Skip to main content
Log in

Electrophysiology of Turgor Regulation in Marine Siphonous Green Algae

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We review electrophysiological measures of turgor regulation in some siphonous green algae, primarily the giant-celled marine algae, Valonia and Ventricaria, with particular comparison to the well studied charophyte algae Chara and Lamprothamnium. The siphonous green algae have a less negative plasma membrane potential, and are unlikely to have a proton-based chemiosmotic transport system, dominated by active electrogenic K+ uptake. We also make note of the unusual cellular structure of the siphonous green algae. Hypertonic stress, due to increased external osmotic pressure, is accompanied by positive-going potential difference (PD), increase in conductance, and slow turgor regulation. The relationship between these is not yet resolved, but may involve changes in K+ conductance (G K) or active K+ transport at both membranes. Hypotonic turgor regulation, in response to decreased external osmotic pressure, is ∼3 times faster than hypertonic turgor regulation. It is accompanied by a negative-going PD, although conductance also increases. The conductance increase and the magnitude of the PD change are strongly correlated with the magnitude of hypotonic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Amtmann A., Gradmann D. 1994. Na+ transport in Acetabularia bypasses conductance of plasmalemma. J. Membrane Biol. 139:117–125

    Article  CAS  Google Scholar 

  • Beilby M. 1984. Current-voltage characteristics of the proton pump at Chara plasmalemma. I. pH dependenc. J. Membrane Biol. 81:113–125

    Article  Google Scholar 

  • Beilby M. 1986. Potassium channels and different states of Chara plasmalemma. J. Membrane Biol. 89:241–249

    Article  CAS  Google Scholar 

  • Beilby M.J. 1989. Electrophysiology of giant algal cells. Methods in Enz 174:403–413

    CAS  Google Scholar 

  • Beilby M.J. 1990. Current-voltage curves for plant membrane studies: A critical analysis of the method. J. Exp. Bot. 41:165–182

    Google Scholar 

  • Beilby M.J., Bisson M.A. 1999. Transport systems of Ventricaria ventricosa: I/V analysis of both membranes in series as a function of [K+ o]. J. Membrane Biol. 171:63–73

    Article  CAS  Google Scholar 

  • Beilby, M.J., Bisson, M.A. Shepherd, V.A. The electrophysiology of turgor regulation in charophyte cells. In: Volkov AG editor. Plant Electrophysiology–Theory and Methods. Elsevier, New York, NY (in press)

  • Beilby M.J., Cherry C.A., Shepherd V.A. 1999. Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant Cell Env. 22:347–359

    Article  CAS  Google Scholar 

  • Beilby M.J., Shepherd V.A. 1989. Cytoplasm-enriched fragments of Chara—Structure and electrophysiology. J. Exp. Bot. 41:168–182

    Google Scholar 

  • Beilby M., Shepherd V.M. 2001. Modeling the current-voltage characteristics of charophyte membranes. II. The effect of salinity on membranes of Lamprothamnium papulosum. J. Membrane Biol. 181:77–89

    CAS  Google Scholar 

  • Beilby M.J., Walker N.A. 1996. Modeling the current-voltage characteristics of Chara membranes: I. The effect of ATP removal and zero turgo., J. Membrane Biol. 149:89–101

    Article  CAS  Google Scholar 

  • Bisson M.A., Beilby M.J. 2002. The transport systems of Ventricaria ventricosa: II. Hypotonic and hypertonic turgor regulation. J. Membrane Biol. 190:43–56

    Article  CAS  Google Scholar 

  • Bisson M.A., Gutknecht J. 1975. Osmotic regulation in the marine alga Codium decorticatum. I. Regulation of turgor pressure by control of ionic composition. J. Membrane Biol. 124:183–200

    Article  Google Scholar 

  • Bisson M.A., Gutknecht J. 1980. Osmotic regulation in algae. In: Spanswick R.M., Lucas W.J., Dainty J. (editors). Plant Membrane Transport: Current Conceptual Issues. Elsevier/North Holland Biomedical Press Amsterdam, 131–142

    Google Scholar 

  • Bisson M.A., Kiegle E., Black D., Kiyosawa K., Gerber N. 1995. The role of calcium in turgor regulation in Chara longifolia. Plant, Cell and Env. 18:129–137

