoxic bromoditerpene polyether (+)-aurilol. J Am Chem Soc 127:5806

    Article  CAS  Google Scholar 

  575. Matsuo Y, Suzuki M, Masuda M (1995) Enshuol, a novel squalene-derived pentacyclic triterpene alcohol from a new species of the red algal genus Laurencia. Chem Lett 24:1043

    Article  Google Scholar 

  576. Morimoto Y, Yata H, Nishikawa Y (2007) Assignment of the absolute configuration of the marine pentacyclic polyether (+)-enshuol by total synthesis. Angew Chem Int Ed 46:6481

    Article  CAS  Google Scholar 

  577. Hashimoto M, Yanagiya M, Shirahama H (1988) Total synthesis of meso-triterpene ether, teurilene. Chem Lett 17:645

    Article  Google Scholar 

  578. Hashimoto M, Harigaya H, Yanagiya M, Shirahama H (1991) Total synthesis of the meso-triterpene polyether teurilene. J Org Chem 56:2299

    Article  CAS  Google Scholar 

  579. Iwai T, Kinoshita T, Morimoto Y (1998) Highly efficient total synthesis of cytotoxic meso polyether teurilene featuring diastereoselective method for construction of tetrahydrofuran rings by means of rhenium (VII) oxide. Symp Chem Nat Prod 40:277

    Google Scholar 

  580. Morimoto Y, Iwai T, Kinoshita T (1999) Effective combination of two-directional synthesis and rhenium(VII) chemistry: total synthesis of meso polyether teurilene. J Am Chem Soc 121:6792

    Article  CAS  Google Scholar 

  581. Morimoto Y, Iwai T, Kinoshita T (2002) Total synthesis of highly symmetric squalene-derived cytotoxic polyethers. J Synth Org Chem Jpn 60:1112

    Article  CAS  Google Scholar 

  582. Rodríguez-López J, Crisóstomo FP, Ortega N, Rodríguez-López M, Martín VS, Martín T (2013) Epoxide-opening cascades triggered by a Nicholas reaction: total synthesis of teurilene. Angew Chem Int Ed 52:3659

    Article  CAS  Google Scholar 

  583. Suzuki M, Matsuo Y, Takeda S, Suzuki T (1993) Intricatetraol, a halogenated triterpene alcohol from the red alga Laurencia intricata. Phytochemistry 33:651

    Article  CAS  Google Scholar 

  584. Umezawa T, Oguri Y, Matsuura H, Yamazaki S, Suzuki M, Yoshimura E, Furuta T, Nogata Y, Serisawa Y, Matsuyama-Serisawa K, Abe T, Matsuda F, Suzuki M, Okino T (2014) Omaezallene from red alga Laurencia sp.: structure elucidation, total synthesis and antifouling activity. Angew Chem Int Ed 53:3909

    Google Scholar 

  585. Morimoto Y, Okita T, Takaishi M, Tanaka T (2007) Total synthesis and determination of the absolute configuration of (+)-intricatetraol. Angew Chem Int Ed 46:1132

    Article  CAS  Google Scholar 

  586. Authors’ unpublished data

    Google Scholar 

  587. Kigoshi H, Ojika M, Shizuri Y, Niwa H, Yamada K (1986) Isolation of (10R,11R)-(+)-squalene-10,11-epoxide from the red alga Laurencia okamurai and its enantioselective synthesis. Tetrahedron 42:3789

    Article  CAS  Google Scholar 

  588. Kigoshi H, Ojika M, Shizuri Y, Niwa H, Yamada K (1982) (10R,11R)-(+)-squalene-10,11-epoxide: isolation from Laurencia okamurai and the asymmetric synthesis. Tetrahedron Lett 23:5413

    Google Scholar 

  589. Kigoshi H, Itoh T, Ogawa T, Ochi K, Okada M, Suenaga K, Yamada K (2001) Auriculol, a cytotoxic oxygenated squalene from the Japanese sea hare Dolabella auricularia: isolation, stereostructure and synthesis. Tetrahedron Lett 42:7461

    Article  CAS  Google Scholar 

  590. Xiong Z, Busch R, Corey EJ (2010) A short total synthesis of (+)-omaezakianol via an epoxide-initiated cationic cascade reaction. Org Lett 12:1512

    Article  CAS  Google Scholar 

  591. Fernández JJ, Souto ML, Norte M (2000) Marine polyether triterpenes. Nat Prod Rep 17:235

    Article  Google Scholar 

  592. Norte M, Fernández JJ, Ruano JZ, Matías L, Rodríguez ML, Pérez R (1988) Graciosin and graciosallene, two bromoethers from Laurencia obtusa. Phytochemistry 27:3537

    Article  CAS  Google Scholar 

  593. Norte M, Fernández JJ, Runao JZ (1989) Three new bromo ethers from the red alga Laurencia obtusa. Tetrahedron 45:5987

    Article  CAS  Google Scholar 

  594. Kamada T, Vairappan CS (2012) A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules 17:2119

    Article  CAS  Google Scholar 

  595. Suzuki T, Koizumi K, Suzuki M, Kurosawa E (1983) Kumausynes and deacetylkumausynes, four new halogenated C-15 acetylenes from the red alga Laurencia nipponica Yamada. Chem Lett 12:1643

    Article  Google Scholar 

  596. Martin T, Soler MA, Betancort JM, Martin VS (1997) Biomimetic-type synthesis of halogenated tetrahydrofurans from Laurencia. Total synthesis of (+)-trans-deacetylkumausyne. J Org Chem 62:1570

    Google Scholar 

  597. Brown MJ, Harisson T, Overman LE (1991) General approach to halogenated tetrahydrofuran natural products from the red algae of the genus Laurencia. Synthesis of (±)-trans-kumausyne and demonstration of an asymmetric synthesis strategy. J Am Chem Soc 113:5378

    Google Scholar 

  598. Osumi K, Sugimura H (1995) Total synthesis of (–)-trans-kumausyne. Tetrahedron Lett 36:5789

    Article  CAS  Google Scholar 

  599. Andrey O, Glanzmann C, Landais Y, Parra-Rapado L (1997) 1,3-Asymmetric induction in electrophilic addition onto homoallylsilanes. An approach towards the total synthesis of (±)-kumausyne. Tetrahedron 53:2835

    Article  CAS  Google Scholar 

  600. Lee E, Yoo SK, Cho YS, Cheon HS, Chong YH (1997) Radical cyclisation of β-alkoxyacrylates: stereoselective synthesis of (–)-trans-kumausyne. Tetrahedron Lett 38:7757

    Article  CAS  Google Scholar 

  601. Mereyala HB, Gadikota RR (2000) A general strategy for the formal synthesis of (–)-trans-kumausyne and total synthesis of (5R)-Hagen’s gland lactones from diacetone-d-glucose. Tetrahedron Asymm 11:743

    Article  CAS  Google Scholar 

  602. García C, Martín T, Martín VS (2001) β-Hydroxy-γ-lactones as chiral building blocks for the enantioselective synthesis of marine natural products. J Org Chem 66:1420

    Google Scholar 

  603. Gadikota RR, Callam CS, Lowary TL (2001) Total synthesis of (2S,3S,5S,10S)-6,9-epoxynonadec-18-ene-7,10-diol and formal total synthesis of (+)-trans-kumausyne from d-arabinose. J Org Chem 66:9046

    Article  CAS  Google Scholar 

  604. Chandler CL, Phillips AJ (2005) A total synthesis of (±)-trans-kumausyne. Org Lett 7:3493

    Article  CAS  Google Scholar 

  605. Gutiérrez-Cepeda A, Daranas AH, Fernández JJ, Norte M, Souto ML (2014) Stereochemical determination of five-membered cyclic ether acetogenins using a spin-spin coupling constant approach and DFT calculations. Mar Drugs 12:4031

    Article  CAS  Google Scholar 

  606. Fukuzawa A, Aye M, Takaya Y, Fukui TM, Murai A, Masamune T (1989) Laureoxolane a new bromo ether from Laurencia nipponica. Tetrahedron Lett 30:3665

    Article  CAS  Google Scholar 

  607. Kladi M, Vagias C, Papazarifi P, Brogi S, Tafi A, Roussis V (2009) Tetrahydrofuran acetogenins from Laurencia glandulifera. J Nat Prod 72:190

    Article  CAS  Google Scholar 

  608. Suzuki M, Nakano S, Takahashi Y, Abe T, Masuda M (1999) Bisezakyne-A and -B, halogenated C15 acetogenins from a Japanese Laurencia species. Phytochemistry 51:657

    Article  CAS  Google Scholar 

  609. Fukuzawa A, Kurosawa E, Tobetsu I (1980) Laureepoxide, new bromo ether from the marine red alga Laurencia nipponica Yamada. Tetrahedron Lett 21:1471

    Article  CAS  Google Scholar 

  610. Imre S, Aydoǧmuş Z, Güner H, Lotter H, Wagner H (1995) Polybrominated non-terpenoid C15 compounds from Laurencia paniculata and Laurencia obtusa. Z Naturforsch 50C:743

    Google Scholar 

  611. Ji N-Y, Li X-M, Li K, Wang B-G (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15 acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 70:1499

    Article  CAS  Google Scholar 

  612. Ji NY, Li XM, Li K, Wang BG (2010) Erratum to “Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15 acetogenins from the marine red alga Laurencia decumbens”. J Nat Prod 73:1192

    Article  CAS  Google Scholar 

  613. Dyson BS, Burton JW, Sohn TI, Kim B, Bae H, Kim D (2012) Total synthesis and structure confirmation of elatenyne: success of computational methods for NMR prediction with highly flexible diastereomers. J Am Chem Soc 134:11781

    Article  CAS  Google Scholar 

  614. Kim K, Brennan MR, Erickson KL (1989) Lauroxolanes from the marine alga Laurencia majuscula. Tetrahedron Lett 30:1757

