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ABSTRACT Diadromus collaris (Gravenhorst) is an important pupal parasitoid of the diamondback
moth, Plutella xylostella (L.), a major insect pest of cruciferous vegetables worldwide. We studied the
development of immature stage ofD. collaris by dissecting parasitized hosts in the laboratory at 25 �
1�C and 50Ð80% relative humidity. The results show that all immature stages complete their devel-
opment within the same host in 11�12 d. The egg is hymenopteriform and appears to be anhydropic.
There are four larval instars. The Þrst instar is transparent with a sclerotized rectangular chitinous head
capsule and distinct mandibles. Head capsule of the second instar turns into more isosceles trapezium-
shaped. The third instar looks similar to the second instar but proportionally much larger. The
sclerization and dimension of the fourth instar increases signiÞcantly. The pupa is a typical exarate
form and lacks a cocoon. All life history was fully documented with detailed photomicrographs. Our
study will be useful for understanding the physiological interactions between D. collaris and P.
xylostella.
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Diadromus collaris (Gravenhorst) (Hymenoptera:
Ichneumonidae) is an important pupal endoparasitoid
of the diamondback moth, Plutella xylostella (L.)
(Lepidoptera: Plutellidae), one of the most destruc-
tive pests of cruciferous vegetables worldwide (Wa-
terhouse and Norris 1987, Talekar and Shelton 1993).
It has been recorded in many parts of the world as one
of the major biological control agents of P. xylostella
(Waterhouse and Norris 1987, Mustata 1992, Wakisaka
et al. 1992, Ali and Karim 1995, He et al. 1996, Chauhan
et al. 1997, KÞr 1997, Liu et al. 2000). The Þrst decade
of this century has seen an increase in the studies of
this parasitoid. Liu et al. (2001, 2002) studied its bi-
ology and the intraspeciÞc variability of different geo-
graphic populations. Wang and Liu (2002) reported its
host age preference and suitability. Moreover, venom
gland structure and effects of parasitism on the fat
body and hemocytes of host were also reported (Li et
al. 2006a,b, 2007).

Successful parasitism of hosts by parasitoids de-
pends on not only gene products that the adult wasp
injects at oviposition like venom and polydnavirus, but
also that the offspring produces during the course of
development including embryonic and larval stages
such as teratocytes in some parasitoidÐhost relation-
ships (PÞsterÐWilhelm and Lanzrein 1996, Bonvin et

al. 2004, Pennacchio and Strand 2006, Falabella et al.
2009). The diversity of tactics parasitoids have evolved
to exploit host resources share the goal of synchro-
nizing host nutrient availability with key phases in
offspring development (Pennacchio and Strand 2006,
Falabella et al. 2007, Bai et al. 2009). Venom seems to
be the major factor of D. collaris in host immune
suppression and regulation (Li et al. 2006a,b, 2007).
However, although some aspects of its biology and
Þnal instar larva have been studied (Given 1944, Liu
et al. 2001), the knowledge of the immature stages is
still not enough to elucidate how D. collaris alters its
host development and immune defenses to ensure its
offspring growth inside host larvae. This study de-
scribes the development of immature stage of D. col-
laris with a detailed description of external morphol-
ogy, which will beneÞt the study on the physiological
relationship of P. xylostella and D. collaris.

Materials and Methods

Insect Collection and Rearing. A colony of D. col-
laris was established from parasitized P. xylostella pu-
pae collected from cabbage (Brassica oleracea L.)
Þelds in the suburbs of Wuhan, Hubei Province,
China. Both P. xylostella andD. collaris colonies were
raised on cabbage in an environmental chamber at
25 � 1�C, 60Ð65% relative humidity (RH), and a pho-
toperiod of 14:10 (L:D) h. Adult wasps were fed with
20% honey-water solution and propagated using P.
xylostella pupae.
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Development of D. collaris. Newly eclosed male
and female (1:1) wasps were collected and placed in
plastic containers. Two days postemergence, mated
female wasps were used for parasitization experiment.
Fresh host pupae (0Ð1 d) were exposed to female
wasps in a transparent vial. After a host pupa was
parasitized once, the parasitized host pupa containing
theparasitoideggwas transferred toaplastic tubekept
in the environmental chamber. Developmental time
was counted from the moment the parasitoid egg was
laid into the host.

