Skip to main content

Advertisement

Log in

Symbiotic dinoflagellates divert energy away from mutualism during coral bleaching recovery

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The future of coral reefs in a warming world depends on corals’ ability to recover from bleaching, the loss of their symbiotic dinoflagellate algae (Symbiodiniaceae) during marine heatwaves. Heat-tolerant symbiont species can remain in symbiosis during heat stress, but often provide less photosynthate to the host than heat-sensitive species under ambient conditions. Understanding how heat stress changes the dynamics of this tradeoff between stress tolerance and mutualism contribution is crucial for predicting coral success under climate change. To test how symbiont resource allocation affects coral recovery from heat stress, we exposed the coral Montipora capitata hosting either heat-sensitive Cladocopium C31 (C) or heat-tolerant Durusdinium glynnii (D) to heat stress. D regained symbiont density and photochemical efficiency faster after heat treatment than C, but symbiont recovery did not restore coral biomass or calcification rates to pre-bleaching levels in the initial recovery period. D populations also contributed less photosynthate to the host relative to C, even during heat stress. Further, higher-density symbiont populations of both species retained more photosynthate than lower-density populations, and corals receiving less photosynthate exhibited reduced calcification rates and lower intracellular pH. This is the first evidence that symbiont density and carbon translocation are negatively related, and the first to establish a link between Symbiodiniaceae carbon translocation and coral cellular homeostasis. Together, these results suggest the energy demand of symbiont regrowth after bleaching reduces their mutualism contribution and can thus delay host recovery. Reestablishing a beneficial endosymbiosis imposes additional costs as holobionts overcome stress, and may explain latent mortality among coral populations after alleviation of heat stress in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and R code are available on GitHub at github.com/allenwaller/MontiporaSymbStrategy.

References

  • Baker DM, Freeman CJ, Wong JCY et al (2018) Climate change promotes parasitism in a coral symbiosis. ISME J 12:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barott KL, Barron ME, Tresguerres M (2017) Identification of a molecular pH sensor in coral. Proc Biol Sci 284. https://doi.org/10.1098/rspb.2017.1769

  • Barott KL, Perez SO, Linsmayer LB, Tresguerres M (2015a) Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species. Am J Physiol Regul Integr Comp Physiol 309:R235–R246

    Article  CAS  PubMed  Google Scholar 

  • Barott KL, Venn AA, Perez SO et al (2015b) Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc Natl Acad Sci U S A 112:607–612

    Article  CAS  PubMed  Google Scholar 

  • Barott KL, Venn AA, Thies AB et al (2020) Regulation of coral calcification by the acid-base sensing enzyme soluble adenylyl cyclase. Biochem Biophys Res Commun 525:576–580

    Article  CAS  PubMed  Google Scholar 

  • Barton K (2015) MuMIn: Multi-Model Inference. R package version 1.47.1

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-Effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Baumann JH, Bove CB, Carne L et al (2021) Two offshore coral species show greater acclimatization capacity to environmental variation than nearshore counterparts in southern Belize. Coral Reefs 40:1181–1194

    Article  Google Scholar 

  • Bénard A, Vavre F, Kremer N (2020) Stress & symbiosis: heads or tails? Front Ecol Evol 8. https://doi.org/10.3389/fevo.2020.00167

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc Biol Sci 273:2305–2312

    PubMed  PubMed Central  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  CAS  PubMed  Google Scholar 

  • Brown BL, Creed RP, Skelton J et al (2012) The fine line between mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by multiple field experiments. Oecologia 170:199–207

    Article  PubMed  Google Scholar 

  • Brown KT, Barott KL (2022) The costs and benefits of environmental memory for reef-building corals coping with recurring marine heatwaves. Integr Comp Biol. https://doi.org/10.1093/icb/icac074

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown KT, Mello-Athayde MA, Sampayo EM et al (2022) Environmental memory gained from exposure to extreme pCO 2 variability promotes coral cellular acid–base homeostasis. Proc R Soc B Biol Sci 289:0220941

  • Buerger P, Alvarez-Roa C, Coppin CW et al (2020) Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv 6:2498

  • Carballo-Bolaños R, Denis V, Huang Y-Y et al (2019) Temporal variation and photochemical efficiency of species in Symbiodinaceae associated with coral Leptoria phrygia (Scleractinia; Merulinidae) exposed to contrasting temperature regimes. PLoS One 14:e0218801

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravarti LJ, van Oppen MJH (2018) Experimental evolution in coral photosymbionts as a tool to increase thermal tolerance. Front Mar Sci 5. https://doi.org/10.3389/fmars.2018.00227

  • Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context dependent are species interactions? Ecol Lett 17:881–890

    Article  PubMed  Google Scholar 

  • Cheplick GP (2007) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210

    Article  Google Scholar 

  • Claar DC, Starko S, Tietjen KL et al (2020) Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun 11:6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwell B, Armstrong K, Walker NS et al (2021) Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. Elife 10. https://doi.org/10.7554/eLife.64790

  • Cunning R, Baker AC (2012) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:259–262

    Article  Google Scholar 

  • Cunning R, Baker AC (2014) Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 5:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunning R, Gillette P, Capo T et al (2015a) Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34:155–160

    Article  Google Scholar 

  • Cunning R, Ritson-Williams R, Gates RD (2016) Patterns of bleaching and recovery of Montipora capitata in Kāne ’ohe Bay, Hawai 'i, USA. Mar Ecol Prog Ser 551:131–139

  • Cunning R, Muller EB, Gates RD, Nisbet RM (2017) A dynamic bioenergetic model for coral-Symbiodinium symbioses and coral bleaching as an alternate stable state. J Theor Biol 431:49–62

    Article  CAS  PubMed  Google Scholar 

  • Cunning R, Silverstein RN, Baker AC (2018) Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs 37:145–152

    Article  Google Scholar 

  • Cunning R, Vaughan N, Gillette P et al (2015b) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change. Ecology 96:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Detmer AR, Cunning R, Pfab F et al (2022) Fertilization by coral-dwelling fish promotes coral growth but can exacerbate bleaching response. J Theor Biol 541:111087

    Article  PubMed  Google Scholar 

  • Dilworth J, Caruso C, Kahkejian VA et al (2021) Host genotype and stable differences in algal symbiont communities explain patterns of thermal stress response of Montipora capitata following thermal pre-exposure and across multiple bleaching events. Coral Reefs 40:151–163

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2019) Will life find a way out? Evolutionary rescue and Darwinian adaptation to climate change. Perspect Ecol Conserv 17:117–121

    Google Scholar 

  • Drury C, Martin RE, Knapp DE et al (2022) Ecosystem-scale mapping of coral species and thermal tolerance. Front Ecol Environ 20:285–291

    Article  Google Scholar 

  • Dunbar HE, Wilson ACC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5:96

    Article  Google Scholar 

  • Dungan AM, Maire J, Perez-Gonzalez A et al (2022) Lack of evidence for the oxidative stress theory of bleaching in the sea anemone, Exaiptasia diaphana, under elevated temperature. Coral Reefs. https://doi.org/10.1007/s00338-022-02251-w

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Fisher R, O’Leary RA, Low-Choy S et al (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol 25:500–505

    Article  CAS  PubMed  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Fitt WK, Spero HJ, Halas J et al (1993) Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean ?bleaching event? Coral Reefs 12:57–64

    Article  Google Scholar 

  • Frölicher TL, Fischer EM, Gruber N (2018) Marine heatwaves under global warming. Nature 560:360–364

    Article  PubMed  Google Scholar 

  • Gibbin EM, Davy SK (2014) The photo-physiological response of a model cnidarian–dinoflagellate symbiosis to CO2-induced acidification at the cellular level. J Exp Mar Bio Ecol 457:1–7

    Article  CAS  Google Scholar 

  • Gibbin EM, Putnam HM, Davy SK, Gates RD (2014) Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells. J Exp Biol 217:1963–1969

    PubMed  Google Scholar 

  • Gibbin EM, Putnam HM, Gates RD et al (2015) Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Mar Biol 162:717–723

    Article  CAS  Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341

    Article  PubMed  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ (2011) Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids. Coral Reefs 30. https://doi.org/10.1007/s00338-011-0756-0

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Grottoli AG, Warner ME, Levas SJ (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol 20:3823–3833

    Article  PubMed  Google Scholar 

  • Harter TS, Shartau RB, Baker DW et al (2014) Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid–base disturbances in the armoured catfish, Pterygoplichthys pardalis. J Comp Physiol B 184:709–718

    Article  CAS  PubMed  Google Scholar 

  • Hoadley KD, Pettay DT, Lewis A, Wham D (2021) Different functional traits among closely related algal symbionts dictate stress endurance for vital Indo-Pacific reef-building corals. Glob Chang Biol 27:5295–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema JD, Bruna EM (2015) Context-dependent outcomes of mutualistic interactions. In: Mutualism. Oxford Academic, pp 181–202

  • Hoogenboom M, Beraud E, Ferrier-Pagès C (2010) Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29:21–29