    Article  CAS  Google Scholar 

  615. Sheldrake HM, Jamieson C, Burton JW (2006) The changing faces of halogenated marine natural products: total synthesis of the reported structures of elatenyne and an enyne from Laurencia majuscula. Angew Chem Int Ed 45:7199

    Article  CAS  Google Scholar 

  616. Sheldrake HM, Jamieson C, Pascu SI, Burton JW (2009) Synthesis of the originally proposed structures of elatenyne and an enyne from Laurencia majuscula. Org Biomol Chem 7:238

    Article  CAS  Google Scholar 

  617. Smith SG, Paton RS, Burton JW, Goodman JM (2008) Stereostructure assignment of flexible five-membered rings by GIAO 13C NMR calculations: prediction of the stereochemistry of elatenyne. J Org Chem 73:4053

    Article  CAS  Google Scholar 

  618. Brkljaca R, Urban S (2013) Relative configuration of the marine natural product elatenyne using NMR spectroscopic and chemical derivatization methodologies. Nat Prod Commun 8:729

    CAS  Google Scholar 

  619. Abdel-Mageed WM, Ebel R, Valeriote FA, Jaspars M (2010) Laurefurenynes A-F, new cyclic ether acetogenins from a marine red alga Laurencia sp. Tetrahedron 66:2855

    Article  CAS  Google Scholar 

  620. Shepherd DJ, Broadwith PA, Dyson BS, Paton RS, Burton JW (2013) Structure reassignment of laurefurenynes A and B by computation and total synthesis. Chem Eur J 19:12644

    Article  CAS  Google Scholar 

  621. Holmes MT, Britton R (2013) Total synthesis and structural revision of laurefurenynes A and B. Chem Eur J 19:12649

    Article  CAS  Google Scholar 

  622. Suzuki T, Koizumi K, Suzuki M, Kurosawa E (1983) Kumausallene, a new bromoallene from the marine red alga Laurencia nipponica Yamada. Chem Lett 12:1639

    Article  Google Scholar 

  623. Grese TA, Hutchinson KD, Overman LE (1993) General approach to halogenated tetrahydrofuran natural products from red algae of genus Laurencia. Total synthesis of (±)-kumausallene and (±)-1-epi-kumausallene. J Org Chem 58:2468

    Google Scholar 

  624. Lee E, Yoo SK, Choo H, Song HY (1998) Radical cyclization of β-alkoxyacrylates: a formal synthesis of (–)-kumausallene. Tetrahedron Lett 39:317

    Article  CAS  Google Scholar 

  625. Evans PA, Murthy VS, Roseman JD, Rheingold AL (1999) Enantioselective total synthesis of the nonisoprenoid sesquiterpene (–)-kumausallene. Angew Chem Int Ed 38:3175

    Article  CAS  Google Scholar 

  626. Werness JB, Tang W (2011) Stereoselective total synthesis of (–)-kumausallene. Org Lett 13:3664

    Article  CAS  Google Scholar 

  627. Nesbitt CL, McErlean CSP (2009) An expedient synthesis of 2,5-disubstituted-3-oxygenated tetrahydrofurans. Tetrahedron Lett 50:6318

    Article  CAS  Google Scholar 

  628. Okamoto Y, Nitanda N, Ojika M, Sakagami Y (2003) Aplysiallene, a new bromoallene as an Na+,K+-ATPase inhibitor from the sea hare Aplysia kurodai (Erratum). Biosci Biotechnol Biochem 67:460

    CAS  Google Scholar 

  629. Wang J, Pagenkopf BL (2007) First total synthesis and structural reassignment of (–)-aplysiallene. Org Lett 9:3703

    Article  CAS  Google Scholar 

  630. Suzuki M, Kurosawa E (1981) Okamurallene, a novel halogenated C15 metabolite from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 22:3853

    Article  CAS  Google Scholar 

  631. Suzuki M, Sasage Y, Ikura M, Hikichi K, Kurosawa E (1989) Structure revision of okamurallene and structure elucidation of further C15 non-terpenoid bromoallenes from Laurencia intricata. Phytochemistry 28:2145

    Article  CAS  Google Scholar 

  632. Suzuki M, Kondo H, Tanaka I (1991) The absolute stereochemistry of okamurallene and its congeners, halogenated C15 nonterpenoids from the red alga Laurencia intricata. Chem Lett 20:33

    Article  Google Scholar 

  633. Suzuki M, Kurosawa E (1982) Deoxyokamurallene and isookamurallene, new halogenated nonterpenoid C15-compounds from the red alga Laurencia okamurai Yamada. Chem Lett 11:289

    Article  Google Scholar 

  634. Kinnel R, Duggan AJ, Eisner T, Meinwald J, Miura I (1977) Panacene, an aromatic bromoallene from a sea hare (Aplysia brasiliana). Tetrahedron Lett 18:3913

    Article  Google Scholar 

  635. Feldman KS (1982) Biomimetic synthesis of (±)-panacene. Tetrahedron Lett 23:3031

    Article  CAS  Google Scholar 

  636. Feldman KS, Mechem CC, Nader L (1982) Total synthesis of (±)-panacene. J Am Chem Soc 104:4011

    Article  CAS  Google Scholar 

  637. Sabot C, Bérard D, Canesi S (2008) Expeditious total syntheses of natural allenic products via aromatic ring umpolung. Org Lett 10:4629

    Article  CAS  Google Scholar 

  638. Howard BM, Fenical W, Arnold EV, Clardy J (1979) Obtusin, a unique bromine-containing polycyclic ketal from the red marine alga Laurencia obtusa. Tetrahedron Lett 20:2841

    Article  Google Scholar 

  639. Caccamese S, Toscano RM (1986) Neoobtusin, a new brominated ketal from the marine red alga Laurencia obtusa. Gazz Chim Ital 116:177

    CAS  Google Scholar 

  640. Sugimura H, Hasegawa Y, Osumi K (2000) Studies relating to the synthesis of laurenenynes: construction of the alkylidene side chain via [2,3]-Wittig-Still rearrangement at the anomeric center of a furanoside derivative. Heterocycles 52:99

    Article  CAS  Google Scholar 

  641. Liu X, Li XM, Li CS, Ji NY, Wang BG (2010) Laurenidificin, a new brominated C15 acetogenin from the marine red alga Laurencia nidifica. Chin Chem Lett 21:1213

    Article  CAS  Google Scholar 

  642. Schulte GR, Chung MCH, Scheuer PJ (1981) Two bicyclic C15 enynes from the sea hare Aplysia oculifera. J Org Chem 46:3870

    Article  CAS  Google Scholar 

  643. Waraszkiewicz SM, Sun HH, Erickson KL (1976) C15-halogenated compounds from the Hawaiian marine alga Laurencia nidifica. V. The maneonenes. Tetrahedron Lett 17:3021

    Article  Google Scholar 

  644. Waraszkiewicz SM, Sun HH, Erickson KL, Finer J, Clardy J (1978) C15 halogenated compounds from the Hawaiian marine alga Laurencia nidifica. Maneonenes and isomaneonenes. J Org Chem 43:3194

    Article  CAS  Google Scholar 

  645. Ayyad SEN, Al-Footy KO, Alarif WM, Sobahi TR, Bassaif SA, Makki MS, Asiri AM, Al Halwani AY, Badria AF, Badria FA (2011) Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 59:1294

    Article  CAS  Google Scholar 

  646. Holmes AB, Jennings-White CLD, Kendrick DA (1983) Total synthesis of cis-maneonenes-A and B. J Chem Soc Chem Commun:415

    Google Scholar 

  647. Sun HH, Waraszkiewicz SM, Erickson KL (1976) C15-halogenated compounds from the Hawaiian marine alga Laurencia nidifica. VI. The isomaneonenes. Tetrahedron Lett 17:4227

    Google Scholar 

  648. Holmes AB, Jennings-White CLD, Kendrick DA (1984) Total synthesis of (±)-trans-maneonene-B. J Chem Soc Chem Commun:1594

    Google Scholar 

  649. Vanderah DJ, Schmitz FJ (1976) Marine natural products; Isodactylyne, a halogenated acetylenic ether from the sea hare Aplysia dactylomela. J Org Chem 41:3480

    Article  CAS  Google Scholar 

  650. Gao L, Murai A (1992) Total synthesis of (–)-dactylyne and (–)-isodactylyne. Tetrahedron Lett 33:4349

    Article  CAS  Google Scholar 

  651. Gao L, Murai A (1996) Total synthesis of (–)-dactylynes. Heterocycles 42:745

    Article  CAS  Google Scholar 

  652. McDonald FJ, Campbell DC, Vanderah DJ, Schmitz FJ, Washecheck DM, Burks JE, Van Der Helm D (1975) Marine natural products. Dactylyne an acetylenic dibromochloro ether from the sea hare Aplysia dactylomela. J Org Chem 40:665

    Article  CAS  Google Scholar 

  653. Lee H, Kim KW, Park J, Kim H, Kim S, Kim D, Hu X, Yang W, Hong J (2008) A general strategy for construction of both 2,6-cis and 2,6-trans-disubstituted tetrahydropyrans: substrate-controlled asymmetric total synthesis of (+)-scanlonenyne. Angew Chem Int Ed 47:4200

    Article  CAS  Google Scholar 

  654. de Silva ED, Schwartz RE, Scheuer PJ, Shoolery JN (1983) Srilankenyne, a new metabolite from the sea hare Aplysia oculifera. J Org Chem 48:395

    Article  Google Scholar 

  655. Takahashi Y, Suzuki M, Abe T, Masuda M (1999) Japonenynes, halogenated C15 acetogenins from Laurencia japonensis. Phytochemistry 50:799

    Article  CAS  Google Scholar 

  656. Imre S, Öztunç A, Islimyeli S (1987) Chemical investigation of some marine organisms from Turkish waters. Turk Kim Derg 11:119

