Skip to main content
Log in

Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study validates the impact of nickel oxide nanoparticles (NiONPs) biosynthesized from the brown seaweed Dictyota bartayresiana (DB) and its biological applications. The phytochemicals analyzed in the seaweed extract served as a reducing, capping or stabilizing agent in the formation of nanoparticles. UV visible spectrum of nickel oxide nanoparticles synthesized from DB (DB-NiONPs) represented a prominent peak at 392 nm which validates its formation. Fourier Transmission Infrared Spectroscopy (FT-IR) showcased the presence of functional groups in the biomolecules which aids in the stabilization of DB-NiONPs. The X-ray diffractometry (XRD) revealed the crystalline nature of DB-NiONPs and the particle size was calculated as 18.26 nm. The Scanning electron microscope (SEM) illustrates the irregularly shaped DB-NiONPs and the desired elements were depicted in energy dispersive X-ray (EDX) spectrum which confirms the purity of DB-NiONPs. The DB-NiONPs efficiently decolorised the Black B133 (BB133) dye to 86% in 25 min. The data of adsorption studies well fitted into Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study substantiated the spontaneous, feasible and endothermic process of adsorption. DB-NiONPs revealed enhanced antimicrobial, larvicidal and nematicidal activities against the selected microbes, larva of Culex pipens and juveniles of Meloidogyne incognita respectively. The phytotoxicity studies revealed the DB-NiONPs had a positive impact on the germination and growth of green gram seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I (2021) Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals 14(8):707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S (2020) An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10(11):1498. https://doi.org/10.3390/biom10111498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shafey AME (2020) Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process Synth 9(1):304–339. https://doi.org/10.1515/gps-2020-0031

    Article  Google Scholar 

  4. Chouke PB, Shrirame T, Potbhare AK, Mondal A, Chaudhary AR, Mondal S, Thakare SR, Nepovimova E, Valis M, Kuca K, Sharma R, Chaudhary RG (2022) Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater Today Adv 16:100314

    Article  CAS  Google Scholar 

  5. Biester A, Marcano-Delgado AN, Drennaz CL (2022) Structural insights into microbial one-carbon metabolic enzymes Ni–Fe–S-dependent carbon monoxide dehydrogenases and acetyl-CoA synthases. Biochemistry 61(24):2797–2805

    Article  CAS  PubMed  Google Scholar 

  6. Kaur H, Kaur H, Kaur H, Srivastava S (2022) The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul 100:219–236. https://doi.org/10.1007/s10725-022-00837-6

    Article  CAS  Google Scholar 

  7. Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S (2019) Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem 33(8):e4950

    Article  Google Scholar 

  8. Abudayyak M, Guzel E, Özhan G (2017) Nickel oxide nanoparticles induce oxidative DNA damage and apoptosis in kidney cell line (NRK-52E). Biol Trace Elem Res 178:98–104. https://doi.org/10.1007/s12011-016-0892-z

    Article  CAS  PubMed  Google Scholar 

  9. Karunakaran G, Sudha KG, Ali S, Cho EB (2023) Biosynthesis of nanoparticles from various biological sources and its biomedical applications. Molecules 28(11):4527. https://doi.org/10.3390/molecules28114527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T (2023) Current trends and prospects for application of green synthesized metal nanoparticles in cancer and COVID-19 therapies. Viruses 15(3):741. https://doi.org/10.3390/v15030741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC (2022) Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res 204:111967

    Article  CAS  PubMed  Google Scholar 

  12. Mustafa S, Mahmood F, Shafqat U, Hussain S, Shahid M, Batool F, Elnour OR, Hashhem M, Asseri TAY, Shahzad T (2023) The biosynthesis of nickel oxide nanoparticles: An eco-friendly approach for azo dye decolorization and industrial wastewater treatment. Sustainability 15(20):14965. https://doi.org/10.3390/su152014965

    Article  CAS  Google Scholar 

  13. Moavi J, Buazar F, Sayahi MH (2021) Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci rep 11(1):1–14. https://doi.org/10.1038/s41598-021-85832-z

    Article  CAS  Google Scholar 

  14. El-Debaiky S, El-Badry A, El-Shahawy MM (2017) Biosynthesis of nickel oxide nanoparticles using Fusarium verticillioides (Sacc.) and their biological activity against some causative agents of mycotic keratitis. Egypt J Bot 57(3):417–428. https://doi.org/10.21608/ejbo.2017.899.1066

  15. Sundaresan N, Ravichandran S (2023) Biosynthesis of nickel oxide nanoparticles using Evolvulus alsinoides extract and their potential photocatalytic and in vitro anticancer activity. Inorganic Chem Com 150:110489. https://doi.org/10.1016/j.inoche.2023.110489