To follow development, the parasitoid eggs and lar-
vae were dissected out from host larvae in phosphate-
buffered saline (18.6 mM NaH2PO4�H2O, 84.1 mM
NaH2PO4�2H2O, and 1.75 M NaCl, pH 7.4) with the aid
of a dissecting microscope (M125, Leica, Biberach,
Germany) at 3- and 4-h intervals for embryonic de-
velopment and the following stages, respectively, until
all stages of parasitoid development were recorded
(Table 1).

For each time point, three eggs, larvae, or pupae
were observed and measured. Length measurements
were takenfromtheanteriortotheposteriorendofeggs,
larvae, and pupae. Width measurements were taken
from the anterior of the thorax of larvae and pupae, and
the widest portion of eggs and head capsules.

All stages of the wasp were photographed using a
stereomicroscope (MZ16A, Leica) with an attached
digital camera in conjunction with AutoMontage5.0
software (Synoptics Group, Cambridge, United
Kingdom) and an inverted phase contrast micro-
scope (DM IRB, Leica) equipped with an image man-
ager (IM1000, Leica).

Results

Egg and Embryo. Newly deposited eggs were hy-
menopteriform, elongate-oval, creamy white, and
broader at the cephalic end (Fig. 1A). Approximately
1Ð2 h after oviposition, the egg began subdivision (Fig.
1B and C). A group of cells grew out from both the
anterior and posterior poles of the egg and spread over
the surface of the embryo, forming a complete outer
membrane, the serosal membrane. This lasted 5Ð6 h
followed by gastrulation (Fig. 1D and E), which was
complete in 2Ð3 h. The embryo then underwent seg-
mentation (Fig. 1F). About 14 h after oviposition, the
gut became visible (Fig. 1F). Then another 5 h later,
the cephalic capsule, body segments, and digestive

system became distinguishable (Fig. 1G and H). Ap-
proximately 24 h after oviposition, the Þrst instar was
visible through the transparent chorion (Fig. 1I). Dur-
ing embryonic development, there was no signiÞcant
difference among different stages in width or length.
Larvae.Dissection and counting the number of exu-

via revealed thatD. collaris had four instars. Exuvia of
the Þrst three instars were thin, transparent, and still
had intact head capsules bearing mandibles, whereas
exuvium of the fourth instar was thicker and more
opaque consisting of only mouthparts including man-
dibles and body cuticle (Fig. 2BÐE). Mandible shape
and size also differed in each instar (Fig. 2F). The
larvae were ordinarily oriented on the same axis as the
host with their heads directed anteriorly. Each instar

Table 1. Sizes of immature stages of D. collaris

Stage Duration
Body length
(mm � SD)

Body width
(mm � SD)

Sample
size

Embyro, 0Ð1 h Ñ 0.750 � 0.020 0.172 � 0.005 3
Embyro, 12Ð13 h Ñ 0.700 � 0.012 0.165 � 0.006 3
Embyro, 24Ð25 h Ñ 0.738 � 0.010 0.170 � 0.002 3
L1 20Ð24 h 0.981 � 0.292 0.292 � 0.064 15
L2 12Ð16 h 1.395 � 0.226 0.484 � 0.047 12
L3 8Ð12 h 1.753 � 0.250 0.651 � 0.071 8
L4 44Ð48 h 3.436 � 0.919 1.027 � 0.215 37
Prepupa 20Ð24 h 4.640 � 0.360 1.057 � 0.070 30
Pupa 128Ð132 h 4.712 � 0.355 0.878 � 0.086 102