    CAS  Google Scholar 

  657. Kozikowski AP, Lee J (1990) A synthesis approach to the cis-fused marine pyranopyrans (3E)- and (3Z)-dactomelyne. X-ray structure of a rare organomercurial. J Org Chem 55:863

    Google Scholar 

  658. Lee E, Park CM, Yun JS (1995) Total synthesis of dactomelynes. J Am Chem Soc 117:8017

    Article  CAS  Google Scholar 

  659. Lee E (1996) Oxacycle synthesis via radical cyclization of β-alkoxyacrylates. Pure Appl Chem 68:631

    Article  CAS  Google Scholar 

  660. Fukuzawa A, Masamune T (1981) Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4081

    Article  CAS  Google Scholar 

  661. Kotsuki H, Ushio Y, Kadota I, Ochi M (1989) Stereoselective reduction of bicyclic ketals. A new, enantioselective synthesis of isolaurepinnacin and lauthisan skeletons. J Org Chem 54:5153

    Article  CAS  Google Scholar 

  662. Berger D, Overman LE, Renhowe PA (1993) Enantioselective total synthesis of (+)-isolaurepinnacin. J Am Chem Soc 115:9305

    Article  CAS  Google Scholar 

  663. Berger D, Overman LE, Renhowe PA (1997) Total synthesis of (+)-isolaurepinnacin. Use of acetal-alkene cyclizations to prepare highly functionalized seven-membered cyclic ethers. J Am Chem Soc 119:2446

    Google Scholar 

  664. Suzuki T, Matsumura R, Nagai Y, Sato K, Sekiguchi H, Hagiwara H, Ando M (1997) Stereospecific construction of medium-sized cyclic ethers and its applications to synthesis of marine natural products. Symp Chem Nat Prod 39:91

    Google Scholar 

  665. Suzuki T, Matsumura R, Oku KI, Taguchi K, Hagiwara H, Hoshi T, Ando M (2001) Formal synthesis of (+)-isolaurepinnacin. Tetrahedron Lett 42:65

    Article  CAS  Google Scholar 

  666. Rodríguez-López J, Ortega N, Martín VS, Martín T (2014) β-Hydroxy-γ-lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings. Enantioselective formal synthesis of (−)-isolaurepinnacin and (+)-rogioloxepane A. Chem Commun 50:3685

    Google Scholar 

  667. Guella G, Mancini I, Chiasera G, Pietra F (1992) On the unusual propensity by the red seaweed Laurencia microcladia of Il Rogiolo to form C15 oxepanes: isolation of rogioloxepane A, B, C, and their likely biogenetic acyclic precursor, prerogioloxepane. Helv Chim Acta 75:310

    Article  CAS  Google Scholar 

  668. Matsumura R, Suzuki T, Hagiwara H, Hoshi T, Ando M (2001) The first total synthesis of (+)-rogioloxepane A. Tetrahedron Lett 42:1543

    Article  CAS  Google Scholar 

  669. Crimmins MT, DeBaillie AC (2003) Enantioselective total synthesis of (+)-rogioloxepane A. Org Lett 5:3009

    Article  CAS  Google Scholar 

  670. Lyakhova EG, Kalinovsky AI, Dmitrenok AS, Kolesnikova SA, Fedorov SN, Vaskovsky VE, Stonik VA (2006) Structures and absolute stereochemistry of nipponallene and neonipponallene, new brominated allenes from the red alga Laurencia nipponica. Tetrahedron Lett 47:6549

    Article  CAS  Google Scholar 

  671. Guella G, Mancici I, Chiasera G, Pietra F (1992) Rogiolenyne D, the likely immediate precursor of rogiolenyne A and B, branched C15 acetogenins isolated from the red seaweed Laurencia microcladia of Il Rogiolo. Conformation and absolute configuration in the whole series. Helv Chim Acta 75:303

    Google Scholar 

  672. Guella G, Pietra F (1991) Rogiolenyne A, B and C: the first branched marine C15 acetogenins. Isolation from the red seaweed Laurencia microcladia or the sponge Spongia zimocca of Il Rogiolo. Helv Chim Acta 74:47

    Google Scholar 

  673. Kurosawa E, Fukuzawa A, Irie T (1973) Isoprelaurefucin, new bromo compound from Laurencia nipponica Yamada. Tetrahedron Lett 14:4135

    Article  Google Scholar 

  674. Suzuki M, Kurata K, Suzuki T, Kurosawa E (1986) The absolute configuration of isoprelaurefucin. Bull Chem Soc Jpn 59:2953

    Article  CAS  Google Scholar 

  675. Lee H, Kim Y, Yoon T, Kim B, Kim S, Kim H-D, Kim D (2005) Novel “protecting group-dependent” alkylation-RCM strategy to medium-sized oxacycles: first total synthesis of (-)-isoprelaurefucin. J Org Chem 70:8723

    Article  CAS  Google Scholar 

  676. Suzuki M, Mizuno Y, Matsuo Y, Masuda M (1996) Neoisoprelaurefucin, a halogenated C15 non-terpenoid compound from Laurencia nipponica. Phytochemistry 43:121

    Article  CAS  Google Scholar 

  677. Lee H, Kim H, Baek S, Kim S, Kim D (2003) Total synthesis and determination of the absolute configuration of (+)-neoisoprelaurefucin. Tetrahedron Lett 44:6609

    Article  CAS  Google Scholar 

  678. Falshaw CP, King TJ, Imre S, Islimyeli S, Thomson RH (1980) Laurenyne, a new acetylene from Laurencia obtusa, crystal structure and absolute configuration. Tetrahedron Lett 21:4951

    Article  CAS  Google Scholar 

  679. Öztunç A, Imre S, Lotter H, Wagner H (1991) Two C15 bromoallenes from the red alga Laurencia obtusa. Phytochemistry 30:255

    Article  Google Scholar 

  680. Overman LE, Thompson AS (1988) Total synthesis of (–)-laurenyne. Use of acetyl-initiated cyclizations to prepare functionalized eight-membered cyclic ethers. J Am Chem Soc 110:2248

    Google Scholar 

  681. Boeckman RK, Zhang J, Reeder MR (2002) Synthetic and mechanistic studies of the retro-Claisen rearrangement 4. An application to the total synthesis of (+)-laurenyne. Org Lett 4:3891

    Article  CAS  Google Scholar 

  682. Clark JS, Freeman RP, Cacho M, Thomas AW, Swallow S, Wilson C (2004) Stereoselective synthesis of the cyclic ether core of (+)-laurenyne. Tetrahedron Lett 45:8639

    Article  CAS  Google Scholar 

  683. Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) The structures of (3Z)-epoxyvenustin, (3Z)-venustin, and (3Z)-venustinene, new halogenated C15-nonterpenoids from the red alga Laurencia venusta Yamada. Chem Lett 12:779

    Article  Google Scholar 

  684. Howard BM, Fenical W, Hirotsu K, Solheim B, Clardy J (1980) The rhodophytin and chondriol natural products, structures of several new acetylenes from Laurencia and a reassignment of structure of cis-rhodophytin. Tetrahedron 36:171

    Article  CAS  Google Scholar 

  685. Fenical W (1974) Rhodophytin, a halogenated vinyl peroxide of marine origin. J Am Chem Soc 96:5580

    Article  CAS  Google Scholar 

  686. Fenical W, Sims JJ, Radlick P (1973) Chondriol, a halogenated acetylene from the marine alga Chondria oppositiclada. Tetrahedron Lett 14:313

    Article  Google Scholar 

  687. Fenical W, Gifkins KB, Clardy J (1974) X-ray determination of chondriol, a re-assignment of structure. Tetrahedron Lett 15:1507

    Article  Google Scholar 

  688. Suzuki M, Kurosawa E (1980) Venustin A and B, new halogenated C15 metabolites from the red alga Laurencia venusta Yamada. Chem Lett 9:1177

    Article  Google Scholar 

  689. Norte M, González AG, Cataldo F, Rodríguez ML, Brito I (1991) New examples of acyclic and cyclic C-15 acetogenins from Laurencia pinnatifida. Reassignment of the absolute configuration for E and Z pinnatifidienyne. Tetrahedron 47:9411

    Article  CAS  Google Scholar 

  690. Notre M, Fernández JJ, Cataldo F, González AG (1989) E-Dihydrorhodophytin, a C15 acetogenin from the red alga Laurencia pinnatifida. Phytochemistry 28:647

    Article  Google Scholar 

  691. Vairappan CS, Lee TK (2009) C-15 halogenated acetogenin with antibacterial activity against food pathogens. Malay J Sci 28:263

    CAS  Google Scholar 

  692. Kinnel RB, Dieter RK, Meinwald J, Van Engen D, Clardy J, Eisner T, Stallard MO, Fenical W (1979) Brasilenyne and cis-dihydrorhodophytin, antifeedant medium-ring haloethers from a sea hare (Aplysia brasiliana). Proc Natl Acad Sci USA 76:3576

    Article  CAS  Google Scholar 

  693. Fukuzawa A, Takasugi Y, Murai A (1991) Prelaureatin, a new biogenetic key intermediate isolated from Laurencia nipponica. Tetrahedron Lett 32:5597

    Article  CAS  Google Scholar 

  694. Fukuzawa A, Aye M, Murai A (1990) A direct enzymatic synthesis of laurencin from laurediol. Chem Lett 19:1579

    Article  Google Scholar 

  695. Fukuzawa A, Takasugi Y, Murai A, Nakamura M, Tamura M (1992) Enzymatic single-step formation of laureatin and its key intermediate, prelaureatin, from (3Z,6S,7S)-laurediol. Tetrahedron Lett 33:2017

    Article  CAS  Google Scholar 

  696. Fukuzawa A, Aye M, Takasugi Y, Nakamura M, Tamura M, Murai A (1994) Enzymic bromo-ether cyclization of laurediols with bromoperoxidase. Chem Lett 13:2307

    Article  Google Scholar 

  697. Ishihara J, Kanoh N, Murai A (1995) Enzymatic reaction of (3E,6S,7S)-laurediol and the molecular modeling studies on the cyclization of laurediols. Tetrahedron Lett 36:737

