Skip to main content
Log in

Insights into the molecular mechanisms underlying the different heat tolerance of the scleractinian coral Pavona decussata

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The increasing threat of ocean warming has led to the more frequent endangerment of coral reefs, including the heat-tolerant Pavona decussata. To shed light on the molecular mechanisms involved in the response of coral to ocean warming, we investigated the gene expression profiles of P. decussata after natural thermal stress. Using PacBio Sequel II sequencing technology, we obtained relatively complete transcriptome data for P. decussata and then analyzed its gene expression quantitatively with Illumina RNA-seq technology. We acquired information on gene function, structure, and expression profile from coral host and zooxanthellae. Analysis of Illumina sequencing data revealed that unbleached coral host might rely on the active utilization of amino acids to maintain a stable living condition based on the tricarboxylic acid cycle under high temperature stress, and that zooxanthellae might benefit from ammonium produced by coral host. Moreover, the downregulation of unbleached coral host gene expression in innate immune pathways centered on the transcription factors that heat shock factor and nuclear factor (NF)-κB, as well as the tyrosine kinase pathway, might be crucial for maintaining the equilibrium of the zooxanthellae under thermal stress. Thus, the differences in these molecular mechanisms could determine, to some extent, whether coral host can maintain a symbiotic relationship with algae under heat stress. This study elucidated the molecular mechanisms underlying differences in thermal tolerance within P. decussata species and supported further theoretical basis in coral molecular biology and ecological conservation, which enhance our comprehension of coral responses to future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

We thank all laboratory members for their continued and helpful discussions. This research was funded by the National Natural Science Foundation of China (Nos. 42090041 and 42030502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kefu Yu or Shengping Zhong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Huang, S., Luo, L. et al. Insights into the molecular mechanisms underlying the different heat tolerance of the scleractinian coral Pavona decussata. Coral Reefs 43, 429–442 (2024). https://doi.org/10.1007/s00338-024-02478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-024-02478-9

Keywords

Navigation