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Coevolutionary associations between hosts and symbionts (or parasites) are often reflected in correlated patterns of divergence

as a consequence of limitations on dispersal and establishment on new hosts. Here we show that a phylogenetic correlation is

observed between chaetodactylid mites and their hosts, the long-tongued bees; however, this association manifests itself in an

atypical fashion. Recently derived mites tend to be associated with basal bee lineages, and vice versa, ruling out a process of

cospeciation, and the existence of mites on multiple hosts also suggests ample opportunity for host shifts. An extensive survey

of museum collections reveals a pattern of infrequent host shifts at a higher taxonomic level, and yet, frequent shifts at a lower

level, which suggests that ecological constraints structure the coevolutionary history of the mites and bees. Certain bee traits,

particularly aspects of their nesting behavior, provide a highly predictive framework for the observed pattern of host use, with

82.1% of taxa correctly classified. Thus, the museum survey and phylogenetic analyses provide a unique window into the central

role ecology plays in this coevolutionary association. This role is apparent from two different perspectives—as (a) a constraining

force evident in the historical processes underlying the significant correlation between the mite and bee phylogenies, as well as

(b) by the highly nonrandom composition of bee taxa that serve as hosts to chaetodactylid mites.
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The intimate interactions of symbionts (or parasites) with their

hosts predicts not only the coevolution of symbiont and host bi-

ology, but also nonrandom associations among species. A strict

history of cospeciation will generate a concordance between sym-

biont and host phylogenies (Fahrenholz’s rule) (Eichler 1948;

Klassen 1992; Peek et al. 1998; Clark et al. 2000; Lo et al.

2003; Degnan et al. 2004). However, a suite of factors influ-

ences the degree of phylogenetic concordance (Reed and Hafner

1997; Johnson et al. 2002; Rannala and Michalakis 2003; Ron-

quist 2003; Taylor and Purvis 2003; Quek et al. 2004; Ricklefs

et al. 2004; Smith et al. 2004; Banks et al. 2005), including shifts

to new hosts or speciation of the symbiont on the same host (Clay-

ton and Johnson 2003; Clayton et al. 2003; Clayton et al. 2004;

Weckstein 2004).

Chaetodactylid mites represent a compelling group to inves-

tigate factors influencing divergence across their hosts. Chaeto-

dactylids are obligate associates of solitary and facultatively social

long-tongued bees (Apidae and Megachilidae), representing the

most species-rich group among 30 other bee–mite lineages (re-

viewed Eickwort 1994). More than 200 species of chaetodactylid
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mites live in bee nests feeding throughout bee development as

either mutualists (feeding on nest waste), parasitoids (killing the

bee egg or larvae), or as commensals or cleptoparasites (feed-

ing on provisioned pollen) (Krombein 1962; Roubik 1987; Abra-

hamovich and Alzuet de 1990; Qu et al. 2002). During each bee

generation, the nonfeeding immature mites disperse to new bee

nests on the newly emerged adult bees. Successful dispersal to

new nests is critical for the mites because the bees do not com-

monly reuse their old nests. The dispersing life-history stage of

the mite (the deutonymph) is tightly synchronized with the last

stages of its bee host’s development. Moreover, some mites are

carried in specialized pouches (acarinaria) of their bee hosts (Fain

and Pauly 2001; Okabe and Makino 2002).

These striking adaptations suggest that the mites and bees

have been involved in long-term coevolutionary interactions, and

that shifts among distantly related bee hosts would be rare events.

For example, the 170 mite species of the genus Sennertia (Klimov

and OConnor) have remained strictly associated with the more

than 500 species of carpenter bees (Michener 2000), even tracking

the ancient dispersal (34–34.6 Mya) of Old World bee lineages to

the New World (Leys et al. 2002). Nevertheless, highly nonrandom

host shifts on unrelated hosts probably have occurred in the early

stages of mite evolution.

Using a comparison of the chaetodactylid mite and long-

tongued bee phylogenies, and an extensive survey of museum

material, we investigate what factors have structured the histori-

cal associations of these symbionts/parasites and their hosts. Our

goals were to (1) determine whether the evolutionary history of

major clades of mites and bee supports a model of coevolutionary

divergence, and (2) understand the underlying determinants of the

observed phylogenetic associations, and specifically (a) what his-

torical events (e.g., cospeciation, host switching, and speciation or

extinction on the host (Johnson et al. 2003; Ronquist 2003) struc-

ture this symbiont/parasite–host assemblage, and (b) whether bee

ecology predicts which potential hosts are likely to be part of the

bee–mite coevolutionary association.

Materials and Methods
SPECIMENS AND DETERMINATION OF HOST

ASSOCIATIONS

A thorough survey of museum specimens determined that most

chaetodactylid mites are not associated with a single host species,

but instead, exist on several closely related sympatric hosts. The

only well-supported exception is Sennertia americana, which is

exclusive to a single host; several poorly known species are also

described from a single host, but may reflect the relative rarity of

these species (e.g., species associated with Chalepogenus, Ancy-

loscelis, Ptilothrix, and Diadasia). The results of the survey on

host ranges of the different chaetodactylid mites are the focus of

this study and are summarized at the generic level of the bees

(Table 1).

Mites from roughly 1500 museum specimens of long-

tongued bees from 18 museum collections in the United States

and abroad were examined for mites, as were specimens freshly

collected by the authors in North America and Africa. All major

groups of short- and long-tongued bees were sampled, but only

the long-tongued bees had chaetodactylid mites (Table 1). This

survey yielded about 230 mite species that includes all currently

known species and species groups, as well as a large number of

undescribed taxa, with the exception of a few species of Senner-

tia for which their bee hosts were not available for inspection.

The majority of these mite specimens (about 5000 slide-mounted

specimens) are vouchered in the University of Michigan, Museum

of Zoology (Klimov and OConnor 2003).

PHYLOGENETIC ANALYSES

Only the relationships among mite genera are considered (Table 1)

for comparison with the phylogeny of the bee hosts because of

constraints imposed by incomplete host phylogenies (Michener

2000) and to emphasize the unique cophylogenetic pattern ob-

served at this level. Maximum parsimony analyses of 51 mor-

phological characters (the appendix) from chaetodactylid hetero-

morphic deutonymphs was used to estimate the mite phylogeny

were conducted in PAUP∗ 4.0b10 (Swofford 2002) using either

equal character weights, or characters weighted according to the

degree of homoplasy using Goloboff’s concave weighting func-

tion (Goloboff 1993) with the constant of concavity (k) set to

2 (implied weights parsimony). A bootstrap majority rule con-

sensus tree was calculated using the branch-and-bound algorithm

and 10,000 bootstrap replicates. Bremer branch support or decay

indices were also calculated using PAUP∗ with a command file

generated in TreeRot.v2 (Sorenson 1999). A Bayesian analysis

was also conducted; four chains (three hot, one cold) of 5 × 106

generations each with a burn-in of 6300 and a sampling frequency

of 100 were used (MrBayes ver. 3.1.1 [Ronquist and Huelsenbeck

2003]). Five independent analyses were conducted to confirm con-

vergence; all resulted in similar topologies. All analyses produced

the same topology, except for unresolved relationships in Achaeto-

dactylus in the two parsimony analyses. Megacanestrinia (family

Canestriniidae) was selected as the outgroup for the mite phy-

logeny as Chaetodactylidae is most likely a basal group of the

superfamily Hemisarcoptoidea (OConnor 1993). The influence

of outgroup choice on the phylogeny and position of the root were

thoroughly investigated and the topology of the tree was robust

to various potential outgroups (54 astigmatid families, including

Canestriniidae, Aeroglyphidae, Glycyphagidae, Winterschmidti-

idae, Hyadesiidae, and Algophagidae). The trees are deposited
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Table 1. Distribution of chaetodactylid mites across their bee hosts showing their geographic affiliations. Aust, Australian region; Ori-

ent, Oriental region; Madag, Madagascar; Afr, Afrotropical region; Palear, Palearctic region; Near, Nearctic Region; Antill, the Greater

and Lesser Antilles, excluding Trinidad; Arauc, Araucanian region (Michener 2000). Some associations that are marginally occurred in a

region are omitted. Unusual finding of chaetodactylids on Andrena, Halictus, Anthophora, Apis, Vespula, Passalidae (Zachvatkin 1941;

Chmielewski 1993; Haitlinger 1999), and Bombus (our data) are omitted. Cleptoparasites of the principal hosts (parenthesis) that may

transfer chaetodactylids are also not included: Stelis (Osmia), sapygids Polochrum (Xylocopa), Sapyga (Chelostoma) (Zachvatkin 1941;

Samšiňák 1973), and Coelioxoides (Tetrapedia) (our data).

Mite taxon Bee taxon Aust Orient Madag Afr Palear Near Neotr Antill Arauc

Megachilidae
Lithurgini

Chaetodactylus Lithurgus + + + + + + + + +
Chaetodactylus Trichothurgus +
Chaetodactylus Microthurge +

Osmiini
Chaetodactylus Osmia + +
Chaetodactylus Hoplitis +
Chaetodactylus Chelostoma +

Anthidiini
Chaetodactylus Rhodanthidium +
Chaetodactylus Anthidium + +

Megachilini
Chaetodactylus Megachile +

Apidae (Xylocopinae)
Xylocopini

Sennertia Xylocopa + + + + + + + +
Ceratinini

Sennertia Ceratina + + + + +
Achaetodactylus Ceratina +

Apidae (Apinae)
Tapinotaspidini

Chaetodactylus Chalepogenus +
Tetrapediini

Roubikia Tetrapedia +
Emphorini

Chaetodactylus Melitoma +
Chaetodactylus Diadasia + +
Chaetodactylus Ptilothrix +
Chaetodactylus Ancyloscelis +

Centridini
Centriacarus Centris + +

in TreeBase (SN3139). Taxon selection for the analyses above

(Table 2) was done on the basis of a larger analysis represent-

ing all species groups and genera of chaetodactylids (46 species)

(online Supplementary Figure S1).

The results from the morphology-based phylogenetic analy-

sis (Fig. 1) were confirmed by a molecular phylogenetic analysis of

nuclear protein-coding and ribosomal gene sequence data (1.1 kb

of EF1-�, 1.8 kb of 18S, and 2.15 kb of domains 1–5 and 9–10 of

28S rDNA) for a subset of taxa (one species of Achaetodactylus,

five species of Chaetodactylus, and seven species of Sennertia).

This analysis is part of a larger ongoing molecular phylogenetic

project (P. Klimov and B. M. OConnor, unpubl. data); as with the

morphological based analyses, robustness of the phylogenetic tree

to different outgroups (specifically, representatives from 54 dif-

ferent astigmatid mite families) was confirmed with the molecular

phylogenetic analyses as well.

As a phylgoenetic estimate of the bee hosts, the generic topol-

ogy of Roig-Alsina and Michener, analysis C (Roig-Alsina and

Michener 1993) and the tribal phylogeny of Engel (2001) were

used. These findings are widely accepted by bee systematists and
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Table 2. Taxa used in the generic-level phylogenetic analysis of Chaetodactylidae. Early derivative mite lineages representing all known

host associations at the generic level were selected for the phylogenetic analyses (except for little known derived species of Chaetodactylus

associated with Emphorini and Tapinotaspidini, see Table 1. The taxon selection was based on the results of the 46-taxon phylogenetic

analysis (online Supplemental Figure S3).

Taxon Host Collection locality

Megacanestrinia sp. Tefflus zanzibaricus Tanzania
Centriacarus turbator Centris (Heterocentsris) vittata, C. sp. Brazil, Peru, Colombia, Panama, Mexico
Centriacarus guahibo Centris sp. Venezuela
Roubikia panamensis Tetrapedia diversipes, T. peckholtii, T. sp., Coelioxoides Panama, Mexico, French Guiana,

waltheriae (cleptoparasite of Tetrapedia) Brazil, Bolivia
Roubikia latebrosa Tetrapedia sp. Peru
Achaetodactylus ceratinae Ceratina opaca South Africa
Achaetodactylus leleupi Ceratina diloensis Democratic Republic of Congo
Ochaetodactylus decellei Ceratina sp., C. spilota, C. aereola, Tanzania, Cameroon, Democratic Republic

C. excavata (Fain 1981) of the Congo (Fain 1981)
Chaetodactylus melitomae Melitoma marginella, M. segmentaria, Melitoma sp. Mexico, Honduras
Chaetodactylus ludwigi Lithurgus dentipes, L. scabrosus, Micronesia, Indonesia, New Caledonia,

L. atratus French Polynesia, South India
Chaetodactylus osmiae Osmia rufa, O. tricornis, France, Belgium, England, Germany,

O. fulviventris, O. cornuta Hungary, Croatia, Spain
Sennertia zhelochovtsevi Xylocopa olivieri Greece
Sennertia surinamensis Ceratina chloris, C. laeta Suriname, French Guiana, Panama

largely match molecular data (unpublished phylogeny, Danforth,

pers. comm., 2005); family-level relationships (Danforth et al.

2006); however, some relationships require further investigation

given weak support and character conflict in the dataset (Roig-

Alsina and Michener 1993).

ANALYSES OF HISTORICAL ASSOCIATIONS BETWEEN

MITES AND THEIR HOSTS

A test for a significant correlation between the phylogenies of

the mites and bee hosts was conducted with PARAFIT (Legendre

et al. 2002); this approach accommodates the association of mite

taxa on more than one host, where taxon distances are used in the

test, rather than topology. Correlation was evaluated by determin-

ing whether the degree of association between species distances

(computed from a principal coordinate analysis of the patristic

distance matrices from the host [Roig-Alsina and Michener 1993;

Engel 2001] and parasite phylogenies) (Fig. 1, excluding the out-

group) and an incidence matrix that describes the associations

between mites and their hosts (Table 2) differs significantly from

expectations of random association between mites and hosts (for

details see Legendre et al. 2002). The program DISTPCOA (Legen-

dre and Anderson 1999) was used to transform patristic matrices

to principal coordinates. Permutation tests (9999 randomizations)

were used to assess the probability that the detected coevolution-

ary correlation differs significantly from that expected by chance.

The program TREEFITTER (Ronquist 1995, 2003) was used

to examine what historical processes might have generated the

observed correlation between the mite and bee histories. Possi-

ble historical scenarios were investigated by evaluating the cost

space of the four events: cospeciation, speciation within a host

lineage, host shifts, and extinction (which are referred to as codi-

vergence, duplication, switching, and sorting, respectively in the

program; Ronquist [2003]). General cost optimization was per-

formed in which the cost of each event was inversely related to

the likelihood of the event and the cost was varied incrementally

within a specified range (i.e., between 0 to 10 for all events, except

for extinction, for which a range of 0.5–4.0 was considered) (see

Ronquist [2003]). The significance of each historical scenario was

evaluated against the null hypothesis that such a combination of

events was statistically indistinguishable from a pattern arising

by chance using randomization tests. Phylogenetically significant

scenarios were identified as those for which the probability of

observing a particular number of events (e.g., Table 3) was P <

0.05 as assessed by 10,000 permutations of both mite- and host-

tree terminals. For this test, the topology of the host tree used in

the analysis was the same as that of Roig-Alsina and Michener

(1993) with a few additions of bee tribes from recent smaller

scale phylogenetic analyses (none of which is chaetodactylid

hosts).

Four associations of Chaetodactylus with Emphorini and

Tapinotaspidini (Table 1) were excluded. They constitute only

1.8% of all known associations at the species level, comprise only

derived mite taxa (see online Supplemental Fig. S1) collected from

a single bee species each and may be accidental.
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Figure 1. Phylogenetic relationships within the family Chaetodactylidae based on Bayesian analysis of morphological data (on the right)

of 12 representative taxa (Table 2) selected on the basis of a larger analyses (Fig. S1); posterior probabilities, bootstrap values, and Bremer

indices are shown. A phylogeny of the long-tongued bees (Engel 2001) is shown on the left. Links between mites and their bee hosts are

shown (a few other links formed by rare and relatively derived mite species are given in Table 1; their exclusion is justified by phylogenetic

analyses presented in supplemental material available online). Note that the chaetodactylid phylogeny is drawn “upside-down” for ease

of showing the inverse phylogenetic correlation.

ANALYSES OF THE ECOLOGICAL DETERMINANTS

OF THE MITE AND BEE ASSEMBLAGES

Four aspects of bee biology that may affect the suitability of a

particular taxon as a chaetodactylid host were considered: nest

construction site, the arrangement of cells within a nest, the pro-

visioning of cells, and the degree of sociality characterizing the

Table 3. The six significant models (as shown in Fig. 2B) that are consistent with the observed correlation between the mite and bee

phylogenies, and the number of invoked historical events specified under a particular model (cospeciation, speciation within a host

lineage, host shifts, and extinction); see Figure 2B for the distribution of costs for host switching and speciation within host associated

with each model.

Historical processes Models

1 2 3 4 5 6

Cospeciation 0 1 2 3 3 3
Speciation within a host lineage 5 5 5 5 7 8
Host shifts 6 5 4 3 1 0
Extinction 0 3 7 12 26 35
Total number of events 11 14 18 23 37 46
Total cost 3.3–16.5 19.5–24.75 24.6–31.8 28.5–50.9 33.15–49.9 35–39

bee taxa. These data were collected primarily from Radchenko and

Pesenko (1994), Radchenko (1996), and Michener (2000), refer-

ences cited therein, and more recent publications (online Supple-

mentary Table S1). In a few cases, data were extrapolated from

other species when the trait appeared to be similar across the

genus.
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Logistic regression analysis was used to investigate how well

these traits predict whether chaetodactylid mites will (or will not)

be associated with a particular bee taxon. The fit of the data to

the model was evaluated using a likelihood-ratio test. The predic-

tive power of the model (i.e., the contribution of host biological

traits to the observed pattern of bee–mite associations) was evalu-

ated with the program SPSS version 11.0.4 (2005) by calculating

the posterior probabilities for each bee taxon and estimating the

percentage of correctly predicted associations.

Results
INVERSE CORRELATION BETWEEN MITE

AND BEE PHYLOGENIES

A significant (P = 0.029) inverse correlation between the phy-

logenies of the mites and bees was detected (Fig. 1) (based on

analyses from the program PARAFIT [Legendre et al. 2002]), but it

is not the pattern expected from a history of cospeciation (Eichler

1948; Klassen 1992; Peek et al. 1998; Clark et al. 2000; Lo et al.

2003; Degnan et al. 2004). Recently derived mites are not associ-

ated with recently derived hosts. Instead the converse is observed.

This intriguing pattern of bee–mite associations at the level of

bee tribes creates an unprecedented case of a reverse “codiver-

gence” that violates Fahrenholz’s rule and is obviously not caused

by cospeciation.

FACTORS UNDERLYING THE BEE–MITE ASSOCIATIONS

Different historical scenarios, involving cospeciation, host shifts,

speciation within a host lineage, and/or extinction (Ronquist 1995,
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Figure 2. Exploration of the cost space to evaluate the different processes underlying the observed coevolutionary association of chaeto-

dactylid and bees: (A) P-values were estimated from 10,000 random permutations of both host and symbiont terminals with a codivergence

and extinction cost of 0 and1, respectively; significant values (P < 0.05) are shaded and shown in detail on the right (B), where the dashed

lines demark the cost space that corresponds with the specific suite of historical events represented in the six significant models (as given

in Table 3).

2003), might account for the correlation between the mite and bee-

host phylogenies. These historical scenarios (i.e., models) were

explored using a general cost-optimization procedure (Fig. 2A).

Costs were assigned and varied incrementally to each of the

four historical processes (i.e., cospeciation, host shifts, speciation

within a host lineage, and extinction), where the cost assigned to

each event was inversely related to the likelihood of the process,

to produce a cost space surface for the number of specific histor-

ical events that would have to be invoked in order to produce the

observed association between the mite and bee phylogenies under

different models (Ronquist 2003).

Six significant models (Table 3) were identified from the

general cost-optimization procedure as having a probability of

less than 5% of being generated by chance (Fig. 2B), as assessed

by permutations of both mite and host taxa across the respec-

tive trees. However, these models are not necessarily biologically

equivalent. Some models can be rejected as unlikely because of

the excessive number of historical events required to generate the

observed correlation between mite and bee phylogenies and high

total cost. For example, the absence of host shifts postulated by

model 6 (Table 3) requires invoking 35 extinctions, which results

in a relative high total cost for the model (lower, right corner

of Fig. 2B). Consideration of both the total costs and number

of individual events required to produce the observed mite–bee

assemblage identifies a model of speciation within hosts and host

switching as more parsimonious than the other scenarios; a dif-

ference of 11 total events (model 1, Table 3, vs. 14, 18, 25,

37, and 46 events for models 2, 3, 4, 5, and 6, respectively).
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Table 4. Classification accuracy of the four-variable logistic re-

gression analysis, indicating the analyses high classification accu-

racy of predicting the presence or absence of chaetodactylid mites

in the nest of a long-tongued bee; the four-variables used in the

model were nest construction site, cell arrangement, cell provision,

and the degree of sociality.

Mites Inferences from model

Absent Present Accuracy (%)

Absent 20 4 83.3
Present 3 12 80.0
Overall 82.1

Because model 1 (speciation within hosts and host switching) is

the most parsimonious and biologically meaningful (many species

of chaetodactylids are known to exist on different hosts and sev-

eral species of the mites can be associated with a single host

species), we consider it as the most preferred historical scenario for

this association.

A significant relationship between the presence of chaeto-

dactylid mites and specific ecological aspects of the bees was

detected by the logistic regression analysis (P = 0.024). The clas-

sification accuracy of bees as potential hosts based on four bee

traits (nesting site, cell arrangement, cell provisioning, and social-

ity; see online Supplemental Table S1) is 82.1%, indicating the

importance of the traits (Table 4). Any combination of bee traits,

where one or more were removed, resulted in a decreased predic-

tive power, suggesting all four aspects of bee ecology structure

the coevolutionary assemblage of these symbionts/parasites and

hosts. For relative contribution of each variable to the model see

online Supplementary Table S1; logistic regression coefficients

(online Supplementary Table S2) can be used to calculate the

probability of mite association with any given long-tongued bee.

Discussion
We propose that ecology has had a predominant influence on

the history of coevolutionary associations between chaetodactylid

mites and long-tongued bees, affecting both the opportunity and

probability of successful host shifts, and thereby dictating which

bees are potential hosts (Michener 2000). One expectation result-

ing from the dependency of the mites on their bee hosts for food,

habitat, and a means of dispersal (Krombein 1962; Abrahamovich

and Alzuet de 1990) is the significant correlation between the mite

and bee phylogenies, as with other symbiont/parasite–host assem-

blages (Reed and Hafner 1997; Peek et al. 1998; Clark et al. 2000;

Lo et al. 2003; Degnan et al. 2004). Indeed, such a correlation

is observed but it is inverse (Fig. 1). The signature of ecologi-

cal constraint in this case manifests itself in an atypical fashion.

First, the temporal disjunction between the diversification of the

mite and bee lineages as evidenced by the bee and mite topologies

rules out a process of cospeciation (Ronquist 2003). Second, the

existence of mite species on multiple related hosts indicates there

are ample opportunities for host shifts. The museum survey and

the phylogenetic analyses identify two ways in which ecology has

constrained this coevolutionary history—interestingly, the non-

random association between the mites and bees (Fig. 1) provides

evidence for ecological constraint in terms of the infrequency of

shifts among distantly related hosts and their frequency among

closely related hosts (Table 1).

Most of the mite genera and species groups are associated

with hosts from a single bee tribe, with the notable exception of

Chaetodactylus (see below). Conservatism in the pattern of host

use evident at this higher taxonomic level (Fig. 1) does not ap-

parently reflect the lack of opportunities for host shifting at lower

taxonomic levels. For example, species of Sennertia have experi-

enced multiple host shifts within and between the host genera Cer-

atina and Xylocopa and these were followed by speciation events.

All this without any obvious mechanism of transfer between host

taxa. These bees differ in nesting sites and lack a common hy-

menopteran cleptoparasite (a potential means of dispersal among

host species). Ecological constraints imposed by similarities in

life-cycles of these bees may structure patterns of host shifting in

these mite genera. The absence of Sennertia mites on numerous

alternative and sympatric hosts supports the hypothesized con-

straint of mite dispersal imposed by the life-cycle of its host, as

opposed to geography explaining patterns of host shifts.

Mites in the genus Chaetodactylus represent an interesting

contrast to the pattern of host conservatism, and have shifted onto

many unrelated and different bee tribes in the families Megachil-

idae and Apidae, with particular mite species still associated with

closely related hosts (Fig. 1; Table 1). Many unrelated hosts of

Chaetodactylus exhibit similar ecologies, as evidenced by the rel-

atively high accuracy of the predictive classification based on as-

pects of bee ecology (Table 4). The broad host range of Chaeto-

dactylus may be explained by two particular characteristics of

this mite genus. These mites most likely experience increased op-

portunities for host shifting as a result of an inert deutonymph,

a cyst-like life-history stage that can survive off the host. By re-

maining in the nest cavity, the mite is able to infest the next bees

to reuse the cavity (Krombein 1962). For example, the nests of the

hosts of the C. osmiae species group (i.e., several taxa of bees in

the genus Osmia) are reused by other bee taxa, providing means

for dispersal between different bee species. Antagonistic interac-

tions of Chaetodactylus with its host may also incur evolutionary

pressures driving the utilization of new unrelated hosts. Species

in this mite genus often kill the developing bee larvae (van Lith

1957; Krombein 1962; Qu et al. 2002). Phylogenetic reconstruc-

tion of the genus (Klimov and OConnor; online Supplementary
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Fig. S1) shows that associations with Apidae (except for Melit-

oma) (Table 1) are clearly secondary and resulted from host shifts

from unrelated megachilid hosts.

How do host shifts occur in mites that typically inhabit nests

of a single bee are dependent on their host for dispersal to new

nests, and therefore a single host species? Various mechanisms

could provide opportunities for host shifting, which include nest

supersedure (i.e., the take over of a nest partly provisioned by

a different individual of the same or different species), utiliza-

tion of a shared entrance to intraspecific or interspecific nest tun-

nels, and hibernating aggregations (Rust 1974; Linsley et al. 1980;

Gerling et al. 1989; McCorquodale and Owen 1994; Hogendoorn

1996). Host shifts may also occur from an incidental transfer on

flowers (e.g., Sennertia) or with loose dirt collected as nest mate-

rial (e.g., Roubikia) (Roubik 1987; Vicidomini 1996). Lastly, hy-

menopteran cleptoparasites attacking multiple host species may

facilitate movement of mites among populations and different host

species (Zachvatkin 1941; Samšiňák 1973; Munster-Swendsen

and Calabuig 2000). For example, deutonymphs of C. krombeini

and C. reaumuri were found on the cleptoparasites Stelis mon-

tana and S. murina, respectively (Klimov and OConnor, in press;

Türk and Türk 1957). Transfer among their hymenopteran hosts

via cleptoparasites is known to influence the host ranges of the

unrelated mite genera Vidia (OConnor and Eickwort 1988) and

Parasitellus (Richards and Richards 1976), and dispersal on par-

asitic hippoboscid flies is similarly considered a major cause of

incongruence between phylogenies of the louse genus Brueelia

and their avian hosts (Johnson et al. 2002). Although it is not pos-

sible to determine how prevalent one mode of transfer might be

over another, irrespective of the specific mechanism involved in

a host shift, the success of such events in chaetodactylid mites is

highly predictable based on aspects of bee ecology (Table 4).

Host characteristics play a critical role in structuring the host–

mite assemblage (Table 4), no doubt by influencing the opportu-

nity and probability of success of a host shift. Properties of the

bee nests can significantly constrain mite dispersal. Cell partitions

constructed by the majority of bees are impenetrable for mites and

do not allow them to move across the brood; the mites die if the

bee in an infested cell dies early (Krombein 1962, 1967; Michener

2000). Consequently, chaetodactylids are associated with bees

where the dispersal ecology of the mites is not limited by nest

architecture. For example, in nests with cells arranged in a lin-

ear sequence, bees in the inner cells usually complete develop-

ment sooner and break through partitions of the outermost cells

to emerge (Skaife 1952; Krombein 1962; Linsley et al. 1980) and

cross-contaminate other members of the nest. Not surprisingly,

chaetodactylids are associated with bees exhibiting these quali-

ties as opposed to bees with independent emergence of broods

(e.g., branching nests or nests composed of clusters of cells, see

online Supplementary Table S1). In addition to the bee traits that

would foster a host–mite association, certain developmental and

biological characteristics of hosts that would negatively impact the

mite could also contribute to the observed coevolutionary patterns.

For example, the bee tribes Allodapini and Ceratinini are closely

related, with similar nest architectures (excluding the absence of

cell partitions in the former), but only the Ceratinini provision

their cells prior to laying eggs. Chaetodactylids are not associated

with bee lineages of the Allodapini whereas they do exist on the

Ceratinini (Table 1, online Supplementary Table S1), suggesting

that progressive feeding of larvae, rather than mass provisioning,

may make them unsuitable hosts for the mites. Bees in both the

Apini and Bombini lay their eggs with a little or no associated

food, and neither hosts any chaetodactylids, although it possi-

ble that the production of different castes in highly eusocial bees

might also reduce the chances of mite dispersal and contribute to

the complete absence of chaetodactylids.

Conclusions
The extensive museum survey and phylogenetic analyses provide

a unique window into how ecological constraint has shaped the co-

evolutionary associations of chaetodactylid mites and their hosts,

the long-tongued bees. The temporal disjunction between the di-

versification of the mite and bee lineages rules out a process of

cospeciation. Moreover, although the existence of mites on multi-

ple hosts species suggests ample opportunity for dispersal among

hosts, the infrequency of host shifts at one level of taxonomic

resolution and their frequency at another suggest how ecological

characteristics of the bees affect both the opportunity for dispersal

and the probability of successful infestation of the mites. When

certain characteristics of the bees and, in particular, aspects of

their nesting behavior are considered, a highly predictive frame-

work for this coevolutionary association emerges, reflecting the

critical role ecology plays in governing the distribution of mites

across the bee hosts.
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viding information on the nest architecture of Rhodanthidium sticticum,

EVOLUTION JUNE 2007 1375



PAVEL B. KLIMOV ET AL.

and G. Hammond (University of Michigan) for his valuable comments
on earlier drafts of the manuscript. We also extend our appreciation to J.
Dykema, J. Diesel, and R. Tao (undergraduate assistants at the University
of Michigan) for their help in mounting, labeling, and databasing mite
specimens. This work was supported by grants from the National Science
Foundation, DEB-0118766 (PEET) and the United States Department of
Agriculture (CSREES #2002-35302-12654).

LITERATURE CITED
Abrahamovich, A. H., and A. B. Alzuet de. 1990. Tipos de asociación entre
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Samšiňák, K. 1973. Zwei neue Arten der Gattung Chaetodactylus Rondani,
1866 (Acari, Acaroidea). Zool. Anz. 190:400–404.

Skaife, S. H. 1952. The yellow-banded carpenter bee Mesotrichia caffra Linn.,
and its symbiotic mite, Dinogamasus braunsi Vitzthum. J. Entomol. Soc.
South. Afr. 15:63–76.

Smith, V. S., P. R. D. M., and K. P. Johnson. 2004. Data incongruence and the
problem of avian louse phylogeny. Zool. Scr. 33:239–259.

Sorenson, M. D. 1999. TreeRot. Boston University, Boston, MA.
SPSS. 2005. SPSS for Macintosh. SPSS Inc., Chicago, IL.
Swofford, D. L. 2002. PAUP∗. Phylogenetic analysis using parsimony (∗and

other methods). Sinauer Associates, Sunderland, MA.
Taylor, J., and A. Purvis. 2003. Have mammals and their chewing lice di-

versified in parallel. Pp. 240–261 in R. D. M. Page, ed. Tangled trees:
phylogeny, cospeciation, and coevolution. Univ. Chicago Press, Chicago.

Türk, E., and F. Türk. 1957. Systematik und Ökologie der Tyroglyphiden
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CHARACTER LIST

1. Gnathosomal solenidion: 0, present; 1, absent

2. Setae on free palpomeres: 0, present; 1, absent

3. Free palpomeres: 0, present; 1, absent

4. Free palpomeres: 0, longer than width at base; 1, shorter

than width at base

5. Alveoli ve: 0, dorsal, distinctly anterior to se; 1, dorsal, ap-

proximately at level of se; 2, ventral

6. Prodorsal shield striation: 0, longitudinal anteriorly and

transverse posteriorly; 1, longitudinal; 2, absent

7. Posterior edge of prodorsal shield: 0, longer than lateral

edges; 1, shorter than lateral edges

8. Prodorsal shield: 0, present; 1, absent

9. Setae se situated: 0, on prodorsal shield; 1, on soft cuticle

10. Setae si: 0, about twice or more longer than se; 1, less than

twice longer than se

11. Setae c2 situated: 0, on same transverse level as c1; 1, dis-

tinctly anterior to level of c1

12. Setae e2 situated: 0, on hysterosomal shield; 1, outside hys-

terosomal shield or touch it

13. Setae 1a and 3a: 0, touching posterior borders of respective

coxal fields and filiform (conoids in outgroup,; 1, Setae 1a

and 3a not touching posterior borders of respective coxal

fields, if touching then inflated and elongated

14. Cupules ia situated: 0, on hysterosomal shield; 1, outside

hysterosomal shield

15. Cupules im situated: 0, at level of acetabules III, approxi-

mately at middle of line between setae d2 and e2; 1, distinctly

posterior to acetabules III, situated off line between d2 and

e2

16. Cupules im: 0, ventral, ventro-lateral; 1, dorsal

17. Cupules ip are: 0, anterior to setae f2; 1, posterior to setae f2

18. Cupules ih situated: 0, on sides of attachment organ; 1, incor-

porated into lateral sclerotized borders of attachment organ

19. Posterior part of posterior apodemes of coxal fields II : 0, not

displaced posteriorly to anterior apodemes III; 1, displaced

posteriorly to anterior apodemes III

20. Coxal fields III: 0, enclosed; 1, open

21. Coxal fields IV: 0, enclosed; 1, open

22. Transverse medial extension of posterior apodemes IV: 0,

well developed; 1, absent

23. Anterior extension of posterior apodemes IV: 0, present,

connecting with anterior apodeme III; 1, absent or not con-

necting

24. Ventral longitudinal sclerites of progenital chamber at pos-

terior part: 0, conspicuous; 1, inconspicuous

25. Ventral longitudinal sclerites of progenital chamber at ante-

rior part: 0, conspicuous; 1, inconspicuous

26. Posterior and lateral cuticular suckers: 0, present; 1, absent

27. Suckers ad3 (excluding transparent margin,: 0, larger than

inner unsclerotized area of suckers ad1+ad2; 1, smaller

or nearly equal to inner unsclerotized area of suckers

ad1+ad2

28. Anterior cuticular suckers: 0, present; 1, absent or vestigial

29. Bases of anterior cuticular suckers: 0, inserted on separate

apodeme (may touch or overlap posterio-lateral sclerotized

border of the attachment organ,; 1, incorporated to the border

30. Apodemes of ps1: 0, separated; 1, partially fused anteriorly;

2, completely fused

31. Setae wa and f I–II: 0, wa I–II submedial, f I–II apical, near

tarsal apices; 1, wa I–II apical or subapical, f I–II at level or

proximal to wa I–II and far from tarsal apices

32. Solenidion w2: 0, present; 1, absent

33. Empodial claws I–III: 0, not twisted; 1, twisted

34. Dorsal cuticular folds of ambulacra I–III: 0, absent; 1,

weakly developed, with distal part smaller than proximal;

2, well developed, with distal part distinctly larger than any

of proximal folds

35. Condylophores of tarsi I–III: 0, weakly developed, almost

symmetrical; 1, well developed, distinctly assymetrical—

anterior longer, posterior shorter, incorporated into posterio-

lateral lobe

36. Supporting sclerites of condylophores (latero-apical scle-

rites of tarsus,: 0, not distinct from the tarsus, not connected

by dorsal bridge; 1, distinct from the tarsus, connected by

dorsal bridge

37. Disto-dorsal lobe of distal part of the caruncle: 0, absent; 1,

present, well developed

38. Dorsal condylar plate of femur-tibia joint: 0, broad; 1, absent

or indistinct

39. Tarsi I–II with: 0, eight setae (e present,; 1) 7 setae (e absent,

p and q present); 2, 5 setae (e, p, and q absent)

40. Tarsal setae ra and la I–II: 0, foliate; 1, simple or spiniform

41. Genual seta cG I : 0, distinctly shorter than genu I and un-

modified; 1, longer or slightly shorter than genu I and mod-

ified

42. Genual setae: 0, cG I longer than cG II; 1, cG I–II subequal

43. Tarsal setae q III: 0, present; 1, absent

44. Tarsal setae w, r, and p III: 0, present; 1, absent

45. Tarsal seta s III: 0, foliate; 1, simple

46. Sigma III: 0, present; 1, absent, represented by alveola

47. Tarsus IV with: 0, 8 setae (s, p, q present); 1, maximum five

setae (s, p, q always absent)

48. Tarsal setae e, f IV: 0, foliate or slightly lanceolate; 1, simple

or absent

49. Tarsal setae w IV: 0, longer than leg IV; 1, distinctly shorter

than leg IV or absent

50. Tibial setae kT IV: 0, present; 1, absent

51. Solenidion phi IV: 0, present; 1, absent, represented by alve-

ola
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Supplementary Material
The following supplementary material is available for this article:

Table S1. Aspects of host biology, and in particular nest architecture, considered to investigate the factors influencing associations

between the chaetodactylid mites and their bee-hosts. The variable “cell construction material” was not included in the analysis

because of difficulties with uniform coding and a possibility of model overfitting. Cleptoparasitic bees were also not included

because they do not have chaetodactylids by definition.

Table S2. Logistic regression model for prediction of the presence of chaetodactylid mites in the nests of long-tongued bees

(raw data from Table S1).

Figure S1. Phylogenetic relationships of Chaetodactylidae reconstructed by maximum parsimony analysis of morphological

data; Bremer indices are shown.

This material is available as part of the online article from:

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1558-5646.2007.00119.x

(This link will take you to the article abstract).

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by

the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
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