    Article  CAS  Google Scholar 

  698. Crimmins MT, Tabet EA (2000) Total synthesis of (+)-prelaureatin and (+)-laurallene. J Am Chem Soc 122:5473

    Article  CAS  Google Scholar 

  699. Fujiwara K, Souma SI, Mishima H, Murai A (2002) Total synthesis of prelaureatin. Synlett 13:1493

    Article  Google Scholar 

  700. Sasaki M, Oyamada K, Takeda K (2010) Formal total syntheses of (+)-prelaureatin and (+)-laurallene by diastereoselective Brook rearrangement-mediated [3+4] annulation. J Org Chem 75:3941

    Article  CAS  Google Scholar 

  701. Li J, Suh JM, Chin E (2010) Expedient enantioselective synthesis of the Δ4-oxocene cores of (+)-laurencin and (+)-prelaureatin. Org Lett 12:4712

    Article  CAS  Google Scholar 

  702. Iliopoulou D, Vagias C, Harvala C, Roussis V (2002) C15 acetogenins from the red alga Laurencia obtusa. Phytochemistry 59:111

    Article  CAS  Google Scholar 

  703. González AG, Martín JD, Martín VS, Norte M, Pérez R, Ruano JZ, Drexler SA, Clardy J (1982) Non-terpenoid C-15 metabolites from the red seaweed Laurencia pinnatifida. Tetrahedron 38:1009

    Article  Google Scholar 

  704. Kim H, Choi WJ, Jung J, Kim S, Kim D (2003) Construction of eight-membered ether rings by olefin geometry-dependent internal alkylation: first asymmetric total syntheses of (+)-3-(E)- and (+)-3-(Z)-pinnatifidenyne. J Am Chem Soc 125:10238

    Article  CAS  Google Scholar 

  705. Snyder SA, Brucks AP, Treitler DS, Moga I (2012) Concise synthetic approaches for the Laurencia family: formal total syntheses of (±)- laurefucin and (±)-E- and (±)-Z-pinnatifidenyne. J Am Chem Soc 134:17714

    Article  CAS  Google Scholar 

  706. Imre S, Lotter H, Wagner H, Thomson RH (1987) Epoxy-trans-isodihydrorhodophytin, a new metabolite from Laurencia obtusa. Z Naturforsch 42C:507

    Google Scholar 

  707. Caccamese S, Azzolina R, Duesler EN, Paul IC, Rinehart KL (1980) Laurencienyne; a new acetylenic cyclic ether from the marine red alga Laurencia obtusa. Tetrahedron Lett 21:2299

    Article  CAS  Google Scholar 

  708. Rinehart KL Jr, Shaw PD, Shield LS, Gloer JB, Harbour GC, Koker MES, Samain D, Schwartz RE, Tymiak AA, Weller DL, Carter GT, Munro MHG, Hughes RG Jr, Renis HE, Swynenberg EB, Stringfellow DA, Vavra JJ, Coats JH, Zurenko GE, Kuentzel SL, Li LH, Bakus GJ, Brusca RC, Craft LL, Young DN, Connor JL (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure Appl Chem 53:795

    Article  CAS  Google Scholar 

  709. Aydoğmuş Z, Imre S (1999) A new halogenated C15 non-terpenoid compound from the marine red alga Laurencia obtusa. Acta Pharm Turc 41:93

    Google Scholar 

  710. Ojika M, Nemoto T, Yamada K (1993) Doliculols A and B, the non-halogenated C15 acetogenins with cylic ether from the sea hare Dolabella auricularia. Tetrahedron Lett 34:3461

    Article  CAS  Google Scholar 

  711. Gutiérrez-Cepeda A, Fernández JJ, Gil LV, López-Rodríguez M, Norte M, Souto ML (2011) Nonterpenoid C15 acetogenins from Laurencia marilzae. J Nat Prod 74:441

    Article  CAS  Google Scholar 

  712. Irie T, Suzuki M, Masamune T (1965) Laurencin, a constituent from Laurencia species. Tetrahedron Lett 6:1091

    Article  Google Scholar 

  713. Irie T, Suzuki M, Masamune T (1968) Laurencin, a constituent of Laurencia glandulifera Kützing. Tetrahedron 24:4193

    Article  CAS  Google Scholar 

  714. Forbes Cameron A, Cheung KK, Ferguson G, Monteath Robertson J (1969) Laurencia natural products: crystal structure and absolute stereochemistry of laurencin. J Chem Soc B:559

    Google Scholar 

  715. Robinson RA, Clark JS, Holmes AB (1993) Synthesis of (+)-laurencin. J Am Chem Soc 115:10400

    Article  CAS  Google Scholar 

  716. Bratz M, Bullock WH, Overman LE, Takemoto T (1995) Total synthesis of (+)-laurencin. Use of acetal-vinyl sulfide cyclizations for forming highly functionalized eight-membered cyclic ethers. J Am Chem Soc 117:5958

    Google Scholar 

  717. Burton JW, Clark JS, Derrer S, Stork TC, Bendall JG, Holmes AB (1997) Synthesis of medium ring ethers. 5. The synthesis of (+)-laurencin. J Am Chem Soc 119:7483

    Article  CAS  Google Scholar 

  718. Crimmins MT, Choy AL (1999) An asymmetric aldol-ring-closing metathesis strategy for the enantioselective synthesis of (+)-laurencin. J Am Chem Soc 121:5653

    Article  CAS  Google Scholar 

  719. Crimmins MT, Emmitte KA (1999) Total synthesis of (+)-laurencin: an asymmetric alkylation-ring-closing metathesis approach to medium ring ethers. Org Lett 1:2029

    Article  CAS  Google Scholar 

  720. Baek S, Jo H, Kim H, Kim H, Kim S, Kim D (2005) Highly stereoselective and efficient total synthesis of (+)-laurencin. Org Lett 7:75

    Article  CAS  Google Scholar 

  721. Fujiwara K, Yoshimoto S, Takizawa A, Souma S, Mishima H, Murai A, Kawai H, Suzuki T (2005) Synthesis of (+)-laurencin via ring expansion of a C-glycoside derivative. Tetrahedron Lett 46:6819

    Article  CAS  Google Scholar 

  722. Adsool VA, Pansare SV (2008) An enantioselective approach to (+)-laurencin. Org Biomol Chem 6:2011

    Article  CAS  Google Scholar 

  723. Ortega N, Martin VS, Martin T (2010) An approach to lauroxanes by literative use of Co2(CO)6-acetylenic complexes. A formal synthesis of (+)-laurencin. J Org Chem 75:6660

    Article  CAS  Google Scholar 

  724. White RH, Hager LP (1978) Intricenyne and related halogenated compounds from Laurencia intricata. Phytochemistry 17:939

    Article  CAS  Google Scholar 

  725. Blunt JW, Lake RJ, Munro MHG (1984) Metabolites of the marine red alga Laurencia thyrsifera. III. Aust J Chem 37:1545

    Article  CAS  Google Scholar 

  726. Cardellina JH II, Horsley SB, Clardy J, Leftow SR, Meinwald J (1982) Secondary metabolites from the red alga Laurencia intricata: halogenated enynes. Can J Chem 60:2675

    Article  CAS  Google Scholar 

  727. Kim G, Sohn TI, Kim D, Paton R (2014) Asymmetric total synthesis of (+)-bermudenynol, a C15 Laurencia metabolite with a vinyl chloride containing oxocene skeleton, through intramolecular amide enolate alkylation. Angew Chem Int Ed 53:272

    Article  CAS  Google Scholar 

  728. Kladi M, Vagias C, Stavri M, Rahman MM, Gibbons S, Roussis V (2008) C15 acetogenins with antistaphylococcal activity from the red alga Laurencia glandulifera. Phytochem Lett 1:31

    Article  CAS  Google Scholar 

  729. Blunt JW, Lake RJ, Munro MHG, Yorke SC (1981) A new vinyl acetylene from the red alga Laurencia thyrsifera. Aust J Chem 34:2393

    Article  CAS  Google Scholar 

  730. Howard BM, Schulte GR, Fenical W, Solheim B, Clardy J (1980) Three new vinyl acetylenes from the marine red alga Laurencia. Tetrahedron 36:1747

    Article  CAS  Google Scholar 

  731. Fukuzawa A, Kurosawa E, Tobetsu I (1979) Laurallene, new bromoallene from the marine red alga Laurencia nipponica Yamada. Tetrahedron Lett 20:2797

    Article  Google Scholar 

  732. Ishihara J, Shimada Y, Kanoh N, Takasugi Y, Fukuzawa A, Murai A (1997) Conversion of prelaureatin into laurallene, a bromo-allene compound, by enzymatic and chemical bromo-etherification reactions. Tetrahedron 53:8371

    Article  CAS  Google Scholar 

  733. Saitoh T, Suzuki T, Sugimoto M, Hagiwara H, Hoshi T (2003) Total synthesis of (+)-laurallene. Tetrahedron Lett 44:3175

    Article  CAS  Google Scholar 

  734. Kim MJ, Sohn TI, Kim D, Paton RS (2012) Concise substrate-controlled asymmetric total syntheses of dioxabicyclic marine natural products with 2,10-dioxabicyclo-[7.3.0]dodecene and 2,9-dioxabicyclo[6.3.0]undecene skeletons. J Am Chem Soc 134:20178

    Google Scholar 

  735. Suzuki M, Takahashi Y, Matsuo Y, Masuda M (1996) Pannosallene, a brominated C15 nonterpenoid from Laurencia pannosa. Phytochemistry 41:1101

    Article  CAS  Google Scholar 

  736. Suzuki M, Kurosawa E (1987) (3E)-Laureatin and (3E)-isolaureatin, halogenated C-15 non-terpenoid compounds from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 60:3791

