Skip to main content
Log in

Visual mapping of global nanoplastics research progresses and hotspots: a scientometric assessment analysis

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Alimi OS, Budarz JF, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52(4):1704–1724

    Article  CAS  Google Scholar 

  • Alimi OS, Claveau-Mallet D, Kurusu RS, Lapointe M, Bayen S, Tufenkji N (2022) Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: what are we missing? J Hazard Mater 423:14

    Article  Google Scholar 

  • Arenas LR, Gentile SR, Zimmermann S, Stoll S (2021) Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci Total Environ 791:12

    Google Scholar 

  • Astner AF, Hayes DG, O'Neill H, Evans BR, Pingali SV, Urban VS, Young TM (2019) Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. Sci Total Environ 685:1097–1106

    Article  CAS  Google Scholar 

  • Atugoda T, Piyumali H, Wijesekara H, Sonne C, Lam SS, Mahatantila K, Vithanage M (2022) Nanoplastic occurrence, transformation and toxicity: a review. Environ Chem Lett

  • Barhoumi B, Sander SG, Tolosa I (2022) A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ Res 206:13

    Article  Google Scholar 

  • Bellingeri A, Bergami E, Grassi G, Faleri C, Redondo-Hasselerharm P, Koelmans AA, Corsi I (2019) Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Aquat Toxicol 210:179–187

    Article  CAS  Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 189:159–169

    Article  CAS  Google Scholar 

  • Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA (2018) Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Environ Sci Technol 49(1):32–80

    Article  Google Scholar 

  • Bornmann L, Leydesdorff L (2014) Scientometrics in a changing research landscape: bibliometrics has become an integral part of research quality evaluation and has been changing the practice of research. EMBO Rep 15(12):1228–1232

    Article  CAS  Google Scholar 

  • Bouwmeester H, Hollman PCH, Peters RJB (2015) Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947

    Article  CAS  Google Scholar 

  • Brandts I, Balasch JC, Goncalves AP, Martins MA, Pereira ML, Tvarijonaviciute A, Teles M, Oliveira M (2021) Immuno-modulatory effects of nanoplastics and humic acids in the European seabass (Dicentrarchus labrax). J Hazard Mater 414:10

    Article  Google Scholar 

  • Brandts I, Teles M, Goncalves AP, Barreto A, Franco-Martinez L, Tvarijonaviciute A, Martins MA, Soares A, Tort L, Oliveira M (2018) Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci Total Environ 643:775–784

    Article  CAS  Google Scholar 

  • Cai L, Hu LL, Shi HH, Ye JW, Zhang YF, Kim H (2018) Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere 197:142–151

    Article  CAS  Google Scholar 

  • Chen G, Feng Q, Wang J (2020) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504

    Article  CAS  Google Scholar 

  • Chen QQ, Yin DQ, Jia YL, Schiwy S, Legradi J, Yang SY, Hollert H (2017) Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci Total Environ 609:1312–1321

    Article  CAS  Google Scholar 

  • Davranche M, Veclin C, Pierson-Wickmann AC, El Hadri H, Grassl B, Rowenczyk L, Dia A, Ter Halle A, Blancho F, Reynaud S, Gigault J (2019) Are nanoplastics able to bind significant amount of metals? The lead example. Environ Pollut 249:940–948

    Article  CAS  Google Scholar 

  • Davranche M, Lory C, Le Juge C, Blancho F, Dia A, Grassl B, El Hadri H, Pascal PY, Gigault J (2020) Nanoplastics on the coast exposed to the North Atlantic Gyre: evidence and traceability. Nanoimpact 20:9

    Article  Google Scholar 

  • Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos paracentrotus lividus. Environ Sci Technol 48(20):12302–12311

    Article  CAS  Google Scholar 

  • Dominguez-Jaimes LP, Cedillo-Gonzalez EI, Luevano-Hipolito E, Acuna-Bedoya JD, Hernandez-Lopez JM (2021) Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J Hazard Mater 413:11