    Article  CAS  Google Scholar 

  16. Gebre SH (2023) Bio-inspired synthesis of metal and metal oxide nanoparticles: The key role of phytochemicals. J Clust Sci 34(2):665–704

    Article  CAS  Google Scholar 

  17. Kaur H, Sodhi RS, Kaur G (2022) Eucalyptus modulated biosynthesis of nickel oxide nanoparticles with enhanced antibacterial and photo-catalytic activities. Inorg Nano-Met Chem 1–9. https://doi.org/10.1080/24701556.2021.2025090

  18. Aziz MK, Chauhan S, Azim Z, Bharati GK, Srivastava S (2022) The biosynthesis of nickel oxide nanoparticles using watermelon rind extract and their biophysical effects on the germination of Vigna radiata seeds at various concentrations. Int J Sci Res Arch 7(02):245–254. https://doi.org/10.30574/ijsra.2022.7.2.0271

  19. Wang X, Xiao Z, Niu W, Yang K, Lv H, Zhao Z, Zhai S, An Q, Qin C (2022) Nickel oxide/sulfide nanoparticle-embedded porous carbon prepared from kelp for excellent asymmetrical supercapacitors and microwave absorbers. J Alloys Compd 918:165721. https://doi.org/10.1016/j.jallcom.2022.165721

    Article  CAS  Google Scholar 

  20. Karthiga R, Ramya R (2021) Biosynthesis of NiO2 nanoparticles from marine seaweed HORMOPHYSA SPS and its antimicrobial activity. Int J Sci Res 10(9):13-19. https://doi.org/10.21275/SR21826150702

  21. Guo J, Qi M, Chen H, Zhou C, Ruan R, Yan X, Cheng P (2022) Macroalgae-derived multifunctional bioactive substances: The potential applications for food and pharmaceuticals. Foods 11(21):3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bogaert KA, Delva S, De Clerck O (2020) Concise review of the genus Dictyota JV Lamouroux. J Appl Phycol 32:1521–1543. https://doi.org/10.1007/s10811-020-02121-4

    Article  Google Scholar 

  23. Ilyas Z, Ali Redha A, Wu YS, Ozeer FS, Aluko RE (2023) Nutritional and health benefits of the Brown seaweed Himanthalia elongata. Plant Foods Hum Nutr 78:233–242. https://doi.org/10.1007/s11130-023-01056-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rushdi MI, Abdel-Rahman IA, Attia EZ, Saber H, Saber AA, Bringmann G, Abdelmohsen UR (2022) The biodiversity of the genus dictyota: Phytochemical and pharmacological natural products prospectives. Molecules 27(3):672. https://doi.org/10.3390/molecules27030672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Mahdavi B, Mohammadhosseini M, Rezaei-Seresht E, Paydarfard S, Qorbani M, Karimian M, Abbasi N, Ghaneialvar H, Karimi E (2021) Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem 14(5):103105. https://doi.org/10.1016/j.arabjc.2021.103105

    Article  CAS  Google Scholar 

  26. Sofowora A (1993) Recent trends in research into African medicinal plants. J Ethnopharmacol 38(2–3):197–208

    Article  Google Scholar 

  27. Olajire AA, Mohammed AA (2020) Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Adv Powder Technol 31(1):211–218

    Article  CAS  Google Scholar 

  28. Saied E, Salem SS, Al-Askar AA, Elkady FM, Arishi AA, Hashem AH (2022) Mycosynthesis of hematite (α-Fe2O3) nanoparticles using Aspergillus niger and their antimicrobial and photocatalytic activities. Bioengineering 9:397. https://doi.org/10.3390/bioengineering9080397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I Solids. J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  30. Freundlich H (1907) Über die adsorption in lösungen. Z J Chem Phys 57(1):385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  31. Pilley S, Kaur H, Hippargi G, Gonde P, Rayalu S (2022) Silk fibroin: a promising bio-material for the treatment of heavy metal-contaminated water, adsorption isotherms, kinetics, and mechanism. Environ Sci Pollut Res 29(37):56606–56619. https://doi.org/10.1007/s11356-022-19833-4

    Article  CAS  Google Scholar 

  32. El-Kammah M, Elkhatib E, Gouveia S, Cameselle C, Aboukila E (2022) Cost-effective ecofriendly nanoparticles for rapid and efficient indigo carmine dye removal from wastewater: Adsorption equilibrium, kinetics and mechanism. Environ Technol Innov 28:102595. https://doi.org/10.1016/j.eti.2022.102595