    Google Scholar 

  737. Yoshimitsu Y, Inuki S, Oishi S, Fujii N, Ohno H (2013) Palladium-catalyzed medium-ring formation for construction of the core structure of Laurencia oxacycles: synthetic study of laurendecumallene B. Org Lett 15:3046

    Article  CAS  Google Scholar 

  738. Kurosawa E, Fukuzawa A, Irie T (1973) trans- and cis-Laurediol, unsaturated glycols from Laurencia nipponica Yamada. Tetrahedron Lett 14:2121

    Google Scholar 

  739. Irie T, Izawa M, Kurosawa E (1968) Laureatin, a constituent from Laurencia nipponica Yamada. Tetrahedron Lett 9:2091

    Article  Google Scholar 

  740. Irie T, Izawa M, Kurosawa E (1970) Laureatin and isolaureatin, constituents of Laurencia nipponica Yamada. Tetrahedron 26:851

    Article  CAS  Google Scholar 

  741. Kurosawa E, Furusaki A, Izawa M, Fukuzawa A, Irie T (1973) The absolute configurations of laureatin and isolaureatin. Tetrahedron Lett 14:3857

    Article  Google Scholar 

  742. Sugimoto M, Suzuki T, Hagiwara H, Hoshi T (2007) The first total synthesis of (+)-(Z)-laureatin. Tetrahedron Lett 48:1109

    Article  CAS  Google Scholar 

  743. Kim H, Lee H, Lee D, Kim S, Kim D (2007) Asymmetric total syntheses of (+)-(3Z)-laureatin and (+)-(3Z)-isolaureatin by “lone pair-lone pair interaction-controlled” isomerization. J Am Chem Soc 129:2269

    Article  CAS  Google Scholar 

  744. Keshipeddy S, Martínez I, Castillo BF, Morton MD, Howell AR (2012) Toward a formal synthesis of laureatin: unexpected rearrangements involving cyclic ether nucleophiles. J Org Chem 77:7883

    Article  CAS  Google Scholar 

  745. Irie T, Izawa M, Kurosawa E (1968) Isolaureatin, a constituent from Laurencia nipponica Yamada. Tetrahedron Lett 9:2735

    Article  Google Scholar 

  746. Fukuzawa A, Kurosawa E, Irie T (1972) Laurefucin and acetyllaurefucin, new bromo compounds from Laurencia nipponica Yamada. Tetrahedron Lett 13:3

    Article  Google Scholar 

  747. Furusaki A, Kurosawa E, Fukuzawa A, Irie T (1973) The revised structure and absolute configuration of laurefucin from Laurencia nipponica Yamada. Tetrahedron Lett 14:4579

    Article  Google Scholar 

  748. McPhail KL, Davies-Coleman MT (2005) (3Z)-Bromofucin from a South African sea hare. Nat Prod Res 19:449

    Google Scholar 

  749. Fukuzawa A, Aye M, Nakamura M, Tamura M, Murai A (1990) Structure elucidation of laureoxanyne, a new nonisoprenoid C15 enyne, using lactoperoxidase. Tetrahedron Lett 31:4895

    Article  CAS  Google Scholar 

  750. Kennedy DJ, Selby IA, Cowe HJ, Cox PJ, Thomson RH (1984) Bromoallenes from the alga Laurencia microcladia. J Chem Soc Chem Commun:153

    Google Scholar 

  751. Park JH, Kim BS, Kim HS, Kim SH, Kim DJ (2007) Substrate-controlled asymmetric total synthesis of (+)-microcladallene B with bromination strategy based on a nucleophile-assisting leaving group. Angew Chem Int Ed 46:4726

    Article  CAS  Google Scholar 

  752. Denmark SE, Yang S-M (2002) Intramolecular silicon-assisted cross-coupling: total synthesis of (+)-brasilenyne. J Am Chem Soc 124:15196

    Article  CAS  Google Scholar 

  753. Denmark SE, Yang SM (2004) Total synthesis of (+)-brasilenyne. Application of an intramolecular silicon-assisted cross-coupling reaction. J Am Chem Soc 126:12432

    Google Scholar 

  754. King TJ, Imre S, Öztunc A, Thomson RH (1979) Obtusenyne, a new acetylenic nine-membered cyclic ether from Laurencia obtusa. Tetrahedron Lett 20:1453

    Article  Google Scholar 

  755. Curtis NR, Holmes AB, Looney MG (1992) Studies towards the synthesis of obtusenyne. Synthesis of the hexahydrooxonin nucleus. Tetrahedron Lett 33:671

    Article  CAS  Google Scholar 

  756. Curtis NR, Holmes AB, Looney MG (1991) Studies towards the synthesis of obtusenyne. A Claisen rearrangement approach to unsaturated nine-membered lactones. Tetrahedron 47:7171

    Google Scholar 

  757. Fujiwara K, Awakura D, Tsunashima M, Nakamura A, Honma T, Murai A (1999) Total synthesis of (+)-obtusenyne. J Org Chem 64:2616

    Article  CAS  Google Scholar 

  758. Crimmins MT, Powell MT (2003) Enantioselective total synthesis of (+)-obtusenyne. J Am Chem Soc 125:7592

    Article  CAS  Google Scholar 

  759. Urmura T, Suzuki T, Onodera N, Hagiwara H, Hoshi T (2007) Total synthesis of (+)-obtusenyne. Tetrahedron Lett 48:715

    Article  CAS  Google Scholar 

  760. Frankie Mak SY, Curtis NR, Payne AN, Congreve MS, Wildsmith AJ, Francis CL, Davies JE, Pascu SI, Burton JW, Holmes AB (2008) Synthesis of (+)-obtusenyne. Chem Eur J 14:2867

    Article  CAS  Google Scholar 

  761. Awakura D, Fujiwara K, Murai A (1999) Determination of the absolute configuration of Norte’s obtusenynes by total synthesis of (12R,13R)-(–)- and (12S,13R)-(+)-obtusenynes. Chem Lett 28:461

    Article  Google Scholar 

  762. Kurata K, Furusaki A, Suehiro K, Katayama C, Suzuki T (1982) Isolaurallene, a new nonterpenoid C15-bromoallene, from the red alga Laurencia nipponica Yamada. Chem Lett 11:1031

    Article  Google Scholar 

  763. Furusaki A, Katsuragi S-I, Suehiro K, Matsumoto T (1985) The conformations of (Z)-2,3,4,7,8,9-hexahydrooxonin and (Z)-cyclononene. X-ray structure determinations of isolaurallene and neolaurallene, and force-field calculations. Bull Chem Soc Jpn 58:803

    Article  CAS  Google Scholar 

  764. Crimmins MT, Emmitte KA (2001) Asymmetric total synthesis of (–)-isolaurallene. J Am Chem Soc 123:1533

    Article  CAS  Google Scholar 

  765. Crimmins MT, Emmitte KA, Choy AL (2002) Ring closing metathesis for the formation of medium ring ethers: the total synthesis of (–)-isolaurallene. Tetrahedron 58:1817

    Article  CAS  Google Scholar 

  766. Suzuki M, Kurosawa E, Furusaki A, Katsuragi S-I, Matsumoto T (1984) Neolaurallene, a new halogenated C-15 nonterpenoid from the red alga Laurencia okamurai Yamada. Chem Lett 13:1033

    Article  Google Scholar 

  767. Jeong W, Kim MJ, Kim H, Kim S, Kim D, Shin KJ (2010) Substrate-controlled asymmetric total synthesis and structure revision of (+)-itomanallene A. Angew Chem Int Ed 49:752

    Article  CAS  Google Scholar 

  768. Braddock DC, Bhuva R, Millan DS, Pérez-Fuertes Y, Roberts CA, Sheppard RN, Solanki S, Stokes ESE, White AJP (2007) A biosynthetically-inspired synthesis of the tetrahydrofuran core of obtusallenes II and IV. Org Lett 9:445

    Article  CAS  Google Scholar 

  769. Guella G, Chiasera G, Mancini I, Öztunç A, Pietra F (1997) Twelve-membered O-bridged cyclic ethers of red seaweeds in the genus Laurencia exist in solution as slowly interconverting conformers. Chem Eur J 3:1223

    Article  CAS  Google Scholar 

  770. Guella G, Mancini I, Öztunç A, Pietra F (2000) Conformational bias in macrocyclic ethers and observation of high solvolytic reactivity at a masked furfuryl (=2-furylmethyl) C-atom. Helv Chim Acta 83:336

    Article  CAS  Google Scholar 

  771. Ciavatta ML, Gavagnin M, Puliti R, Cimino G, Martínez E, Ortea J, Mattia CA (1997) Dactyllalene: a novel dietary C15 bromoallene from the Atlantic anaspidean mollusc Aplysia dactylomela. Tetrahedron 53:17343

    Article  CAS  Google Scholar 

  772. Braddock DC, Millan DS, Pérez-Fuertes Y, Pouwer RH, Sheppard RN, Solanki S, White AJP (2009) Bromonium ion induced transannular oxonium ion formation-fragmentation in model obtusallene systems and structural reassignment of obtusallenes V-VII. J Org Chem 74:1835

    Article  CAS  Google Scholar 

  773. Öztunç A, Imre S, Wagner H, Norte M, Fernández JJ, González R (1991) A new and highly oxygenated bromoallene from a marine source. Tetrahedron Lett 32:4377

    Article  Google Scholar 

  774. Cox PJ, Imre S, Islimyeli S, Thomson RH (1982) Obtusallene I, a new halogenated allene from Laurencia obtusa. Tetrahedron Lett 23:579

    Article  CAS  Google Scholar 

  775. Cox PJ, Howie RA (1982) X-ray structure analysis of obtusallene. Acta Crystallogr B38:1386

    Article  CAS  Google Scholar 

  776. Öztunç A, Imre S, Wagner H, Norte M, Fernández JJ, González R (1991) A new haloether from Laurencia possessing a lauroxacyclododecane ring. Structural and conformational studies. Tetrahedron 47:2273