    Article  Google Scholar 

  • Dong SN, Cai WW, Xia JH, Sheng LT, Wang WM, Liu H (2021) Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: complex roles of electrolytes, pH and humic acid. Environ Pollut 268:9

    Article  Google Scholar 

  • Dong Z, Hou Y, Han W, Liu M, Wang J, Qiu Y (2020) Protein corona-mediated transport of nanoplastics in seawater-saturated porous media. Water Res 182:115978

    Article  CAS  Google Scholar 

  • Duan JJ, Bolan N, Li Y, Ding SY, Atugoda T, Vithanage M, Sarkar B, Tsang DCW, Kirkham MB (2021) Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Res 196:16

    Article  Google Scholar 

  • Estrela FN, Guimaraes ATB, Araujo APD, Silva FG, da Luz TM, Silva AM, Pereira PS, Malafaia G (2021) Toxicity of polystyrene nanoplastics and zinc oxide to mice. Chemosphere 271:13

    Article  Google Scholar 

  • Feng H, Liu YJ, Xu Y, Li SX, Liu X, Dai YH, Zhao J, Yue TT (2022) Benzo a pyrene and heavy metal ion adsorption on nanoplastics regulated by humic acid: cooperation/competition mechanisms revealed by molecular dynamics simulations. J Hazard Mater 424:10

    Article  Google Scholar 

  • Ferreira I, Venancio C, Lopes I, Oliveira M (2019) Nanoplastics and marine organisms: what has been studied? Environ Toxicol Pharmacol 67:1–7

    Article  CAS  Google Scholar 

  • Fu L, Li J, Wang G, Luan Y, Dai W (2021) Adsorption behavior of organic pollutants on microplastics. Ecotoxicol Environ Saf 217:112207

    Article  CAS  Google Scholar 

  • Gangadoo S, Owen S, Rajapaksha P, Plaisted K, Cheeseman S, Haddara H, Truong VK, Ngo ST, Vu VV, Cozzolino D, Elbourne A, Crawford R, Latham K, Chapman J (2020) Nano-plastics and their analytical characterisation and fate in the marine. Sci Total Environ 732:21

    Article  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Science Advances 3(e1700782)

  • Gigault J, Pedrono B, Maxit B, Ter Halle A (2016) Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano 3(2):346–350

    Article  CAS  Google Scholar 

  • Halm-Lemeille MP, Abbaszadeh Fard E, Latire T, Ferard JF, Costil K, Lebel JM, Bureau R, Serpentini A (2014) The effect of different polychlorinated biphenyls on two aquatic models, the green alga Pseudokirchneriella subcapitata and the haemocytes from the European abalone Haliotis tuberculata. Chemosphere 110:120–128

    Article  CAS  Google Scholar 

  • Hanif MA, Ibrahim N, Dahalan FA, Ali UFM, Hasan M, Jalil AA (2022) Microplastics and nanoplastics: recent literature studies and patents on their removal from aqueous environment. Sci Total Environ 810:20

    Article  Google Scholar 

  • Hansjosten I, Takamiya M, Rapp J, Reiner L, Fritsch-Decker S, Mattern D, Andraschko S, Anders C, Pace G, Dickmeis T, Peravali R, Rastegar S, Strahle U, Hsiao IL, Gilliland D, Ojea-Jimenez I, Ambrose SVY, Belinga-Desaunay-Nault MFA, Khan AO et al (2022) Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. Environ Sci Nano 9(1):375–392

    Article  CAS  Google Scholar 

  • Horton AA (2022) Plastic pollution: when do we know enough? J Hazard Mater 422:5

    Article  Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  Google Scholar 

  • Hu S, Alimire A, Lai Y, Hu H, Chen Z, Li Y (2021) Trends and frontiers of research on cancer gene therapy from 2016 to 2020: a bibliometric analysis. Front Med 8:740710