Fig. 1. D. collariseggs. (AÐC) Eggs under subdivision 1Ð6
h after oviposition. (DÐE) Eggs in gastrulation 9Ð10 h after
oviposition. (FÐH) Eggs in segmentation 14Ð20 h after ovi-
position. (I) Embryo ready for ecdysis � 24 h after ovipo-
sition. Scale bar � 0.05 mm. (Online Þgure in color.)
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lasted a different period of time (Fig. 3). The Þrst
instar was caudate-mandibulate, whereas the second
to fourth instars were hymenopteriform. All instars
completed their development inside the same host.
First Instar. Upon hatching the chorion was rup-

tured at the anterior end with the rest egg membrane
left behind (Fig. 2A). The Þrst instar (�24 h) was
caudate-mandibulate with 13 segments and a distinct
sclerotized rectangular head capsule of 0.20 � 0.018
mm in width (Fig. 4A and B). The falcate mandibles
were fully articulated. At the early stage, the larva was
translucent and the cephalic capsule was almost as
wide as the following several segments. As the larva
developed, its body grew quickly and segmentation
became more distinguishable. At the late stage, the
segments behind the head exceeded the cephalic cap-
sule in width and the tracheal system turned visible
through the integument.

Second Instar. The second instar appeared at the
third day after oviposition, lasting �16 h. Head
capsule increased into 0.20 � 0.018 mm in width and
turned into more isosceles trapezium-shaped (Fig.
4C). When the body size of larvae was increasing,
the gut occupied more and more volume of the body
and squirmed frequently. The midgut and the
VÐshaped hindgut both end blindly but abutting one
another. The tracheal system became more clearly
visible, surrounding the gut.
Third Instar. The third instar was still spindle

shaped, similar to the second instar but proportion-
ally much larger (Fig. 4D). The posterior part of the
sclerotized head capsule (0.39 � 0.019 mm) was
tucked under the Þrst thoracic segment as body
segments were increasing in size. Mandibles were
also not as obvious as in the earlier instars. The larva
became more opaque with gut increasing in pro-

Fig. 2. Exuvia ofD. collaris larvae. (A) First-instar larva and the rest egg membrane. (B) Second-instar larva and exuvium
of Þrst instar. (C) Third-instar larva and exuvia of last two instars. (D) Head of fourth-instar larva and exuvia of last three
instars. (E) Exuvium of fourth instar; arrow, mandibles. (F) Mandibles of each instar exuvium. a, Þrst instar; b, second instar;
c, third instar; d, fourth instar. Scale bars � 0.1 mm. (Online Þgure in color.)
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portion. The developmental time of the third instar
was only 12 h.
Fourth Instar. The fourth instar lasted �48 h, nearly

as long as the combined duration of the last three
instars. The head of the fourth instar larva hardly
changed its size as the larva developed, which aver-
aged 0.50 � 0.03 mm in width, but the sclerization and
dimension of the fourth instar increased signiÞcantly.
As growing, the body segments increased to such a size
that the head became proportionately smaller and

Þnally almost enveloped by the Þrst thoracic segment
(Fig. 4F). Many white globules appeared as bands of
small white spots and scattered beneath the cuticle of
abdominal segments, larger and more obvious at the
later stage (Fig. 4FÐH). Body color turned from yel-
lowish green to dark green as development proceeded
(Fig.4EÐH).Simultaneouslythethoracicsegmentsgrad-
uallydifferentiated.At the later stage, surfaceof thoracic
segments became rough with wrinkles and somewhat
uplifted, which could be easily distinguished from ab-

Fig. 3. Sizes of different instars of D. collaris larvae.

Fig. 4. D. collaris larvae. (A, B) First-instar larva. (C) Second-instar larva. (D) Third-instar larva. (EÐH) Fourth-instar
larva. Scale bars � 0.2 mm. (Online Þgure in color.)
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dominal segments (Fig. 4FÐH). Head capsule surface
also turned rough with many sculptures (Fig. 4H). Ap-
proximately 48 h later, the parasitoid larvae had con-
sumednearlyall the tissuesof thehostexcept thecuticle,
and were completely opaque (Fig. 4H).
Prepupa and Pupa. Prepupa. In the prepupal stage,