    Article  CAS  Google Scholar 

  33. Chavez-Esquivel G, Cervantes-Cuevas H, Ybieta-Olvera LF, Briones MC, Acosta D, Cabello J (2021) Antimicrobial activity of graphite oxide doped with silver against Bacillus subtilis, Candida albicans, Escherichia coli, and Staphylococcus aureus by agar well diffusion test: Synthesis and characterization. Mater Sci Eng C 123:111934. https://doi.org/10.1016/j.msec.2021.111934

    Article  CAS  Google Scholar 

  34. Vaithiyanathan T, Sundaramoorthy P (2017) Analysis of sugar mill effluent and its influence on germination and growth of African marigold (Tagetes erecta L.). Appl Water Sci 7:4715–4723

    Article  CAS  Google Scholar 

  35. Rusan MJ, Albalasmeh AA, Zuraiqi S, Bashabsheh M (2015) Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). Environ Sci Pollut Res 22:9127–9135. https://doi.org/10.1007/s11356-014-4004-3

    Article  CAS  Google Scholar 

  36. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme, WHO, Geneva, Switzerland

  37. Salem SS, Fouda MMG, Fouda A, Al-Olayan EM, Allam AA, Shaheen TI (2021) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 32:351–361. https://doi.org/10.1007/s10876-020-01794-8

    Article  CAS  Google Scholar 

  38. Eisenback JD, Hirschmann H, Sasser JN, Triantaphyllou AC (1981) A guide to the four most common species of root-knot nematodes (Meloidogyne species) with a pictorial key (No. REP - 7253. CIMMYT)

  39. Jepson SB (1987) Identification of Root-knot Nematodes (Meloidogyne species). Commonwealth Agricultural Bureaux, Farnham Royal, UK

    Google Scholar 

  40. Hussey RS, Barker KRA (1973) Comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  41. Prabhu S, Thangadurai TD, Bharathy PV, Kalugasalam P (2022) Synthesis and characterization of nickel oxide nanoparticles using Clitoria ternatea flower extract: Photocatalytic dye degradation under sunlight and antibacterial activity applications. Results in Chem 4:100285. https://doi.org/10.1016/j.rechem.2022.100285

    Article  CAS  Google Scholar 

  42. Anitha SDC, Lakshmi V, Jenila RM (2019) Synthesis of NiO nanoparticles using Thespesia populnea leaves by green synthesis method. Int J Res Dev 4(9):68–74

    Google Scholar 

  43. Mahdavi B, Paydarfard S, Rezaei-Seresht E, Baghayeri M, Nodehi M (2021) Green synthesis of NiONPs using Trigonella subenervis extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Appl Organomet Chem 35(8):e6264. https://doi.org/10.1002/aoc.6264

    Article  CAS  Google Scholar 

  44. Aminuzzaman M, Chong CY, Goh WS, Phang YK, Lai-Hock T, Chee SY, Akhtaruzzaman Md, Ogawa S, Watanabe A (2021) Biosynthesis of NiO nanoparticles using soursop (Annona muricata L.) fruit Peel green waste and their photocatalytic performance on crystal violet dye. J Clust Sci 32:949–958. https://doi.org/10.1007/s10876-020-01859-8

    Article  CAS  Google Scholar 

  45. Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. Chem Bio Eng Reviews 3(2):55–67. https://doi.org/10.1002/cben.201500018

    Article  Google Scholar 

  46. Patra JK, Shukla AC, Das G (2020) Advances in pharmaceutical biotechnology. Recent progress and future applications

  47. Rajeswari R, Jeyaprakash K (2019) Bioactive potential analysis of brown seaweed Sargassum wightii using UV-VIS and FT-IR. J Drug Deliv Ther 9(1):150–153. https://doi.org/10.22270/jddt.v9i1.2199

  48. Yip WH, Joe LS, Mustapha WAW, Maskat MY, Said M (2014) Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna. Sabah Sains Malays 43(9):1345–1354

    Google Scholar 

  49. Almatroudi A (2020) Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci 15(1):819–839. https://doi.org/10.1515/biol-2020-0094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh Y, Sodhi RS, Singh PP, Kaushal S (2022). Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater Adv 3(12):4991–5000. https://doi.org/10.1039/D2MA00114D

  51. Helan V, Prince JJ, Al-Dhabi NA, Arasu MV, Ayeshamariam A, Madhumitha G, Roopan SM, Jayachandran M (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 6:712–718. https://doi.org/10.1016/j.rinp.2016.10.005

