Skip to main content

Bioactive Compounds of Amaranth (genus Amaranthus)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Abstract

Several species of Amaranthus have a long history of consumption as a vegetable/cereal and usage in traditional medicine. A great miscellany of healthful compounds such as fatty acids, steroids, lipids, amino acids, vitamins, minerals, and bioactives, including alkaloids, flavonoids, glycosides, phenolic acids, saponins, terpenoids, tannins, and carotenoids have been found in Amaranthus seeds, roots, stem, and leaves, depending on the plant maturity stage, cultivar type, and geographical location. Preclinical studies have shown that the extracts and bioactive constituents of Amaranthus spp. confer several biological activities, including antioxidant, immunomodulatory, hepatoprotective, gastroprotective, cardioprotective, hypolipidemic, anticancerous, antidiabetic, and antimicrobial, which has ignited the interest of researchers in this modest vegetable all over the world. Although some potential health benefit-based mechanistic studies are available, a need exists to investigate in-depth the roles of these specific bioactives sourced from Amaranthus for their potential use in disease treatment and daily diet for a holistic well-being. Lately, investigators have also started to examine the use of amaranth leaves and seeds for the development of fortified food products whose consumption can lead to beneficial biological effects. Conversely, the plant is still missing recognition in the pharmaceutical and commercial food packaging sectors. The present chapter provides a detailed exploration of current research on the bioactive-constituents of amaranth, its use in traditional medicine, clinical studies validating traditional claims and recent trends in usage of this underutilized vegetable as a nutraceutical and functional food. This insight will be beneficial for encouraging exhaustive research which will promote effective utilization of amaranth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BMI:

Body mass index

CE:

Catechin equivalent

DM*:

Dry matter

DM:

Diabetes mellitus

DW:

Dry weight

FW:

Fresh weight

GAE:

Gallic acid equivalent

GAF:

Germinated amaranth flours

GST:

Glutathione-S-transferase

Hb:

Hemoglobin

HDL:

High-density lipoprotein

HIV:

Human immunodeficiency virus

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

MRS:

Menopause rating scale

NO:

Nitric oxide

QE:

Quercetin equivalent

RBC:

Red blood cells

RDA:

Recommended dietary allowance

RE:

Rutin equivalent

SOD:

Superoxide dismutase

SP:

Soluble protein

SPF:

Sun protection factor

TAC:

Total antioxidant capacity

TAC*:

Total anthocyanin content

TFC:

Total flavonoid content

TPC:

Total phenolic content

TTC:

Total tannin content

UTI:

Urinary tract infection

UV:

Ultraviolet

*:

Denotes that the index term is used for less commonly used parameter

References

  1. Adhikary D, Upama Khatri-Chhetri U, Slaski J (2020) Amaranth: an ancient and high-quality wholesome crop. In: Waisundara VY (ed) Nutritional value of Amaranth. IntechOpen Limited, London

    Google Scholar 

  2. Soriano-García M, Aguirre-Díaz IS (2020) Nutritional functional value and therapeutic utilization of Amaranth. In: Waisundara VY (ed) Nutritional value of Amaranth. IntechOpen Limited, London

    Google Scholar 

  3. Wolosik K, Markowska A (2019) Amaranthus cruentus taxonomy, botanical description, and review of its seed chemical composition. Nat Prod Commun 14:1–10

    Google Scholar 

  4. Thapa R, Blair MW (2018) Morphological assessment of cultivated and wild Amaranth species diversity. Agronomy 8:272–280

    Article  CAS  Google Scholar 

  5. Soriano-García M, Arias-Olguín II, Montes JPC et al (2018) Nutritional functional value and therapeutic utilization of Amaranth. J Anal Pharm Res 7:596–600

    Article  Google Scholar 

  6. Hussain MM (2018) A short review on phytoconstituents from the genera Albizzia and Erythrina. Bangladesh Pharm J21:160–172

    Article  Google Scholar 

  7. Coelho LM, Silva PM, Martins JT, Pinheiro AC, Vicente AA (2018) Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Fun 9:5499–5512

    Article  CAS  Google Scholar 

  8. Ramdwar MN, Chadee ST, Stoute VA (2017) Estimating the potential consumption level of amaranth for food security initiatives in Trinidad, West Indies. Cogent Food Agric 3:1321475