    Article  Google Scholar 

  • Jiang RF, Lin W, Wu JY, Xiong YX, Zhu F, Bao LJ, You J, Ouyang GF, Zeng EY (2018) Quantifying nanoplastic-bound chemicals accumulated in Daphnia magna with a passive dosing method. Environ Sci Nano 5(3):776–781

    Article  CAS  Google Scholar 

  • Jiang XT, Tian LL, Ma YN, Ji R (2019) Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. Sci Total Environ 655:591–597

    Article  CAS  Google Scholar 

  • Kelpsiene E, Ekvall MT, Lundqvist M, Torstensson O, Hua J, Cedervall T (2022) Review of ecotoxicological studies of widely used polystyrene nanoparticles. Environ Sci Process Impacts 24(1):8–16

    Article  CAS  Google Scholar 

  • Kang HM, Byeon E, Jeong H, Lee Y, Hwang UK, Jeong CB, Yoon C, Lee JS (2021) Arsenic exposure combined with nano- or microplastic induces different effects in the marine rotifer Brachionus plicatilis. Aquat Toxicol 233:9

    Article  Google Scholar 

  • Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601-602:1591–1605

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, JR., L. (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  • Lebordais M, Gutierrez-Villagomez JM, Gigault J, Baudrimont M, Langlois VS (2021) Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus). Chemosphere 277:14

    Article  Google Scholar 

  • Lee WS, Cho HJ, Kim E, Huh YH, Kim HJ, Kim B, Kang T, Lee JS, Jeong J (2019) Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 11(7):3173–3185

    Article  CAS  Google Scholar 

  • Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol 53(4):1748–1765

    Article  CAS  Google Scholar 

  • Li G, Yin W, Yang Y, Yang H, Chen Y, Liang Y, Zhang W, Xie T (2022) Bibliometric insights of global research landscape in mitophagy. Front Mol Biosci 9:851966

    Article  CAS  Google Scholar 

  • Li L, Sillanpää M, Risto M (2016) Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Environ Pollut 219:132–138

    Article  CAS  Google Scholar 

  • Li P, Zou X, Wang X, Su M, Chen C, Sun X, Zhang H (2020a) A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments. J Hazard Mater 385:121601

    Article  CAS  Google Scholar 

  • Li SX, Wang PP, Zhang C, Zhou XJ, Yin ZH, Hu TY, Hu D, Liu CC, Zhu LD (2020b) Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Sci Total Environ 714:8

    Article  Google Scholar 

  • Li X, He ER, Xia B, Liu Y, Zhang PH, Cao XD, Zhao L, Xu XY, Qiu H (2021) Protein corona-induced aggregation of differently sized nanoplastics: impacts of protein type and concentration. Environ Sci Nano 8(6):1560–1570

    Article  CAS  Google Scholar 

  • Li Y, Wang X, Fu W, Xia X, Liu C, Min J, Zhang W, Crittenden JC (2019) Interactions between nano/micro plastics and suspended sediment in water: implications on aggregation and settling. Water Res 161:486–495

    Article  CAS  Google Scholar 

  • Li ZC, Zhou H, Liu Y, Zhan JJ, Li WT, Yang KM, Yi XL (2020) Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus. Chemosphere 261:9

    Article  Google Scholar 

  • Lian JP, Wu JN, Zeb AR, Zheng SA, Ma T, Peng FH, Tang JC, Liu WT (2020) Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.). Environ Pollut 263:9

    Article  Google Scholar 

  • Liao YC, Jiang XF, Xiao Y, Li M (2020) Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: perspective from the physiological and transcriptional responses. Aquat Toxicol 228:11

    Article  Google Scholar 

  • Lin W, Jiang RF, Xiao XY, Wu JY, Wei SB, Liu Y, Muir DCG, Ouyang GF (2020) Joint effect of nanoplastics and humic acid on the uptake of PAHs for Daphnia magna: a model study. J Hazard Mater 391:8