    Article  Google Scholar 

  • Howells EJ, Bauman AG, Vaughan GO et al (2020) Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol 29:899–911

    Article  CAS  PubMed  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS One 8:e81172

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux densities. Mar Biol 130:23–33

    Article  CAS  Google Scholar 

  • Innis T, Allen-Waller L, Brown KT et al (2021) Marine heatwaves depress metabolic activity and impair cellular acid-base homeostasis in reef-building corals regardless of bleaching susceptibility. Glob Chang Biol 27:2728–2743

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Johnston EC, Counsell CWW, Sale TL et al (2020) The legacy of stress: Coral bleaching impacts reproduction years later. Funct Ecol 34:2315–2325

    Article  Google Scholar 

  • Jones A, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One 5:e10437

  • Jones RJ, Yellowlees D (1997) Regulation and control of intracellular algae (= zooxanthellae) in hard corals. Philos Trans R Soc Lond B Biol Sci 352:457–468

    Article  PubMed Central  Google Scholar 

  • Kelly MW, Sanford E, Grosberg RK (2012) Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc Biol Sci 279:349–356

    PubMed  Google Scholar 

  • Krediet CJ, DeNofrio JC, Caruso C et al (2015) Rapid, precise, and accurate counts of symbiodinium cells using the Guava Flow Cytometer, and a comparison to other methods. PLoS One 10:e0135725

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger T, Horwitz N, Bodin J et al (2020) Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc Biol Sci 287:20200049

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6:e29013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse T, Thornhill D, Cox E et al (2004) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs. https://doi.org/10.1007/s00338-004-0428-4

    Article  Google Scholar 

  • Laurent J, Tambutté S, Tambutté É et al (2013) The influence of photosynthesis on host intracellular pH in scleractinian corals. J Exp Biol 216:1398–1404

    CAS  PubMed  Google Scholar 

  • Leggat W, Heron SF, Fordyce A et al (2022) Experiment Degree Heating Week (eDHW) as a novel metric to reconcile and validate past and future global coral bleaching studies. J Environ Manag 301:113919

    Article  PubMed  Google Scholar 

  • Leggat WP, Camp EF, Suggett DJ et al (2019) Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr Biol 29:2723-2730.e4

    Article  CAS  PubMed  Google Scholar 

  • Leinbach SE, Speare KE, Rossin AM et al (2021) Energetic and reproductive costs of coral recovery in divergent bleaching responses. Sci Rep 11:23546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenth R, Singmann H, Love J et al (2017) Emmeans: Estimated marginal means, aka least-squares means. R package version 1.8.1-1

  • Lesser MP, Stat M, Gates RD (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611

    Article  Google Scholar 

  • Levas S, Schoepf V, Warner ME et al (2018) Long-term recovery of Caribbean corals from bleaching. J Exp Mar Biol Ecol 506:124–134

    Article  CAS  Google Scholar 

  • Levitan DR, Boudreau W, Jara J, Knowlton N (2014) Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar Ecol Prog Ser 515:1–10

    Article  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Matsuda SB, Huffmyer AS, Lenz EA et al (2020) Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front Ecol Evol 8. https://doi.org/10.3389/fevo.2020.00178

  • Matthews JL, Cunning R, Ritson-Williams R et al (2020) Metabolite pools of the reef building coral Montipora capitata are unaffected by Symbiodiniaceae community composition. Coral Reefs 39:1727–1737

    Article  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa MK, Palumbi SR (2019) Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci USA 116:10586–10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morran LT, Penley MJ, Byrd VS et al (2016) Nematode-bacteria mutualism: Selection within the mutualism supersedes selection outside of the mutualism. Evolution 70:687–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Nesa B, Hidaka M (2009) High zooxanthella density shortens the survival time of coral cell aggregates under thermal stress. J Exp Mar Bio Ecol 368:81–87

    Article  Google Scholar 

  • Nielsen DA, Petrou K, Gates RD (2018) Coral bleaching from a single cell perspective. ISME J 12:1558–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacio-Castro AM, Dennison CE, Rosales SM, Baker AC (2021) Variation in susceptibility among three Caribbean coral species and their algal symbionts indicates the threatened staghorn coral, Acropora cervicornis, is particularly susceptible to elevated nutrients and heat stress. Coral Reefs 40:1601–1613

    Article  Google Scholar 

  • Perry CT, Morgan KM (2017) Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci Rep 7:40581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettay DT, Wham DC, Smith RT et al (2015) Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci U S A 112:7513–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Pörtner HO, Bock C (2000) A contribution of acid-base regulation to metabolic depression in marine ectotherms. In: Life in the Cold. Springer Berlin Heidelberg, pp 443–458