    Article  Google Scholar 

  9. Coetzee L (2015) Exploring household food security and the acceptance of an amaranth enriched food product. Dissertation, North-West University

    Google Scholar 

  10. Peter K, Gandhi P (2017) Rediscovering the therapeutic potential of Amaranthus species: a review. Egypt J Basic Appl Sci 4:196–205

    Article  Google Scholar 

  11. Amabye TG (2015) Evaluation of physicochemical, phytochemical, antioxidant and antimicrobial screening of Amaranthus spinosus leaves. Nat Prod Chem Res 4:1–5

    Google Scholar 

  12. Ibrahim MI, Pieters R, Abdel-Aziem SH, van der Walt AM, Bezuidenhout CC, Giesy JP, Abdel-Wahhab MA (2015) Protective effect of Amaranthus hybridus against aflatoxin B1 and fumonisin B1-induced genotoxicity in H4IIE-luc cells. Hepatoma Res 1:136–146

    Article  CAS  Google Scholar 

  13. Larbie C, Appiah-Opong R, Acheampong F et al (2015) Anti-proliferative effect of Amaranthus viridis linn. On human leukemic cell lines- a preliminary study. Int J Biol Pharma Res 6(3):236–243

    Google Scholar 

  14. Noori M, Talebi M, Nasiri Z (2015) Seven Amaranthus L.(Amaranthaceae) taxa flavonoid compounds from Tehran Province, Iran. Int J Mod Bot 5(1):9–17

    Google Scholar 

  15. Pulipati S, Srinivasa Babu P, Lakshmi NM (2015) Phytochemical analysis and antibacterial efficacy of Amaranthus tricolor(L) methanolic leaf extract against clinical isolates of urinary tract pathogens. Afr J Microbiol Res 9:1381–1385

    Article  CAS  Google Scholar 

  16. Soares RA, Mendonça S, de Castro LÍ, Menezes AC, Arêas JA (2015) Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int J Mol Sci 16:4150–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sivagnanam S, Chandra AP (2016) Preliminary phytochemical analysis of Amarathus viridis. Res J Pharm Biol Chem Sci 7:1–7

    CAS  Google Scholar 

  18. Akin-Idowu PE, Ademoyegun OT, Olagunju YO, Aduloju AO, Adebo UG (2017) Phytochemical content and antioxidant activity of aive arain Amaranth species. Am J Food Sci Tech 5:249–255

    CAS  Google Scholar 

  19. Patil P, Singh SK (2017) A study of phytochemical screening of total phenolic and flavonoid containt in Amaranthus hypochondriacus L. grains. SGVU J Pharm Res Edu 2(2):201–211

    Google Scholar 

  20. Rjeibi I, Ben Saad A, Ncib S, Souid S, Alimi H (2017) Characterization of Amaranthus spinosus collected from different regions: phytochemical and biological properties. J Food Biochem 41(e12397):1–10

    CAS  Google Scholar 

  21. Sable KV, Saswade RR (2017) Preliminary phytochemical analysis of Amaranthus spinosus leaves. Int J Life Sci 5:742–745

    Google Scholar 

  22. Sharmila M, Rajeswari M, Vijayashalini P (2017) Comparision of qualitative phytochemical analysis of Amaranthus polygonoides L. and Amaranthus viridis L. Int J Appl Res 3:280–283

    Google Scholar 

  23. Biel W, Jendrzejczak E, Jaroszewska A, Witkowicz R, Piatkowska E, Telesiński A (2017) Nutritional content and antioxidant properties of selected species of Amaranthus L. Italian Food Sci 29:728–740

    CAS  Google Scholar 

  24. Sundar Rajan T, Vijey Aanandhi M (2017) Phytochemical evaluation and in vitro antidiabetic activity of ethanolic extract of Amaranthus tristis Linn. J Pharm Sci Res 9(9):1586–1588

    Google Scholar 

  25. Torane R, Gaikwad S, Khatiwora E, Adsul V (2017) Comparative estimation of phenol and flavonoid content of medicinally important plant – Amaranthus curentus. Int J Chem Tech Res 10(4):306–310