    Article  CAS  Google Scholar 

  • Bisson M.A., Kirst G.O. 1979. Osmotic adaptation in the marine alga Griffithsia monilis (Rhodophyceae): the role of ions and organic compounds. Austral. J. Plant Physiol. 6:523–538

    CAS  Google Scholar 

  • Bisson M.A., Kirst G.O. 1980. Lamprothamnium, a euryhaline Charophyte. II. Time course of turgor regulation. J. Exp. Bot. 31:1237–1244

    Google Scholar 

  • Bisson M.A., Kirst G.O. 1995. Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    CAS  Google Scholar 

  • Bisson M.A., Walker N. 1982. Transitions between modes of behaviour (states) of the Charophyte plasmalemma. In: Marré, E., Hertel, R., Plasmalemma and Tonoplast: Their Functions in the Plant Cell. Elsevier Biomedical Press, Amsterdam, pp. 35–40

  • Brownlee C., Goddard H., Hetherington A.M., Peake L.A. 1999. Specificity and integration of response: Ca2+ as a signal in polarity and osmotic regulation. J. Exp. Bot. 50:1001–1011

    Article  CAS  Google Scholar 

  • Brownlee, C., Manison, N.F.H., Anning, R. 1998. Calcium, polarity and osmoregulation in Fucus embryos: One messenger, multiple messages. Experimental Biology Online. 3

  • Coster H.G.L., Chilcott T.C., Coster C.F. 1996. Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochem. Bioenerg. 40:79–98

    Article  CAS  Google Scholar 

  • Coster H.G.L., Zimmermann U. 1976. Transduction of turgor pressure by cell membrane compression. Zeitsch. f. Naturforsch. 31:461–463

    Google Scholar 

  • Damon E.B. 1930. Dissimilarity of inner and outer protoplasmic surfaces in Valonia. J. Gen. Physiol. 13:207–221

    Article  Google Scholar 

  • Davis R.F. 1981. Electrical properties of the plasmalemma and tonoplast in Valonia ventricosa. Plant Physiol. 67:825–831

    Article  PubMed  CAS  Google Scholar 

  • Findlay G.P., Hope A.B., Pitman M.G., Smith F.A., Walker N.A. 1971. Ionic relations of marine alga Valoniopsis pachynema. Austral. J. Plant. Physiol. 5:675–686

    Google Scholar 

  • Findlay G.P., Hope A.B., Pitman M.G., Smith F.A., Walker N.A. 1978. Ionic relations of marine algae. III. Chaetomorpha: membrane electrical properties and chloride fluxes. Austral. J. Biol. Sci. 24: 731–745

    Google Scholar 

  • Forgac M. (1998) Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett. 440:258–263

    Article  PubMed  CAS  Google Scholar 

  • Gelli A., Higgins V.J., Blumwald E. (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol. 113:269–279

    PubMed  CAS  Google Scholar 

  • Gradmann D. (1976) ‘Metabolic’ action potentials in Acetabularia. J. Membrane Biol. 29:23–45

    Article  CAS  Google Scholar 

  • Gradmann D. 1989. ATP-driven chloride pump in the giant alga Acetabularia. Methods in Enz 174:490–504

    Article  CAS  Google Scholar 

  • Gradmann D., Mummert H. 1980. Plant Action Potentials. In: Spanswick R.M., Lucas W.J., Dainty J. (editors) Plant membrane Transport: Current Conceptual Issues. Elsevier Biomedical Press, Amsterdam, pp 333–344

    Google Scholar 

  • Gradmann D., Mummert H. 1984. Mechanism of Cl efflux bursts in Acetabularia: Vesicle release versus permeability transients. J. Membrane Biol. 78:81–83

    Article  CAS  Google Scholar 

  • Gradmann D., Wagner G., Glasel R.M. 1973. Chloride efflux during light-triggered action potentials in Acetabularia mediterranea. Biochim. Biophys. Acta. 323:151–155

    Article  PubMed  CAS  Google Scholar 

  • Graves J., Gutknecht J. 1976. Ion-transport studies and determination of cell-wall elastic-modulus in marine alga Halicystis-parvula. J. Gen. Physiol. 67:579–597

    Article  PubMed  CAS  Google Scholar 

  • Greger R., editor. 1988. NaCl transport in epithelia. Advances in comparative and environmental physiology. Berlin, Springer-Verlag