    Google Scholar 

  777. Gutiérrez-Cepeda G, Fernández JJ, Norte M, Souto ML (2011) New bicyclotridecane C15 nonterpenoid bromoallenes from Laurencia marilzae. Org Lett 13:2690

    Article  CAS  Google Scholar 

  778. Wright AE, Wing RM, Sims JJ (1983) Poitediene a new metabolite from the marine red alga Laurencia poitei. Tetrahedron Lett 24:4649

    Article  CAS  Google Scholar 

  779. Kigoshi H, Shizuri Y, Niwa H, Yamada K (1982) Isolation and structures of trans-laurencenyne, a possible precursor of the C15 halogenated cyclic ethers, and trans-neolaurencenyne from Laurencia okamurai. Tetrahedron Lett 23:1475

    Article  CAS  Google Scholar 

  780. Kigoshi H, Shizuri Y, Niwa H, Yamada K (1986) Four new C15 acetylenic polyenes of biogenetic significance from the red alga Laurencia okamurai: structures and synthesis. Tetrahedron 42:3781

    Article  CAS  Google Scholar 

  781. Holmeide AK, Skattebol I, Sydnes M (2001) The syntheses of three highly unsaturated marine lipid hydrocarbons. J Chem Soc Perkin Trans 1:1942

    Article  Google Scholar 

  782. Fukuzawa A, Honma T, Takasugi Y, Murai A (1993) Biogenetic intermediates, (3E and 3Z,12Z)-laurediols and (3E and 3Z)-12,13-dihydrolaurediols, isolated from Laurencia nipponica. Phytochemistry 32:1435

    Article  CAS  Google Scholar 

  783. Palazón JM, Martín VS (1988) Enantioselective total synthesis of 6(R),7(R)-3-cis-9-cis-12-cis, 6-acetoxy-7-chloropentadeca-3,9,12-trien-1-yne and its 3-trans-isomer. Tetrahedron Lett 29:681

    Article  Google Scholar 

  784. Fukuzawa A, Sato H, Miyamoto M, Masamune T (1986) Synthesis of (6S,7S)-trans-laurediol and its [9,10-2H2]-analogue. Tetrahedron Lett 27:2901

    Article  CAS  Google Scholar 

  785. Añorbe B, Martín VS, Palazón JM, Trujillo JM (1986) Enantiomeric syntheses of 6R,7R and 6S,7S trans- and cis-laurediol. Tetrahedron Lett 27:4991

    Article  Google Scholar 

  786. Martin T, Martin VS (2000) A short synthesis of trans-(+)-laurediol. Tetrahedron Lett 41:2503

    Article  CAS  Google Scholar 

  787. Gadikota RR, Keller AI, Callam CS, Lowary TL (2003) Efficient syntheses of trans-(+)-laurediol from carbohydrate precursors. Tetrahedron Asymm 14:737

    Article  CAS  Google Scholar 

  788. Ishihara J, Kanoh N, Fukuzawa A, Murai A (1994) Isomerization of the (Z)-enyne unit to the (E)-enyne unit. Conversion of laureatin to (E)-isolaureatin. Chem Lett 13:1563

    Google Scholar 

  789. Braddock DC (2006) A hypothesis concerning the biosynthesis of the obtusallene family of marine natural products via electrophilic bromination. Org Lett 8:6055

    Article  CAS  Google Scholar 

  790. Braddock DC, Rzepa HS (2008) Structural reassignment of obtusallenes V, VI and VII by GIAO-based density functional prediction. J Nat Prod 71:728

    Article  CAS  Google Scholar 

  791. Su H, Yuan ZH, Li J, Guo SJ, Deng LP, Han LJ, Zhu XB, Shi DY (2009) Two new bromoindoles from red alga Laurencia similis. Chin Chem Lett 20:456

    Article  CAS  Google Scholar 

  792. Sun WS, Su S, Zhu RX, Tu GZ, Cheng W, Liang H, Guo XY, Zhao YY, Zhang QY (2013) A pair of unprecedented spiro-trisindole enantiomers fused through a five-member ring from Laurencia similis. Tetrahedron Lett 54:3617

    Article  CAS  Google Scholar 

  793. Carter GT, Rinehart KL, Li LH, Kuentzel S, Connor JL (1978) Brominated indoles from Laurencia brongniartii. Tetrahedron Lett 19:4479

    Article  Google Scholar 

  794. Su H, Yuan Z, Li J, Guo S, Han L, Zhu X, Shi D (2009) Studies on chemical constituents of Laurencia saitoi. Chin J Chin Mat Med 34:871

    CAS  Google Scholar 

  795. Masuda M, Kawaguchi S, Takahashi Y, Okamoto K, Suzuki M (1999) Halogenated secondary metabolites of Laurencia similis (Rhodomelaceae, Rhodophyta). Bot Mar 42:199

    CAS  Google Scholar 

  796. Vairappan CS, Yen AM, Yi OC, Moi PS (2004) Biologically active polybrominated indoles in the red alga Laurencia similis from the coastal waters of Sabah (Rhodomelaceae, Ceramiales). Malay J Sci 23:119

    CAS  Google Scholar 

  797. Suárez-Castillo OR, Beiza-Granados L, Meléndez-Rodríguez M, Alvarez-Hernández A, Morales-Ríos MS, Joseph-Nathan P (2006) Synthesis of bromoindole alkaloids from Laurencia brogniartii. J Nat Prod 69:1596

    Article  CAS  Google Scholar 

  798. Tanaka J, Higa T, Benardinelli G, Jefford CW (1989) Sulfur-containing polybromoindoles from the red alga Laurencia brongniartii. Tetrahedron 45:7301

    Article  CAS  Google Scholar 

  799. El-Gamal AA, Wang WL, Duh CY (2005) Sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. J Nat Prod 68:815

    Article  CAS  Google Scholar 

  800. Tanaka J, Higa T, Bernardinelli G, Jefford CW (1988) Itomanindoles A and B, methylsulfinylindoles from Laurencia brongniartii. Tetrahedron Lett 29:6091

    Article  CAS  Google Scholar 

  801. Fang HY, Chiou SF, Uvarani C, Wen ZH, Hsu CH, Wu YC, Wang WL, Liaw CC, Sheu JH (2014) Cytotoxic, anti-inflammatory and antibacterial sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. Bull Chem Soc Jpn 87:1278

    Article  CAS  Google Scholar 

  802. Liu Y, Gribble GW (2002) Syntheses of polybrominated indoles from the red alga Laurencia brongniartii and the brittle star Ophiocoma erinaceus. J Nat Prod 65:748

    Article  CAS  Google Scholar 

  803. Kubota NK, Iwamoto H, Fukazawa Y, Uchio Y (2005) Five new sulfur-containing polybrominated bisindoles from the red alga Laurencia brongniartii. Heterocycles 65:2675

    Article  CAS  Google Scholar 

  804. Wright AD, König GM, Angerhofer CK, Greenidge P, Linden A, Desqueyroux-Faúndez R (1996) Antimalarial activity: the search for marine-derived natural products with selective antimalarial activity. J Nat Prod 59:710

    Article  CAS  Google Scholar 

  805. Mikami D, Kurihara H, Kim SM, Takahashi K (2013) Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar Drugs 11:4050

    Article  CAS  Google Scholar 

  806. Valdebenito H, Bittner M, Sammes PG, Silva M, Watson WH (1982) A compound with antimicrobial activity isolated from the red seaweed Laurencia chilensis. Phytochemistry 21:1456

    Article  CAS  Google Scholar 

  807. Qin JC, Su H, Zhang YM, Gao JM, Zhu L, Wu XA, Pan HY, Li XA (2010) Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 20:7152

    Article  CAS  Google Scholar 

  808. Zhong Y, Su J, Zeng L, Yan S, Luo B (1996) Studies on the chemical constituents of Laurencia karlae collected from the South China Sea. Chem J Chin Univ 17:249

    CAS  Google Scholar 

  809. Su JY, Xu XH, Zeng LM, Wang CJ (1997) A new iodolactone from Laurencia majuscula. Chem J Chin Univ 18:1333

    CAS  Google Scholar 

  810. Kavita K, Singh VK, Jha B (2014) 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol Res 169:301

    Article  CAS  Google Scholar 

  811. Al-Iihaibi SS, Ayyad SEN, Al-Wessaby E, Alarif WM (2010) 3β,7β-Dihydroxy-5α-cholestane skeleton from Laurencia papillosa. Biochem Syst Ecol 38:861

    Article  CAS  Google Scholar 

  812. Alarif WM, Al-Lihaibi SS, Abdel-Lateff A, Ayyad SEN (2011) New antifungal cholestane and aldehyde derivatives from the red alga Laurencia papillosa. Nat Prod Commun 6:1821

    CAS  Google Scholar 

  813. Xu XH, Su JY (1997) A new cytotoxic dihydroxysterol from Laurencia majuscula. Chin Chem Lett 8:235

    CAS  Google Scholar 

  814. Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Acetylpinnasterol and pinnasterol, ecdysone-like metabolites from the marine red alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4085

    Article  CAS  Google Scholar 

  815. Fukuzawa A, Miyamoto M, Kumagai Y, Masamune T (1986) Ecdysone-like metabolites, 14α-hydroxypinnasterols from the red alga Laurencia pinnata. Phytochemistry 25:1305

    Article  CAS  Google Scholar 

  816. Kobayashi M, Murata O (1992) Marine sterols. 23. 2a-Oxa-2-oxo-5α-hydroxy-3,4-dinorcholestane from the Arabian Sea red alga Laurencia obtusa. Tetrahedron Lett 33:519

    Google Scholar 

  817. San-Martín A, Rovirosa J, Muñoz O, Chen MHM, Guneratne RD, Clardy J (1983) The isolation and structure determination of chilenone A, a putative dimer of 2-methyl-3(2H)-furanone from the marine alga Laurencia chilensis. Tetrahedron Lett 24:4063