    CAS  Google Scholar 

  26. El Gendy ANG, Tavarini S, Conte G, Pistelli L, Hendawy SF, Omer EA, Angelini LG (2017) Yield and qualitative characterisation of seeds of Amaranthus hypochondriacus L. and Amaranthus cruentus L. grown in central Italy. Italian J Agronom 13:63–73

    Article  Google Scholar 

  27. Kasarkar A, Gavali A, Kolekar N, Kumbhar S, Wadkar S (2018) Phytochemical screening of Achyranthes aspera L., Amaranthus spinosus L., Parthenium hysterophorus L., Argemone Mexicana L., Portulaca oleracea L. and Euphorbia geniculata Ortega. from Kolhapur district of Maharashtra. Int J Herbal Med 6:5–8

    Google Scholar 

  28. Kumari S, Elancheran R, Devi R (2018) Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Ind J Pharmacol 50(3):130–138

    Article  CAS  Google Scholar 

  29. Reyes MF, Chávez-Servín JL, González-Coria C, Mercado-Luna A, Carbot KDLT, Aguilera-Barreyro A, Ferriz-Martínez R, Serrano-Arellano J, García-Gasca T (2018) Comparative account of phenolics, antioxidant capacity, α-tocopherol and anti-nutritional factors of amaranth (Amaranthus hypochondriacus) grown in the greenhouse and open field. Int J Agric Biol 20:2428–2436

    Google Scholar 

  30. Sarker U, Oba S (2018) Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep 8:12349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sobha K, Dumpala P, Dachepalli HP, Anantha RK (2018) Understanding the phytochemical constitution, antioxidant potential and spectral characteristics of aqueous extracts of the chosen leafy vegetables from south India. Trends Phytochem Res 2:111–118

    CAS  Google Scholar 

  32. Aneja S, Vats M, Sardana S, Aggarwal S (2011) Pharmacognostic evaluation and phytochemical studies on the roots of Amaranthus tricolor (Linn.). Int J Pharm Sci Res 13:2332–2336

    Google Scholar 

  33. Ekeke C, Manga TT, Mensah SI (2019) Comparative phytochemical, morphological and anatomical studies of Amaranthus hybridus L. and Amaranthus spinosus L. (Amaranthaceae). Res J Med Plants 13:53–63

    Article  Google Scholar 

  34. Karamać M, Gai F, Longato E, Meineri G, Janiak MA, Amarowicz R, Peiretti PG (2019) Antioxidant activity and phenolic composition of Amaranth (Amaranthus caudatus) during plant growth. Antioxidants (Basel) 8(6):173

    Article  CAS  Google Scholar 

  35. Ramalashmi K (2019) In vitro antidiabetic potential and GC-MS analysis of Digeramuricata and Amaranthy cruentus. J Med Plants Stud 7(4):10–16

    Google Scholar 

  36. de la Rosa AP, de León-Rodríguez A, Laursen B, Fomsgaard IS (2019) Influence of the growing conditions on the flavonoids and phenolic acids accumulation in amaranth (Amaranthus hypochondriacus L.) leaves. Terra Latinoamericana 37(4):449–457

    Article  Google Scholar 

  37. Sarker U, Oba S (2019) Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals, and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS One 14:e0222517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarker U, Oba S (2019) Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci Rep 9:18233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang Y, Xiao Y, Tang Z, Jin W, Wang Y, Chen H, Yao H, Shan Z, Bu T, Wang X (2019) Extraction of polysaccharides from Amaranthus hybridus L. by hot water and analysis of their antioxidant activity. Peer J 7:e7149

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sandoval-Sicairos ES, Domínguez-Rodríguez M, Montoya-Rodríguez A, Milán-Noris AK, Reyes-Moreno C, Milán-Carrillo J (2020) Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in Mexican Amaranth. Plant Foods Hum Nutr 75:192–199

    Article  CAS  PubMed  Google Scholar 

  41. The Ayurvedic Pharmacopoeia of India, part I. vol III, p 160. www.ayurveda.hu/api/API-Vol-3.pdf

  42. Bagde AB, Sawant R (2013) Charak Samhita-Complete encyclopedia of ayurvedic science. Medicine 1:12–20

    Google Scholar 

  43. Ganie AH, Tali BA, Shapoo GA, Nawchoo IA, Khuroo AA (2019) Ethno-survey of traditional use of plants as aphrodisiacs in Kashmir Himalaya, India. J Herb Med 17:100256