    Google Scholar 

  • Guggino S., Gutknecht J. 1982. Turgor regulation in Valonia macrophysa following acute osmotic shock. J. Membrane Biol. Gutknecht J. 155–164

  • Gutknecht J. 1966. Sodium, potassium and chloride transport and membrane potentials in Valonia ventricosa. Biol Bull Gutknecht J. 331–344

  • Gutknecht J. 1967. Ion fluxes and short-circuit current in internally perfused cells of Valonia ventricosa. J. Gen. Physiol. 50:1821–1834

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht J., Hastings D., Bisson M. A. 1978. Ion transport and turgor pressure regulation in giant algal cells. In: Giebiesch G., Tosteson D., Ussing G. (editors) Membrane Transport in Biology. Vol. III. Transport Across Multimembrane Systems. Springer, Berlin, 125–174

    Google Scholar 

  • Hastings D.F., Gutknecht J. 1974. Turgor pressure regulation: Modulation of active potassium transport by hydrostatic pressure gradients. In: Zimmermann U., Dainty J. (editors) Membrane Transport in Plants. Springer, Berlin, pp 79–83

    Google Scholar 

  • Hastings D.F., Gutknecht J. 1976. Ionic relations and the regulation of turgor pressure in the marine alga, Valonia macrophysa. J. Membrane Biol. 28:263–275

    Article  CAS  Google Scholar 

  • Heidecker M., Mimietz S., Wegner L.H., Zimmermann U. 2003a. Structural peculiarities dominate the turgor pressure response of the marine alga Valonia utricularis upon osmotic challenges. J. Membrane Biol. 192:123–139

    Article  CAS  Google Scholar 

  • Heidecker M., Wegner L.H., Binder K-A., Zimmermann U. 2003b. Turgor pressure changes trigger characteristic changes in the electrical conductance of the tonoplast and the plasmalemma of the marine alga Valonia utricularis. Plant Cell Env. 26: 1035–1051

    Article  Google Scholar 

  • Heidecker M., Wegner L. H., Zimmermann U. 1999. A patch-clamp study of ion channels in protoplasts prepared from the marine alga Valonia utricularis. J. Membrane Biol. 172:235–247

    Article  CAS  Google Scholar 

  • Hoffmann R., Bisson M.A. 1987. Chara buckellii, a euryhaline Charophyte from an unusual saline environment. II. Membrane potential and membrane conductance at steady state. Can. J. Bot. 65:222–229

    CAS  Google Scholar 

  • Kacperska A. 2004. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol. Plant 122:159–168

    Article  CAS  Google Scholar 

  • Kapraun D.F. 2005. Nuclear DNA content estimates in multicellular green, red, and brown algae: phylogenetic considerations. Ann. Bot. 95:7–44

    Article  PubMed  CAS  Google Scholar 

  • Karol K.G., McCourt R.M., Cimino M.T., Delwiche C.F. 2001. The closest living relatives of land plants. Science 294: 2351–2353

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M., Tazawa M. 1990. Mechanism of calcium-dependent salt tolerance in cells of Nitellopsis obtusa: role of intracellular adenine nucleotides. Plant Cell Env. 13:179–184

    Article  CAS  Google Scholar 

  • Kirst G.O., Wichmann F. 1987. Adaptation of the euryhaline charophyte Lamprothamnium papulosum to brackish and freshwater: Photosynthesis and respiration. J. Plant Physiol. 131:413–422

    CAS  Google Scholar 

  • Kopac M.J. 1933. Physiological studies on Valonia ventricosa. Carnegie Institute of Washington Year Book 32:273–275

    Google Scholar 

  • La Claire J.W. 1982. Cytomorphological aspects of wound healing in selected Siphonocladales (Chlorophyceae). J. Phycol. 18:379–381

    Article  Google Scholar 

  • Leliaert R., Rousseau F., De Reviers B., Coppejans E. 2003. Phylogeny of Cladophorophyceae (Chlorophyta) inferred from partial LSU rRNA gene sequences: is the recognition of a separate order Siphonocladales justified? Eur. J. Phycol. 38:233–246

    Article  CAS  Google Scholar 

  • Lewis L.A., McCourt R.M. 2004. Green algae and the origin of land plants. Am. J. Bot. 91:1535–1556