    Article  Google Scholar 

  • Lin W, Jiang RF, Xiong YX, Wu JY, Xu JQ, Zheng J, Zhu F, Ouyang GF (2019) Quantification of the combined toxic effect of polychlorinated biphenyls and nano-sized polystyrene on Daphnia magna. J Hazard Mater 364:531–536

    Article  CAS  Google Scholar 

  • Liu J, Ma Y, Zhu DQ, Xia TJ, Qi Y, Yao Y, Guo XR, Ji R, Chen W (2018) Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain. Environ Sci Technol 52(5):2677–2685

    Article  CAS  Google Scholar 

  • Liu LJ, Fokkink R, Koelmans AA (2016) Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic. Environ Toxicol Chem 35(7):1650–1655

    Article  CAS  Google Scholar 

  • Liu YH, Wang Z, Wang S, Fang H, Ye N, Wang DG (2019) Ecotoxicological effects on Scenedesmus obliquus and Danio rerio co-exposed to polystyrene nano-plastic particles and natural acidic organic polymer. Environ Toxicol Pharmacol 67:21–28

    Article  CAS  Google Scholar 

  • Lorenzo JI, Nieto O, Beiras R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat Toxicol 58(1):27–41

    Article  CAS  Google Scholar 

  • Luo H, Liu C, He D, Sun J, Zhang A, Li J, Pan X (2022) Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs. Water Res 222:118921

    Article  CAS  Google Scholar 

  • Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B (2020a) Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut 261:114089

    Article  CAS  Google Scholar 

  • Ma J, Sheng GD, Chen QL, O'Connor P (2020b) Do combined nanoscale polystyrene and tetracycline impact on the incidence of resistance genes and microbial community disturbance in Enchytraeus crypticus? J Hazard Mater 387:12

    Article  Google Scholar 

  • Ma YN, Huang AN, Cao SQ, Sun FF, Wang LH, Guo HY, Ji R (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173

    Article  CAS  Google Scholar 

  • Machado AJT, Mataribu B, Serrao C, Silvestre LD, Farias DF, Bergami E, Corsi I, Marques-Santos LF (2021) Single and combined toxicity of amino-functionalized polystyrene nanoparticles with potassium dichromate and copper sulfate on brine shrimp Artemia franciscana larvae. Environ Sci Pollut Res 28(33):45317–45334

    Article  CAS  Google Scholar 

  • Maity S, Biswas C, Banerjee S, Guchhait R, Adhikari M, Chatterjee A, Pramanick K (2021) Interaction of plastic particles with heavy metals and the resulting toxicological impacts: a review. Environ Sci Pollut Res 28(43):60291–60307

    Article  CAS  Google Scholar 

  • Maizel AC, Remucal CK (2017) Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter. Environ Sci Technol 51(4):2113–2123

    Article  CAS  Google Scholar 

  • Mao YF, Li H, Huangfu XL, Liu Y, He Q (2020) Nanoplastics display strong stability in aqueous environments: insights from aggregation behaviour and theoretical calculations. Environ Pollut 258:10

    Article  Google Scholar 

  • Materić D, Kjær HA, Vallelonga P, Tison J-L, Röckmann T, Holzinger R (2022a) Nanoplastics measurements in northern and southern polar ice. Environ Res 208:112741

    Article  Google Scholar 

  • Materić D, Peacock M, Dean J, Futter M, Maximov T, Moldan F, Röckmann T, Holzinger R (2022b) Presence of nanoplastics in rural and remote surface waters. Environ Res Lett 17(5):054036

    Article  Google Scholar 

  • Mattsson K, Hansson LA, Cedervall T (2015) Nano-plastics in the aquatic environment. Environ Sci Process Impacts 17(10):1712–1721

    Article  CAS  Google Scholar 

  • Mei W, Chen G, Bao J, Song M, Li Y, Luo C (2020) Interactions between microplastics and organic compounds in aquatic environments: a mini review. Sci Total Environ 736:139472