    Article  Google Scholar 

  44. Jain DL, Baheti AM, Jain SR, Khandelwal KR (2010) Use of medicinal plants among tribes in Satpuda region of Dhule and Jalgaon districts of Maharashtra—an ethnobotanical survey. Ind J Trad Knowl 9(1):152–157

    Google Scholar 

  45. Pattanayak S, Mandal TK, Bandyopadhyay SK (2015) A study on use of plants to cure enteritis and dysentery in three southern districts of West Bengal, India. J Med Plants Stud 3(5):277–283

    Google Scholar 

  46. Pradhan S, Tamang JP (2015) Ethnobiology of wild leafy vegetables of Sikkim. Ind J Trad Knowl 14(2):290–297

    Google Scholar 

  47. Rai SK, Adhikari S, Saptarshi Datta S (2019) Traditional herbal remedies used by rural communities of diamond harbour, south 24-parganas, West Bengal for gastrointestinal (GI) disorders. In: Tripathi SK, Upadhyaya K, Hegde N (eds) Medicinal plants of India: conservation and sustainable use. Today & Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  48. Jeyaprakash K, Ayyanar M, Geetha KN, Sekar T (2011) Traditional uses of medicinal plants among the tribal people in Theni District (Western Ghats), Southern India. Asian Pac J Trop Biomed 1:S20–S25

    Article  Google Scholar 

  49. Devi Prasad AG, Shyma TB, Raghavendra MP (2013) Plants used by the tribes for the treatment of digestive system disorders in Wayanad district, Kerala. J Appl Pharmaceut Sci 3:171–175

    Google Scholar 

  50. Shanmugam S, Rajendran K, Suresh K (2012) Traditional uses of medicinal plants among the rural people in Sivagangai district of Tamil Nadu, Southern India. Asian Pac J Trop Biomed 2:S429–S434

    Article  Google Scholar 

  51. Morvin Yabesh JE, Prabhu S, Vijayakumar S (2014) An ethnobotanical study of medicinal plants used by traditional healers in silent valley of Kerala, India. J Ethnopharmacol 154:774–789

    Article  Google Scholar 

  52. Jaya Kumar S, Rama Devi P, Rejitha S (2019) Existence and survey of medicinal plants along the Neerody coastal line of Kanniyakumari district. Int J Adv Sci Res Eng Trends 4(10):10–20

    Google Scholar 

  53. Sundaram SS, Suresh K (2019) Prevention of hair fall and whitening of hair by valuable medicinal plants in selected areas of Madurai district, Tamil Nadu, India. J Med Plant Stud 7:74–77

    Google Scholar 

  54. Sundaram SS, Suresh K (2019) Hepatoprotective effect of medicinal plants used by traditional healersin Alagar hills of Madurai district, Tamil Nadu, India. Pharm Innov J 8(4):885–888

    Google Scholar 

  55. Sharma N, Tanwer BS, Vijayvergia R (2011) Study of medicinal plants in Aravali regions of Rajasthan for treatment of Kidney stone and Urinary tract troubles. Int J Pharm Tech Res 3(1):110–113

    Google Scholar 

  56. Divya K, Mary Roja N, Padal S (2015) Ethno-medicinal plants used in East Godavari District, Andhra Pradesh, India. Int J Pharmacol Res 5(11):293–300

    Google Scholar 

  57. Ghosh G (2017) Traditional use of plants against leprosy in India: a review of the recent literature. J Innov Pharmaceut Biol Sci 4(4):55–64

    Google Scholar 

  58. Manzoor J, Ali B (2017) Traditional use of medicinal plants: a report from Pahari community of subdivision Mendhar, District Poonch, Jammu & Kashmir, India. Med Plants 9(3):216–220

    Google Scholar 

  59. Pattanayak S, Mandal TK, Bandyopadhyay SK (2016) Ethno-gynecological study on the medicinal plants traditionally used in southern districts of West Bengal, India. Ind J Trad Knowl 15(3):482–486