    Article  Google Scholar 

  818. San-Martín A, Rovirosa J, Xu C, Lu HSM, Clardy J (1987) Further structural studies on the 2-methyl-3(2H)-furanone derived metabolites of the marine alga Laurencia chilensis. Tetrahedron Lett 28:6013

    Article  Google Scholar 

  819. Bittner M, González F, Valdebenito H, Silva M, Paul VJ, Fenical W, Chen MHM, Clardy J (1987) A novel tetracyclic polyketal from the marine red alga Laurencia chilensis. Tetrahedron Lett 28:4031

    Article  CAS  Google Scholar 

  820. Uenishi J, Mimura Y, Yonemitsu O (1996) Synthetic studies on cyclic polyketides isolated from red alga. Symp Chem Nat Prod 38:667

    Google Scholar 

  821. Wiedenfeld H, Knoch F, Koch M (1985) The crystal structure of spiro-bis-pinnaketal, a new spiro compound from Laurencia pinnatifida Lamouroux. Arch Pharmacol 318:289

    Article  CAS  Google Scholar 

  822. Bernart MW, Gerwick WH, Corcoran EE, Lee AY, Clardy J (1992) Laurencione, a heterocycle from the red alga Laurencia spectabilis. Phytochemistry 31:1273

    Article  CAS  Google Scholar 

  823. De Kimpe N, Georgieva A, Boeykens M, Lazar L (1995) Synthesis of laurencione, a labile dihydro-3(2H)-furanone derivative from the red alga Laurencia spectabilis. J Org Chem 60:5262

    Article  Google Scholar 

  824. De Kimpe N, Georgieva A, Boeykens M, Kozekov I, Aelterman W (1996) New formal synthesis of laurencione, a labile dihydrofuranone derivative from the red alga Laurencia spectabilis. Synthesis 28:1131

    Article  Google Scholar 

  825. Aelterman W, De Kimpe N, Kalinin V (1997) One-step synthesis of laurencione. J Nat Prod 60:385

    Article  CAS  Google Scholar 

  826. Astashko D, Habrus Y, Yurevich S, Tyvorskii V (2013) Formal synthesis of laurencione via MgBr2-catalyzed rearrangement of α,β-epoxy ketones to 1,2-diketones. Chem Heterocycl Compd 49:676

    Article  CAS  Google Scholar 

  827. Arroyo P, Valencia E, Valenzuela E, Zarraga M (1995) A new cyclic ether from Laurencia chilensis. Bol Soc Chil Quim 40:221

    Google Scholar 

  828. Li YX, Li Y, Qian ZJ, Kim MM, Kim SK (2009) In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free radical mediated oxidative systems. J Microbiol Biotechnol 19:1319

    CAS  Google Scholar 

  829. Zeng L, Zhong Y, Su J, Wu H, Ma K (1996) A novel secondary metabolite of Chinese red alga Laurencia karlae. Chin J Chem 14:370

    CAS  Google Scholar 

  830. Du B, Zhong XY, Liao XJ, Xu WJ, Zhou XL, Xu SH (2010) A new antitumor arabinopyranoside from Laurencia majuscula induces G2/M cell cycle arrest. Phytother Res 24:1447

    Article  CAS  Google Scholar 

  831. Li Y, Li Y, Lee S, Qian Z, Kim S (2010) Inhibitors of oxidation and matrix metalloproteinases, floridoside, and d-isofloridoside from marine red alga Laurencia undulata. J Agric Food Chem 58:578

    Article  CAS  Google Scholar 

  832. Aplin RT, Durham LJ, Kanazawa Y, Safe S (1967) 2-O-α-d-Galactopyranosylglycerol from Laurencia pinnatifida. J Chem Soc C:1346

    Google Scholar 

  833. Siddhanta AK, Mody KH, Ramavat BK, Chauhan VD, Sharma M, Garg HS (1995) Characterization of sulfonoglycolipid from the red alga Laurencia pedicularioides. Bot Mar 38:329

    Article  CAS  Google Scholar 

  834. Barma DK, Lu B, Baati R, Mioskowski C, Falck JR (2008) Convenient preparation of (Z)-α-halo-α,β-unsaturated aldehydes: synthesis of a Laurencia flexilis toxin. Tetrahedron Lett 49:4359

    Article  CAS  Google Scholar 

  835. Basavaiah D, Suguna Hyma R (1996) Synthetic applications of the Baylis-Hillman reaction: simple synthesis of (2E)-2-butyloct-2-enal and (2E)-2-tridecylheptadec-2-enal. Tetrahedron 52:1253

    Article  CAS  Google Scholar 

  836. Cardellina JH II, Moore RE (1978) Sphingosine derivatives from red algae of the Ceramiales. Phytochemistry 17:554

    Article  CAS  Google Scholar 

  837. Higgs MD, Mulheirn LJ (1981) Hybridalactone; an unusual fatty acid metabolite from red alga Laurencia hybrida (Rhodophyta; Rhodomelaceae). Tetrahedron 37:4259

    Article  CAS  Google Scholar 

  838. Corey EJ, De B, Ponder JW, Berg JM (1984) The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from Laurencia hybrida. Tetrahedron Lett 25:1015

    Article  CAS  Google Scholar 

  839. Corey EJ, De B (1984) Total synthesis and stereochemistry of hybridalactone. J Am Chem Soc 106:2735

    Article  CAS  Google Scholar 

  840. Ota K, Sugata N, Ohshiro Y, Kawashima E, Miyaoka H (2012) Total synthesis of marine eicosanoid (–)-hybridalactone. Chem Eur J 18:13531

    Article  CAS  Google Scholar 

  841. Hickmann V, Kondoh A, Gabor B, Alcarazo M, Fürstner A (2011) Catalysis-based and protecting-group-free total syntheses of the marine oxylipins hybridalactone and the ecklonialactones A, B and C. J Am Chem Soc 133:13471

    Article  CAS  Google Scholar 

  842. Maru N, Ohno O, Koyama T, Yamada K, Uemura D (2010) Papillamide, a novel fatty acid amide from the red alga Laurencia papillosa. Chem Lett 39:366

    Article  CAS  Google Scholar 

  843. Higgs MD (1981) Antimicrobial components of the red alga Laurencia hybrida (Rhodophyta; Rhodomelaceae). Tetrahedron 37:4255

    Article  CAS  Google Scholar 

  844. Bernart M, Gerwick WH (1988) Isolation of 12-(S)-HEPE from red alga Murrayella periclados and revision of structure of an acyclic icosanoid from Laurencia hybrida. Implications to the biosynthesis of the marine prostanoid hybridolactone. Tetrahedron Lett 29:2015

    Google Scholar 

  845. Feng MT, Yu XQ, Yang P, Yang H, Lin K, Mao SC (2015) Two new antifungal polyunsaturated fatty acid ethyl esters from the red alga Laurencia okamurai. Chem Nat Comp 51:418

    Article  CAS  Google Scholar 

  846. Khotimchenko SV, Gusarova IS (2004) Red algae of Peter the Great Bay as a source of arachidonic and eicosapentaenoic acids. Russ J Mar Biol 30:183

    Article  CAS  Google Scholar 

  847. Vlietinck AJ, Apers S (2001) Biological screening methods in the search for pharmacologically active natural products. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor & Francis, London, p 1

    Google Scholar 

  848. Kittakoop P (2015) Anticancer drugs and potential anticancer leads inspired by natural products. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 44. Elsevier, Amserdam, p 251

    Google Scholar 

  849. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012

    Article  CAS  Google Scholar 

  850. Bagya SK, Rajashree PV, Sam KG (2011) Preliminary anticancer screening and standardization of some indigenous medicinal plants using cell-biology and molecular biotechnology based models. Res J Med Plant 5:728

    Article  Google Scholar 

  851. Fedorov SN, Shubina LK, Bode AM, Stonik VA, Dong Z (2007) Dactylone inhibits epidermal growth factor-induced transformation and phenotype expression of human cancer cells and induced G1-S arrest and apoptosis. Cancer Res 67:5914

    Article  CAS  Google Scholar 

  852. San-Martin BA, Rovirosa RJ, Darias JJ, Astudillo SYL (1996) Semisintesis y actividad biologicade derivados del sesquiterpeno pacifenol. Bol Soc Chil Quim 41:403

    Google Scholar 

  853. Liu J, Ma L, Wu N, Liu G, Zheng L, Lin X (2014) Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/surviving pathway. Mar Drugs 12:5072

    Article  CAS  Google Scholar 

  854. Kim MM, Mendis E, Kim SK (2008) Laurencia okamurai extract containing laurinterol induces apoptosis in melanoma cells. J Med Food 11:260

    Article  CAS  Google Scholar 

  855. König GM, Wright AD, Franzblau SG (2000) Assessment of antimycobacterial activity of a series of mainly marine derived natural products. Planta Med 66:337

    Article  Google Scholar 

  856. Lang KL, Silva IT, Zimmermann LA, Lhullier C, Mañalich Arana MV, Palermo JA, Falkenberg M, Simões CMO, Schenkel EP, Durán FJ (2012) Cytotoxic activity of semi-synthetic derivatives of elatol and isoobtusol. Mar Drugs 10:2254

    Article  CAS  Google Scholar 

  857. Campos A, Souza CB, Lhullier C, Falkenberg M, Schenkel EP, Ribeiro-do-Valle RM, Siqueira JM (2012) Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. J Pharm Pharmacol 64:1146

    Article  CAS  Google Scholar 

  858. Su JH, Dai CF, Huang HH, Wu YC, Sung PJ, Hsu CH, Sheu JH (2007) Terpenoid-related metabolites from a Formosan soft coral Nephthea chabrolii. Chem Pharm Bull 55:594

    Article  CAS  Google Scholar 

  859. Huang XC, Sun YL, Salim AA, Chen ZS, Capon RJ (2013) Parguerenes: marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells. Biochem Pharmacol 85:1257