    Article  CAS  Google Scholar 

  • Murano C, Bergami E, Liberatori G, Palumbo A, Corsi I (2021) Interplay between nanoplastics and the immune system of the mediterranean sea urchin paracentrotus lividus. Front Mar Sci 8:16

    Article  Google Scholar 

  • Nan X, Jin X, Song Y, Zhou K, Qin Y, Wang Q, Li W (2022) Effect of polystyrene nanoplastics on cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. Environ Pollut 311:119960

    Article  CAS  Google Scholar 

  • Natarajan L, Jenifer MA, Chandrasekaran N, Suraishkumar GK, Mukherjee A (2022) Polystyrene nanoplastics diminish the toxic effects of Nano-TiO2 in marine algae Chlorella sp. Environ Res 204:10

    Article  Google Scholar 

  • Ning Q, Wang DL, An JH, Ding Q, Huang ZY, Zou Y, Wu F, You J (2022) Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli. J Hazard Mater 422:9

    Article  Google Scholar 

  • Oriekhova O, Stoll S (2018) Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ Sci Nano 5(3):792–799

    Article  CAS  Google Scholar 

  • Pasqualini V, Garrido M, Cecchi P, Connès C, Couté A, El Rakwe M, Henry M, Hervio-Heath D, Quilichini Y, Simonnet J, Rinnert E, Vitré T, Galgani F (2023) Harmful algae and pathogens on plastics in three mediterranean coastal lagoons. Heliyon 9(3):e13654

    Article  CAS  Google Scholar 

  • Pittura, L., Avio, C.G., Giuliani, M.E., d'Errico, G., Keiter, S.H., Cormier, B., Gorbi, S., Regoli, F. 2018. Microplastics as vehicles of environmental pahs to marine organisms: combined chemical and physical hazards to the mediterranean mussels, Mytilus galloprovincialis. Frontiers in Marine Science, 5

  • PlasticEurope (2022) Plastics - the facts 2022. PlasticEurope

  • PlasticsEurope (2021) Plastics - the facts 2021. PlasticsEurope

  • Qi Z, Zhang L, Wang F, Hou L, Chen W (2014) Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environ Toxicol Chem 33(5):998–1004

    Article  CAS  Google Scholar 

  • Qin F, Du J, Gao J, Liu G, Song Y, Yang A, Wang H, Ding Y, Wang Q (2020) Bibliometric profile of global microplastics research from 2004 to 2019. Intl J Environ Res Public Health, 17(16)

  • Qiu X, Ma S, Zhang J, Fang L, Guo X, Zhu L (2022) Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: the crucial role of reactive oxygen species. Environ Sci Technol 56(14):10149–10160

    Article  CAS  Google Scholar 

  • Ramasamy BSS, Palanisamy S (2021) A review on occurrence, characteristics, toxicology and treatment of nanoplastic waste in the environment. Environ Sci Pollut Res 28(32):43258–43273

    Article  CAS  Google Scholar 

  • Reichelt S, Gorokhova E (2020) Micro- and nanoplastic exposure effects in microalgae: a meta-analysis of standard growth inhibition tests. Front Environ Sci 8:17

    Article  Google Scholar 

  • Reynaud S, Aynard A, Grassl B, Gigault J (2022) Nanoplastics: from model materials to colloidal fate. Curr Opin Colloid Interface Sci 57:12

    Article  Google Scholar 

  • Rinklebe J, Antoniadis V, Shaheen SM, Rosche O, Altermann M (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ Int 126:76–88

    Article  CAS  Google Scholar 

  • Saavedra J, Stoll S, Slaveykova VI (2019) Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ Pollut 252:715–722

    Article  CAS  Google Scholar 

  • Schroter L, Ventura N (2022) Nanoplastic toxicity: insights and challenges from experimental model systems. Small 18(31):e2201680