    Google Scholar 

  60. Bhat P, Hegde GR, Hegde G, Mulgund GS (2014) Ethnomedicinal plants to cure skin diseases—an account of the traditional knowledge in the coastal parts of Central Western Ghats, Karnataka, India. J Ethnopharmacol 151:493–502

    Article  PubMed  Google Scholar 

  61. Basha SK (2012) Traditional use of plants against snakebite in Sugali tribes of Yerramalais of Kurnool district, Andhra Pradesh, India. Asian Pac J Trop Biomed 2:S575–S579

    Article  Google Scholar 

  62. Rani J (2019) Ethanobotanical survey and traditional uses of medicinal plants in Jind district of Haryana, India. Plant Arch 19:1241–1247

    Google Scholar 

  63. Meena AK, Rao MM (2010) Folk herbal medicines used by the Meena community in Rajasthan. Asian J Trad Med 5:19–31

    Google Scholar 

  64. Yemele MD, Telefo PB, Lienou LL et al (2015) Ethnobotanical survey of medicinal plants used for pregnant women′s health conditions in Menoua division-West Cameroon. J Ethnopharmacol 160:14–31

    Article  CAS  PubMed  Google Scholar 

  65. Asowata-Ayodele AM, Jide Afolayan A, Otunola GA (2016) Ethnobotanical survey of culinary herbs and spices used in the traditional medicinal system of Nkonkobe Municipality, Eastern Cape, South Africa. South Afr J Bot 104:69–75

    Article  Google Scholar 

  66. Hilou A, Ouedraogo I, Sombié PAED, Guenné S, Paré D, Compaoré M (2016) Leafy amaranthus consumption patterns in OUAGADOUGOU, BURKINA FASO. Afr J Food Agric Nutr Dev 16:11248–11264

    CAS  Google Scholar 

  67. Hossan MS, Hanif A, Agarwala B et al (2010) Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases. Ethnobot Res Appl 8:61–74

    Article  Google Scholar 

  68. Giday M, Asfaw Z, Woldu Z (2010) Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. J Ethnopharmacol 132(1):75–85

    Article  PubMed  Google Scholar 

  69. Fitriani U, Zulkarnain Z, Novianto F, Wijaya E, Triyono A (2020) Effectiveness of anemia herbal formula containing Curcuma zanthorrhiza, Elephantopus scaber, and Amaranthus tricolorin iron deficiency anemia patients. Biodiversitas 21:2289–2296

    Article  Google Scholar 

  70. Wambugu SN, Mathiu PM, Gakuya DW, Kanui TI, Kabasa JD, Kiama SG (2011) Medicinal plants used in the management of chronic joint pains in Machakos and Makueni counties, Kenya. J Ethnopharmacol 137(2):945–955

    Article  PubMed  Google Scholar 

  71. Kodoh J, Mojiol AR, Lintangah W, Gisiu F, Maid M, Liew KC (2017) Traditional knowledge of the uses of medicinal plants among the ethnic communities in Kudat, Sabah, Malaysia. Int J Agric Forest Planta 5:79–85

    Google Scholar 

  72. Singh AG (2015) Survey of some medicinally important leafy vegetables in Rupandehi district of western Nepal. Int J Appl Sci Biotech 3(1):111–118

    Article  CAS  Google Scholar 

  73. Malla B, Gauchan DP, Chhetri RB (2015) An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. J Ethnopharmacol 165:103–117

    Article  PubMed  Google Scholar 

  74. Kayani S, Ahmad M, Zafar M et al (2014) Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies – Abbottabad, Northern Pakistan. J Ethnopharmacol 156:47–60

    Article  PubMed  Google Scholar 

  75. Malika K, Ahmad M, Zhangb G, Rashid N, Zafar M, Sultana S, Shah SN (2018) Traditional plant based medicines used to treat musculoskeletal disorders in Northern Pakistan. Eur J Intgr Med 19:17–64

    Article  Google Scholar 

  76. Fiscal RR (2017) Ethnomedicinal plants used by traditional healers in Laguna, Philippines. Asia Pac J Multidisc Res 5(4):132–137

    Google Scholar 

  77. Polat R, Cakilcioglu U, Ulusan MD, Paksoy MY (2015) Survey of wild food plants for human consumption in Elazığ (Turkey). Ind J Trad Knowl 1:69–75