the parasitoid was still larviform, sculptured, short-
ened, and constricted, but with some pupal morphol-
ogy indicated. The gut was Þlled with brown meco-
nium visible through the cuticle of the abdomen (Fig.
5A). The midgut became connected to the hindgut at
this stadium. In the later prepupal phase, the
prepupa voided the meconium (Fig. 5B and C) and
the body turned to ivory-white (Fig. 5D). At this
stage, the compound eyes and three dorsal ocelli
became visible and pigmented (Fig. 5D). As the
prepupa approached ecdysis, the pupal character-
istics such as antennae, and legs showed through the
integument (Fig. 5EÐG).
Pupa. The pupa was a typical exarate form and

lacked a cocoon. The exuvium of the fourth instar and
the meconium could be observed attaching to the end
of the abdomen (Fig. 6A, B, and D). Initially, only eyes

and ocelli were pigmented and the white granules in
the larval phase were still detectable (Fig. 7A, F, and
K). Then, the color of eyes darkened and the white
granules disappeared (Fig. 7B, G, and L). The man-
dibles and mesoscutum became pigmented (Fig. 7C,
H, and M), and pigmentation of the remaining parts of
the thorax, petiole, and legs followed (Fig. 7D, I, and
N). The postabdomen and antennae were the last
body parts becoming pigmented (Fig. 7E, J, and O).
It was also at this Þnal stage of pupal development
that wing venation and setae development oc-
curred. Six days after pupation, the adult made a
circular cut at the cephalic end of host integument
using its mandibles, and then emerged, leaving be-
hind the brown host integument, which could be
easily differentiated from the white integument of
unparasitized hosts (Fig. 6C).

Discussion

Flanders (1942) described two functional types of
egg chorion for parasitic waspsÑanhydropic and hy-
dropic. Anhydropic eggs have enough yolk for subse-

Fig. 5. D. collaris prepupae. (A) Newly formed prepupa. (B) Prepupa at the early phase. (C) Prepupa voiding its
meconium; arrow indicating meconium. (D) Prepupa ready for molting; arrow indicating dorsal ocelli. (EÐG) Head and
thoracic segments in dorsal and lateral and ventral view. Scale bars � 0.5 mm (AÐD) and 0.1 mm (EÐG). (Online Þgure in
color.)

Fig. 6. Host pupae parasitized byD. collaris. (A) Host pupa 5 d after parasitism. (B) Host pupa 10 d after parasitism. (C)
Exuvium of P. xylostella pupae. a, unparasitized; b, parasitized. (D) Remnants in posterior segments of host exuvium. c,
meconium; d, ecdysis of fourth instar; e, white granules. Scale bars � 0.5 mm. (Online Þgure in color.)
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quent embryonic development, whereas hydropic
eggs do not and absorb nutrients from the host
through the chorion (Ferkovich and Dillard 1986).
Hydropic eggs occur widely in endoparasitic Hyme-
noptera. Once laid inside the host, hydropic eggs usu-
ally swell greatly over a period of hours to days
(Quicke 1997). Two important larval endoparasitoids
ofP. xylostellabothhavehydropiceggs.Cotesiavestalis
(Haliday) eggs doubled in length and increased al-
most sixfold in width after 48 h (Yu et al. 2008),
whereas length measurements (micropyle end to non-
micropyle end) of Diadegma semiclausum (Hellén)
egg, as ratios, increased from 1.13 � 0.01 to 1.67 � 0.03
after 1�1.5 h (Huang et al. 2009). Our study revealed
that no obvious increase or expansion of D. collaris
eggs in length or width occurred during embryonic
development, indicating that they are anhydropic.
However, it should be further conÞrmed by examining
the ultrastructure of egg chorion and determining if
the egg consists of yolk before laid.

The ichneumonoid parasitoids usually have Þve lar-
val instars (He et al. 1996). However, the number of
instars is reduced in many groups (Quicke 1997). Ha-
gen (1964) suggested that reduced instar number was
nearly always associated with endoparasitism. Our
study revealed that there were four larval instars inD.
collaris, and all the exuvia of each instar were discov-
ered by careful dissection.