  • Pratchett MS, Hoey AS, Wilson SK et al (2011) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and boral loss. Diversity 3:424–452

    Article  Google Scholar 

  • Putnam HM, Barott KL, Ainsworth TD, Gates RD (2017) The vulnerability and resilience of reef-building corals. Curr Biol 27:R528–R540

    Article  CAS  PubMed  Google Scholar 

  • Rädecker N, Pogoreutz C, Gegner HM et al (2021) Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2022653118

  • R Core Team (2012) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-projectorg. Accessed May 2021

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882

    Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742–742

    Article  CAS  PubMed  Google Scholar 

  • Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc Biol Sci 273:603–610

    PubMed  Google Scholar 

  • Shartau RB, Baker DW, Harter TS et al (2020) Preferential intracellular pH regulation is a common trait amongst fishes exposed to high environmental CO2. J Exp Biol 223. https://doi.org/10.1242/jeb.208868

  • Silverstein RN, Cunning R, Baker AC (2017) Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. J Exp Biol 220:1192–1196

    PubMed  Google Scholar 

  • Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21:236–249

    Article  PubMed  Google Scholar 

  • Slater C, Preston T, Weaver LT (2001) Stable isotopes and the international system of units. Rapid Commun Mass Spectrom 15:1270–1273

    Article  CAS  PubMed  Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral–dinoflagellate symbiosis. Proc Natl Acad Sci U S A 105:9256–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thies AB, Quijada-Rodriguez AR, Zhouyao H et al (2022) A Rhesus channel in the coral symbiosome membrane suggests a novel mechanism to regulate NH 3 and CO 2 delivery to algal symbionts. Sci Adv 8:0303

  • Thornhill DJ, Rotjan RD, Todd BD et al (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS One 6:e29535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolleter D, Seneca FO, DeNofrio JC et al (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P, Gori A, Maguer JF et al (2016) Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci Rep 6:38112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hooidonk R, Maynard J, Tamelander J et al (2016) Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci Rep 6:39666

  • van Woesik R, Shlesinger T, Grottoli AG et al (2022) Coral-bleaching responses to climate change across biological scales. Glob Chang Biol. https://doi.org/10.1111/gcb.16192

    Article  PubMed  PubMed Central  Google Scholar 

  • Veal CJ, Carmi M, Fine M, Hoegh-Guldberg O (2010) Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29:893–897

    Article  Google Scholar 

  • Wall CB, Kaluhiokalani M, Popp BN et al (2020) Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. ISME J 14:945–958

    Article  PubMed  PubMed Central  Google Scholar 

  • Wham DC, Ning G, LaJeunesse TC (2017) Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia 56:396–409

    Article  CAS  Google Scholar 

  • Wickham H (2016) Programming with ggplot2. In: Wickham H (ed) ggplot2: elegant graphics for data analysis. Springer International Publishing, Cham, pp 241–253

    Chapter  Google Scholar 

  • Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658

    Article  Google Scholar 

  • Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshw Res 60:483–496

    Article  CAS  Google Scholar 

  • Yuyama I, Higuchi T (2014) Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. PLoS One 9:e98999

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Teegan Innis, Crawford Drury, Josh Hancock, Ariana Huffmyer, Shayle Matsuda, Mindy Mizobe, and the staff of the Hawai’i Institute of Marine Biology for logistical support during the experiment; Christopher Carlson for image analysis assistance; Christopher Wall for indispensable isotope advice; and the staff of the UC-Davis Stable Isotope Lab for isotope analysis. Corals were collected under Special Activity Permit 2020-41. This work was supported by the NIH T32 Predoctoral Training Grant in Cell and Molecular Biology GM-07229 to L.A.-W., NSF-OCE 1923743 to K.L.B, Charles E. Kaufman Foundation New Investigator Award KA2021-114797 to K.L.B., and funding from the University of Pennsylvania to K.L.B.

Author information

Authors and Affiliations

Authors

Contributions

L.A.-W. and K.L.B. conceived and designed the study. L.A.-W. collected samples, prepared materials, collected and analyzed data, and wrote the first draft of the manuscript. K.L.B. collected and analyzed data, and edited and approved the final manuscript.

Corresponding author

Correspondence to Katie L. Barott.

Ethics declarations

Conflicts of interest

The authors declare that we have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.11 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen-Waller, L., Barott, K.L. Symbiotic dinoflagellates divert energy away from mutualism during coral bleaching recovery. Symbiosis 89, 173–186 (2023). https://doi.org/10.1007/s13199-023-00901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-023-00901-3

Keywords

Navigation