    Google Scholar 

  • Lüttge U., Ratajczak R. 1997. The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. In: Leigh RA, Sanders D (editors) The Plant Vacuole. Academic Press, Sand Diego, 253–296

    Google Scholar 

  • Mandoli D.F., Briggs W.R. 1982. The photoreceptive sites and the function of tissue light-piping in photomorphogenesis of etiolated oat seedlings. Plant Cell Env. 5:137–146

    Google Scholar 

  • Mummert H., Gradmann D. 1991. Ion fluxes in Acetabularia: Vesicular shuttle. J. Membrane Biol. 124:255–263

    Article  CAS  Google Scholar 

  • Nakanishi Y., Matsuda N., Aizawa K., Kashiyama T., Yamamoto K., Mimura T., Ikeda M., Maeshima M. 1999. Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochim. Biophys. Acta. 1418:245–250

    Article  PubMed  CAS  Google Scholar 

  • Nawata T., Kikuyama. M., Shihira-Ishikawa I. 1993. Behaviour of protoplasm for survival of injured cells of Valonia ventricosa: involvement of turgor pressure. Protoplasma 176:116–124

    Article  Google Scholar 

  • Nelson N., Klionsky D.J. 1996. Vacuolar H+-ATPase: From mammals to yeast and back. Experentia 52:1101–1110

    Article  CAS  Google Scholar 

  • O’Neill R.M.J., La Claire W. 1988. Endocytosis and membrane dynamics during the wound response of the green alga Boergesemia. Cytobios 53:113–125

    Google Scholar 

  • Okazaki Y., Shimmen T., Tazawa M. 1984. Turgor regulation in a brackish Charophyte, Lamprothamnium succinctum. II. Changes in K+, Na+ and Cl concentrations, membrane potential and membrane resistance during turgor regulation. Plant Cell Physiol. 25:573–581

    CAS  Google Scholar 

  • Okazaki Y., Tazawa M. 1990. Calcium ion and turgor regulation in plant cells. J. Membrane Biol. 114:189–194

    Article  CAS  Google Scholar 

  • Olsen J.L., West J.A. 1988. Ventricaria (Siphonocladales-Cladophorales complex, Chlorophyta), a new genus for Valonia ventricosa. Phycologia 27:103–108

    Google Scholar 

  • Pickard B.G., Ding J.P. 1992. Gravity sensing by higher plants. Adv. Comp. Env. Physiol. 10: 81–110

    Google Scholar 

  • Pickard B.G., Ding J.P. 1993. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?. Austral. J. Plant Physiol. 20:439–459

    Article  CAS  Google Scholar 

  • Ramus J. 1978. Seaweed anatomy and photosynthetic performance–Ecological significance of light guides, heterogeneous absorption and multiple scatter. J. Phycol. 14:352–362

    Article  Google Scholar 

  • Raven J., Smith F. 1977. “Sun” and “shade” species of green algae: relation to cell size and environment. Photosynthetica 11:48–55

    CAS  Google Scholar 

  • Raven J., Smith F., Glidewell S. (1979) Photosynthetic capacities and biological strategies of giant-celled and small-celled macro algae. New Phytol. 83:299–309

    Article  CAS  Google Scholar 

  • Reid R., Jefferies R., Pitman M.G. 1984. Lamprothamnium, a euryhaline charophyte IV. Membrane potential, ionic fluxes and metabolic activity during turgor adjustment. J. Exp. Bot. 35:925–937

    CAS  Google Scholar 

  • Shepherd V.A., Beilby M.J., Bisson M.A. 2004. When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa). Protoplasma 223:79–91

    Article  PubMed  CAS  Google Scholar 

  • Shepherd V.A., Beilby M.J., Shimmen T. (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur. Biophys. J. 31:341–355

    Article  PubMed  CAS  Google Scholar 

  • Shihira-Ishikawa I., Nawata T. 1992. The structure and physiological properties of intact Valonia cell. Jap. J. Phycol. 40:151–159

    CAS  Google Scholar 

  • Shimmen T., MacRobbie E.A.C. 1987. Characterization of two proton transport systems in the tonoplast of plasmalemma-permeabilized Nitella cells. Plant Cell Physiol. 28:1023–1031

    CAS  Google Scholar 

  • Shimmen T., Mimura T., Kikuyama M., Tazawa M. 1994. Characean cells as a tool for studying electrophysiological characteristics of plant cells. Cell Struct Funct 19:263–278