    Article  Google Scholar 

  • Sharpless CM, Aeschbacher M, Page SE, Wenk J, Sander M, McNeill K (2014) Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. Environ Sci Technol 48(5):2688–2696

    Article  CAS  Google Scholar 

  • Shen M, Song B, Zhu Y, Zeng G, Zhang Y, Yang Y, Wen X, Chen M, Yi H (2020) Removal of microplastics via drinking water treatment: current knowledge and future directions. Chemosphere 251:126612

    Article  CAS  Google Scholar 

  • Shen MC, Zhang YX, Zhu Y, Song B, Zeng GM, Hu DF, Wen XF, Ren XY (2019) Recent advances in toxicological research of nanoplastics in the environment: a review. Environ Pollut 252:511–521

    Article  CAS  Google Scholar 

  • Singh N, Khandelwal N, Ganie ZA, Tiwari E, Darbha GK (2021) Eco-friendly magnetic biochar: an effective trap for nanoplastics of varying surface functionality and size in the aqueous environment. Chem Eng J 418:13

    Article  Google Scholar 

  • Stapleton PA (2019) Toxicological considerations of nano-sized plastics. Aims Environ Sci 6(5):367–378

    Article  CAS  Google Scholar 

  • Sun CY, Zhang WC, Ding RR, Wang JZ, Yao LG (2020) Mechanism of low concentrations of polystyrene microplastics influence the cytotoxicity of Ag ions to Escherichia coli. Chemosphere 253:11

    Article  Google Scholar 

  • Tang N, Li X, Gao X, Liu X, Xing W (2022) The adsorption of arsenic on micro- and nano-plastics intensifies the toxic effect on submerged macrophytes. Environ Pollut 311:119896

    Article  CAS  Google Scholar 

  • Tallec K, Huvet A, Di Poi C, Gonzalez-Fernandez C, Lambert C, Petton B, Le Goic N, Berchel M, Soudant P, Paul-Pont I (2018) Nanoplastics impaired oyster free living stages, gametes and embryos. Environ Pollut 242:1226–1235

    Article  CAS  Google Scholar 

  • Ter Halle A, Jeanneau L, Martignac M, Jarde E, Pedrono B, Brach L, Gigault J (2017) Nanoplastic in the North Atlantic subtropical Gyre. Environ Sci Technol 51(23):13689–13697

    Article  Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838

    Article  CAS  Google Scholar 

  • Trevisan R, Voy C, Chen SX, Di Giulio RT (2019) Nanoplastics decrease the toxicity of a complex pah mixture but impair mitochondrial energy production in developing zebrafish. Environ Sci Technol 53(14):8405–8415

    Article  CAS  Google Scholar 

  • Tussellino M, Valiante S, Carotenuto R, Prisco M, Laforgia, Vincenza (2016) Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol Vitro: Intl J Published Assoc BIBRA 31:126–136

    Article  Google Scholar 

  • Velzeboer I, Kwadijk C, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48(9):4869–4876

    Article  CAS  Google Scholar 

  • Walse SS, Morgan SL, Kong L, Ferry JL (2004) Role of dissolved organic matter, nitrate, and bicarbonate in the photolysis of aqueous fipronil. Environ Sci Technol 38(14):3908–3915

    Article  CAS  Google Scholar 

  • Wan T, Lu S, Cheng W, Ren J, Wang M, Hu B, Jia Z, Li Y, Sun Y (2019) A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions. Environ Pollut 249:398–405

    Article  CAS  Google Scholar 

  • Wang HT, Ma L, Zhu D, Ding J, Li G, Jin BJ, Shao YH, Zhang WX, Song MY, Fu SL (2022) Responses of earthworm Metaphire vulgaris gut microbiota to arsenic and nanoplastics contamination. Sci Total Environ 806:8

    Google Scholar 

  • Wang LW, Wu WM, Bolan NS, Tsang DCW, Li Y, Qin MH, Hou DY (2021) Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives. J Hazard Mater 401:18

