

A Rapid Biodiversity Assessment & Archaeological Survey of the Fiji REDD+ Pilot Site:

Emalu Forest, Viti Levu

Editors: Marika V. Tuiwawa, Sarah Pene, Senilolia H. Tuiwawa

Compiled by the Institute of Applied Sciences, University of the South Pacific, for the Forestry Department of the Ministry of Agriculture, Fisheries and Forestry, Republic of the Fiji Islands; and SPC/GIZ 'Coping with Climate Change in the Pacific Island Region' Programme

August 2013

Table of Contents

Organisational Profiles & Authors1
Acknowledgements
Executive Summary
Maps 6
Photographs
CHAPTER 1: Introduction
CHAPTER 2: Flora, Vegetation & Ecology
CHAPTER 3: Herpetofauna 49
CHAPTER 4: Avifauna
CHAPTER 5: Terrestrial Insects
CHAPTER 6: Freshwater Fishes 64
CHAPTER 7: Freshwater Macroinvertebrates 69
CHAPTER 8: Invasive Species
CHAPTER 9: Archaeological Survey 87
APPENDICES
REFERENCES

List of Maps

Map 1: Location of the Emalu study area, Viti Levu
Map 2: Location of certain focal plant species within Emalu7
Map 3: Principal vegetation types within Emalu
Map 4: Principal vegetation types and habitats within Emalu9
Map 5: Location of herpetofauna survey points within Emalu 10
Map 6: Location of the avifauna survey points and 59 point count stations within Emalu 11
Map 7: Location of the focal avifauna species within Emalu 12
Map 8: Location of the focal terrestrial insect species within Emalu
Map 9: Location of freshwater fish sampling sites within Emalu
Map 10: Location of macroinvertebrate sampling stations within Emalu
Map 11: Location of rodent trapping transects around Tovatova basecamp
Map 12: Location of cultural sites within Emalu17
Map 13: Location of six extensive old settlement sites within the Mavuvu catchment

List of Photographs

Fig. 1 Leafy branches of the critically endangered podocarp, Acmopyle sahniana (SHT) 19
Fig. 2 Fruit of the vulnerable endemic flowering plant, <i>Degeneria vitiensis</i> (SHT)
Fig. 3 Flower of the relic flowering plant family Degeneriaceae, Degeneria vitiensis (SHT) 19
Fig. 4 The rare orchid <i>Macodes</i> cf. <i>petola</i> (MT)19
Fig. 5 The rare orchid Nervilia cf. punctata, in the lowland rainforest of Tovatova catchment (SHT) . 19
Fig. 6 Equisetum ramosissimum subsp. debile on the banks of Nasa River (SHT)
Fig. 7 Palm tree <i>Metroxylon vitiense</i> (MT)
Fig. 8 Palm tree <i>Metroxylon vitiense</i> crown with apical infructescence (MT)
Fig. 9 Habit and infructescence of the threatened palm, <i>Cyphosperma tanga</i> , found in upland slope forest of Waikarakarawa catchment (SHT)
Fig. 10 Close up view of <i>Cyphosperma tanga</i> infructescence (SHT)
Fig. 11 Villagers from Naqarawai and Draubuta assist with the processing of bryophytes (SHT) 20
Fig. 12 Airing out live specimens of lichens and bryophytes in the field (SHT) 20
Fig. 13 A native bronze-headed skink, Emoia parkerii, locally known as moko sari (NT) 21
Fig. 14 Fiji's endemic tree frog, <i>Platymantis vitiensis</i> , found within the Waikarakarawa catchment (SHT)
Fig. 15 An endemic skink toed gecko, Nactus pelagicus, locally known as moko (NT)
Fig. 16 The native gecko, Gehyra vorax, (boliti) camouflaged on tree bark (NT)
Fig. 17 Habitat of the long legged warbler, <i>Trichocichla rufa rufa</i> , currently listed on the IUCN Red List as Endangered (AN)
Fig. 18 The long legged warbler, found to be common in the upland undisturbed riparian vegetation (AN)
Fig. 19 The collared lorry, <i>Phigys solitarius</i> , found in the Emalu forest (SPRH)
Fig. 20 A male golden dove, <i>Ptilinopus luteovirens</i> , found in the Emalu forest (SPRH)
Fig. 21 Samoan flying-fox (beka lulu, beka ni siga) <i>Pteropus samoensis</i> , a Near Threatened species on the IUCN Red List, quite common in the general vicinity of Emalu (AN)
Fig. 22 Insular flying fox (beka), <i>Pteropus tonganus</i> a species of Least Concern on the IUCN Red List, quite common in the upper Mavuvu catchment (AN)

Fig. 23 Raiateana knowlesi (nanai), an endemic and rare cicada (SPRH)	22
Fig. 24 Local guide from Draubuta assisting with the sampling of Winkler bags (AL)	22
Fig. 25 Leaf litter sampling with Winkler bags (AL)	23
Fig. 26 Common damselfly, Nesobasis angolicolis, endemic to Fiji (AL)	23
Fig. 27 The endemic butterfly, <i>Hypolimnas inopinata,</i> resting on a fern (AL)	23
Fig. 28 Larva of <i>H. inopinata</i> on the leaves of the shrub host plant, <i>Elatostema nemorosum</i> (AL)	23
Fig. 29 The endemic stick insect, <i>Nisyrus spinulousus</i> , on a bark of a tree (AL)	23
Fig. 30 Freshwater eels, Anguilla spp., Nasa stream in the Mavuvu catchment (LC)	23
Fig. 31 Holotype illustration of Lairdina hopletupus (Fowler, 1953)	24
Fig. 32 Amphidromous goby, Sicyopus zosterophorum, upper Nasa stream (LC)	24
Fig. 33 Jungle perch, Kuhlia rupestris, found within mid-Mavuvu stream (LC)	24
Fig. 34 Sukasuka ni ika droka- a natural barrier to fish migration along the mid-Mavuvu stream (LC	C) 24
Fig. 35 Nasa Creek, upstream from base camp, an important habitat for fish sampling (LC)	24
Fig. 36 Wainirovurovu Creek, below waterfall, an important habitat for fish sampling (LC)	24
Fig. 37 Upper Wainirovurovu Creek (BR)	25
Fig. 38 Snorkeling in mid Mavuvu Creek, below the waterfall (BR)	25
Fig. 39 Nasa Creek (LC)	25
Fig. 40 Wainirovurovu tributary downstream (LC)	25
Fig. 41 Wainirovurovu tributary above waterfall (BR)	25
Fig. 42 Wainasoba/Mid Mavuvu (BR)	25
Fig. 43 Waikarakarawa Creek (BR)	26
Fig. 44 Qalibovitu Creek (BR)	26
Fig. 45 Endemic mayfly <i>Pseudocloeon</i> sp. <i>B</i> (BR)	26
Fig. 46 Endemic mayfly <i>Pseudocloeon</i> sp. <i>B</i> (LC)	26
Fig. 47 Endemic mayfly <i>Cloeon</i> sp. A (BR)	26
Fig. 48 Endemic mayfly <i>Cloeon</i> sp. <i>B</i> (BR)	26
Fig. 49 Damselfly nymph Nesobasis sp. "orangish" (BR)	26

Fig. 50 Damselfly nymph Nesobasis sp. "dark green" (BR)	26
Fig. 51 Caddisfly larva Apsilochorema sp. "light green" (BR)	26
Fig. 52 Caddisfly larva Hydrobiosis sp. "pinkish" (BR)	26
Fig. 53 Caddisfly larva Hydrobiosis sp. "green" (BR)	26
Fig. 54 Caddisfly larvae [Trichoptera] Chimarra sp. (BR)	27
Fig. 55 Nematode worm, unknown species (BR)	27
Fig. 56 Cranefly larvae [Tipulidae], Tipula sp. (BR)	27
Fig. 57 Rissooidean snails Fluviopupa spp., under compound microscope (BR)	27
Fig. 58 Rissooidean snails Fluviopupa spp., actual size (BR)	27
Fig. 59 Nematode worm, under compound microscope (BR)	27
Fig. 60 Unknown species of moth (larva), actual size (BR)	27
Fig. 61 Unknown species of moth (larva), under compound microscope (BR)	27
Fig. 62 Juvenile black rat caught by guide Aporosa Maya Jnr, at about 650m altitude (IR)	27
Fig. 63 Horses and guides crossing the Waitotolu Creek in the Waikarakarawa catchment (SP)	27
Fig. 64 Cane toad (<i>Bufo marinus</i>) found in the upper Mavuvu River catchment (SK)	28
Fig. 65 Piper aduncum, Mikania micrantha and Dissotis rotundifolia on the bank of a small creek	
Fig. 66 Illustration of a burekalou in the highlands of Viti Levu (Williams and Calvert, 1858)	28
Fig. 67 Sketch of a nanaga, or sacred stone enclosure of Wainimala by Leslie J. Walker (Fison, 188	35)28
Fig. 68 Preserved stone alignment visible on mount at site M28-0004 (SK)	28
Fig. 69 Possible temple mound at site M28-0008 (SK)	28
Fig. 70 Pottery vessel or Saqaniwai discovered on mound at site M28-0014 (SK)	29
Fig. 71 Pottery vessel discovered upon house mound at site M28-0014 (SK)	29
Fig. 72 Pottery sherds found at site M28-0026 (SK)	29
Fig. 73 Ancestral passageway that leads to main stream at site M28-0026 (SK)	29
Fig. 74 Stone alignment visible on mound at site M28-0028 (SK)	29
Fig. 75 View of agricultural terrace platforms at site M28-0013 (SK)	29

Fig. 76 Ditch causeway at site M28-0017 (SK)	30
Fig. 77 Raised mound with stone alignment at site M28-0026 (SK)	30
Fig. 78 Local guide pointing towards settlement platform at site M28-0017 (SK)	30
Fig. 79 View of settlement platform with terrace platform along the base at site M28-0017 (SK)	30
Fig. 80 Pottery sherds at site M28-0018 (SK)	30
Fig. 81 Ditch feature situated at site M28-0018 (SK)	30
Fig. 82 Complete traditional pottery vessel with earthen rim cover at site M28-0023 (SK)	30
Fig. 83 Tobu ni nanai - sacred pool (SK)	30
Fig. 84 Degraded terrace due to erosion processes at site M28-0010 (SK)	31
Fig. 85 Metallic pot at site M28-0012 (SK)	31
Fig. 86 Raised earthen mound at site M28-0011 (SK)	31
Fig. 87 Stone alignment of a house mound at site M28-0009 (SK)	31
Fig. 88 Rim sherd discovered at site M28-0020 (SK)	31
Fig. 89 Displaced stones of house mounds generated by wild pig inhabitation and erosion proce at site M28-0022 (SK)	
Fig. 90 Displaced stones of house mounds generated by wild pig inhabitation and erosion proce at site M28-0022 (SK)	
Fig. 91 Visible stone alignment of house mound at site M28-0024 (SK)	32
Fig. 92 Tobu ni sili - sacred pool (SK)	32
Fig. 93 Vatu ni veiyalayala –Land boundary (SK)	32
Fig. 94 Raised mound with stone alignment at site M28-0019 (SK)	32
Fig. 95 Sakiusa Kataiwai and guide in front of a fortification structure at site M28-0066 (SK)	32
Fig. 96 Ruins of the stone wall at site M28-0059 (SK)	33
Fig. 97 Rock shelter and camp site for the Archaeology team at site M28-0069 (SK)	33

List of Appendices

Appendix 1. Sp	pecies checklist of the non-vascular flora and lichens	97
Appendix 2. A	nnotated checklist of the vascular flora of Emalu	103
Appendix 3. Su	ummary statistics of vegetation community structure assessment plots	116
Appendix 4. D	escription of forest and non-forest habitat types	123
Appendix 5. H	erpetofauna suvey sites locations and sampling methods	125
Appendix 6. Co	onservation status of herpetofauna species known from Viti Levu	127
Appendix 7. A	vifauna species checklist, distribution and abundance	128
Appendix 8. Lo	ocation of point count stations, habitat and birds recorded	130
Appendix 9. Fo	ocal avifauna species recorded within Emalu	133
Appendix 10.	Species checklist of insects and arachnids in the Tovatova catchment	134
Appendix 11.	Species checklist of insects and arachnids in the Waikarakarawa catchment	137
Appendix 12.	Species checklist of insects and arachnids in the Mavuvu catchment	140
Appendix 13.	Species checklist of freshwater fish in the upper Sigatoka River tributaries	141
Appendix 14.	Water quality parametres at freshwater fish sampling stations	143
Appendix 15.	Location and descriptions of macroinvertebrate sampling stations	144
Appendix 16.	Physicochemical parameters of macroinvertebrate sampling stations	145
Appendix 17.	Habitat and riparian characteristics of macroinvertebrate sampling stations	146
Appendix 18.	Abundance of freshwater macroinvertebrates collected with Surber sampling	. 147
Appendix 19.	Abundance of freshwater macroinvertebrates collected opportunistically	149
Appendix 20.	Checklist of invasive and potentially invasive animals	152
Appendix 21.	Locations of rodent transects in Tovatova catchment	153
Appendix 22.	Record of pigs (Sus scrofa) caught	153
Appendix 23.	Checklist of invasive and potentially invasive plants	154
Appendix 24.	Summary descriptions and locations of cultural heritage sites	156

ORGANISATIONAL PROFILES & AUTHORS

Institute of Applied Sciences (University of the South Pacific)

The Institute of Applied Sciences (IAS) was established in 1977 as part of the University of the South Pacific. The Institute operates as a consulting body within the university, applying the professional and academic expertise of its staff as required by government, NGO or private projects in Fiji and the Pacific region. IAS operates through six thematic units; the South Pacific Regional Herbarium, the Environment Unit, the Quality Control Unit, the Drug Discovery Unit, the Analytical Unit and the Food Unit. This survey was coordinated and headed by the South Pacific Regional Herbarium.