    Article  Google Scholar 

  52. Pandian CJ, Palanivel R (2016) Applications of L-arginine functionalised green synthesised nickel nanoparticles as gene transfer vector and catalyst. J Exp Nanosci 11(15):1193–1212. https://doi.org/10.1080/17458080.2016.1204670

    Article  CAS  Google Scholar 

  53. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B Biol 180:39–50. https://doi.org/10.1016/j.jphotobiol.2018.01.023

    Article  CAS  Google Scholar 

  54. Nikoorazm M, Tahmasbi B, Gholami S, Moradi P (2020) Copper and nickel immobilized on CYTOSINE@ MCM-41: As highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl Organomet Chem 34(11):e5919. https://doi.org/10.1002/aoc.5919

    Article  CAS  Google Scholar 

  55. Chavez K, Rosas G (2019) Green synthesis and characterization of AG@AU Core-shell bimetallic nanoparticles using the extract of Hamelia patens plant. Microsc Microanal 25(S2):1102–1103. https://doi.org/10.1017/S143192761900624X

    Article  Google Scholar 

  56. Uddin S, Safdar LB, Iqbal J, Yaseen T, Laila S, Anwar S, Abbasi BA, Saif MS, Quraishi UM (2021) Green synthesis of nickel oxide nanoparticles using leaf extract of Berberis balochistanica: Characterization, and diverse biological applications. Microsc Res Tech 84(9):2004–2016. https://doi.org/10.1002/jemt.23756

    Article  CAS  PubMed  Google Scholar 

  57. Buazar F, Sweidi S, Badri M, Kroushawi F (2019) Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach. Green Process Synth 8(1):691–702. https://doi.org/10.1515/gps-2019-0040

    Article  CAS  Google Scholar 

  58. Barzinjy AA, Hamad SM, Aydın S, Ahmed MH, Hussain FHS (2020) Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J Mater Sci: Mater Electron 31:11303–11316. https://doi.org/10.1007/s10854-020-03679-y

    Article  CAS  Google Scholar 

  59. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Zhang X, Kennedy LJ (2020) Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surf Interfaces 20:100553. https://doi.org/10.1016/j.surfin.2020.100553

    Article  CAS  Google Scholar 

  60. Hussein BY, Mohammed AM (2021) Biosynthesis and characterization of nickel oxide nanoparticles by using aqueous grape extract and evaluation of their biological applications. Results Chem 3:100142. https://doi.org/10.1016/j.rechem.2021.100142

    Article  CAS  Google Scholar 

  61. Ponnusamy PM, Agilan S, Muthukumarasamy N, Senthil TS, Rajesh G, Venkatraman MR, Velauthapillai D (2016) Structural, optical and magnetic properties of undoped NiO and Fe-doped NiO nanoparticles synthesized by wet-chemical process. Mater Charact 114:166–171. https://doi.org/10.1016/j.matchar.2016.02.020

    Article  CAS  Google Scholar 

  62. Lingaraju K, Naika HR, Nagabhushana H, Jayanna K, Devaraja S, Nagaraju G (2020) Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab J Chem 13(3):4712–4719. https://doi.org/10.1016/j.arabjc.2019.11.003

  63. Al-Zaqri N, Umamakeshvari K, Mohana V, Muthuvel A, Boshaala A (2022) Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J Mater Sci: Mater Electron 33:11864–11880. https://doi.org/10.1007/s10854-022-08149-1

    Article  CAS  Google Scholar 

  64. Kumar VP, Ahamed JA, Karthikeyan M (2019) Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl Sci 1:1083. https://doi.org/10.1007/s42452-019-1113-0

    Article  CAS  Google Scholar 

  65. Flieger J, Franus W, Panek R, Szymańska-Chargot M, Flieger W, Flieger M, Kołodziej P (2021) Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules 26(16):4986. https://doi.org/10.3390/molecules26164986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abbasi BA, Iqbal J, Mahmood T, Ahmad R, Kanwal S, Afridi S (2019) Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Mater Res Express 6(8):0850a7. https://doi.org/10.1088/2053-1591/ab23e1

  67. Iqbal J, Abbasi BA, Ahmad R, Mahmoodi M, Munir A, Zahra SA, Shahbaz A, Shaukat M, Kanwal S, Uddin S, Mahmood T, Capasso R (2020) Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (wall.) and investigation of its multiple in vitro biological potentials. Biomedicines 8(5):117. https://doi.org/10.3390/biomedicines8050117

  68. Naik MM, Naik HSB, Nagaraju G, Naik HB, Nagaraju G, Vinuth M, Vinu K, Rashmi SK (2018) Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J Mater Sci: Mater Electron 29:20395–20414. https://doi.org/10.1007/s10854-018-0174-y