    Google Scholar 

  78. Tabuti JRS, Kukunda CB, Waako PJ (2010) Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. J Ethnopharmacol 127:130–136

    Article  PubMed  Google Scholar 

  79. Asiimwe S, Kamatenesi-Mugisha M, Namutebi A, Borg-Karlsson AK, Musiimenta P (2013) Ethnobotanical study of nutri-medicinal plants used for the management of HIV/AIDS opportunistic ailments among the local communities of western Uganda. J Ethnopharmacol 150(2):639–648

    Article  PubMed  Google Scholar 

  80. Sakkir S, Kabshawi M, Mehairbi M (2012) Medicinal plants diversity and their conservation status in the United Arab Emirates (UAE). J Med Plant Res 6(7):1304–1322

    Google Scholar 

  81. Sasikumar V, Subramaniam A, Aneesh A, Saravanan G (2015) Protective effect of alkaloids from Amaranthusviridislinn. against hydrogen peroxide induce oxidative damage in human erythrocytes (RBC). Int J Clin Endocrinol Metabol 1:49–53

    Article  Google Scholar 

  82. Kanikowska D, Kanikowska A, Rutkowski R et al (2019) Amaranth (Amaranthuscruentus L.) and canola (Brassica napus L.) oil impact on the oxidative metabolism of neutrophils in the obese patients. Pharm Biol 57:140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nawiri MP, Nyambaka H, Murungi JI (2013) Sun-dried cowpeas and amaranth leaves recipe improves b-carotene and retinol levels in serum and hemoglobin concentration among preschool children. Eur J Nutr 52:583–589

    Article  CAS  PubMed  Google Scholar 

  84. Subramanian D, Gupta S (2016) Pharmacokinetic study of amaranth extract in healthy humans: a randomized trial. Nutrition 32:748–753

    Article  CAS  PubMed  Google Scholar 

  85. Gómez-Cardona EE, Hernández-Domínguez EE, Huerta-Ocampo JA et al (2017) Effect of amaranth consumption on diabetes-related biomarkers in patients with diabetes. Diab Obes Metabol Disord 3:5–10

    Google Scholar 

  86. Yelisyeyeva O, Semen K, Zarkovic N, Kaminskyy D, Lutsyk O, Rybalchenko V (2012) Activation of aerobic metabolism by Amaranth oil improves heart rate variability both in athletes and patients with type 2 diabetes mellitus. Arch Physiol Biochem 118:47–57

    Article  CAS  PubMed  Google Scholar 

  87. Gullón B, Gullón P, Tavaria FK, Yáñez R (2016) Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food Funct 7:3782–3788

    Article  PubMed  CAS  Google Scholar 

  88. Cherkas A, Kamelija Zarkovic K, Gasparovic AC et al (2018) Amaranth oil reduces accumulation of 4-hydroxynonenal-histidine adducts in gastric mucosa and improves heart rate variability in duodenal peptic ulcer patients undergoing Helicobacter pylori eradication. Free Radic Res 52:135–149

    Article  CAS  PubMed  Google Scholar 

  89. Mukunda L, Elumbu S, Kayisu K et al (2015) Fiber and sugar contents in vegetables prescribed and consumed by diabetics in Kisangani. J Exp Biol Agric Sci 3:275–280

    Article  CAS  Google Scholar 

  90. Moszak M, Zawada A, Juchacz A et al (2020) Comparison of the effect of rapeseed oil or amaranth seed oil supplementation on weight loss, body composition, and changes in the metabolic profile of obese patients following 3-week body mass reduction program: a randomized clinical trial. Lipids Health Dis 19:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuswaningrum O, Suwandono A, Ariyanti I, Hadisaputro S, Suhartono S (2017) The impact of consuming Amaranthus spinosus L, extract on prolactin level and breast milk production in postpartum mothers. BNJ 3:541–547

    Article  Google Scholar 

  92. Muliani RH, Soejoenoes A, Suherni T, Hadisaputro S, Mashoedi ID (2017) Effect of consuming red spinach (Amaranthus tricolor L.) extract on hemoglobin level in postpartum mothers. BNJ 3:432–437