Morphological characteristics of immature instars,
especially the cephalic structures of the Þnal instar,
play an important complementary role in recognition,
identiÞcation, and classiÞcation of Ichneumonidae
(Short 1978, Gillespie and Finlayson 1983, Wahl
1993, Wahl and Gauld 1998). Given (1944) de-
scribed the Þnal instar and its head-capsule of D.
collaris. Our study agreed basically with the previ-
ous description but provided more intuitive photo-
graphs of its all life history (Fig. 4FÐH). These
results will facilitate the measurement of the inter-
action between D. collaris and P. xylostella, which
requires the recognition of its immature stage to
different developmental stages.
D. collaris pupa was a typical exarate form and

lacked a cocoon. Cuticle construction of parasitized
host pupa serves as a protection for the vulnerable
parasitoid pupa (Fig. 6A and B). It is consistent with
the results of Given (1944). Similar phenomenon was
reported in several other endoparasitoids (Gillespie
and Finlayson 1983, Wahl 1986, Tormos et al. 1999).
Interestingly, most of the parasitoid pupae without
cocoons were discovered in species whose Þnal larvae
emerged from host pupae not larvae.

The successive pigmentation changes of D. collaris
in body color are similar to those of Chelonus inanitus
(L.) (Albert et al. 1994) and D. semiclausum (Huang
et al. 2009). The white granules along the abdominal
sides Þrst appeared at fourth-instar larval stage and
disappeared at pupal stage, which are believed to be
urate cells of the fat body. The same observation was
reported for D. semiclausum, Chelonus blackburni
(Cameron), and Peristenus digoneutis (Loan) (Jack-
son et al. 1978, Carignan et al. 1995, Huang et al. 2009,).
They were Þnally ejected at the posterior segments of
host pupal exuvium (Fig. 6D).

Liu et al. (2001) reported thatD. collaris took 11�12
d to develop from oviposition to adult emergence at
25�C. Our results conÞrmed this conclusion. For pupal
endoparasitoids, there are potential risks from putre-
faction of unconsumed host tissue. Therefore, these
endoparasitoids tend to develop rapidly or at least to
complete their larval development quickly. This will
reduce the effects of any decline in host quality that
will occur naturally or as a result of infection by mi-
croorganisms (Quicke 1997). For two larval endop-
arasitoids, both D. semiclausum and C. vestalis spend
�2 d on embryonic development, then take 5Ð6 d and
7Ð8 d, respectively, to become the Þnal instar at 22 �
2 and 25 � 1�C (Yu et al. 2008, Huang et al. 2009).
However, as a pupal endoparasitoid, D. collaris com-
pleted embryonic development in 1 d. Only 3 d later,
D. collaris larva had consumed most of the host tissue
and reached the last instar. The Þnal 7Ð8 d were spent

Fig. 7. D. collaris pupae in dorsal and lateral and ventral
view.(A,F,K)PupaattheÞrststage.(B,G,L)Pupaatthesecond
stage. (C, H, M) Pupa at the third stage. (D, I, N) Pupa at the
fourthstage.(E, J,O)Pupaat theÞfthstage.Scalebars�0.5mm.
(Online Þgure in color.)
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on internal development from older fourth-instar
larva to emergence. The above difference may reßect
the different developmental tactics evolved between
larval and pupal endoparasitoids.

Teratocytes, a special kind of cells derived from the
embryonic membrane of parasitoids at egg hatching,
play several important roles (trophic, immunosup-
pression, and secretory) in the parasitoidÐhost inter-
action (Falabella et al. 2009). Our results showed that
no teratocytes were released when the Þrst instar larva
ofD. collariseclosed. Therefore, whether the products
the D. collaris larva produces itself are essential for
successful parasitism or how the parasitoid redirects
host nutritional resources to coincide with key phases
in offspring development need further study.

In conclusion, our study revealed the entire devel-
opment of all immature stages of D. collaris, and thus
provided a solid foundation for further studies on
physiological interactions between D. collaris and P.
xylostella.
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