    Article  PubMed  CAS  Google Scholar 

  • Shyng S., Nichols C. 1998. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    Article  PubMed  CAS  Google Scholar 

  • Smith F.A., Raven J.A. 1979. Intracellular pH and its regulation. Ann. Rev. Plant Physiol. 30:289–311

    Article  CAS  Google Scholar 

  • Song C., Guo Y., Qiu Q., Lambert G., Galbraith D.W., Jagendorf A., Zhu J. 2004. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc. Nat. Acad. Sciences 101:10211–10216

    Article  CAS  Google Scholar 

  • Spanswick R.M. 1972. Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance. Biochim. Biophys. Acta. 288:73–89

    Article  PubMed  CAS  Google Scholar 

  • Spanswick R.M. 1980. Biophysical control of electrogenic pumps in the Characeae. In: Spanswick R.M., Lucas W.J., Dainty J. (editors) Plant Membrane Transport: Current Conceptual Issues. Elsevier/North Holland Biomedical, Amsterdam, pp. 305–325

    Google Scholar 

  • Spanswick R.M. 1981. Electrogenic ion pumps,. Ann. Rev. Plant Physiol. 32:267–289

    Article  CAS  Google Scholar 

  • Spanswick R.M., Stolarek J., Williams E.J. 1967. The membrane potential of Nitella translucens. J. Expt. Bot. 18:1–9

    CAS  Google Scholar 

  • Spanswick R.M., Williams E.J. 1964. Electrical potentials and Na, K, and Cl concentrations in the vacuole and cytoplasm of Nitella translucens. J. Exp. Bot. 15:193–200

    CAS  Google Scholar 

  • Stento N.A., Ryba N.G., Kiegle E.A., Bisson M.A. 2000. Turgor regulation in the salt-tolerant alga Chara longifolia. Plant Cell Env. 23:629–637

    Article  CAS  Google Scholar 

  • Steudle E., Zimmermann U., Lelkes P.I. 1977. Volume and pressure effects on the potassium fluxes of Valonia utricularis. In: Thellier M., Monnier A., Demarty A., Dainty J. (editors) Transmembrane Ionic Exchanges in Plants. Publications de l’Univ. de Rouen, Paris, 123–132

    Google Scholar 

  • Sze H., Li X., Palmgren M.G. 1999. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis, Plant Cell 11:677–689

    Article  PubMed  CAS  Google Scholar 

  • Tyerman S.D., Skerrett I.M. 1999. Root ion channels and salinity., Scientia Horticulturae 78:175–235

    Article  CAS  Google Scholar 

  • Wang J., Benz R., Zimmermann U. 1995. Effects of light and inhibitors of ATP-synthesis on the chloride carrier of the alga Valonia utricularis: is the carrier a chloride pump? Biochim. et. Biophys. Acta. 1233:185–197

    Google Scholar 

  • Wendler S., Zimmermann U., Bentrup F. 1983. Relationship between cell turgor pressure, electrical membrane potential, and chloride efflux in Acetabularia mediterranea. J. Membrane Biol. 72:75–84

    Article  CAS  Google Scholar 

  • Wu W., Assmann S. 1995. Is ATP required for K+ channel activation in Vicia guard cells? Plant Physiol. 107:101–109

    PubMed  CAS  Google Scholar 

  • Zimmermann U., Büchner K., Benz R. 1982. Transport properties of mobile charges in algal membranes: Influence of pH and turgor pressure. J. Membrane Biol. 67:183–197

    Article  CAS  Google Scholar 

  • Zimmermann U., Steudle E. 1971. Effects of potassium concentration and osmotic pressure of sea water on the cell-turgor pressure of Chaetomorpha linum. Mar. Biol. 11:132–137

    Google Scholar 

  • Zimmermann U., Steudle E. 1974. The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J. Membrane Biol. 16:331–352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by NSF grants to M.A. Bisson and ARC grants to M.J. Beilby. We dedicate this paper to the memory of G.P. Findlay, whose work inspired our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Bisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisson, M., Beilby, M. & Shepherd, V. Electrophysiology of Turgor Regulation in Marine Siphonous Green Algae. J Membrane Biol 211, 1–14 (2006). https://doi.org/10.1007/s00232-006-0860-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0860-1

Keywords

Navigation