    Article  Google Scholar 

  93. Kushwaha S, Chawla P (2015) Impact of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on menopausal symptoms of postmenopausal women. IJSRP 5:1–10

    Google Scholar 

  94. Kushwaha S, Chawla P, Kochhar A (2014) Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. J Food Sci Technol 51:3464–3469

    Article  CAS  PubMed  Google Scholar 

  95. Dandeu LNR, Repollo R, Oyhenart JA, Ramirez MR (2018) Preliminary analysis of the hemagglutinating activity of seed extracts of the amaranth genus. Int J Adv Res 6:515–519

    Article  Google Scholar 

  96. Cherian P, Sheela D (2016) Antimicrobial activity of Amaranth alkaloid against pathogenic microbes. Int J Herb Med 4:70–72

    Google Scholar 

  97. Terzieva S, Velichkova K, Grozeva N, Valcheva N, Dinev T (2019) Antimicrobial activity of Amaranthus spp. Extracts against some mycotoxigenic fungi. Bulg J Agric Sci 25:120–123

    Google Scholar 

  98. Ndungu ZW, Kuria EN, Gikonyo NK, Mbithe DK (2017) Efficacy of amaranth grain consumption on CD4 count and morbidity patterns among adults living with HIV in Nyeri, Kenya. JAHR 9:81–88

    Google Scholar 

  99. Panchal P, Jayswal V, Patel VH, Dave N (2016) Effect of feeding flaxseed and Amaranth seed powder incorporated laddu on total antioxidant capacity and hematological status of young females (20-25 years). J Sci 7:1–9

    Google Scholar 

  100. Katz E, Lazos E (2019) The rediscovery of native ‘super-foods’ in Mexico. In: Sebastia B (ed) Eating traditional food: politics, identity and practices, 1st edn. Routledge, London

    Google Scholar 

  101. Sanz-Penella JM, Haros M, Soral-Smietana M, Wronkowska M (2013) Effect of whole amaranth flour on bread properties and nutritive value. Food Sci Technol 50:679–685

    CAS  Google Scholar 

  102. Emire SA, Arega M (2012) Value added product development and quality characterization of amaranth (Amaranthus caudatus L.) grown in East Africa. Afr J Food Sci Technol 3:2141–5455

    Google Scholar 

  103. Lemos A, Capriles VD, Pinto E, Silva MEM, Areas JAG (2012) Effect of incorporation of amaranth on the physical properties and nutritional value of cheese bread. Ciênc Tecnol Aliment 32:427–431

    Article  Google Scholar 

  104. Shyam SR, Raghuvanshi RS (2015) Standardization of cakes by using different levels of Amaranth flour and its Acceptability. IJSR 4:1859–1861

    Google Scholar 

  105. Antoniewskaa A, Rutkowskaa J, Pinedab MM, Adamskaa A (2018) Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. Food Sci Technol 89:217–223

    Google Scholar 

  106. Martinez CS, Ribotta PD, Añón MC, León AE (2014) Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta. Food Sci Technol Int 20:127–135

    Article  PubMed  Google Scholar 

  107. Chauhan A, Saxena DC, Singh S (2015) Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. Food Sci Technol 63:939–945

    CAS  Google Scholar 

  108. Inglett GE, Chen D, Liu SX (2015) Physical properties of gluten-free sugar cookies made from amaranth-oat composites. Food Sci Technol 63:214–220

    CAS  Google Scholar 

  109. Bhat A, Satpathy G, Gupta RK (2015) Evaluation of Nutraceutical properties of Amaranthus hypochondriacus L. grains and formulation of value added cookies. J Pharmacogn Phytochem 3:51–54

    CAS  Google Scholar 

  110. Srivastava A, Batra E (2018) Studies on preparation of fasting biscuits. Pharm Innov 7:294–296

    CAS  Google Scholar 

  111. Ssepuuya G, Katongole J, Tumuhimbise GA (2018) Contribution of instant amaranth (Amaranthus hypochondriacus L.)-based vegetable soup to nourishment of boarding school adolescents. Food Sci Nutr 6:1402–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aphalo P, Martínez EN, Añón MC (2015) Amaranth sprouts: a potential health promoting and nutritive natural food. Int J Food Prop 18:2688–2698