    Article  CAS  Google Scholar 

  69. Bibi I, Nazar N, Ata S, Sultan M, Ali A, Abbas A, Jilani K, Kamal S, Sarim FM, Khan MI, Jalal F, Iqbal M (2019) Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J Mater Res Technol 8(6):6115–6124. https://doi.org/10.1016/j.jmrt.2019.10.006

    Article  CAS  Google Scholar 

  70. Govindan K, Chandran HT, Raja M, Maheswari SU, Rangarajan M (2017) Electron scavenger-assisted photocatalytic degradation of amido black 10B dye with Mn3O4 nanotubes: a response surface methodology study with central composite design. J Photochem Photobiol A 341:146–156. https://doi.org/10.1016/j.jphotochem.2017.03.025

    Article  CAS  Google Scholar 

  71. Miri A, Mahabbati F, Najafidoust A, Miri MJ, Sarani M (2022) Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye. Inorg Nano-Met Chem 52(1):122–131. https://doi.org/10.1080/24701556.2020.1862226

    Article  CAS  Google Scholar 

  72. Chauhan H, Tanweer MS, Alam M (2023) Removal of Cationic and Anionic Dyes from Aqueous Phase by Biosynthesized Nickel Nanoparticles. In: Khan ZH, Jackson M, Salah NA (eds.) Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials, vol 28. Springer, Singapore. https://doi.org/10.1007/978-981-99-4685-3_71

  73. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23(8):1307–1315. https://doi.org/10.1016/j.cjche.2015.05.012

    Article  CAS  Google Scholar 

  74. Chauhan H, Tanweer MS, Alam M (2023) Efficient Removal of Cationic and Anionic Dyes from Synthetic and Real Wastewater by Plant-mediated Nickel Nanoparticles. Orient J Chem 39(3). https://doi.org/10.13005/ojc/390321

  75. Rashid IM, Salman SD, Mohammed AK, Mahdi YS (2022) Green synthesis of nickel oxide nanoparticles for adsorption of dyes. Sains Malays 51(2):533–546. https://doi.org/10.17576/jsm-2022-5102-17

  76. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M (2018) Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag 9:29–36. https://doi.org/10.1016/j.enmm.2017.11.005

    Article  Google Scholar 

  77. Onu DC, Babayemi AK, Egbosiuba TC, Okafor BO, Ani IJ, Mustapha S, Tijani JO, Ulakpa WC, Ovuoraye PE, Abdulkareem AS (2023) Isotherm, kinetics, thermodynamics, recyclability and mechanism of ultrasonic assisted adsorption of methylene blue and lead (II) ions using green synthesized nickel oxide nanoparticles. Environ Nanotechnol Monit Manag 20:100818. https://doi.org/10.1016/j.enmm.2023.100818

    Article  CAS  Google Scholar 

  78. Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14(3):52. https://doi.org/10.3390/md14030052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yadav HM, Otari SV, Bohara RA, Mali SS, Pawar SH, Delekar SD (2014) Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. J Photochem Photobiol A 294:130–136. https://doi.org/10.1016/j.jphotochem.2014.07.024

    Article  CAS  Google Scholar 

  80. Yien L, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:1–10. https://doi.org/10.1155/2012/632698-

    Article  Google Scholar 

  81. Ahghari MR, Soltaninejad V, Maleki A (2020) Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci Rep 10:12627. https://doi.org/10.1038/s41598-020-69679-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arif H, Qayyum S, Akhtar W, Fatima I, Kayani WK, Rahman KU, Al-Onazi WA, Al-Mohaimeed AM, Bangash NK, Ashraf N, Razak SA, Kamal A, Ali S (2023) Synthesis and characterization of zinc oxide nanoparticles at different pH values from Clinopodium vulgare L. and their assessment as an antimicrobial agent and biomedical application. Micromachines 14(7):1285. https://doi.org/10.3390/mi14071285

  83. Anjali KP, Sangeetha BM, Raghunathan R, Devi G, Dutta S (2021) Seaweed mediated fabrication of zinc oxide nanoparticles and their antibacterial, antifungal and anticancer applications. Chem Select 6(4):647–656. https://doi.org/10.1002/slct.202003517

    Article  CAS  Google Scholar 

  84. Kaidi S, Belattmania Z, Bentiss F, Jama C, Reani A, Sabour B (2021) Synthesis and characterization of silver nanoparticles using alginate from the brown seaweed Laminaria ochroleuca: structural features and antibacterial activity. Biointerface Res Appl Chem 12:6046–6057. https://doi.org/10.33263/BRIAC125.60466057

  85. Jeevitha M, Rajeshkumar S (2019) Antimicrobial activity of silver nanoparticles synthesized using marine brown seaweed Spatoglossum asperum against oral pathogens. Indian J Public Health 10:3569. https://doi.org/10.5958/0976-5506.2019.04140.8

    Article  Google Scholar 

  86. de Aragao AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araujo MC, Santiago JDAS, Cardoso VS, Quaresma P, Liete JRZA, da Silva DA (2019) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem 12(8):4182–4188. https://doi.org/10.1016/j.arabjc.2016.04.014

    Article  CAS  Google Scholar 

  87. González-Ballesteros N, Rodríguez-Argüelles MC, Lastra-Valdor M, González-Mediero G, Rey-Cao S, Grimaldi M, Cavazza A, Bigi F (2020) Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. J Nanostruct Chem 10:317–330. https://doi.org/10.1007/s40097-020-00352-y

    Article  CAS  Google Scholar 

  88. Subbulakshmi A, Durgadevi S, Anitha S, Govarthanan M, Biruntha M, Rameshthangam P, Kumar P (2023) Biogenic gold nanoparticles from Gelidiella acerosa: bactericidal and photocatalytic degradation of two commercial dyes. Appl Nanosci 13(6):4033–4042. https://doi.org/10.1007/s13204-022-02693-2

    Article  CAS  Google Scholar 

  89. Salem DM, Ismail MM, Aly-Eldeen MA (2019) Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt J Aquat Res 45(3):197–204. https://doi.org/10.1016/j.ejar.2019.07.002

    Article  Google Scholar 

  90. Bensy AD, Christobel GJ, Muthusamy K, Alfarhan A, Anantharaman P (2022) Green synthesis of iron nanoparticles from Ulva lactuca and bactericidal activity against enteropathogens. J King Saud Univ Sci 34(3):101888. https://doi.org/10.1016/j.jksus.2022.101888

    Article  Google Scholar 

  91. Marzban A, Mirzaei SZ, Karkhane M, Ghotekar SK, Danesh A (2022) Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J Drug Deliv Sci Technol 74:103499. https://doi.org/10.1016/j.jddst.2022.103499

    Article  CAS  Google Scholar 

  92. Sivakumar SR, Manimaran K, Govindasamy M, Alzahrani FM, Alsaiari NS (2023) Green synthesis and characterization of CuO nanoparticles using Halymenia dilatata extract and its evaluation of antimicrobial, anticancer activity. Biomass Convers Biorefin 1–10. https://doi.org/10.1007/s13399-022-03678-5

  93. Bharathi DS, Boopathyraja A, Nachimuthu S, Kannan K (2021) Green synthesis, characterization and antibacterial activity of SiO 2–ZnO nanocomposite by Dictyota bartayresiana extract and its cytotoxic effect on HT29 cell line. J Clust Sci 33(2499–2515):1–17. https://doi.org/10.1007/s10876-021-02170-w

    Article  CAS  Google Scholar 

  94. Wang YR, Yu L, Nan ZB, Liu YL (2004) Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Sci 44(2):535–541. https://doi.org/10.2135/cropsci2004.5350

    Article  Google Scholar 

  95. Verma DK, Patel S, Kushwah KS (2020) Green biosynthesis of silver nanoparticles and impact on growth, chlorophyll, yield and phytotoxicity of Phaseolus vulgaris L. Vegetos 33:648–657. https://doi.org/10.1007/s42535-020-00150-5

    Article  Google Scholar 

  96. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and Plant Sciences. Springer, Cham. 19–35. https://doi.org/10.1007/978-3-319-14502-0_2

  97. Anwar N, Mehmood A, Ahmad KS et al (2021) Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L. Physiol Mol Biol Plants 27:2115–2126. https://doi.org/10.1007/s12298-021-01073-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mekki A, Dhouib A, Sayadi S (2007) Polyphenols dynamics and phytotoxicity in a soil amended by olive mill wastewaters. J Environ Manage 84(2):134–140. https://doi.org/10.1016/j.jenvman.2006.05.015

    Article  CAS  PubMed  Google Scholar 

  99. Mehrian KS, Heidari R, Rahmani F, Najafi S (2016) Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. J Clust Sci 27:327–340. https://doi.org/10.1007/s10876-015-0932-4

    Article  CAS  Google Scholar 

  100. Mathew SS, Sunny NE, Shanmugam V (2021) Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorg Chem Commun 126:108485. https://doi.org/10.1016/j.inoche.2021.108485

    Article  CAS  Google Scholar 

  101. Sharma P, Kumar V Guleria P (2022) In vitro exposure of magnesium oxide nanoparticles negatively regulate the growth of Vigna radiata. Int J Environ Sci Technol 19:10679–10690.https://doi.org/10.1007/s13762-021-03738-9

  102. Anand KV, Anugraga AR, Kannan M, Singaravelu G, Govindaraju K (2020) Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Mat Lett 271:127792

  103. Kingslin A, Kalimuthu K, Kiruthika ML, Khalifa AS, Nhat PT, Brindhadevi K (2023) Synthesis, characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract. Appl Nanosci 13:2165–2178. https://doi.org/10.1007/s13204-021-02105-x

    Article  CAS  Google Scholar 

  104. Kingslin A, Kalimuthu K, Viswanathan P (2022). Nanocatalytic efficacy of silver nanoparticles fabricated using Chaetomorpha antennina algal extract, their characterization, and its applications. J Sci Res 14(1). https://doi.org/10.3329/jsr.v14i1.53782

  105. Yadav RK, Singh NB, Singh A, Yadav V, Khare NS, Azim Z (2022) Role of bio-based synthesized nanozinc oxide in ameliorating the deleterious effects caused by Lead in Vigna radiata L. Appl Biochem Biotechnol 194(5):2005–2020. https://doi.org/10.1007/s12010-022-03801-2

    Article  CAS  PubMed  Google Scholar 

  106. Zaheer S, Shehzad J, Chaudhari SK, Hasan M, Mustafa G (2023) Morphological and biochemical responses of Vigna radiata L. Seedlings towards green synthesized SiO2 NPs. Silicon 1–12. https://doi.org/10.1007/s12633-023-02470-y

  107. Abdallah Y, Hussien M, Omar MO, Elashmony RM, Alkhalifah DHM, Hozzein WN (2022) Mung bean (Vigna radiata) treated with magnesium nanoparticles and its impact on soilborne Fusarium solani and Fusarium oxysporum in clay soil. Plants 11(11):1514. https://doi.org/10.3390/plants11111514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Aly MZY, Osman KSM, Omar EM (2021) Recent, eco-friendly approach for controlling Culex pipiens (L.) using novel synthesized cadmium sulphide nanoparticles of Ocimum basillicum extract. Egypt J Aquat Biol Fish 25(4):359–377

  109. Aziz AT (2022) Toxicity of Ulva lactuca and green fabricated silver nanoparticles against mosquito vectors and their impact on the genomic DNA of the dengue vector Aedes aegypti. IET Nanobiotechnol 16(4):145–157. https://doi.org/10.1049/nbt2.12082

    Article  PubMed  PubMed Central  Google Scholar 

  110. Trivedi S, Alshehri MA, Panneerselvam C, Al-Aoh HA, Maggi F, Sut S, Dall’Acqua S (2021) Insecticidal, antibacterial and dye adsorbent properties of Sargassum muticum decorated nano-silver particles. S Afr J Bot 139:432–441. https://doi.org/10.1016/j.sajb.2021.03.002

    Article  CAS  Google Scholar 

  111. Ghramh HA, Khan KA, Ibrahim EH (2019) Biological activities of Euphorbia peplus leaves ethanolic extract and the extract fabricated gold nanoparticles (AuNPs). Molecules 24:1431. https://doi.org/10.3390/molecules24071431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fouda A, Eid AM, Abdel-Rahman MA, El-Belely EF, Awad MA, Hassan SED, Al-Faifi ZE, Hamza MF (2022) Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, Cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Front Bioeng Biotechnol 10:849921. https://doi.org/10.3389/fbioe.2022.849921

    Article  PubMed  PubMed Central  Google Scholar 

  113. Naveenkumar S, Kamaraj C, Ragavendran C, Vaithiyalingam M, Sugumar V, Marimuthu K (2023) Gracilaria corticata red seaweed mediate biosynthesis of silver nanoparticles: larvicidal, neurotoxicity, molecular docking analysis, and ecofriendly approach. Biomass Conv Bioref 1–23. https://doi.org/10.1007/s13399-023-04026-x

  114. Hasaballah AI, El-Naggar HA, Abdelbary S, Basher MAE, Selim TA (2022) Eco-friendly synthesis of zinc oxide nanoparticles by marine sponge, Spongia officinalis: Antimicrobial and insecticidal activities against the mosquito vectors, Culex pipiens and anopheles pharoensis. Bio Nano Sci 12:89–104. https://doi.org/10.1007/s12668-021-00926-2

    Article  Google Scholar 

  115. Al-Ghabban A, Eldiasty J (2022) Green synthesis of copper oxide nanoparticle by using achillea fragrantissima and nigella sativa extracts and their effects as larvicidal, molluscicidal and antimicrobial agents. Egypt Acad J Bio, E Med Entomol Parasitol 14(2):127–148. https://doi.org/10.21608/eajbse.2022.270408

  116. Fouda A, Al-Otaibi WA, Saber T, AlMotwaa SM, Alshallash KS, Elhady M, Badr NF, Abdel-Rahman MA (2022) Antimicrobial, antiviral, and in-vitro cytotoxicity and mosquitocidal activities of Portulaca oleracea-based green synthesis of selenium nanoparticles. J Funct Biomater 13(3):157. https://doi.org/10.3390/jfb13030157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rajakumar G, Rahuman AA, Velayutham K, Ramyadevi J, Jeyasubramanian K, Marikani A, Elango G, Kamaraj C, Siva C (2013) Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites. Vet Parasitol 191(3–4):332–339. https://doi.org/10.1016/j.vetpar.2012.08.028

    Article  CAS  PubMed  Google Scholar 

  118. Karthiga P, Rajeshkumar S, Annadurai G (2018) Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J Clust Sci 29:1233–1241. https://doi.org/10.1007/s10876-018-1441-z

    Article  CAS  Google Scholar 

  119. Fouda A, Hassan SED, Abdo AM, El-Gamal MS (2020) Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol Trace Elem Res 195:707–724. https://doi.org/10.1007/s12011-019-01883-4

    Article  CAS  PubMed  Google Scholar 

  120. Shahzad K, Manzoor F (2021) Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem Toxicol 44:1–11. https://doi.org/10.1080/01480545.2018.1525393

    Article  CAS  PubMed  Google Scholar 

  121. Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567.https://doi.org/10.1080/21691401.2017.1329739

  122. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269. https://doi.org/10.1016/j.taap.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  123. Lim D, Roh JY, Eom JH, Choi JY, Hyun J, Choi J (2012) Oxidative stress-related PMK1 P38 MAPK activation as a mechanism for the toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31(3):585–592. https://doi.org/10.1002/etc.1706

    Article  CAS  PubMed  Google Scholar 

  124. Ghareeb RY, Shams El-Din NGED, Maghraby DME, Ibrahim DS, Abdel-Megeed A, Abdelsalam NR (2022) Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants. Sci Rep 12(1):3841. https://doi.org/10.1038/s41598-022-06600-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ghareeb RY, Alfy H, Fahmy AA, Ali HM, Abdelsalam NR (2020) Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci Rep 10(1):19968. https://doi.org/10.1038/s41598-020-77005-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. El-Ashry RM, El-Saadony MT, El-Sobki AEA, El-Tahan AM, Al-Otaibi S, El-Shehawi AM, Saad AM, Elshaer N (2022) Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J Biol Sci 29(2):920–932. https://doi.org/10.1016/j.sjbs.2021.10.013

    Article  CAS  PubMed  Google Scholar 

  127. El-Ansary MSM, Hamouda RA, Elshamy MM (2022) Using Biosynthesized Zinc Oxide Nanoparticles as a Pesticide to Alleviate the Toxicity on Banana Infested with Parasitic-Nematode. Waste Biomass Valor 13:405–415. https://doi.org/10.1007/s12649-021-01527-6

    Article  CAS  Google Scholar 

  128. Akhter G, Khan A, Ali SG, Khan TA, Siddiqi KS, Khan HM (2020) Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant. SN Appl Sci 2:1–6. https://doi.org/10.1007/s42452-020-3068-6

    Article  CAS  Google Scholar 

  129. Duraisamy K, Amirthalingam M, Govindhan T, Kim JC, Hasegawa K, Palanisamy S (2022) Fabrication of zinc oxide nanorods using plant latex serum as a green matrix for the sustainable management of root-knot nematodes. Mater Lett 317:132098. https://doi.org/10.1016/j.matlet.2022.132098

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, for providing research facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G. V. Geethamala—Writing – Original draft.

A. V. Swathilakshmi—Software, Formal analysis.

S. Keerthana, D. Vidhyanivetha and G. Preethi – Investigation, Methodology.

P. Chitra – Data curation.

M. Poonkothai—Conceptualization, Supervision and Validation.

Corresponding author

Correspondence to M. Poonkothai.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable (this study does not contain any individual person’s data in any form).

Consent for Publication

Not applicable (this study does not contain any individual person’s data in any form).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 427 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geethamala, G.V., Swathilakshmi, A.V., Keerthana, S. et al. Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03978-5

Keywords

Navigation