    Article  CAS  Google Scholar 

  860. Awad NE (2004) Bioactive brominated diterpenes from the marine red alga Jania rubens (L.) Lamx. Phytother Res 18:275

    Google Scholar 

  861. Kumar SC, Gadewal N, Mohammed SMM (2013) Identification of leads from marine seaweeds against human β-tubulin. Lett Drug Design Discov 10:67

    Article  Google Scholar 

  862. Athinaios N, Kazantzis A, Putzker K, Lewis J, Pitsinos EN (2009) Synthesis of novel laurenditerpenol analogues and their evaluation as HIF-1 activation inhibitors. Lett Org Chem 6:269

    Article  CAS  Google Scholar 

  863. Matsuzawa S, Suzuki T, Suzuki M, Matsuda A, Kawamura T, Mizuno Y, Kikuchi K (1994) Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 356:272

    Article  CAS  Google Scholar 

  864. Matsuzawa S, Kawamura T, Mitsuhashi S, Suzuki T, Matsuo Y, Suzuki M, Mizuno Y, Kikuchi K (1999) Thyrsiferyl 23-acetate and its derivatives induce apoptosis in various T- and B-leukemia cells. Bioorg Med Chem 7:381

    Article  CAS  Google Scholar 

  865. Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y (1993) Squalene derivatives from Eurycoma longifolia. Phytochemistry 34:765

    Article  CAS  Google Scholar 

  866. Pec MK, Moser-Thier K, Fernández JJ, Souto ML, Kubista E (1999) Growth inhibition by dehydrothyrsiferol — a non-Pgp modulator, derived from a marine red alga — in human breast cancer cell lines. Int J Oncol 14:739

    CAS  Google Scholar 

  867. Pec MK, Hellan M, Moser-Thier K, Fernández JJ, Souto ML, Kubista E (1998) Inhibitory effects of a novel marine terpenoid on sensitive and multidrug resistant KB cell lines. Anticancer Res 18:3027

    CAS  Google Scholar 

  868. Pec MK, Aguirre A, Fernández JJ, Souto ML, Dorta JF, Villar J (2002) Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates. Int J Mol Med 10:605

    CAS  Google Scholar 

  869. Pec MK, Aguirre A, Moser-Thier K, Fernández JJ, Souto ML, Dorta J, Diáz-González F, Villar J (2003) Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem Pharmacol 65:1451

    Article  CAS  Google Scholar 

  870. Pec MK, Artwohl M, Fernández JJ, Souto ML, Alvarez de la Rosa D, Giraldez T, Valenzuela-Fernández A, Díaz-González F (2007) Chemical modulation of VLA integrin affinity in human breast cancer cells. Exp Cell Res 313:1121

    Article  CAS  Google Scholar 

  871. Souto ML, Manríquez CP, Norte M, Leira F, Fernández JJ (2003) The inhibitory effects of squalene-derived triterpenes on protein phosphatse PP2A. Bioorg Med Chem 13:1261

    Article  CAS  Google Scholar 

  872. Nishiguchi GA, Graham J, Bouraoui A, Jacobs RS, Little RD (2006) 7,11-epi-Thyrsiferol: completion of its synthesis, evaluation of its antimitotic properties, and the further development of an SAR model. J Org Chem 71:5936

    Article  CAS  Google Scholar 

  873. Vera B, Rodríguez AD, La Clair JL (2011) Aplysqualenol A binds to the light chain of dynein type 1 (DYNLL1). Angew Chem Int Ed 50:8134

    Article  CAS  Google Scholar 

  874. Brogi S, Kladi M, Vagias C, Papazafiri P, Roussis V, Tafi A (2009) Pharmacophore modeling for qualitative prediction of antiestrogenic activity. J Chem Inf Model 49:2489

    Article  CAS  Google Scholar 

  875. The Lancet. Editorial (2009) Urgently needed: new antibiotics. Lancet 374:1868

    Google Scholar 

  876. Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255

    Article  CAS  Google Scholar 

  877. Vairappan CS, Kawamoto T, Miwa H, Suzuki M (2004) Potent antibacterial activity of halogenated compounds against antibiotic-resistant bacteria. Planta Med 70:1087

    Article  CAS  Google Scholar 

  878. Sims JJ, Donnell MS, Leary JV, Lacy GH (1975) Antimicrobial agents from marine algae. Antimicrob Agents Chemother 7:320

    Article  CAS  Google Scholar 

  879. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55

    Article  Google Scholar 

  880. Veiga-Santos P, Pelizzaro-Rocha KJ, Santos AO, Ueda-Nakamura T, Dias Filho BP, Silva SO, Sudatti DB, Bianco EM, Perreira RC, Nakamura CV (2010) In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology 137:1661

    Article  CAS  Google Scholar 

  881. Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Alonso A, Ueda-Nakamura T, Filho BPD, Nakamura CV, Silva SDO (2012) Trypanosomal action of (–)-elatol involves an oxidative stress triggered by mitochondria dysfunction. Mar Drugs 10:1631

    Article  CAS  Google Scholar 

  882. Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Ueda-Nakamura T, Nakamura CV, Silva SDO (2014) Additional evidence of the trypanocidal action of (–)-elatol on amastigote forms through the involvement of reactive oxygen species. Mar Drugs 12:4973

    Article  CAS  Google Scholar 

  883. Bianco EM, Pires L, Santos GKN, Dutra KA, Reis TNV, Vasconcelos ERTPP, Cocentino ALM, Navarro DMAF (2013) Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Ind Crops Prod 43:270

    Article  CAS  Google Scholar 

  884. Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8:47

    Article  CAS  Google Scholar 

  885. Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767

    Article  CAS  Google Scholar 

  886. Naik SR, Sheth UK (1976) Inflammatory process and screening methods for anti-inflammatory agents — a review. J Postgrad Med 22:5

    CAS  Google Scholar 

  887. Wijesinghe WAJP, Kim E-A, Kang MC, Lee WW, Lee HS, Vairappan CS, Jeon YJ (2014) Assessment of anti-inflammatory effect of 5β-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ Toxicol Pharmacol 37:110

    Article  CAS  Google Scholar 

  888. Mayer AMS, Paul VJ, Fenical W, Norris JN, de Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. Hydrobiologia 260:521

    Article  Google Scholar 

  889. Gil B, Ferrándiz ML, Sanz MJ, Terencio MC, Ubeda A, Rovirosa J, San-Martin A, Alcaraz MJ, Payá M (1995) Inhibition of inflammatory responses by epitaondiol and other marine natural products. Life Sci 57:25

    Article  Google Scholar 

  890. Chatter R, Othman RB, Rabhi S, Kladi M, Tarhouni S, Vagias C, Roussis V, Lamia Guizane-Tabbane L, Kharrat R (2011) In vivo and in vitro anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red algae Laurencia glandulifera. Mar Drugs 9:1293

    Article  CAS  Google Scholar 

  891. Kim M, Li YX, Dewapriya P, Ryu B, Kim SK (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep 46:398

    Article  CAS  Google Scholar 

  892. Farrokhnia M, Nabipour I (2014) Marine natural products as acetylcholinesterase inhibitor: comparative quantum mechanics and molecular docking study. Curr Comput Aid Drug Des 10:83

    Article  CAS  Google Scholar 

  893. Ge N, Liang H, Liu Y, Ma AG, Han L (2013) Protective effect of aplysin on hepatic injury in ethanol-treated rats. Food Chem Toxicol 62:361

    Article  CAS  Google Scholar 

  894. Kaul PN, Kulkarni SK, Kurosawa E (1978) Novel substances of marine origin as drug metabolism inhibitors. J Pharm Pharmacol 30:589

    Article  CAS  Google Scholar 

  895. Kaul PN, Kulkarni SK (1978) New drug metabolism inhibitor of marine origin. J Pharm Sci 67:1293

    Article  CAS  Google Scholar 

  896. Kaul PN (1982) Biomedical potential of the sea. Pure Appl Chem 54:1963

    Article  CAS  Google Scholar 

  897. Farrokhnia M, Nabipour I, Bargahi A (2012) A theoretical study of dactylyne stereoisomers: a marine natural product from Aplysia dactylomela. J Theor Comput Chem 11:833

    Article  CAS  Google Scholar 

  898. Hay ME, Fenical W, Gustafson K (1987) Chemical defense against diverse coral-reef herbivores. Ecology 68:1581

    Article  CAS  Google Scholar 

  899. Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Braz J Biol 63:665

    Article  CAS  Google Scholar 

  900. Izac RR, Poet SE, Fenical W, Van Engen D, Clardy J (1982) The structure of pacifigorgiol, an ichthyotoxic sesquiterpenoid from the Pacific gorgonian coral Pacifigorgia cf. adamsii. Tetrahedron Lett 23:3743

    Article  CAS  Google Scholar 

  901. Meyer BN, Ferrigni NR, Putmann JE, Jacobson LB, Nicols DE, McLaughlin JL (1982) Brine shrimp: a convenient bioassay for active plant constituents. Planta Med 45:31

    Article  CAS  Google Scholar 

  902. Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197

    Article  CAS  Google Scholar 

  903. Dobretsov S, Abed RMM, Teplitski M (2013) Inhibition of biofouling by marine microorganisms. Biofouling 29:423

    Article  CAS  Google Scholar 

  904. De Nys R, Leya T, Maximilien R, Afsar A, Nair PSR, Steinberg PD (1996) The need for standardized broad scale bioassay testing: a case study using the red alga Laurencia obtusa. Biofouling 10:213

    Article  Google Scholar 

  905. Novaczek I (2001) A guide to the common edible and medicinal sea plants of the Pacific Islands. The University of the South Pacific/Secretariat of the Pacific Community, Suva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Efstathia Ioannou or Vassilios Roussis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harizani, M., Ioannou, E., Roussis, V. (2016). The Laurencia Paradox: An Endless Source of Chemodiversity. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 102. Progress in the Chemistry of Organic Natural Products, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-33172-0_2

Download citation

Publish with us

Policies and ethics