    Article  CAS  Google Scholar 

  113. Espino-González E, Muñoz-Daw MJ, Rivera-Sosa JM, De la Torre-Díaz MLD, Cano-Olivas GE, De Lara-Gallegos JC, Enríquez-Leal MC (2018) The influence of an amaranth-based beverage on cycling performance: a pilot study. Biotecnia XX:31–36

    Article  Google Scholar 

  114. Beswa D, Dlamini NR, Amonsou EO, Siwela M, Derera J (2016) Effects of Amaranth addition on the pro-vitamin a content, and physical and antioxidant properties of extruded pro-vitamin a-biofortified maize snacks. J Sci Food Agric 96:287–294

    Article  CAS  PubMed  Google Scholar 

  115. Cárdenas-Hernández A, Beta T, Loarca-Piña G, Castaño-Tostado E, Nieto-Barrera JO, Mendoza S (2016) Improved functional properties of pasta: enrichment with amaranth seed flour and dried amaranth leaves. J Cereal Sci 72:84–90

    Google Scholar 

  116. Seo JO, Do MH, Lee JH, Lee TH, Wahedi HM, Park YU, Kim SY (2016) Modulation of melanin synthesis by Amaranthus spp. L seed extract in melan-a cells. Nat Prod 22:168–174

    Article  CAS  Google Scholar 

  117. Wolosik K, Zareba I, Surazynski A, Markowska A (2017) The possible pre- and post-UVA radiation protective effect of Amaranth oil on human skin fibroblast cells. Pharmacogn Mag 13(Suppl 2):S339–S343

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lacatusu I, Arsenie LV, Badea G, Popa O, Oprea O, Badea N (2018) New cosmetic formulations with broad photoprotective and antioxidative activities designed by Amaranth and pumpkin seed oils nanocarriers. Ind Crop Prod 123:424–433

    Article  CAS  Google Scholar 

  119. Karanje PS, Doijad RC, Bhosale RR (2020) Formulation and evaluation of herbal lipstick containing Amaranthus cruentus Linn. IJRAR 7:246–255

    Google Scholar 

  120. Haque T, Uddin MZ (2018) Plants used for the beauty care in Dhaka, Bangladesh. Clin Exp Homeopathol 5:29–35

    Google Scholar 

  121. Busa CMC, Getalado MC (2019) Evaluation of anthocyanin in Amaranthusgangeticus L. (Nurawsuraw) leaf extract as hair colorant. IJTSRD 3:1441–1445

    Google Scholar 

  122. Vaswani R, Garg V, Khim B, Huang Y, Vaswani S (2018) Anaphylactic reaction to amaranth (Amaranthus paniculatus). Ann Allergy Asthma Immunol 121(5):S113–S114

    Article  Google Scholar 

  123. Stigger AL, Marcolongo-Pereira C, Adrien ML, Santos BL, Fiss L, Vargas-Júnior SF, Grecco FB, Schild AL (2013) Spontaneous poisoning by Amaranthus hybridus in cattle in southern Rio Grande do Sul. Pesqui Vet Bras 33(8):1004–1008

    Article  Google Scholar 

  124. Kessell AE, Boulton J, Krebs GL, Quinn JC (2015) Acute renal failure associated with Amaranthus species ingestion by lambs. Aust Vet J 93:208–213

    Article  CAS  PubMed  Google Scholar 

  125. Qian G, Wang Z, Zhang L, Xu F, Wang B, Li D, Chen Y (2016) Chemical compositions of Amaranthus retroflexus. Chem Nat Compd 52:982–985

    Article  CAS  Google Scholar 

  126. Weston PA, Gurusinghe S, Birckhead E, Skoneczny D, Quinn JC, Weston LA (2019) Chemometric analysis of Amaranthus retroflexus in relation to livestock toxicity in southern Australia. Phytochemistry 161:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the researchers who have shared their work on the subject in the public domain. We have tried our best to cite all relevant data pertaining to the subject in the last decade; however, any overlook is purely unintentional and may please be excused.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gandhi, P., Samarth, R.M., Peter, K. (2021). Bioactive Compounds of Amaranth (genus Amaranthus). In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44578-2_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44578-2

  • Online ISBN: 978-3-030-44578-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics