Skip to main content

Advertisement

Log in

Quaternary fossil coral communities in uplifted strata along the Balochistan coast of Pakistan: understanding modern coral decline in the Arabian Sea

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Uplifted reefs due to being important palaeoclimate archives and a rich source of information on past physical and geochemical changes globally have become the centre of marine research. The uplifted fossil Quaternary coral communities of Jiwani and Gwadar are perfect places to study the palaeoclimatic and geological changes that have shaped the Balochistan coast. Studies on the palaeodiversity of corals along the Makran coast of Pakistan are lacking. In the present study, the samples collected using line intercept method from four uplifted sites (Balochistan coast: one at Gwadar and three at Jiwani) were analysed. The relative distribution and diversity of scleractinian fossil corals was determined, and the factors responsible for coral decline along Pakistan coast were compared with modern coral distribution and diversity. A total of 48 fossil coral species were recorded in nine families and 22 genera. High coral diversity was recorded in the uplifted landward sites of Jiwani and Gwadar headland. Terraces close to the shore at Jiwani had lower diversity. The corals seem to be Quaternary: most likely Pleistocene to Holocene. The modern fauna lacks many species recorded in the fossil community, thus suggesting a faunal turnover in diversity and redistribution of coral fauna which may be linked with past geological events and increasing anthropogenic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali SIU, Memon GM (1995) Environmental geology of the Pakistan coast and its influence on corals, oysters, and mangroves. The Arabian Sea. Livingmarine resources and the environment In: Thompson MF, Tirmizi NM (eds) Lahore, vanguard books, pp 575–585

  • Ali A, Ormond R, Leujak W, Siddiqui PJA (2014) Distribution, diversity and abundance of coral communities in the coastal waters of Pakistan. J Mar Biol Assoc U K 94(1):75–84. https://doi.org/10.1017/S0025315413001203

    Article  Google Scholar 

  • Ambrasseys N, Bilham R (2003) Earthquakes and associated deformation in north Baluchistan 1892-2001. Bull Seismal Soc Am 93(4):1573–1605. https://doi.org/10.1785/0120020038

    Article  Google Scholar 

  • Bahuguna A, Nayak S, Roy D (2008) Impact of the tsunami and earthquake of 26th December 2004 on the vital coastal ecosystems of the Andaman and Nicobar Islands assessed using RESOURCESAT AWiFS data. Int J Appl Earth Obs Geoinf 10(2):229–237. https://doi.org/10.1016/j.jag.2008.02.010

    Article  Google Scholar 

  • Baird AH, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309. https://doi.org/10.3354/meps07220

    Article  Google Scholar 

  • Banerjee PK (2000) Holocene and late Pleistocene relative sea level fluctuations along the east coast of India. Mar Geol 167(3-4):243–260. https://doi.org/10.1016/S0025-3227(00)00028-1

    Article  Google Scholar 

  • Bartley R, Bainbridge ZT, Lewis SE, Kroon FJ, Wilkinson SN, Brodie JE, Silburn DM (2014) Relating sediment impacts on coral reefs to watershed sources, processes and management: a review. Sci Total Environ 468-469:1138–1153. https://doi.org/10.1016/j.scitotenv.2013.09.030

    Article  Google Scholar 

  • Beenaerts N, Berghe EV (2005) Comparative study of three transects methods to assess coral cover, richness and diversity. WIOJMS 4(1):29–37

    Google Scholar 

  • Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2012) Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS One 7(11):e50685. https://doi.org/10.1371/journal.pone.0050685

    Article  Google Scholar 

  • Bozec YM, Mumby PJ (2015) Synergistic impacts of global warming on the resilience of coral reefs. Philos Trans R Soc B 370:20130267

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  • Bromfield K (2013) Neogene corals from the Indo-Pacific: Indonesia, Papua New Guinea and Fiji. Bull Am Paleontol 387

  • Bromfield K, Pandolfi JM (2012) Regional patterns of evolutionary turnover in Neogene coral reefs from the central Indo-West Pacific Ocean. Evol Ecol 26(2):375–391. https://doi.org/10.1007/s10682-011-9483-9

    Article  Google Scholar 

  • Brown BE, Howard LS (1985) Assessing the effects of “stress” on reef corals. Adv Mar Biol 22:1–63. https://doi.org/10.1016/S0065-2881(08)60049-8

    Article  Google Scholar 

  • Bruggemann JH, Buffler RT, Guillaume MMM, Walter RC, Cosel RV, Berhane N, Ghebretensae BN, Berhe SM (2004) Stratigraphy, palaeoenvironments and model for the deposition of the Abdur reef limestone: context for an important archaeological site from the last interglacial on the Red Sea coast of Eritrea. Palaeogeogr Palaeoclimatol Palaeoecol 203(3-4):179–206. https://doi.org/10.1016/S0031-0182(03)00659-X

    Article  Google Scholar 

  • Burg JP, Bernoulli D, Smit J, Dolati A, Bahroudi A (2008) A giant catastrophic mud-and-debris flow in the Miocene Makran. Terra Nova 20(3):188–193. https://doi.org/10.1111/j.1365-3121.2008.00804.x

    Article  Google Scholar 

  • Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of Makran Subduction Zone. J Geophys Res 97(B1):449–478. https://doi.org/10.1029/91JB02165

    Article  Google Scholar 

  • Chappell J (1974) Geology of coral terraces, Huon Peninsula, New Guinea: a study of quaternary tectonic movements and sea-level changes. Geol Soc Am Bull 85(4):553–570. https://doi.org/10.1130/0016-7606(1974)85<553:GOCTHP>2.0.CO;2

    Article  Google Scholar 

  • Clarke KR (1993) Non parametric multivariate analysis of changes in community structure. Aust J Ecol 18(1):117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clarke KR, Gorely RN (2006) PRIMER v6: user manual/ tutorial. Plymouth, PRIMER-E

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth, PRIMER-E

    Google Scholar 

  • Coles SL (2003) Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Atoll Res Bull 507:1–21. https://doi.org/10.5479/si.00775630.507.1

    Article  Google Scholar 

  • Coles S (2008) Potential climate change impacts on corals and coral reefs in Melanesia from bleaching events and ocean acidification. Bishop Museum Tech Rep 42(5):1–23

    Google Scholar 

  • Crabbe MJC (2008) Climate change, global warming and coral reefs: modelling the effects of temperature. Comp Biol Chem 32(5):311–314. https://doi.org/10.1016/j.compbiolchem.2008.04.001

    Article  Google Scholar 

  • Crabbe MJC, Wilson MEJ, Smith DJ (2006) Quaternary corals from reefs in the Wakatobi Marine National Park, SE Sulawesi, Indonesia, show similar growth rates to modern corals from the same area. J Quat Sci 21(8):803–809. https://doi.org/10.1002/jqs.1001

    Article  Google Scholar 

  • Crame JA (1984) Neogene and Quaternary Mollusca from the Makran Coast, Pakistan. In: Marine geology and oceanography of Arabian Sea and coastal Pakistan. Van Nostrand Reinhold scientific and academic editions, pp 45–61

  • Delisle G (2004) The mud volcanoes of Pakistan. Environ Geol 46(8):1024–1029. https://doi.org/10.1007/s00254-004-1089-x

    Article  Google Scholar 

  • Delisle G, Von Rad U, Andruleit H, von Daniels CH, Tabrez AR, Inam A (2002) Active mud volcanoes on and offshore eastern Makran, Pakistan. Int J Earth Sci 91(1):93–110. https://doi.org/10.1007/s005310100203

    Article  Google Scholar 

  • Djamali M, Akhani H, Andrieu-Ponel V, Braconnot P, Brewer S, de Beaulieu JL, Fleitmann D, Fleury J, Gasse F, Guibal F, Jackson ST, Lezine AM, Medail F, Ponel P, Roberts N, Stevens L (2010) Indian summer monsoon variations could have affected the early Holocene woodland expansion in the near east. The Holocene 20(5):813–820. https://doi.org/10.1177/0959683610362813

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JPB, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Lynne D, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4(1):11–37. https://doi.org/10.1146/annurev-marine-041911-111611

    Article  Google Scholar 

  • Dullo WC (1990) Facies, fossil record, and age of Pleistocene reefs from the Red Sea (Saudi Arabia). Facies 22(1):1–45. https://doi.org/10.1007/BF02536943

    Article  Google Scholar 

  • Duncan PM (1880) Sindh fossil corals and Alcyonaria. Mem Geol Surv India Palaeont Indica (Series 7 and 14) 1(1):1–110

    Google Scholar 

  • Dupraz C, Strasser A (2002) Nutritional modes in coral–microbialite reefs (Jurassic, Oxfordian, Switzerland): evolutionof trophic structure as a response to environmental change. PALAIOS 17(5):449–471. https://doi.org/10.1669/0883-1351(2002)017<0449:NMICMR>2.0.CO;2

    Article  Google Scholar 

  • Edinger EN, Risk MJ (1994) Oligocene-Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. PALAIOS 9(6):576–598. https://doi.org/10.2307/3515129

    Article  Google Scholar 

  • Edinger EN, Pandolfi JM, Kelley RA (2001) Community structure of Quaternary coral reefs compared with recent life and death assemblages. Paleobiology 27(4):669–694

    Article  Google Scholar 

  • Edinger EN, Burr GS, Pandolfi JM, Ortiz JC (2007) Age accuracy and resolution of Quaternary corals used as proxies for sea level. Earth Planet Sci Lett 253(1-2):37–49. https://doi.org/10.1016/j.epsl.2006.10.014

    Article  Google Scholar 

  • El-Sorogy AS, Nour H, Essa E, Tawfik M (2013) Quaternary coral reefs of the Red Sea coast, Egypt: diagenetic sequence, isotopes and trace metals contamination. Arab J Geosci 6(12):4981–4991. https://doi.org/10.1007/s12517-012-0806-0

    Article  Google Scholar 

  • Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64(9):1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008

    Article  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of coral and coral reefs: review and synthesis. Mar Pollut Bull 50(2):125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028

    Article  Google Scholar 

  • Felis T, Patzold J (2003) Climate records from corals. In: Marine science frontiers for Europe. pp 11–27. https://doi.org/10.1007/978-3-642-55862-7_2

  • Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373(2):102–110. https://doi.org/10.1016/j.jembe.2009.03.011

    Article  Google Scholar 

  • Flugel E (1982) Microfacies analysis of limestones. Springer, Berlin, p 663. https://doi.org/10.1007/978-3-642-68423-4

    Book  Google Scholar 

  • Flugel E (2002) Triassic reef patterns. In: Kiessling W, Flugel E, Golonka J (eds) Phanerozoic reef patterns. Soc econ pal min spec Publ 72, pp 391–463. https://doi.org/10.2110/pec.02.72.0391

  • Flugel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flugel E, Golonka J (Eds) Phanerozoic reef patterns. Soc econ pal min spec Publ 72, pp 691–733. https://doi.org/10.2110/pec.02.72.0691

  • Foster R, Hagan A, Perera N, Gunawan CA, Silaban I, Yaha Y, Manuputty Y, Hazam I, Hodgson G (2006) Tsunami and earthquake damage to coral reefs of Aceh, Indonesia. Reef Check Foundation, Pacific Palisades, p 33

    Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19(1-5):45–64. https://doi.org/10.1016/S0277-3791(99)00054-2

    Article  Google Scholar 

  • Gharibreza MR, Motamed A (2006) Late Quaternary Paleoshorelines and sedimentary sequences in Chabahar Bay (Southeast of Iran). J Coast Res 22(6):1499–1504

    Article  Google Scholar 

  • Grando G, McClay K (2007) Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran sediment. Geology 196:157–179

    Google Scholar 

  • Greenstein B, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Chang Biol 14(3):513–528. https://doi.org/10.1111/j.1365-2486.2007.01506.x

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440(7088):1186–1189. https://doi.org/10.1038/nature04565

    Article  Google Scholar 

  • Gupta AK (1999) Latest Miocene-Pleistocene productivity and deep sea ventilation in the north western Indian Ocean (Deep Sea Drilling Project Site 219). Paleoceanography 14(1):62–73

    Article  Google Scholar 

  • Haghipour N, Burg JP, Kober F, Zeilinger G, Ivy-Ochs S, Kubik PW, Faridi M (2012) Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge: the folded fluvial terraces in Makran (SE, Iran). Earth Planet Sci Lett 355-356:187–198. https://doi.org/10.1016/j.epsl.2012.09.001

    Article  Google Scholar 

  • Haq BU (1988) Geological evolution of the Indian Ocean with special reference to the Arabian Sea. In: Thompson MF, Tirmizi NM (eds) (Eds) Marine science of the Arabian Sea. Proceedings of an International Conference (March 1986). American Institute of Biological Sciences, Washington, DC, pp 9–35

    Google Scholar 

  • Harms JC, Cappel HN, Frances DC (1984) The Makran coast of Pakistan: it’s stratigraphy and hydrocarbon potential. In: Marine geology and oceanography of Arabian Sea and coastal Pakistan. VanNostrand Reinhold/Scientific and Academic Editions, pp 3–26

  • Harzhauser M, Kroh A, Mandic O, Piller WE, Gohlich U, Reuter M, Berning B (2007) Biogeographic responses to geodynamics: a key study all around the oligo–Miocene Tethyan seaway. Zool Anz 246(4):241–256. https://doi.org/10.1016/j.jcz.2007.05.001

    Article  Google Scholar 

  • Honisch B, Hemming NG, Grottoli AG, Amat A, Hanson GN, Bijma J (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim Cosmochim Acta 68(18):3675–3685. https://doi.org/10.1016/j.gca.2004.03.002

    Article  Google Scholar 

  • Hopley D (1982) The geomorphology of the great barrier reef: quaternary development of coral reefs. Wiley & Sons, New York, p 453

    Google Scholar 

  • Hosseini-Barzi M (2010) Spatial and temporal diagenetic evolution of syntectonic sediments in a pulsatory uplifted coastal escarpment, evidenced from the Plio-Pleistocene, Makran subduction zone, Iran. J Geol Soc Lond Spec Publ 330(1):273–289. https://doi.org/10.1144/SP330.13

    Article  Google Scholar 

  • Hosseini-Barzi M, Talbot CJ (2003) A tectonic pulse in the Makran accretionary prism recorded in Iranian coastal sediments. J Geol Soc Lond 160(6):903–910. https://doi.org/10.1144/0016-764903-005

    Article  Google Scholar 

  • Hughes TP, Belwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts and the resilience of coral reefs. Science 301(5635):929–933. https://doi.org/10.1126/science.1085046

    Article  Google Scholar 

  • Hunting Survey Corporation (1961) Reconnaissance geology of part of West Pakistan (Colombo plan cooperative project), Toronto, Canada, pp 1–550

  • Hussain J, Butt KA, Pervaiz K (2002) Makran coast: a potential seismic risk belt. Geol Bull Univ Peshawar 35:43–56

    Google Scholar 

  • Jones R, Ricardo GF, Negri AP (2015) Effects of sediments on the reproductive cycle of corals. Mar Pollut Bull 100(1):13–33. https://doi.org/10.1016/j.marpolbul.2015.08.021

    Article  Google Scholar 

  • Junjie RK, Browne NK, Erftemeijer PLA, Todd PA (2014) Impacts of sediments on coral energetics: partitioning the effects of turbidity and settling particles. PLoS One 9(9):e107195. https://doi.org/10.1371/journal.pone.0107195

    Article  Google Scholar 

  • Kassi AM, Khan SD, Bayraktar H, Kasi AK (2014) Newly discovered mud volcanoes in the Coastal Belt of Makran, Pakistan—tectonic implications. Arab J Geosci 7(11):4899–4909. https://doi.org/10.1007/s12517-013-1135-7

    Article  Google Scholar 

  • Kay EA (1996) Radiations in the Cypraeidae. In: Taylor JL (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 211–220

    Google Scholar 

  • Kazmi AH, Jan MQ (1997) Geology and tectonics of Pakistan. Graphic Publication, Karachi, p 554

    Google Scholar 

  • Ketcher K, Allmon WD (1993) Environment and mode of deposition of a Pliocene coral bed: coral thickest and storms in the fossil record. PALAIOS 8(1):3–17. https://doi.org/10.2307/3515218

    Article  Google Scholar 

  • Kiessling W, Flügel E, Golonka J (1999) Paleo reef maps: evaluation of comprehensive database on phanerozoic reefs. AAPG Bull 83(10):1552–1587

    Google Scholar 

  • Klein R, Mokady O, Loya Y (1991) Bioerosion in ancient and contemporary corals of the genus Porites: patterns and palaeoenvironmental implications. Mar Ecol Prog Ser 77:245–251. https://doi.org/10.3354/meps077245

    Article  Google Scholar 

  • Kober F, Zeilinger G, Ivy-Ochs S, Dolati A, Smit J, Kubik PW (2013) Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE Iran. Glob Planet Chang 111:133–149. https://doi.org/10.1016/j.gloplacha.2013.09.003

    Article  Google Scholar 

  • Kora M, Fattah ZA (2000) Pliocene and Plio-Pleistocene macrofauna from the Red Sea coastal plain (Egypt): biostratigraphy and biogeography. Geologica et Palaentologica 34:219–235

    Google Scholar 

  • Kumar A (2014) Balochistan earthquake of September, 2013 and birth of islands off the Makran coast of southern Pakistan. Earth Sci India 7(I):1–12

    Google Scholar 

  • Kusky T, Robinson C, El- Baz F (2005) Tertiary-Quaternary faulting and uplift in the northern Oman Hajar Mountains. J Geol Soc Lond 162(5):871–888. https://doi.org/10.1144/0016-764904-122

    Article  Google Scholar 

  • Lambeck K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet Sci Lett 142(1-2):43–57. https://doi.org/10.1016/0012-821X(96)00069-6

    Article  Google Scholar 

  • Leinfelder RR, Schmid DU, Nose M, Werner W (2002) Jurassic reef patterns—the expression of a changing globe. In: Kiessling W, Flügel E, Golonka J (eds).SEPM special publication 72:465–520

  • Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar Biol 13(2):100–123. https://doi.org/10.1007/BF00366561

    Article  Google Scholar 

  • Luckge A, Doose-Rolinski H, Khan AA, Schulz H, Von Rad U (2001) Monsoonal variability in the northeast Arabian Sea during the past 5000 years: geochemical evidence from laminated sediments. Palaeogeogr Palaeoclimatol Palaeoecol 167(3-4):273–286. https://doi.org/10.1016/S0031-0182(00)00241-8

    Article  Google Scholar 

  • McCall GJH (1997) The geotectonic history of the Makran and adjacent areas of southern Iran. J Asian Earth Sci 15(6):517–531

    Article  Google Scholar 

  • McCall J, Rosen B, Darrell J (1984) Carbonate deposition in accretionary prism settings: early Miocene coral limestones and corals of the Makran mountain range in southern Iran. Facies 31:141–178

    Article  Google Scholar 

  • McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144(6):1239–1245. https://doi.org/10.1007/s00227-003-1271-9

    Article  Google Scholar 

  • McClanahan TR, Ateweberhan M, Muhando CA, Maina J, Mohammed MS (2007) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77(4):503–525. https://doi.org/10.1890/06-1182.1

    Article  Google Scholar 

  • Mossadegh ZK, Parker J, Gischler E, Oschmann W, Blakeway D, Eisenhauer N (2013) Palaeoecology of well-preserved coral communities in a siliciclastic environment from the late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): the development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int J Earth Sci 102(2):545–570. https://doi.org/10.1007/s00531-012-0802-3

    Article  Google Scholar 

  • Mouchot N, Loncke L, Mahieux G, Bourget J, Lallemant S, Ellouz-Zimmermann N, Leturmy P (2010) Recent sedimentary processes along the Makran trench (Makran active margin, off Pakistan). Mar Geol 271(1-2):17–31. https://doi.org/10.1016/j.margeo.2010.01.006

    Article  Google Scholar 

  • Moursi ME, Hoang CT, Fayoumy IFE (1994) Pleistocene evolution of the Red Sea coastal plain, Egypt: evidence from uranium-series dating of emerged reef terraces. Quat Sci Rev 13(4):345–359. https://doi.org/10.1016/0277-3791(94)90112-0

    Article  Google Scholar 

  • Moustafa YA, Patzold J, Loya Y, Wefer G (2000) Mid-Holocene stable isotope record of corals from the northern Red Sea. Int J Earth Sci 88(4):742–751. https://doi.org/10.1007/s005310050302

    Article  Google Scholar 

  • Mumby PJ, Flower J, Chollett I, Box SJ, Bozec Y, Fitzsimmons C, Forster J, Gill D, Griffith-Mumby R (eds) (2014) Towards reef resilience and sustainable livelihoods: a handbook for Caribbean coral reef managers. University of Exeter, Exeter, p 172

    Google Scholar 

  • Munday PL, Mark McCormick MI, Nilsson GE (2012) Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J Exp Biol 215(22):3865–3873. https://doi.org/10.1242/jeb.074765

    Article  Google Scholar 

  • Newton CR, Mullins HT, Gardulski AF (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. PALAIOS 2(4):359–367. https://doi.org/10.2307/3514761

    Article  Google Scholar 

  • Ohlhorst SL, Liddell WD, Taylor RJ, Taylor JM (1988) Evaluation of reef census techniques. In: Choat JH, Barnes D, Borowitzka MA, call JC, Davies PJ, flood P, hatcher BG, Hopley D, Hutchings PA, Kinsey D, Orme GR, Pichon M, sale PF, Sammarco P, Wallace CC, Wilkinson C, Wolanski E, Bellwood O (Eds) Proceedings of the sixth international coral reef symposium Townsville (8-12 august, 1988) Australia 2: 319–324

  • Olivier N, Carpentier C, Martin-Garin B, Lathuiliere B, Gaillard C, Ferry S, Hantzpergue P, Geister J (2004) Coral-microbialite reefs in pure carbonate versus mixed carbonate-siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic; northeastern France). Facies 50:229–255

    Article  Google Scholar 

  • Pacheco J, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349

    Google Scholar 

  • Page WD, Alt JN, Cluff LS, Plafker G (1979) Evidence for the recurrence of large magnitude earthquakes along the Makran coast of Iran and Pakistan. Tectonophysics 52(1-4):533–547. https://doi.org/10.1016/0040-1951(79)90269-5

    Article  Google Scholar 

  • Pain CF, Abdelfattah MA (2015) Landform evolution in the arid northern United Arab Emirates: impacts of tectonics, sea level changes and climate. Catena 134:14–29. https://doi.org/10.1016/j.catena.2014.09.011

    Article  Google Scholar 

  • Pandolfi JM (1999) Response of Pleistocene coral reefs to environmental change over long temporal scales. Am Zool 39(1):113–130. https://doi.org/10.1093/icb/39.1.113

    Article  Google Scholar 

  • Pandolfi JM (2002) Coral community dynamics at multiple scales. Coral Reefs 21(1):13–23. https://doi.org/10.1007/s00338-001-0204-7

    Article  Google Scholar 

  • Pandolfi JM, Greenstein BJ (2007) Using the past to understand the future: palaeoecology of coral reefs. In: Johnson JE, Marshall PA (eds) Climate change and the great barrier reef. Great barrier reef Marine Park authority and Australian greenhouse office, Townsville, Australia, pp 717–744

  • Pandolfi JM, Jackson JBC (2001) Community structure of Pleistocene coral reefs of Curacao, Netherlands Antilles. Ecol Monogr 71(1):49–67

    Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, Macardle D, Mc Clenahan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301(5635):955–958. https://doi.org/10.1126/science.1085706

    Article  Google Scholar 

  • Pararas-Carayannis G (2006) The potential of tsunami generation along the makran subduction zone in the northern Arabian Sea: case study: the earthquake and tsunami of November 28, 1945. Sci Tsunami Hazards 24(5):358–384

    Google Scholar 

  • Pellissier L, Leprieur F, Parravicini V, Cowman PF, Kulbicki M, Litsios G, Olsen SM, Wisz MS, Bellwood DR, Mouillot D (2014) Quaternary coral reef refugia preserved fish diversity. Science 344(80):1016–1019. https://doi.org/10.1126/science.1249853

    Article  Google Scholar 

  • Perez K III, Rodgers KS, Jokiel PL, Lager CV, Daniel J, Lager DJ (2014) Effects of terrigenous sediment on settlement and survival of the reef coral Pocillopora damicornis. Peer J 2:e387. https://doi.org/10.7717/peerj.387

    Article  Google Scholar 

  • Perrin C (2002) Tertiary: the emergence of modern reef ecosystems. In: Kiessling W, Flqgel E, Golonka J (eds) Phanerozoic reef patterns. Soc econ pal min spec Publ 72, pp 587–621. https://doi.org/10.2110/pec.02.72.0587

  • Prins MA, Postma G (2000) Effects of climate, sea level and tectonics unravelled for last deglaciation turbidite records of the Arabian Sea. Geology 28(4):375–378. https://doi.org/10.1130/0091-7613(2000)28<375:EOCSLA>2.0.CO;2

    Article  Google Scholar 

  • Prins MA, Postma G, Weltje GJ (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Mar Geol 169(3-4):351–371. https://doi.org/10.1016/S0025-3227(00)00087-6

    Article  Google Scholar 

  • Raza HA, Ahmed R, Ali SM (1991) A new concept related to structural and tectonic behavior of Balochistan Basin Pakistan and its implication of hydrocarbon prospects. Pak J Hydroc Res 3(1):1–17

    Google Scholar 

  • Renema W (2007) Fauna development of larger benthic foraminifera in the Cenozoic of Southeast Asia. In: Renema W (ed) Biogeography, time and place: distributions, barriers and islands. Springer, Dordrecht, pp 179–215. https://doi.org/10.1007/978-1-4020-6374-9_6

    Chapter  Google Scholar 

  • Riegl B (1995) Effects of sand deposition on scleractinian and alcyonacean corals. Mar Biol 121(3):517–526. https://doi.org/10.1007/BF00349461

    Article  Google Scholar 

  • Riegl B (1999) Corals in non-reef setting in the southern Arabian Gulf (Dubai, UAE): fauna and community structure in response to recurring mass mortality. Coral Reefs 18(1):63–73

    Article  Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–2002. https://doi.org/10.3354/meps062185

    Article  Google Scholar 

  • Rojas M, Li LZ, Kanakidou M, Hatzianastassiou N, Seze G, Le Treut H (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn 41(3–4):551–571. https://doi.org/10.1007/s00382-013-1823-8

    Article  Google Scholar 

  • Roth MS, Deheyn DD (2013) Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Nat Sci Rep 3. https://doi.org/10.1038/srep01421

  • Rowan R, Knowlton N, Baker AC, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388(6639):265–269. https://doi.org/10.1038/40843

    Article  Google Scholar 

  • Salma S, Rehman S, Shah MA (2012) Rainfall trends in different climate zones of Pakistan. P J M 9(17):37–47

    Google Scholar 

  • Sammarco PW (1982) Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar Ecol Prog Ser 10:57–65

    Article  Google Scholar 

  • Sanders D, Baron-Szabo RC (2005) Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeogr Palaeoclimatol Palaeoecol 216(1-2):139–181. https://doi.org/10.1016/j.palaeo.2004.10.008

    Article  Google Scholar 

  • Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island Japan. Mar Ecol Prog Ser 37:191–199. https://doi.org/10.3354/meps037191

    Article  Google Scholar 

  • Schluter HU, Prexl A, Gaedicke C, Roeser H, Reichert C, Meyer H, von Daniels C (2002) The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes. Mar Geol 185(3-4):219–232. https://doi.org/10.1016/S0025-3227(02)00192-5

    Article  Google Scholar 

  • Sepkoski JJ Jr (1997) Biodiversity: past, present, and future. J Paleontol 71(04):533–539. https://doi.org/10.1017/S0022336000040026

    Article  Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan. Government of Pakistan. Ministry of Petroleum and Natural Resources, Geological Survey of Pakistan. Memoirs of the geological survey of Pakistan 22

  • Sheppard C, Price A, Roberts C (1992) Marine ecology of the Arabian region. London Academic Press, p 336

  • Siddiqui PJA, Ali A, Bromfield K, Iqbal P, Shoaib N (2011) Identification of fossil corals inhabiting an uplifted area of Ras Gunz near Jiwani, Balochistan, Pakistan. Pak J Zool 43(3):523–527

    Google Scholar 

  • Snead RE (1964) Active mud volcanoes of Baluchistan, West Pakistan. Geogr Rev 54(4):546–560. https://doi.org/10.2307/212981

    Article  Google Scholar 

  • Snead RE (1968) Weather patterns in southern West Pakistan. Arch Met Geophy Biokl Ser B 16(4):316–346. https://doi.org/10.1007/BF02243179

    Article  Google Scholar 

  • Stafford-Smith MG (1993) Sediment rejection efficiency of 22 species of Australian scleractinian corals. Mar Biol 115(2):229–243. https://doi.org/10.1007/BF00346340

    Article  Google Scholar 

  • Stafford-Smith MG, Ormond RFG (1992) Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Aust J Mar Freshw Res 43(4):683–705. https://doi.org/10.1071/MF9920683

    Article  Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60(3-4):195–225. https://doi.org/10.1016/S0012-8252(02)00104-6

    Article  Google Scholar 

  • ten Haven HL, Kroon D (1991) Late Pleistocene sea surface water temperature variations off Oman as revealed by the distribution of long-chain alkenones. In: Prell WL, Niitsuma N (eds) Proceedings of the ocean drilling program, scientific results 117, pp 445–452. https://doi.org/10.2973/odp.proc.sr.117.159.1991

  • Tiwari M, Singh AK, Ramesh R (2011) High resolution monsoon records since last glacial maximum: A comparison ofmarine and terrestrialPaleoarchives fromsouth Asia. J Geo Res 2011:1–12

    Google Scholar 

  • Van Woesik R, De Vantier LM, Glazebrook JS (1995) Effects of cyclone ‘Joy’ on nearshore coral communities of the Great Barrier Reef. Mar Ecol Prog Ser 128:261–270

    Article  Google Scholar 

  • Veron J (2000) Corals of the world, Australian Institute of Marine Science. CCR Old Ptv Ltd., Townsville

    Google Scholar 

  • Von Rad U, Schaaf M, Michels KH, Schulz H, Berger WH, Sirocko F (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quat Res 51:39–53

    Article  Google Scholar 

  • Wadia DN (1981) Geology of India. Tata-Mc Graw-Hill, New Delhi

    Google Scholar 

  • Walter RC, Buffler RT, Bruggemann JH, Guillaume MMM, Berhe SM, Negassi B, Libsekal Y, Cheng H, Edwards RL, Cosel RV, Neraudeau D, Gagnon M (2000) Early human occupation of the Red Sea coast of Eritrea during the last interglacial. Nature 405(6782):65–69. https://doi.org/10.1038/35011048

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae inhospite from four different species of reef coral: a novel approach. Plant Cell Environ 19(3):291–299

    Article  Google Scholar 

  • Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RMM, Timothy G, Ferdelman TM, Fabricius KE (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci U S A 109(24):1558–1567

    Article  Google Scholar 

  • White RS (1982) Deformation of the Makran accretionary sediment prism in the Gulf of Oman (north-west Indian Ocean). J Geol Soc London Spec Publ 10:357–372

    Article  Google Scholar 

  • Wiedickea M, Neben S, Spiess V (2001) Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Mar Geol 172(1-2):57–73. https://doi.org/10.1016/S0025-3227(00)00127-4

    Article  Google Scholar 

  • Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshw Res 50(8):867–878. https://doi.org/10.1071/MF99121

    Article  Google Scholar 

  • Wilkinson C (2004) Status of the coral reefs of the world. Townsville, Queensland, Australia. Australian Institute of Marine Science, p 547

  • Wilson MEJ, Lokier SW (2002) Siliciclastic and volcaniclastic influences on equatorial carbonates: insights from the Neogene of Indonesia. Sedimentology 49(3):583–601. https://doi.org/10.1046/j.1365-3091.2002.00463.x

    Article  Google Scholar 

  • XiuBao L, Hui H, Sheng LJ, Jian Hui Y, Cheng YE, Yong Qiang C, Liang Min H (2013) Coral community changes in response to a high sedimentation event: a case study in southern Hainan Island. Chin Sci Bull 58(9):1028–1037

    Article  Google Scholar 

  • Yonge CM (1935) Studies on the biology of Tortugas corals. I Observations on Meandra areolata Linn. Carnegie Inst Was Publ 452:185–198

    Google Scholar 

  • Ziegler M, Tuenter E, Lourens LJ (2010) The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quat Sci Rev 29(11-12):1481–1490. https://doi.org/10.1016/j.quascirev.2010.03.011

    Article  Google Scholar 

Download references

Acknowledgements

The first author is highly thankful to Professor Dr. Pirzada Jamal A. Siddiqui, Director, Centre of Excellence in Marine Biology, University of Karachi, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ali.

Appendix

Appendix

Table 3 List of fossil coral collected from an uplifted location at Ras Gunz near Jiwani, Balochistan. Taxa with a question mark were not identified with certainty. From Siddiqui et al. (2011)
Table 4 General observations recorded at each site with GPS coordinates and elevations from sea level

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Siddiqui, P.J.A., Bromfield, K. et al. Quaternary fossil coral communities in uplifted strata along the Balochistan coast of Pakistan: understanding modern coral decline in the Arabian Sea. Arab J Geosci 10, 520 (2017). https://doi.org/10.1007/s12517-017-3306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3306-4

Keywords

Navigation