    Article  Google Scholar 

  • Wang X, Muhmood A, Ren D, Tian P, Li Y, Yu H, Wu S (2023) Exploring the mechanisms of humic acid mediated degradation of polystyrene microplastics under ultraviolet light conditions. Chemosphere 327:138544

    Article  CAS  Google Scholar 

  • Wang Z, Sedighi M, Lea-Langton A (2020) Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Res 184:116165

    Article  CAS  Google Scholar 

  • Wenk J, von Gunten U, Canonica S (2011) Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ Sci Technol 45(4):1334–1340

    Article  CAS  Google Scholar 

  • Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I (2021) Environmental dimensions of the protein corona. Nat Nanotechnol 16(6):617–629

    Article  CAS  Google Scholar 

  • Wu JY, Jiang RF, Lin W, Ouyang GF (2019) Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges. Environ Pollut 245:836–843

    Article  CAS  Google Scholar 

  • Wu JY, Ye QY, Wu PX, Xu SR, Liu YJ, Ahmed Z, Rehman S, Zhu NW (2022) Heteroaggregation of nanoplastics with oppositely charged minerals in aquatic environment: experimental and theoretical calculation study. Chem Eng J 428:9

    Article  Google Scholar 

  • Wu M, Jiang Y, Kwong RWM, Brar SK, Zhong H, Ji R (2021a) How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis. Environ Pollut 280:116959

    Article  CAS  Google Scholar 

  • Wu X, Liu P, Gong Z, Wang H, Huang H, Shi Y, Zhao X, Gao S (2021b) Humic acid and fulvic acid hinder long-term weathering of microplastics in lake water. Environ Sci Technol 55(23):15810–15820

    Article  CAS  Google Scholar 

  • Xiong YC, Zhao JH, Li LQ, Wang YY, Dai XH, Yu F, Ma J (2020) Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution. Water Res 184:11

    Article  Google Scholar 

  • Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S (2020) The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small 16(36):2003691

    Article  CAS  Google Scholar 

  • Xu YH, Ou Q, He Q, Wu ZS, Ma J, Huangfu XL (2021) Influence of dissolved black carbon on the aggregation and deposition of polystyrene nanoplastics: comparison with dissolved humic acid. Water Res 196:10

    Article  Google Scholar 

  • Yan WT, Lu S, Yang YD, Ning WY, Cai Y, Hu XM, Zhang Q, Xiong K (2021a) Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regen Res 16(8):10

    Google Scholar 

  • Yan Z, Xu LM, Zhang WM, Yang G, Zhao ZL, Wang Y, Li XC (2021b) Comparative toxic effects of microplastics and nanoplastics on Chlamydomonas reinhardtii: growth inhibition, oxidative stress, and cell morphology. J Water Process Eng 43:11

    Article  Google Scholar 

  • Yilimulati M, Wang LF, Ma XL, Yang CW, Habibul N (2021) Adsorption of ciprofloxacin to functionalized nano-sized polystyrene plastic: kinetics, thermochemistry and toxicity. Sci Total Environ 750:8

    Article  Google Scholar 

  • Yu Q, Hu X, Yang B, Zhang G, Wang J, Ling W (2020) Distribution, abundance and risks of microplastics in the environment. Chemosphere 249:126059

    Article  CAS  Google Scholar 

  • Yu SJ, Shen MH, Li SS, Fu YJ, Zhang D, Liu HY, Liu JF (2019) Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Environ Pollut 255:9

    Article  Google Scholar 

  • Zhang B, Chao JY, Chen L, Liu LC, Yang X, Wang Q (2021a) Research progress of nanoplastics in freshwater. Sci Total Environ 757:12

    Article  Google Scholar 

  • Zhang F, Xia Q, Zhang L, Wang H, Bai Y, Wu W (2022) A bibliometric and visualized analysis of early mobilization in intensive care unit from 2000 to 2021. Front Neurol 13:848545

    Article  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang X, Song Z, Wei D, Chen K (2020) Bibliometric analysis of ATAC-Seq and its use in cancer biology via nucleic acid detection. Front Med 7

  • Zhang Q, Qu Q, Lu T, Ke MJ, Zhu YC, Zhang M, Zhang ZY, Du BB, Pan XL, Sun LW, Qian HF (2018) The combined toxicity effect of nanoplastics and glyphosate on microcystis aeruginosa growth. Environ Pollut 243:1106–1112

    Article  CAS  Google Scholar 

  • Zhang YT, Chen HX, He SQ, Wang FP, Liu YW, Chen MY, Yao GS, Huang YL, Chen RN, Xie LT, Mu JL (2021b) Subchronic toxicity of dietary sulfamethazine and nanoplastics in marine medaka (Oryzias melastigma): insights from the gut microbiota and intestinal oxidative status. Ecotoxicol Environ Saf 226:9

    Article  Google Scholar 

  • Zhang YY, Goss GG (2020) Potentiation of polycyclic aromatic hydrocarbon uptake in zebrafish embryos by nanoplastics. Environ Sci Nano 7(6):1730–1741

    Article  CAS  Google Scholar 

  • Zhong X, Chen Z, Li Y, Ding K, Liu W, Liu Y, Yuan Y, Zhang M, Baker AJM, Yang W, Fei Y, Wang Y, Chao Y, Qiu R (2020) Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J Hazard Mater 400:123289

    Article  CAS  Google Scholar 

  • Zhou D, Cai YP, Yang ZF (2022) Key factors controlling transport of micro- and nanoplastic in porous media and its effect on coexisting pollutants. Environ Pollut 293:9

    Article  Google Scholar 

  • Zhou RR, Lu GH, Yan ZH, Jiang RR, Sun Y, Zhang P (2021) Interactive transgenerational effects of polystyrene nanoplastics and ethylhexyl salicylate on zebrafish. Environ Sci Nano 8(1):146–159

    Article  CAS  Google Scholar 

  • Zuo JL, Huo TB, Du X, Yang Q, Wu Q, Shen JZ, Liu CS, Hung TC, Yan W, Li GY (2021) The joint effect of parental exposure to microcystin-LR and polystyrene nanoplastics on the growth of zebrafish offspring. J Hazard Mater 410:11

    Article  Google Scholar 

  • Zupic I, Cater T (2015) Bibliometric methods in management and organization. Organ Res Methods 18(3):429–472

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Natural Science Foundation of Shandong Province (ZR2021QC135) and the support from the Project of the Talent Introduction of Dezhou University (2019xjrc327, 2019xjrc328). The research was also supported by Dezhou Municipal Research and Development Project (2022dzkj049, 2022dzkj050).

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2021QC135) and the Project of the Talent Introduction of Dezhou University (2019xjrc327, 2019xjrc328). The research was also supported by Dezhou Municipal Research and Development Project (2022dzkj049, 2022dzkj050).

Author information

Authors and Affiliations

Authors

Contributions

RW: conceptualization, methodology, formal analysis, and writing—original draft. SY: methodology and data curation. CH: writing—review and editing. LJ: writing—review and editing. CT: writing—review and editing. ZL: data curation and formal analysis. JY: conceptualization, writing—review and editing, and supervision.

Corresponding author

Correspondence to Jiafeng Yu.

Ethics declarations

Ethical approval

All analyses were based on previously published studies, so no ethical approval or patient consent is required.

Consent to participate

This work has been approved by all the authors and by the responsible authorities where the work was undertaken.

Consent for publication

All authors have read and approved the final version before submitting the paper and guaranteed that the paper has not been published previously.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yue, S., Huang, C. et al. Visual mapping of global nanoplastics research progresses and hotspots: a scientometric assessment analysis. Environ Sci Pollut Res 30, 114739–114755 (2023). https://doi.org/10.1007/s11356-023-30597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30597-3

Keywords

Navigation