South Pacific Regional Herbarium

The South Pacific Regional Herbarium (SPRH) is the focal point for the study of taxonomy, conservation and ecology of plants in the Pacific. The collection of the SPRH includes over 50, 000 vascular plant specimens from Fiji and around the Pacific, as well as a wet collection of plant parts, bryophytes and algae. As a member of an international network of herbaria, the SPRH participates in programs to maintain collections of botanical plants specimens for study by local and international botanists. More recently it has extended its collection to include those of other taxa to include insects, freshwater invertebrates and vertebrates, reptiles and amphibians, birds and native mammals.

South Pacific Regional Herbarium Institute of Applied Sciences, University of the South Pacific, Private Mail Bag, Suva, Fiji www.usp.ac.fj/herbarium

Marika V. Tuiwawa Herbarium Curator & Survey Leader tuiwawa_m@usp.ac.fj

Senilolia H. Tuiwawa Chapter 2: Flora, Vegetation & Ecology tuiwawa_s@usp.ac.fj

Hilda Waqa-Sakiti Chapter 5: Entomology hilda.sakitiwaqa@usp.ac.fj Alivereti Naikatini Chapter 4: Avifauna naikatini_a@usp.ac.fj

Sarah Pene Chapter 8: Invasive Species sarah.pene@usp.ac.fj

Lekima Copeland Chapter 6: Freshwater Fishes lekima.copeland@gmail.com

Environment Unit

The Environment Unit of the Institute of Applied Science conducts environmental impact assessments and monitoring of terrestrial and aquatic biodiversity and water quality. The Environment Unit also works with communities to assist them in the development and implementation of resource management plans.

Environment Unit Institute of Applied Sciences, University of the South Pacific, Private Mail Bag, Suva, Fiji Hans Wendt GIS & mapping karlwendt.hans@gmail.com **Bindiya Rashni** Chapter 7: Freshwater Macroinvertebrates bindiya.rashni@gmail.com

Fiji Museum

The Fiji Museum is a statutory body with the aim of identifying, protecting and conserving archaeological and cultural heritage for current and future generations. The Fiji Museum's collection includes archaeological material dating back 3,700 years and cultural objects representing Fiji's indigenous inhabitants as well as other communities that have settled in the island group over the past two centuries.

The Fiji Museum Thurston Gardens, Suva, Fiji www.fijimuseum.org.fj

Elia Nakoro Chapter 9: Archaeological Survey elia.nakoro@gmail.com Sakiusa Kataiwai Chapter 9: Archaeological Survey sakiusa.kataiwai@gmail.com

NatureFiji-MareqetiViti

NatureFiji-MareqetiViti is the working arm of the Fiji Nature Conservation Trust, a non-profit, nongovernment, non-political charitable trust. NatureFiji-MareqetiViti's mission is to enhance biodiversity and habitat conservation, endangered species protection and sustainable use of natural resources of the Fiji Islands through the promotion of collaborative conservation action, awareness raising, education, research, and biodiversity information exchange.

NatureFiji-MareqetiViti 14 Hamilton-Beattie St., Suva, Fiji www.naturefiji.org

Nunia Thomas Chapter 3: Herpetofauna nuniat@naturefiji.org

Conservation International (Fiji)

Conservation International (Fiji) is an international non-profit environmental organization. Its mission is to build upon a strong foundation of science, partnership and field demonstration, to empower societies to responsibly and sustainably care for nature for the well-being of humanity. Conservation International operates in Fiji in partnership with The National Trust of Fiji.

Conservation International, Pacific Islands Program 3 Ma'afu St., Suva, Fiji www.conservation.org

Isaac Rounds Chapter 8: Invasive species irounds@conservation.org

ACKNOWLEDGEMENTS

The survey work described in this report would not have been possible without the support and cooperation given by the elders and landowners of Draubuta, Nakoro, Navitilevu, Naqarawai, Saliadrau and Naraiyawa villages.

The authors would also like to thank the following people for their technical expertise in the field: Senivalati Vido, Salaseini Bureni and Panapasa Tubuitamana of the Fiji Department of Forestry; Apaitia Liga, Siteri Tikoca, Mereia Katafono, Tokasaya Cakacaka and Manoa Maiwaqa of the SPRH.

The work of the field guides; Waisale Lasekula, Kaminieli Tauininukuilau, Lepani Kainailega, Jovilisi Mocetabua, Vetaia Mocetabua, Avisai Draunivadra, Avorosa Maya, Aporosa Maya Jnr., Asaeli Navale, Netani Ganitoga, Napolioni Suguvanua, Semesa Banuve, Samuela Nasalo, Netani Ganitoga, Sireli Marua, and Lemeki Toutou is also gratefully acknowledged.

Bindiya Rashni would especially like to thank Dr Alison Haynes, Honorary Fellow at the Institute of Applied Science, for verifying the identifications from the macroinvertebrate survey.

EXECUTIVE SUMMARY

The land encompassed by the mataqali Emalu in the province of Navosa has been selected as the pilot site for the Fiji REDD+ programme. A survey to assess the biodiversity of the area and document its cultural heritage sites was carried out by a team of specialists from USP's Institute of Applied Science (the South Pacific Regional Herbarium and the Environment Unit), the Fiji Museum, NatureFiji-MareqetiViti and Conservation International. The expedition was implemented in two phases; in July 2012 and March 2013.

Flora, Vegetation and Ecology

A total of 707 plant taxa were recorded for Emalu, including 286 bryophytes and lichens, 375 angiosperms, nine gymnosperms, and 35 ferns and fern allies. Altogether, the vascular and non-vascular taxa recorded from the Emalu site spanned 182 families and 391 genera. Over a third (39%) of the vascular plant flora recorded are endemic to Fiji, including 160 species of flowering plants, two fern and fern allies, and two gymnosperms. Ten taxa were encountered that are important focal species due to their rarity, botanical significance, very recent discovery in Fiji and inclusion in the IUCN Red List. Five principal vegetation types were identified; lowland rainforest, upland rainforest, cloud forest, dry forest and talasiga.

Herpetofauna

Six species of herpetofauna: three endemic, two native and one invasive were captured over 22 man-hours of diurnal survey, 63 hours of sticky tape trapping and nine man-hours of nocturnal surveys. This survey has documented the first records of herpetofauna in this area and indicates a similar herpetofauna habitat to those typically observed in other parts of Viti Levu. The endemic Fiji tree frog (*Platymantis vitiensis*) was encountered in the area and is possibly the western-most record of the occurrence of this species in Fiji.

Avifauna

A total of 35 species of birds were recorded during the survey, which included 25 endemic species and one exotic species. Two species of bats were also recorded during the surveys. Ten focal species were identified (eight bird species and two bat species). The bird diversity of Emalu is comparable to the four Important Bird Areas on Viti Levu and ranks even higher in terms of bird density.

Terrestrial Insects

The target taxa Coleoptera (beetles) recorded 26 families in total and there was also a high abundance of the family Formicidae (ants). These taxa provide critical ecosystem services in forests systems such as soil processing, decomposition, herbivory, pollination and seed dispersal. Insects of conservation value recorded from Emalu included: *Hypolimnas inopinata* (a rare and endemic butterfly), *Nysirus spinulosus* and *Cotylosoma dipneusticum* (rare and endemic stick insects) and *Raiateana*

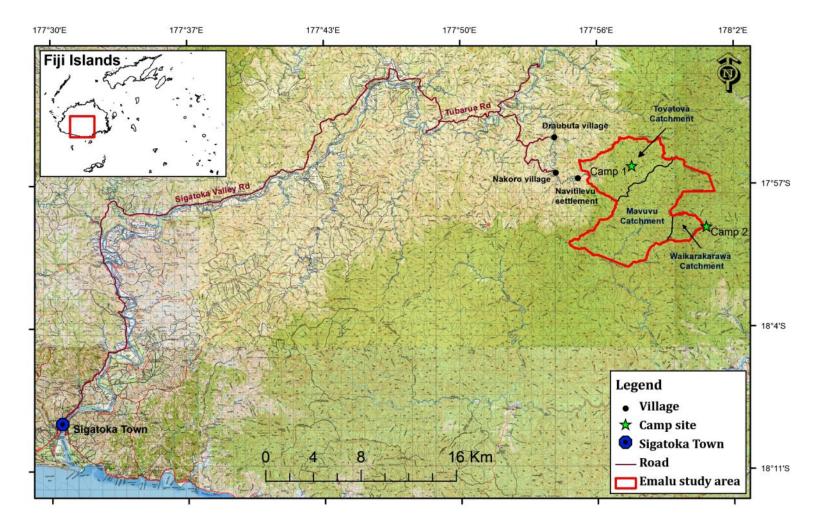
knowlesi (the rare and endemic cicada). These findings suggest that the Emalu area is pristine and an important site for rare insects on Viti Levu.

Freshwater Fish

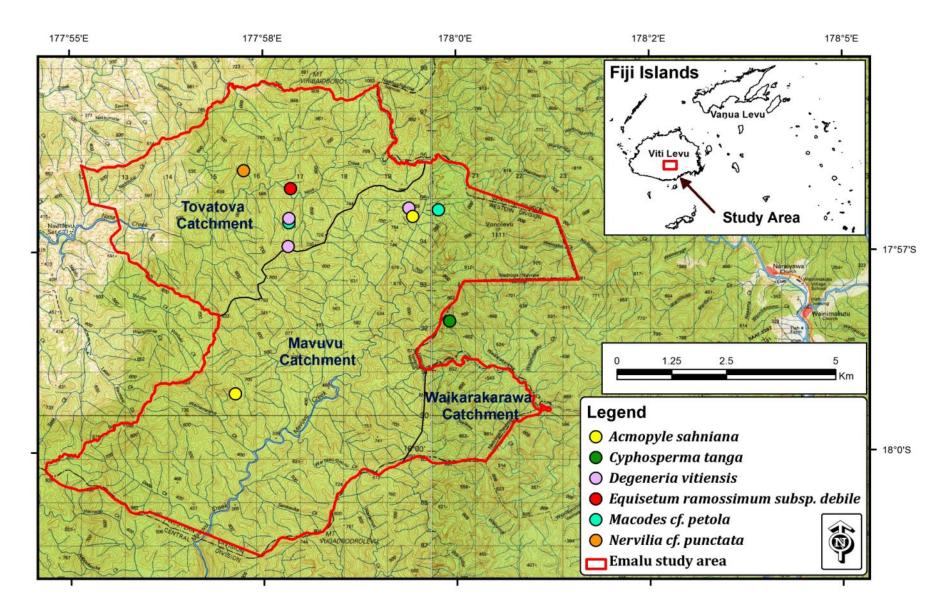
A total of ten species of fish from six families were recorded from the study area. Three species of gobies (*Awaous guamensis, Sicyopus zosterophorum, Sicyopterus lagocephalus*), two species of eels from the family Anguillidae (*Anguilla marmorata* and *Anguilla megastoma*), and the freshwater snake eel from the family Opicthidae (*Lamnostoma kampeni*) were collected in the area. The Mavuvu mid reach had an exceptionally high abundance and biomass of jungle perch *Kuhlia rupestris* when compared to other streams in Fiji. No endemic species were observed or caught during this survey. Around areas of human habitation there is evidence of the removal of riparian buffer zones as well as unrestricted livestock access to waterways which, coupled with uncontrolled slash and burn activities has exacerbated environmental degradation in these areas. The use of traditional fish poison (*Derris* roots) is also a common problem seen throughout the survey sites.

Freshwater Macroinvertebrates

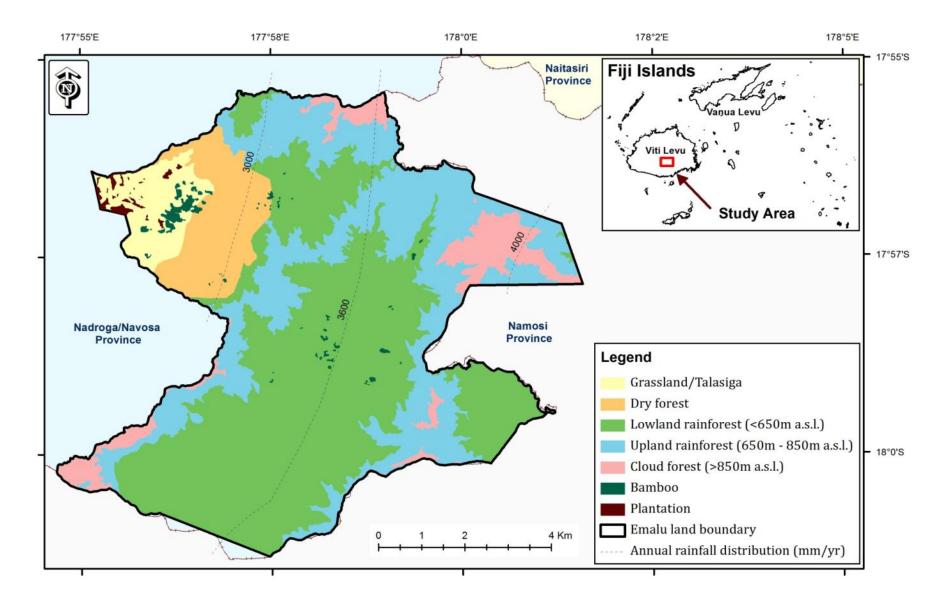
A total of 76 freshwater macroinvertebrate taxa were identified from the 16,370 specimens collected in the three catchments of the Emalu region. The highly diverse freshwater macroinvertebrate community of Emalu included a high proportion of endemic taxa (75%), with insects being the most commonly occurring group. A total of 14 macroinvertebrate taxa were selected as potential bioindicators. The high rate of endemism, as well as the large number of species with large populations, is indicative of the intactness of both the stream system and the surrounding forest.

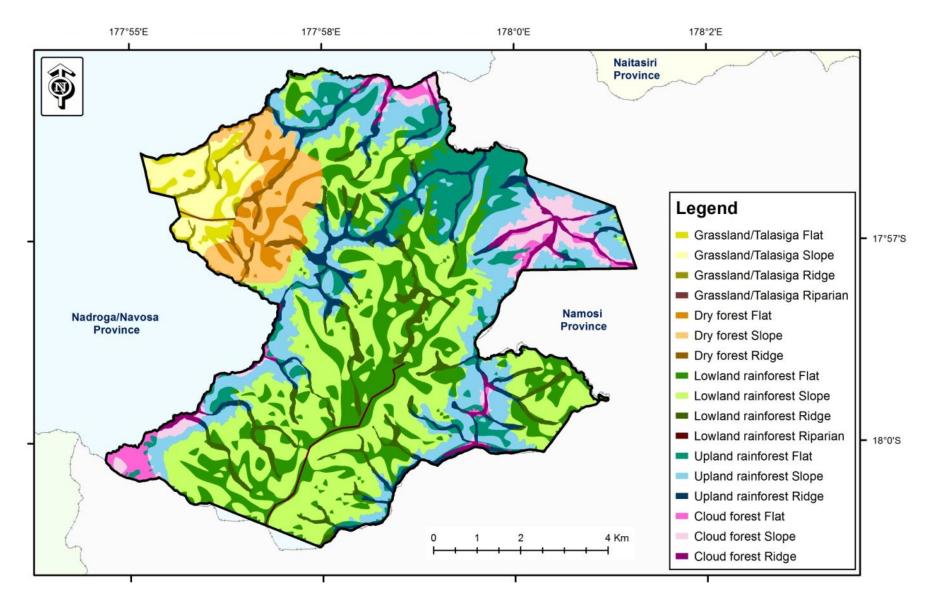

Invasive Species

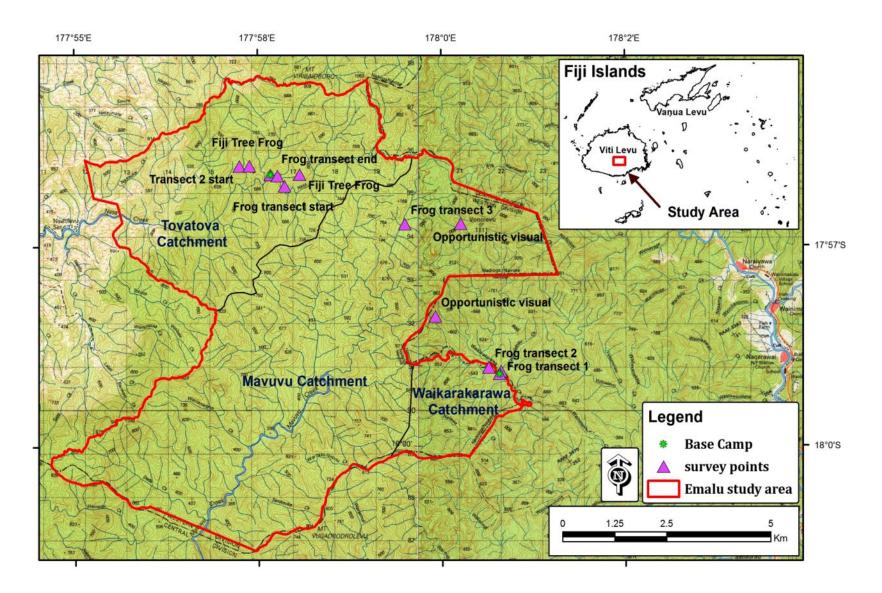
A total of 26 invasive plants and eleven invasive animals were recorded in the study area, thirteen of which are listed in the 100 most invasive species in the world. Generally, the occurrence and abundance of invasive was associated with proximity to human habitation and to disturbed areas such as tracks, temporary campsites and cultivated areas. The invasive plant species were generally low in abundance, with the exception of *Piper aduncum* which was locally common, and *Clidemia hirta* and *Mikania micrantha* which were both widespread.

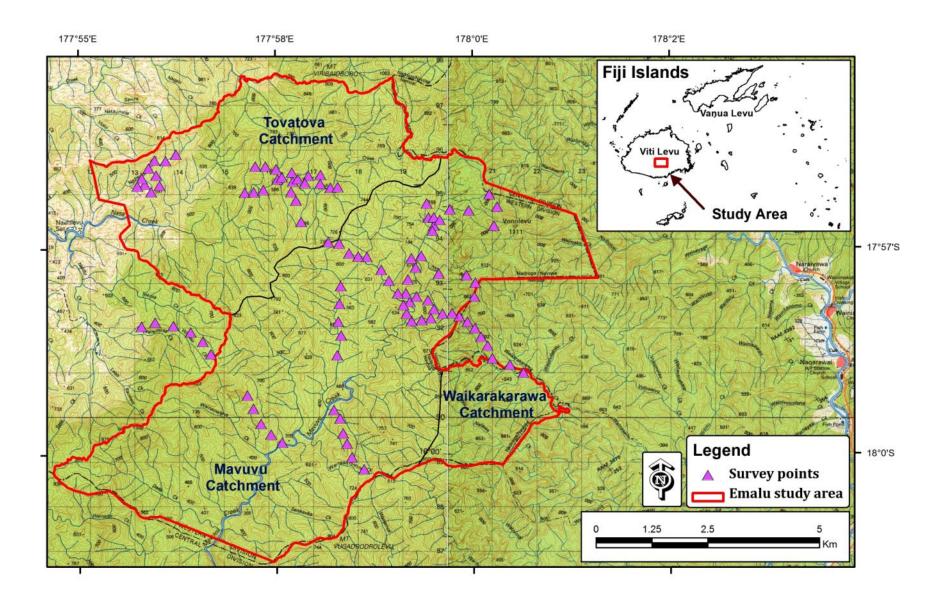

Archaeological Survey

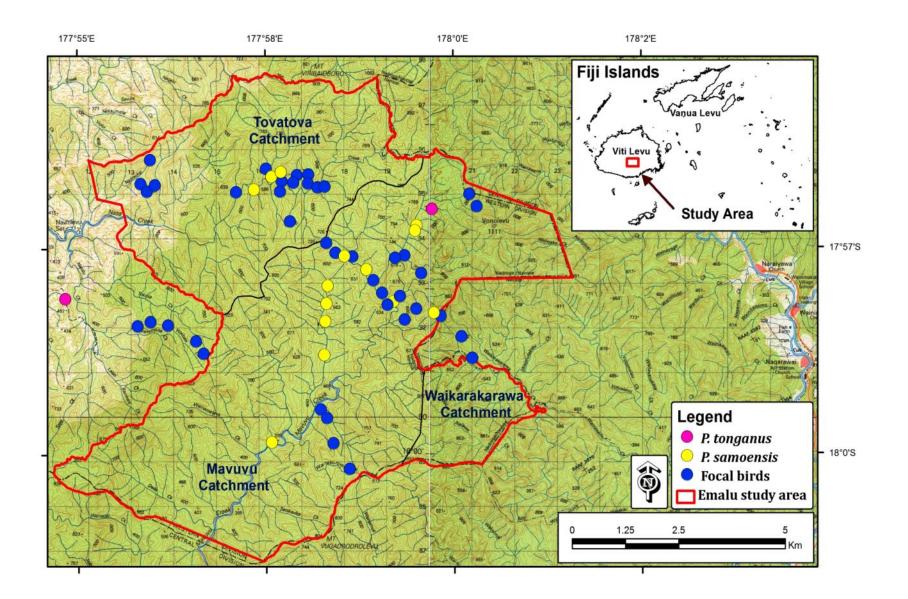
The land belonging to the mataqali Emalu is rich in historical and cultural sites that have never been documented until this survey. A total of 77 sites of historical and cultural significance were documented, including old village sites, hill fortifications, pottery sites, agricultural terraces, sacred pools, house mounds and fortification trenches. Generally, the archaeological finds during this survey have considerable cultural value to the local community as well as at national level.

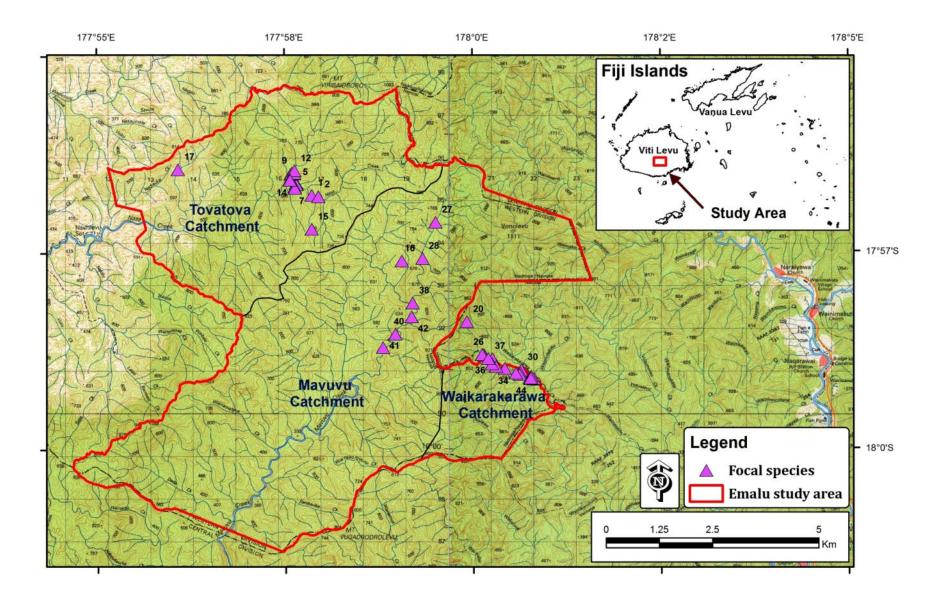

MAPS

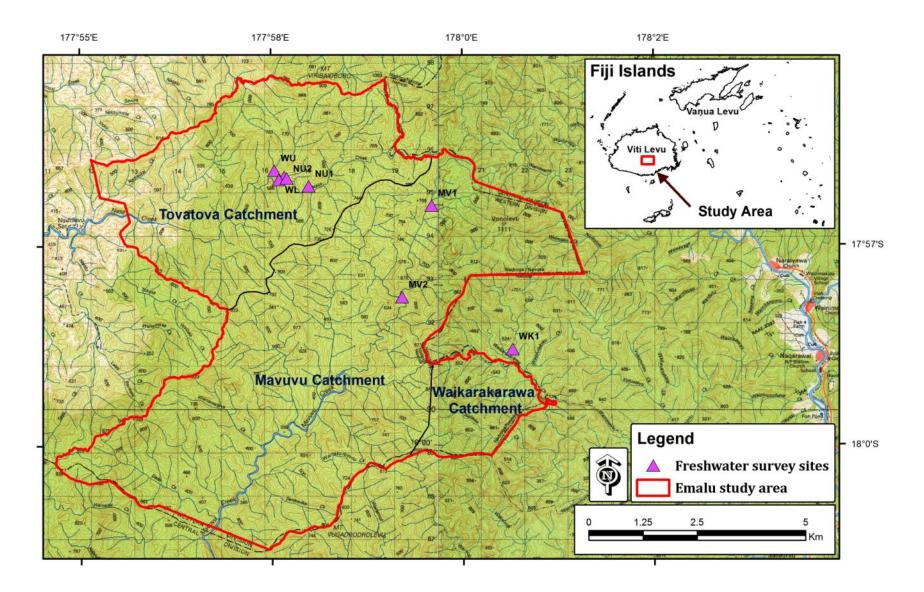

Map 1: Location of the Emalu study area, Viti Levu.

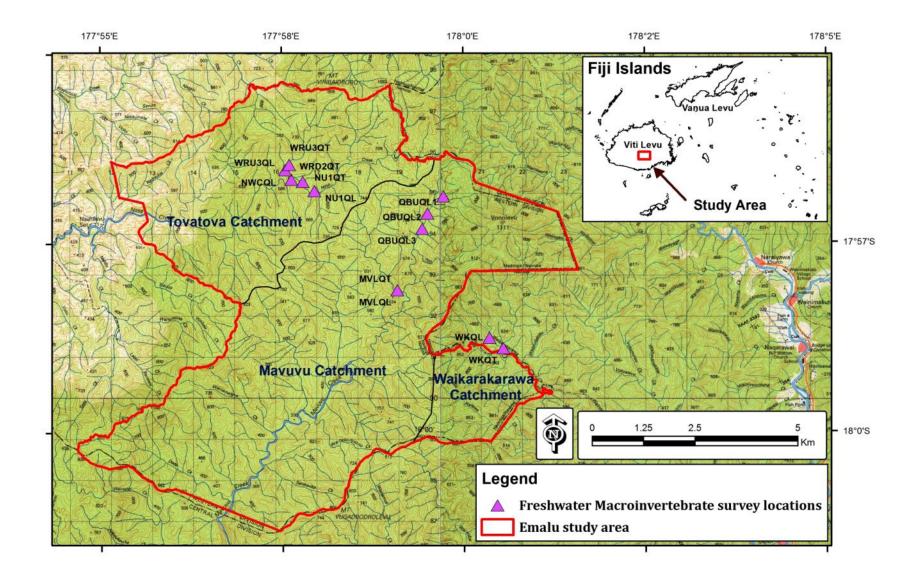

Map 2: Location of certain focal plant species within Emalu

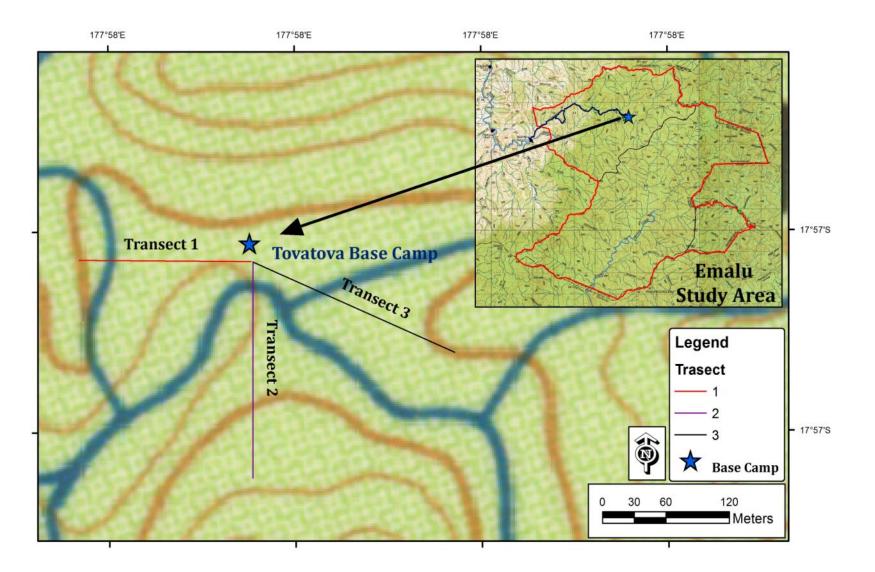

Map 3: Principal vegetation types within Emalu

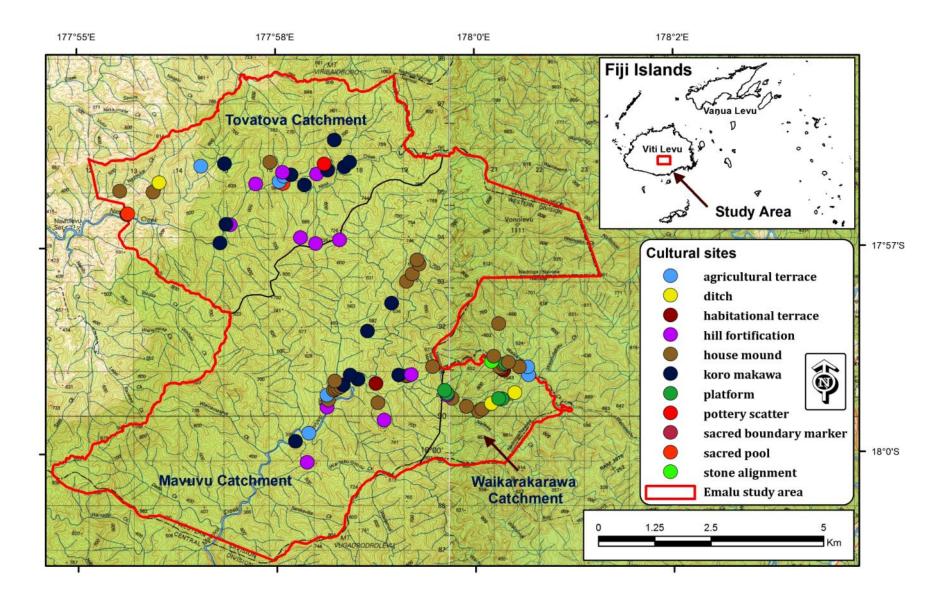

Map 4: Principal vegetation types and habitats within Emalu

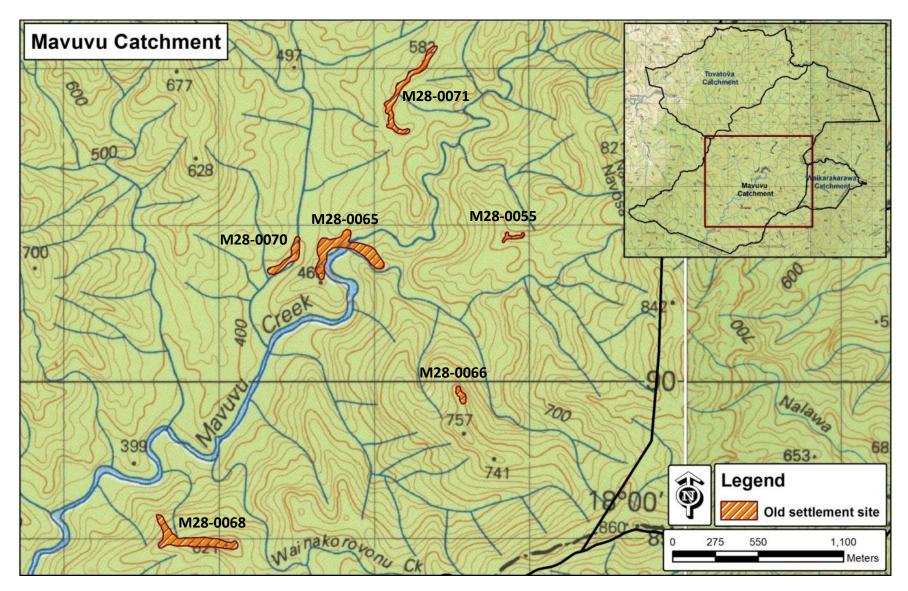

Map 5: Location of herpetofauna survey points within Emalu


Map 6: Location of the avifauna survey points and 59 point count stations within Emalu


Map 7: Location of the focal avifauna species within Emalu


Map 8: Location of the focal terrestrial insect species within Emalu


Map 9: Location of freshwater fish sampling sites within Emalu


Map 10: Location of macroinvertebrate sampling stations within Emalu

Map 11: Location of rodent trapping transects around Tovatova basecamp

Map 12: Location of cultural sites within Emalu

Map 13: Location of six extensive old settlement sites within the Mavuvu catchment

PHOTOGRAPHS

Photographers initials are indicated in the captions: AN=Alivereti Naikatini, AL=Apaitia Liga, BR=Bindiya Rashni, EN=Elia Nakoro, IR=Isaac Rounds, LC=Lekima Copeland, MT=Marika Tuiwawa, NT=Nunia Thomas, SK=Sakiusa Kataiwai, SP=Sarah Pene, SHT=Senilolia H. Tuiwawa, SPRH=South Pacific Regional Herbarium

Fig. 1 Leafy branches of the critically endangered podocarp, *Acmopyle sahniana* (SHT)

Fig. 3 Flower of the relic flowering plant family Degeneriaceae, *Degeneria vitiensis* (SHT)

Fig. 5 The rare orchid *Nervilia* cf. *punctata*, in the lowland rainforest of Tovatova catchment (SHT)

Fig. 2 Fruit of the vulnerable endemic flowering plant, *Degeneria vitiensis* (SHT)

Fig. 4 The rare orchid Macodes cf. petola (MT)

Fig. 6 *Equisetum ramosissimum* subsp. *debile* on the banks of Nasa River (SHT)

Fig. 7 Palm tree Metroxylon vitiense (MT)

Fig. 9 Habit and infructescence of the threatened palm, *Cyphosperma tanga*, found in upland slope forest of Waikarakarawa catchment (SHT)

Fig. 8 Palm tree *Metroxylon vitiense* crown with apical infructescence (MT)

Fig. 10 Close up view of *Cyphosperma tanga* infructescence (SHT)

Fig. 11 Villagers from Naqarawai and Draubuta assist with the processing of bryophytes (SHT)

Fig. 12 Airing out live specimens of lichens and bryophytes in the field (SHT)

Fig. 13 A native bronze-headed skink, *Emoia parkerii*, locally known as moko sari (NT)

Fig. 15 An endemic skink toed gecko, *Nactus pelagicus*, locally known as moko (NT)

Fig. 17 Habitat of the long legged warbler, *Trichocichla rufa rufa*, currently listed on the IUCN Red List as Endangered (AN)

Fig. 14 Fiji's endemic tree frog, *Platymantis vitiensis*, found within the Waikarakarawa catchment (SHT)

Fig. 16 The native gecko, *Gehyra vorax*, (boliti) camouflaged on tree bark (NT)

Fig. 18 The long legged warbler, found to be common in the upland undisturbed riparian vegetation (AN)

Fig. 19 The collared lorry, *Phigys solitarius*, found in the Emalu forest (SPRH)

Fig. 20 A male golden dove, *Ptilinopus luteovirens*, found in the Emalu forest (SPRH)

Fig. 21 Samoan flying-fox (<u>beka lulu</u>, <u>beka ni siga</u>) *Pteropus samoensis*, a Near Threatened species on the IUCN Red List, quite common in the general vicinity of Emalu (AN)

Fig. 22 Insular flying fox (<u>beka</u>), *Pteropus tonganus* a species of Least Concern on the IUCN Red List, quite common in the upper Mavuvu catchment (AN)

Fig. 23 *Raiateana knowlesi* (<u>nanai</u>), an endemic and rare cicada (SPRH)

Fig. 24 Local guide from Draubuta assisting with the sampling of Winkler bags (AL)

Fig. 25 Leaf litter sampling with Winkler bags (AL)

Fig. 27 The endemic butterfly, *Hypolimnas inopinata*, resting on a fern (AL)

Fig. 29 The endemic stick insect, *Nisyrus spinulousus*, on a bark of a tree (AL)

Fig. 26 Common damselfly, *Nesobasis angolicolis*, endemic to Fiji (AL)

Fig. 28 Larva of *H. inopinata* on the leaves of the shrub host plant, *Elatostema nemorosum* (AL)

Fig. 30 Freshwater eels, *Anguilla* spp., Nasa stream in the Mavuvu catchment (LC)

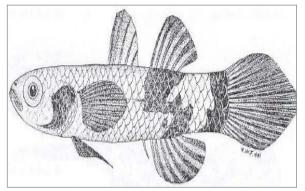


Fig. 31 Holotype illustration of *Lairdina hopletupus* (Fowler, 1953)

Fig. 32 Amphidromous goby, *Sicyopus zosterophorum*, upper Nasa stream (LC)

Fig. 33 Jungle perch, *Kuhlia rupestris*, found within mid-Mavuvu stream (LC)

Fig. 35 Nasa Creek, upstream from base camp, an important habitat for fish sampling (LC)

Fig. 34 <u>Sukasuka ni ika droka</u>- a natural barrier to fish migration along the mid-Mavuvu stream (LC)

Fig. 36 Wainirovurovu Creek, below waterfall, an important habitat for fish sampling (LC)

Fig. 37 Upper Wainirovurovu Creek (BR)

Fig. 39 Nasa Creek (LC)

Fig. 41 Wainirovurovu tributary above waterfall (BR)

Fig. 38 Snorkeling in mid Mavuvu Creek, below the waterfall (BR)

Fig. 40 Wainirovurovu tributary downstream (LC)

Fig. 42 Wainasoba/Mid Mavuvu (BR)

Fig. 43 Waikarakarawa Creek (BR)

Fig. 45 Endemic mayfly *Pseudocloeon* sp.*B* (BR)

Fig. 48 Endemic mayfly *Cloeon* sp. *B* (BR)

Fig. 51 Caddisfly larva Apsilochorema sp. "light green" (BR)

Fig. 46 Endemic mayfly *Pseudocloeon* sp. *B* (LC)

Fig. 49 Damselfly nymph *Nesobasis* sp. "orangish" (BR)

Fig. 52 Caddisfly larva *Hydrobiosis* sp. "pinkish" (BR)

Fig. 44 Qalibovitu Creek (BR)

Fig. 47 Endemic mayfly *Cloeon* sp. *A* (BR)

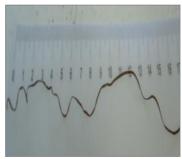

Fig. 50 Damselfly nymph *Nesobasis* sp. "dark green" (BR)

Fig. 53 Caddisfly larva *Hydrobiosis* sp. "green" (BR)

54 Caddisfly larvae Fig. [Trichoptera] Chimarra sp. (BR)

Nematode Fig. 55 worm, unknown species (BR)

Fig. 56 Cranefly larvae [Tipulidae], Tipula sp. (BR)

Fig. 57 Rissooidean snails Fluviopupa spp., under compound microscope (BR)

58 Rissooidean snails Fig. Fluviopupa spp., actual size (BR)

Fig. 59 Nematode worm, under compound microscope (BR)

Fig. 60 Unknown species of moth (larva), actual size (BR)

Fig. 62 Juvenile black rat caught by guide Aporosa Maya Jnr, at about 650m altitude (IR)

Fig. 61 Unknown species of moth (larva), under compound microscope (BR)

Fig. 63 Horses and guides crossing the Waitotolu Creek in the Waikarakarawa catchment (SP)

Fig. 64 Cane toad (*Bufo marinus*) found in the upper Mavuvu River catchment (SK)

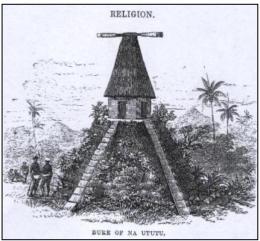


Fig. 66 Illustration of a <u>burekalou</u> in the highlands of Viti Levu (Williams and Calvert, 1858).

Fig. 65 *Piper aduncum*, *Mikania micrantha* and *Dissotis rotundifolia* on the bank of a small creek (SP)

Fig. 67 Sketch of a <u>nanaga</u>, or sacred stone enclosure of Wainimala by Leslie J. Walker (Fison, 1885)

Fig. 68 Preserved stone alignment visible on mount at site M28-0004 (SK)

Fig. 69 Possible temple mound at site M28-0008 (SK)

Fig. 70 Pottery vessel or <u>Saqaniwai</u> discovered on mound at site M28-0014 (SK)

Fig. 72 Pottery sherds found at site M28-0026 (SK)

Fig. 74 Stone alignment visible on mound at site M28-0028 (SK)

Fig. 71 Pottery vessel discovered upon house mound at site M28-0014 (SK) $% \left(\frac{1}{2}\right) =0.012$

Fig. 73 Ancestral passageway that leads to main stream at site M28-0026 (SK)

Fig. 75 View of agricultural terrace platforms at site M28-0013 (SK) $\,$

Fig. 76 Ditch causeway at site M28-0017 (SK)

Fig. 78 Local guide pointing towards settlement platform at site M28-0017 (SK)

Fig. 80 Pottery sherds at site M28-0018 (SK)

Fig. 82 Complete traditional pottery vessel with earthen rim cover at site M28-0023 (SK)

Fig. 77 Raised mound with stone alignment at site M28-0026 (SK)

Fig. 79 View of settlement platform with terrace platform along the base at site M28-0017 (SK)

Fig. 81 Ditch feature situated at site M28-0018 (SK)

Fig. 83 Tobu ni nanai - sacred pool (SK)

Fig. 84 Degraded terrace due to erosion processes at site M28-0010 (SK)

Fig. 85 Metallic pot at site M28-0012 (SK)

Fig. 86 Raised earthen mound at site M28-0011 (SK)

Fig. 88 Rim sherd discovered at site M28-0020 (SK)

Fig. 87 Stone alignment of a house mound at site M28-0009 (SK)

Fig. 89 Displaced stones of house mounds generated by wild pig inhabitation and erosion processess at site M28-0022 (SK) $\,$

Fig. 90 Displaced stones of house mounds generated by wild pig inhabitation and erosion processess at site M28-0022 (SK)

Fig. 91 Visible stone alignment of house mound at site M28-0024 (SK)

Fig. 92 Tobu ni sili - sacred pool (SK)

Fig. 94 Raised mound with stone alignment at site M28-0019 (SK)

Fig. 93 Vatu ni veiyalayala - land boundary (SK)

Fig. 95 Sakiusa Kataiwai and guide in front of a fortification structure at site M28-0066 (SK)

Fig. 96 Ruins of the stone wall at site M28-0059 (SK)

Fig. 97 Rock shelter and camp site for the Archaeology team at site M28-0069 (SK)

CHAPTER 1: INTRODUCTION

The Fiji REDD+

REDD+ is an international programme so named for countries' efforts to <u>r</u>educe <u>e</u>missions from <u>d</u>eforestation and forest <u>d</u>egradation, <u>and</u> foster conservation, sustainable management of forests, and enhancement of forest carbon stocks (Forest Carbon Partnership Facility, 2013)

Fiji's participation in the programme was formalised through the Fiji REDD+ Policy which the Fiji Government endorsed in December 2010 (Fiji Forestry Department, 2011). REDD+ in Fiji is supported and funded by the Secretariat of the Pacific Community (SPC), the Federal Ministry of Economic Co-operation and Development, Germany (GIZ) through the Programme *Coping with Climate Change in the Pacific Island Region* and the Fiji Department of Forestry.

One of the REDD+ policy activities is the establishment of a pilot site for Fiji, for which the mataqali Emalu of the yavusa Emalu in Navosa Province, Viti Levu was selected. This programme focused on four key objectives:

- To conduct a forest inventory and carbon pool measurement of the Emalu pilot site. The intended outcomes are to test the carbon pool measurement methodology recommended for Fiji, to contribute to the development of a national protocol for forest carbon measurements and monitoring, and to have a Tier 3 level carbon stock calculation.
- To conduct rapid biodiversity surveys and develop instruments to monitor biodiversity changes in the pilot site. This will contribute to a national biodiversity monitoring protocol for REDD+ projects.
- To undertake a socio-economic survey of the people of the Emalu forest using participatory appraisal tools, establish social and economic baselines and assess the social and economic implication of the REDD+ project following relevant international guidelines and standards. Indicators will be developed as part of the monitoring procedure. An assessment of drivers of deforestation and forest degradation of the Emalu REDD+ pilot site and the surrounding area will also be undertaken.
- To carry out a cultural and archaeological mapping of the pilot site.

To protect Fiji's terrestrial biodiversity it is critically important that protected areas have sufficient connectivity to meet the area requirements of wide-ranging threatened species and ecological processes, and that these protected areas are managed as a coordinated system for effective conservation. It is also vital to create awareness and appreciation of the importance of biodiversity amongst local communities. Equally important is a forward defence against emerging threats to biodiversity, by providing information to decision-makers, establishing support and incentives for biodiversity conservation, and building capacity to manage biodiversity resources.

Survey Overview

The South Pacific Regional Herbarium (SPRH) at the Institute of Applied Science (IAS), University of the South Pacific coordinated the biodiversity and archaeological surveys. The surveys were carried out in two phases; 17-26 July, 2012 and 18-26 March, 2013.

The focus of the surveys was to map areas of high biodiversity and archaeological importance, develop monitoring protocols following Climate, Community & Biodivesity Alliance (CCBA) standards, and later contribute towards a national biodiversity monitoring protocol for REDD+ projects.

Study Area

The REDD+ pilot site is the land encompassed by the mataqali Emalu in the province of Navosa (Map 1). The Emalu area lies in the climatic transitional zone in central Viti Levu in the province of Navosa, which is adjacent to five other provinces; Nadroga, Ba, Namosi, Naitasiri and Serua. The Emalu site covers an area of 7, 347ha, predominately covered by closed forest.

The Emalu land is under the ownership of the Draubuta landowners, a population of about 400 people living in more than 30 households in the village of Draubuta. They constitute five land-owning units, or mataqali, namely:

- 1. Mataqali Koroivabeka (Tokatoka : Naboseiwale, Narogairua).
- 2. Mataqali Naqio (Yavusa: Mota, Tokatoka: Nadurusila).
- 3. Mataqali Navesiqiyani (Tokatoka: Navesiqiyani).
- 4. Mataqali Naocotabua (Tokatoka: Naocotabua).
- 5. Mataqali Emalu (Yavusa: Emalu, Tokatoka: Emalu, Duiyabe).

Situated on an alluvial plain, with the Nasa Creek running along the village and spilling into the upper reaches of the Sigatoka River, accessibility to Draubuta is a steep 1.5km descent by foot from the nearest dirt road. The main source of income is through commercial agriculture, mainly kava and taro.

The Emalu land encloses two important catchment areas; (1) the Nasa catchment (on the drier part of Viti Levu) which drains into the Sigatoka river, and (2) the Mavuvu

and Waikarakarawa catchments (on the wetter part of Viti Levu) discharges into the Navua River.

The terrain is primarily steep with the highest peak of Mt. Vonolevu having an elevation of 1,111m. The western side of Emalu forest, which is the drier part of the transition zone, borders the talasiga grassland. On the eastern side towards Namosi, which is the wetter part of the transition zone, are the closed rainforests.

The underlying geology of the area is Tholo Plutonic Suite, an intrusive type of rock which intruded into the Wainimala Group and which is dated to the Upper Miocene period or later (Rodda, 1967, Rodda, 1976). The alluvial soils from the tributaries in the Navosa region are classified as Wainibuka sandy clay loam (Twyford and Wright, 1965, cited in King, 2004). These soils contain high phosphate levels (King, 2004) therefore making it optimum for planting. Rainfall is the major factor determining the different vegetation systems (requiring different microclimates) and on average ranges from 2000 to 4000 mm annually (Derrick, 1951)

CHAPTER 2: FLORA, VEGETATION & ECOLOGY

Senilolia H. Tuiwawa, Hans Wendt and Marika V. Tuiwawa

2.1 Summary

A total of 707 plant taxa were recorded for Emalu, including 286 bryophytes and lichens, 375 angiosperms, nine gymnosperms, and 35 ferns and fern allies. Altogether, the vascular and non-vascular taxa recorded from the Emalu site spanned 182 families and 391 genera. Over a third (39%) of the vascular plant flora recorded are endemic to Fiji, including 160 species of flowering plants, two fern and fern allies, and two gymnosperms. Ten taxa were encountered that are important focal species due to their rarity, botanical significance, very recent discovery in Fiji and inclusion in the IUCN Red List.

Five principal vegetation types were identified: lowland rainforest, upland rainforest, cloud forest, dry forest and talasiga/grassland. The lowland rainforest, dry forest and the associated riparian vegetation were the most heavily impacted, indicated by the evidence of garden terracing and communal living and can be classified as anthropogenic primary forest. The upland rainforest and cloud forest were the least impacted vegetation types and can be described as relatively primary rainforests with comparatively higher tree species diversity and density.

2.2 Introduction

There is literally little or no botanical information available for the Emalu area. This report is therefore the first documentation of vascular and non-vascular plants of the Emalu forest. The objectives of this survey were:

- To document the range of vegetation types and typical botanical communities within the study area,
- To identify the presence (or potential presence) of species or ecosystems of national and/or international significance, and,
- To assess the susceptibility of the biological communities (in particular plant communities) to the potential impacts associated with the proposed project.

2.3 Methodology

The first phase of the botanical work was carried out within the Tovatova catchment. The field work assessment began in the open grasslands about 500m upstream from Navitilevu Village along the Nasa Creek. This was necessary for comparative purposes towards the incursion of similar forest/habitat types at higher altitudinal areas within the Emalu boundary.

The second phase of the botanical work was carried out within the Mavuvu catchment from a basecamp located along Waikarakarawa stream. At Waikarakarawa, Mavuvu and Mt. Vonolevu, field work began at the lowland rainforest and progressed towards the cloud forest.

Habitat analysis

Prior to the fieldwork an initial assessment of the study area was made using satellite imagery. It was noted that areas closest to Navitilevu Village were covered in grassland, and that farming activities were further upstream along the Nasa River. Bamboo stands were plentiful in areas that have been left as fallow for long periods of time. Areas beyond these farms were covered with forest. The higher altitude mountainous landscape towards Mt. Vonolevu (1,111m) was earmarked as an area of interest. This area would have cloud forest vegetation, normally found at elevations above 850m, although some have been reported from mountain top from lower elevations e.g. Mt. Korobaba at 400m elevations (Kirkpatrick and Hassall, 1985). Cloud forest is a system known to have very unique plant life, and the forest was expected to be relatively intact.

Flora Survey

Opportunistic collections were made of mosses, liverworts, hornworts and lichens on different substrates. These were packeted for further processing and identification (Fig. 11, Fig. 12) at the South Pacific Regional Herbarium. Bryophyte collections of Harris (1967), Fife (2004), Pocs (2004) and Renner (2012) were cross-referenced including the most recent cryptogram work undertaken for Fiji (von Konrat *et al.*, 2011, Lumbsch *et al.*, 2011, Soderstrom *et al.*, 2011).

Native plant species, especially those endemic to Fiji, and any species flowering and/or fruiting, were opportunistically collected and documented whilst trekking through the area. Additionally plant species observed within the belt transects set up to quantitatively assess plant density, distribution and diversity within the forest types, were also documented. Collected specimens were deposited at the South Pacific Regional Herbarium where verification of specimen identification was later carried out. In validating the identification, the collection of fertile materials with special emphasis on the unknown groups i.e. bryophytes and focal species (on the IUCN Red List) was carried out. The distribution of these taxa within the area covered was also marked (Map 2) and recommendations for their protection are also highlighted. Plant names follow those used by Smith (1981, 1979, 1985, 1988, 1991) for gymnosperms and flowering plants, and those used by Brownlie (1977) and Perrie and Brownsey (2011) for the pteridophytes (ferns and fern allies).

Vegetation community structure

In documenting the range of principal vegetation types and forest or habitat communities, the topographic and forest cover maps for Fiji, as well as satellite images were initially used to identify representations of the various plant communities. A reconnaissance of the area was carried out during which sites were selected for location of transects and plots.

Quantitative assessment of the communities in different forest types was carried out using 10m x 10m plots along a 100m transect, a methodology used previously in other sites in Fiji (Mueller-Dombois and Fosberg, 1998, Tuiwawa, 1999).

Plots were used to:

- assess the presence and absence of focal species,
- characterise associated vegetation communities with each principal vegetation type, and
- confirm boundaries between biological communities encountered.

Within each plot, every tree with a diameter at breast height (dbh) greater or equal to 5cm was measured, identified and recorded. The bole height, crown height and width were estimated for each tree enumerated. Ground cover vegetation was described, canopy cover estimated and in addition, the epiphytic flora recorded. Where feasible GPS locations and photographs of the vegetation were taken.

Habitat characterization

Habitat characterisations for forested areas relied on a number of sources of information, and was undertaken to produce a stratified hierarchical habitat classification. These sources of information and levels of classification were as follows:

- plot data to determine vegetation community structure,
- principal vegetation types (Mueller-Dombois and Fosberg, 1998),
- 1:50,000 topographic map indicating terrain features, and
- plot data to determine impact status and likely dominant species and their associates.

The non-forested areas included open country (rivers, open riparian areas, roads, villages and settlements) and agricultural land (subsistence plantations, commercial farms, pastures and fallow land). These non-forested areas were not assessed in detail but were briefly described and highlighted in the vegetation map for the

project (Map 3 and Map 4). The assessment of the vegetation was focused more on forested area then on non-forested areas.

For the forest or habitat typing process the most prominent topographical feature of the forested area was used and categorised as follows:

- Slope forested area found on slopes with a gradient ranging from 10 to 85 degrees.
- Ridge top forested area found on top or along a ridge or mountain range. The width of such ridges could range from a few centimetres up to 20m, with an unlimited length.
- Flat forested areas with a gradient ranging from 0 to 10 degrees. These areas also included raised river flats and flood plains.

In addition to the forest typing, a system of assigning an impact status to each area was developed (Appendix 4). Whilst rudimentary, the aim of this system was to provide guidance on which areas of forest have previously been subjected to disturbance. The categories for the impact were as follows:

- Low Primary forest in which there is little or no evidence of disturbance;
- Medium Secondary forest that is recovering and displays some of the ecological complexity and function associated with a secondary and primary forest type or a transition forest type; and
- High Secondary forest that shows signs that the disturbance is recent and ongoing.

2.4 Results and discussion

2.4.1 Diversity of non-vascular plants (bryophytes) and lichens

A total of 286 non-vascular plant taxa were collected, recorded and assigned to 72 families, and 133 genera (Appendix 1). The largest families for each of the main bryophyte groups were Neckeraceae (for mosses), Lejeuneaceae (for liverworts), Anthocerotaceae (for hornworts) and Graphidaceae (algal symbionts or lichens).

Bryophytes and lichens in the area are typical features in the various systems given the high elevation. The diversity and density is, at a glance, expectedly low given that the study area is on the dry side of the island. The collections made will all contribute to documented range extensions of these species. These records will be incorporated in the planned publication of the Flora of Bryophytes for the Fiji Islands, currently in preparation. These non-vascular groups of plants are also fundamental to climate change research.

2.4.2 Diversity of vascular plants

A total of 421 taxa were recorded, of which 395 taxa were identified to species level and 36 taxa to genus level. Of the total taxa recorded there were 375 angiosperms (315 dicots and 60 monocots), 35 ferns and fern allies, and nine gymnosperms. For those taxa identified 350 were native, which comprised 185 indigenous species (145 angiosperms, 32 ferns and eight gymnosperms) and 165 endemic species (160 angiosperms, two ferns and two gymnosperms). A total of 71 exotic species (48 dicots, 22 monocots and one fern), were also recorded. Ten taxa were encountered all of which were native and considered important focal species. The full species checklist is provided in Appendix 2.

2.4.3 Focal Species

There were a total of ten species encountered which were considered important due to their rarity, botanical significance, their very recent discovery in Fiji or their IUCN Red List status. The locations of some of these ten focal species within the study area are shown on Map 2, and photographs of them in Fig. 1-Fig. 10.

Acmopyle sahniana Buchh. & N.E.Gray (Fig. 1)

The species is endemic to Fiji and found only on the island of Viti Levu. On this survey a relatively large and viable population was recorded in the upland vegetation of the Mavuvu Creek at 600-700m. In Fiji, this species is quite restricted in distribution with an estimated 150 trees recorded to date from the highlands of Namosi, Naitasiri and Ra Province and is currently classified as Critically Endangered on the IUCN Red List (Thomas, 2013). *A. sahniana* is locally known as <u>kautabua</u> or <u>drautabua</u> and its greatest threats are from mining or logging operations. Its occurrence in the lower and upper Mavuvu catchment is a promising confirmation of a new population of *A. sahniana* and more importantly, a range extension of its current distribution.

Degeneria vitiensis I.W.Bailey & A.C.Sm. (Fig. 2, Fig. 3)

This species and the two others within the genus are endemic to Fiji. *Degeneria* is the sole genus of the family Degeneriaceae, also a Fiji endemic, and one of the oldest flowering plant families in the world. *D. vitiensis* is a timber tree found in lowland and upland areas on the islands of Viti Levu, Vanua Levu and Taveuni, and is categorised as Vulnerable on the IUCN Red List (World Conservation Monitoring Centre, 1998). *D. vitiensis* is locally known as <u>vavaloa</u> or <u>masiratu</u> and its greatest threats are from the clearance of forest for agriculture and human habitation. Its occurrence in the upper parts of the lowland and upland area of the study area (590-650m) suggests a range extension of its current distribution.

Macodes cf. *petola* (Fig. 4)

This orchid was not documented in Smith's *Flora Vitiensis Nova* (1979), and the closest occurrence of the genus is in Vanuatu. Its occurrence in Fiji is seemingly the result of long distance dispersal but given evidence of human habitation in adjacent lower rainforest, it is likely that the taxon was part of an early introduction to Fiji by early settlers. This species was collected for the second time in Fiji since 2005 and was recorded in the upland rainforest vegetation on the slopes adjacent to the ridges, at 650-750m. Further research on its population structure and distribution is required to confirm the mode of introduction into Fiji's archipelago.

Nervilia cf. *punctata* (Fig. 5)

This species of orchid is rare in Fiji, known previously from a single collection on Mt. Korobaba in 1979. Outside of Fiji it is also known to occur in Borneo and Sumatra. This terrestrial orchid was recorded on slopes of the lowland rainforest vegetation at about 450-550m.

Equisetum ramosissimum (Desf.) subsp. *debile* (Roxb.) Hauke (Fig. 6)

This species of fern ally is not common elsewhere apart from Viti Levu with extensions eastwards into the tropical Pacific. There are only three records of the species from Ba, Naitasiri and Serua. It is recorded as common along the edges of river and creeks. It was recorded in the riparian vegetation off the banks of Nasa River, at about 500m and is a strong indicator of an intact riparian system.

Metroxylon vitiense (H.Wendl.) Hook. f (Fig. 7, Fig. 8)

This species of palm is endemic to Fiji and is locally referred to as <u>soga</u>. It is common on the south east of Viti Levu and Vanua Levu but is highly threatened due to its harvesting for food (palm heart) and for leaves for thatching. Its habitat (swamp) is targeted for land reclamation both for agriculture development and human habitation. Very few trees were observed along the river embankments in the lower Mavuvu River catchment.

Cyphosperma tanga (H.E.Moore) H.E.Moore (Fig. 9, Fig. 10)

This palm is endemic to Fiji and is locally referred to as <u>taqwa</u> and is one of the most threatened palm species in Fiji due to logging and establishment of plantations (Watling, 2005). Its only other known wild population occurs along the western slopes of Mt. Tomaniivi (Fiji's highest mountain, 1323m). The second viable population, encountered during this survey, lies just outside the eastern Emalu boundary.

Alpinia parksii (Gillespie) A.C.Sm.

This species of coarse herb, unlike *Alpinia boia*, is uncommon. It grows up to 5m high along river banks and ridges. It becomes more prominent further up along ridges and slopes. Its leaves are used for thatching and it is locally known as <u>locoloco</u> or <u>boiaboia</u>.

Balaka diffusa Hodel

This species of palm is known to be restricted to the Nabukavesi River catchment on Viti Levu. Its occurrence in the cloud forest of Mt. Vonolevu is a range extension of the current population. It is an endemic species, locally referred to as <u>balaka</u>, and is the largest of all <u>balaka</u> in Fiji in terms of its height and girth.

Geanthus cevuga (Seem.) Loesener

This species of ornamental plants is native to Samoa (where it is common) and Fiji (where it is rare). It was thought previously to only occur in Namosi but recent findings have confirmed its occurrence in other parts of Fiji as an ornamental. The leaves are used to scent coconut oil and necklaces and as a food spice. It is locally referred to as <u>cevuga damu</u>. In Emalu it was found in an old village site growing alongside <u>sacasaca</u>, <u>moli kania</u> and <u>koka</u> trees.

2.4.4 Vegetation community structure

Of the nine principal vegetation types recorded for Fiji, five were encountered in the study area: lowland rainforest, upland rainforest, cloud forest, dry forest and talasiga grassland. The dry forest refered to here is a mesic forest. All vegetation types except the talasiga grassland were quantitatively assessed.

The detailed results of the quantitative assessment of plots in these different vegetation types are given in Appendix 3. In total 136 plots were analysed; 40 in lowland forest, 41 in upland forest, 44 in dry forest and eleven in cloud forest. Within each of these vegetation types the plots were distributed over a variety of forest habitats.

Vegetation type 1: Lowland rainforest

Lowland rainforest is typically found on the windward side of large islands from sea level to 650m, with annual rainfall of over 2000mm. In Emalu the lowland rainforest is restricted to the Mavuvu and Waikarakarawa catchments. Overall, the forest in this principal vegetation type is best described as primary forest. All tree species recorded from the plots are either endemic or indigenous species and none of the tree species associated with human habitation was encountered or even observed outside plots. Stocking of good quality timber tree species is high and so is the size of merchantable tree species. Three different forest types were observed and quantified using 40 plots in four transects. The forest types were characterised as follow:

Ridge top forest type

The 20 plots assessed contained an average of 26 (range 9 to 54) trees per plot, and an average of thirteen (range 7 to 23) species per plot. The most common species was *Garcinia myrtifolia* (laubu), which was present in more than 50% of the plots assessed. The largest individual trees were *Decussocarpus vitiensis* (amunu) with a dbh of 107cm, followed by *Endospermum macrophyllum* (kauvula) with a dbh of 95cm and *Calophyllum vitiense* (damanu) with a dbh of 82cm. The average dbh was 15cm (range 5-107cm). Overall, the twenty plots assessed had no single dominant species but the combined biomass (as reflected in the dbh) of *D. vitiensis, E. macrophyllum*, and *C. vitiense* gave a relative dominance of 52%.

Slope forest type

The seventeen plots assessed had an average of nineteen (range 11 to 28) trees per plot, and an average of eleven (range 7 to 16) species. *Garcinia myrtifolia* occurred in more than 60% of the plots assessed, and was the most common species. The average dbh of trees in the plots was 15cm (range 5-100cm). The largest tree documented in the plots was *Endospermum macrophyllum* with a dbh of 100 cm followed by *Storckiella vitiensis* (marasa) with a dbh of 78 cm. There was no single dominant species as the tree sizes were evenly distributed amongst all species, but the combined biomass (as reflected in the dbh) of *E. macrophyllum*, *S. vitiensis* and *Calophyllum vitiense* gave a relative dominance of 51%.

River flat forest type

The three plots assessed had an average 23 (range 15 to 33) trees per plot, and an average of fourteen (range 12 to 16) species per plot. The most common tree species were *Garcinia myrtifolia, Garcinia pseudoguttifera and Endiandra gillespiei*. The average dbh of trees in the plots was 18cm (range 5-131cm). The largest tree encountered was *Decussocarpus vitiensis* with a dbh of 131cm, and this was also the dominant species with a relative dominance of 86%.

Vegetation Type 2: Upland Rainforest

The survey on this principal vegetation type was restricted to forested areas at elevations of 650-850m. Three forest types were observed and quantified using 41 plots in six transects, and were characterised as follows:

Ridge top forest type

A total of 24 plots along three transects were used to analyze this forest type. There was an average of 30 trees (range 17-55) recorded in each plot, and an average of

eighteen species (range 12-29) per plot. The most common species were *Syzygium* spp. (<u>yasiyasi</u>) and *Litsea* sp. (<u>lidi</u>). The largest tree encountered was *Agathis macrophylla* (<u>dakua makadre</u>) with a dbh of 152cm. Other large trees included *Syzygium* sp. (150cm) and two other *A. macrophylla* (140, 111cm). The average dbh was 18cm (range 5-152cm) with the dominant species being *A. macrophylla* (45% relative dominance). All dominant trees recorded from each plot are important timber tree species with dbh ranging from 31cm to 152cm and these include *Calophyllum vitiense, Dacrydium nidulum* (<u>yaka</u>), *Syzygium* spp., *A. macrophylla*, and *Burckella* spp. (<u>bau</u>). Together these five species comprised approximately 75% of the biomass of all trees in this forest type.

Slope forest type

Fifteen plots along two transects contained an average of 28 (range 10 to 40) trees per plot (100m²) with an average number of 17 (range 8 to 25) species per plot. The most common species were *Gironniera celtidifolia* (sisisi) and *Cyathea* spp. (balabala) whilst other common species in some of the plots included *C. vitiense* and *Saurauia rubicunda* (mimila). The largest tree encountered was *Garcinia myrtifolia* with a dbh of 89cm. Other large trees recorded included *Endospermum macrophyllum* (dbh of 71, 65cm), *A. macrophylla* (69cm) and *C. vitiense* (68, 65cm). The average dbh was 19cm (range 5-152 cm). Overall there was no dominant species for this forest type, but across the plots the trees that together made up 80% of the total biomass were *E. macrophyllum*, *A. macrophylla*, *Syzygium* spp., *C. vitiense*, *Semecarpus vitiensis* (kaukaro), *Degeneria vitiensis* (vavaloa, masiratu) and *Buchanania attenuata* (maqo ni veikau).

Vegetation Type 3: Cloud Forest

On Emalu the cloud forest was restricted to mountain tops and ridges above 850m and is almost always shrouded in clouds. Precipitation is high and temperature is generally much lower with trees generally stunted and heavily covered with bryophytes. A series of eleven plots placed along a fragmented transect over a slope/ridge towards the summit of Mt. Vonolevu (1,111m) was used to quantitatively assess this forest type.

An average of 42 trees per plot (range 31 to 70) with an average number of 15 species per plot (range 11 to 22) was recorded for the area. The most common species were *Syzygium* spp. and *Cyathea* spp. The largest tree, with a dbh of 181cm, was *Syzygium* sp. Other large trees included *Calophyllum vitiense* (60cm dbh) and *Degeneria vitiensis* (43 cm dbh). The average dbh was 12cm (range 5 -181cm) and the average bole height was 1.8m (range 1 to 5m). *C. vitiense* and *Syzygium* sp. were dominant species from some of the plots assessed but overall *D. vitiensis* and *C. vitiense* were the dominant species with greater than 80% relative dominance.

Vegetation Type 4: Dry Forest

The native dry forest vegetation type on the leeward side of Viti Levu has been almost completely destroyed by combined grazing, agriculture and fire. The survey on this principal vegetation type was restricted to forested areas adjacent to the grassland in elevations ranging from 250m to 650m within the Nasa catchment. In a seasonal dry forest the mean annual rainfall is about 2,000mm.

Three habitat or forest types were quantified using 44 plots in six transects. The forest types and their characteristics were as follows:

River flat forest type

The nineteen plots assessed along three transects held an average of fifteen (range 7 to 24) trees and an average of seven species (range 4 to 11) were present within a plot. The most common tree species were *Syzygium malaccense* (kavika) and *Citrus grandis* (moli kania). The largest trees were *C. grandis* and *Dysoxyllum richii* (tarawau kei rakaka), having a dbh of 89cm and 86cm, respectively. The average dbh of trees was 21cm (range 10-89cm). The dominant species from some of the plots assessed was *D. richii* with a relative dominace of 80% and *S. malaccense* with 69%. Overall, there were no dominant species across the haitat as the biomass was fairly evenly distributed amongst the larger trees. Most of the trees discussed above are associated with human habitation.

Ridge top forest type

Within the ten plots used to analyze this habitat there was an average of 35 trees (range 21 to 51) and sixteen species (range 10 to 25) per plot. The most common species was *Litsea* sp., followed by *Garcinia myrtifolia* and *Citrus grandis*. The largest tree observed was *Ficus obliqua* (baka ni viti) with a dbh of 132cm. Other large trees included several *Bischofia javanica* (86, 77 and 76cm dbh) and *Dysoxyllum* sp. (76cm dbh). The average tree dbh was 23cm (range 10-132cm). The dominant trees from some of the plots assessed were *F. obliqua* and *Dysoxyllum* sp. with a relative dominance of 57% and 53%, respectively. Overall there was no dominant tree species in this habitat despite *B. javanica* having a relative dominance overall of 48%. Like the river flat above, the presence of tree species like *C. grandis, S. malaccense* and *B. javanica* is indicative of past human habitation and activity in this area.

Slope forest type

Fifteen plots along two transects were used to analyze this habitat. An average of 23 trees (range 8 to 37) with an average number of ten species (range 6 to 14) per plot was recorded. The most common species was *Litsea* sp. with the largest tree encountered being *F. obliqua* with a dbh of 148 cm and other large trees that included *Dysoxylum quercifoliuma* and *Neonauclea fosteri* (vacea) with dbh of 120 and 113cm, respectively. The average dbh was 22cm (range 6 to 148). The dominant species

assessed were *D. quercifolium, F. obliqua* and *N. fosteri* all with relative dominance of greater than 74%. Overall, the dominant species for this forest type were the *Dysoxylum* spp. (4 taxa) and *Ficus obliqua* which together comprised 75% of the total biomass in this habitat.

Overall, the forest or habitat types found in this principal vegetation type are best described as an anthropogenic primary forest as most of the more dominant and common tree species are associated with human activity. Other species not found in the plots that testify to this include *Codiaeum variegatum* (sacasaca), *Cordyline fruticosa* (<u>qai</u>), *Schizostachyum glaucifolium* (bitu dina) and *Veitchia joannis* (saqiwa, niuniu).

Vegetation Type 5: Talasiga Vegetation

Grassland/talasiga habitat type

The grassland is restricted to the slopes and ridge tops and is mostly made up of the grass *Pennisetum polystachyon* (mission grass), *Sporobolus* spp. (wire grass), *Dicranopteris* spp., (<u>qato</u> or bracken ferns), *Pteridium esculentum*, *Miscanthus floridulus* (<u>gasau</u> or reed) and many other smaller weedy plants. The general lack of tree cover is characteristic of such a landscape. The grassland is regularly set on fire to allow for new re-growth of grass for use as fodder for cattles and horses. Areas closer to the edge of the gully forest are used for subsistence farming.

Woody shrubland habitat type

This vegetation was observed growing between the grassland and the forest edge and is also referred to as savannah grassland. The area was dominated by secondary pioneer plant species like *Commersonia bartramia* (sama), *Parasponia andersonii* (drou), *Tarenna sambucina* (vakaceredavui), *Trema orientalis*, *Dillenia biflora*, *Decaspermum vitiense* (nuqanuqa) and larger patches of *Schizostachyyum glaucifolium* and *M*. *floridulus*. This habitat is where active agricultural activities are occurring both at the subsistence level and on a semi-commercial scale. Gardens or plantations of <u>vaqona</u>, banana and taro are common and so are patches of abandoned (fallow) gardens. Such activity expands the grassland habitat types into forested areas and as noticed from the survey will continue to do so especially with increasing pressure from subsistence farming and a growing population.

River bank/riparian habitat type

The vegetation along the creek and river system that is found adjacent to the grassland was mostly dominated by important introduced and native fruit trees. Also found here were important trees species that have cultural uses, such as *Inocarpus fagifer* (ivi, chestnut), *Pometia pinnata* (dawa), several species of *Citrus* spp., *Artocarpus altilis* (uto, breadfruit), *Cocos nucifera* (niu), *Spondus dulcis* (wi), *Syzygium malaccense* (kavika) and *Terminalia catappa* (tavola). Other culturally important trees

include Aleurites moluccana, Bischofia javanica, Cananga odorata (<u>makosoi</u>), Cordyline fruticosa (<u>qai</u>) and Euodia hortensis (<u>uci</u>).

2.5 Conclusions and recommendations

The discovery of the focal species detailed above, in particular, the priority conservation species on the IUCN Red List, as well as rare orchids, parasitic plants, and palms is an indication of the micro-sensitivity and function of the upper catchment areas that have yet to be fully explored, and which needs protecting. Based on current knowledge of these taxa, any level of development (logging or agricultural) could seriously affect their existence, thus more effort needs to be invested in their protection. Overall the presence of a large number of these high value conservation species within the Nasa, Mavuvu and Waikarakarawa Creek catchment highlights the biodiversity importance of Emalu. For Viti Levu (and for Fiji as a whole) it is an area with the highest concentration of important plants of conservation priority.

In terms of the vegetation, the level of human impact decreases as you move further inland or away from current human habitation, and also towards the higher altitudes of Mt. Vonolevu. Demarcation of these habitat types is quite obvious in the grassland vegetation but almost near impossible to detect under heavy canopy in the forested lowland and upland vegetation including the riparian system running across these vegetation types. It is recommended that more extensive future surveys be carried out in these areas.

CHAPTER 3: HERPETOFAUNA

Nunia Thomas and Isaac Rounds

3.1 Summary

This report documents the first record of herpetofauna biodiversity within the Emalu study area. Emalu, like many other parts of Viti Levu, contains habitats ideal for herpetofauna. Despite weather and time constraints this survey produced results similar to surveys carried out in other areas of Viti Levu, encountering six species of herpetofauna: three endemic, two native and one invasive. Further surveys will very likely reveal the existence of additional herpetofaunal species.

3.2 Introduction

To date, there has been no documented information on the herpetofauna of the Emalu area. This report is therefore the first documented study of these organisms. The objectives of this baseline herpetaofauna survey were to:

- Document the herpetofauna diversity in the study area.
- Identify ideal herpetofauna habitat.
- Trial herpetofauna survey methods with recommendations for long-term monitoring in the study site.

3.3 Methodology

Field Assessment

During the survey periods the weather was generally fine every day with occasional and sometimes heavy afternoon showers. At the Waikarakarawa survey site heavy rain on one day resulted in flashflooding. Weather conditions dictated the number of days, type of traps and survey methods conducted, and these are summarised in Appendix 5. Average air temperatures recorded for the nocturnal surveys were 20.6°C and 26°C for the Nasa and Waikarakarawa catchments respectively.

Habitat Assessment

The objective of the expedition was to record all herpetofauna species captured and/or observed within the study site; and develop appropriate long term monitoring methods. For this reason, all potential habitats within good forest cover and outside of the forest were surveyed. The study area generally had ideal herpetofauna habitats: riparian vegetation, ridge forest, forest floor cover of leaf litter and rotting wood, and trees with dense epiphyte cover. Systematically, the survey targeted a ridge habitat, riparian forest habitat and lowland forest habitat. A total of ten sites were intensively surveyed (Map 5).

Diurnal and Nocturnal Herpetofauna Surveys

There are several accepted methods for herpetofauna surveys that generally fall under two categories: **opportunistic** diurnal and nocturnal searches and trapping, and **standardised** nocturnal and diurnal searches and trapping. A summary of the methods used in this survey is given in Appendix 5

Herpetofauna surveys in Fiji have generally been opportunistic, but their methods standardised to allow for comparison between sites. Other long term herpetofauna monitoring plots on Viti Levu: the Sovi Basin Conservation Area and the Wabu Forest Reserve are limited to nocturnal frog searches. Because of the cryptic and heliophilic nature of Fiji's reptiles; and Fiji's climate, survey and trap methods are wide ranging, albeit limited by weather conditions.

The herpetofauna surveys in the Emalu study site consisted of three techniques but were constrained by the rainy weather. These are described below:

Standardised sticky trap transects whereby sticky mouse traps (Masterline®) are laid out at intervals along a transect. Each station is designated a station number (1-10) with a cluster of three traps per station for three placements to represent local habitat structure at each location (tree, log and ground). Transects are laid out along identified ideal habitats e.g. ridge tops and along river banks/ riparian vegetation. Leaf litter cover, canopy cover and undergrowth are all recorded. Left overnight, traps are checked regularly for captured specimens. These traps target both terrestrial and arboreal species.

Frogs and geckoes are active and more visible at night. **Standardised (time constrained) nocturnal visual encounter surveys** (2 hours) in ideal frog habitat are used. This method gives an encounter rate for comparison with other surveys within Fiji. Search efforts with a minimum of two observers at any one time targeted streams and adjacent banks/ flood plains.

Opportunistic Visual Encounter Surveys outside of the standardised searches allow for a record of presence/absence of herpetofauna. Skinks are more likely to be seen during the day, particularly during hot and sunny conditions. Opportunistic diurnal surveys were conducted along trails enroute to the camp site, vegetation plots, along stream edges, and in forest habitats surveyed by other survey teams in the expedition. Search efforts targeted potential skink habitat and frog and burrowing snake diurnal retreat sites. The diurnal surveys began at 09:00 and ended at 15:00 on each of the survey days. The team had a minimum of two searchers at any one time.

Environmental variables such as air temperature, water temperature, weather conditions (rain/fine) and cloud cover (%) were taken at the beginning and end of

each nocturnal survey. Habitat characteristics and other basic ecological and biological information of herpetofauna found were recorded. Observations on possible threats to herpetofauna species and populations were also noted.

Geographic coordinates of survey sites were captured using the Thales Mobile Mapper Pro Navigator and Garmin GPSmap 60*CSx*.

3.4 Results

Based on the current knowledge of herpetaofauna on Viti Levu there are a total of 26 species that could potentially occur in the study area (Appendix 6). Prior to the survey a target list of 12 of these species was drawn up, based on their endemism and conservation status.

In total six species were encountered over the course of the survey, including three of the 12 target species. These were the green tree skink (*Emoia concolor*), the bronze-headed skink (*E. parkeri*) shown in Fig. 13 and the Fiji tree frog (*Platymantis vitiensis*) shown in Fig. 14.

3.4.1 Nasa catchment

A total of six species were captured during the survey of the Nasa catchment. Three of these were endemics (*Platymantis vitiensis, Emoia parkeri* and *E. concolor*); two were native (*Nactus pelagicus,* Fig. 15 and *Gehyra vorax,* Fig. 16); and one was an invasive species (*Bufo marinus,* Fig. 64). These findings were the result of over 14 man-hours of diurnal survey, 49 hours of sticky trapping and six man-hours of nocturnal surveys.

Two species were reported to occur by local villagers: the endemic banded iguana (*Brachylophus bulabula*) and the Pacific boa (*Candoia bibroni*), but were not encountered during the expedition.

Herpetofauna were observed at all the three habitat types targeted; but at only two of the survey sites. The majority of the species were encountered during opportunistic surveys (4 species); with lower encounter rates for the sticky traps (2 species), and standard diurnal (2 species) and nocturnal surveys (1 species).

Interestingly, the sticky traps did not yield any rats or invasive ants – which have been encountered in other survey sites on Viti Levu.

3.4.2 Waikarakarawa and Mavuvu Catchments

For these two catchments the same six herpetofauna species that were encountered in the Nasa catchment were also found here. The survey of the Waikarakarawa and Mavuvu catchments consisted of 8 man-hours of diurnal survey, 14 hours of sticky trapping and 3.3 man-hours of nocturnal surveys. One of the main target species known to occur from historical records to occur in the area of Waikarakarawa catchment, the Fiji burrowing snake (*Ogmodon vitianus*), was not encountered during this survey.

3.5 Discussion

This report documents the first record of herpetofaunal diversity in the Nasa, Waikarakarawa and Mavuvu catchments on land belonging to the mataqali Emalu. Fiji's terrestrial herpetofauna are significantly impacted by introduced mammalian predators. This is particularly true for Viti Levu which has experienced the extirpation of two large terrestrial skinks (*Emoia trossular* and *E. nigra*) in the presence of the mongoose, feral cats, feral pigs and rats.

The presence of the Fiji Tree Frog, *Platymantis vitiensis* (Fig. 14) in the study area is of exceptional interest – this is a new record for the area and is possibly the westernmost record of the occurrence of the species (in relation to the wet parts of Viti Levu) in Southern Viti Levu to date.

The apparent absence of the common ground skinks such as *E. cyanura* both within the study area and in the agricultural land is interesting and warrants more intensive searches both within and outside the forested areas, taking into consideration that weather impacts the observer's ability to find these species.

The low encounter rates and low diversity of herpetofauna in the study sites do not necessarily mean an absence of the species. Low encounter rates of heliophlic species is not uncommon in Viti Levu's forests; and is typical globally in rainforest habitats (Ribeiro-Junior *et al.*, 2006, Ribeiro-Junior *et al.*, 2008). Consequently, there are efforts to develop better quantitative survey methods of forest dwelling herpetofauna – and these will be considered in the development of an appropriate long term monitoring method for the Emalu study area. However, sites to target for the establishment of long-term monitoring plots should ideally be adjacent to the vegetation sample plots, as done so in this study because of the dependence of native herpetofauna on the health of the forest. Herpetofauna survey sites will also be extended to the nonforested parts of the study area to assess the presence/absence of the more common native ground skinks in the area.

3.5.1 Indicator species

Selecting which herpetofauna species could act as indicators of high conservation value forest was problematic for several reasons. Firstly, the tree frog (*P. vitiensis*) was not a suitable indicator species as it was found all over the study area from disturbed areas right up to the cloud forest. Furthermore, skinks or geckos are not ideal indicator species as they are cryptic. The invasive cane toad (*B. marinus*) was found everywhere except the cloud forest.

3.6 Recommendations

Considering that baseline survey within the Emalu forest has now been conducted, the best option available will be to build on this by conducting subsequent surveys and standardising the survey techniques especially for the sticky traps and frog surveys, carrying them out over different seasons and assessing species densities. Any changes in terms of presence/absence and density over time will indicate the status of the forest. It is recommended that these intensive and dedicated surveys focus on a particular area or along standard transects. It is also recommended that tree climbing techniques be used to enable better capture rates of cryptic skinks and gecko species.

CHAPTER 4: AVIFAUNA

Alivereti Naikatini

4.1 Summary

The main objectives of the study were to compile a checklist of the birds and bats species present and observed, and determine the presence of species of high conservation importance (focal species) for monitoring in the future. The assessment methods used during the survey were the Point Count Method with a fixed radius of 50m; evening (dusk) bat counts using a Bat Detector device to detect presence of micro-bats; interviewing of local guides, and opportunistic surveys. About 4000 minutes of avifauna studies were conducted during the two surveys where 59 points were assessed in 2012 and an additional 37 points in 2013. A total of 35 species of birds were recorded during the two surveys which included 25 endemic and one exotic species. Two species of bats were also recorded during the surveys. Ten focal species were identified (eight bird species and two bat species). The bird diversity of Emalu is comparable to the four largest Important Bird Areas (IBAs FJ07, FJ08, FJ09, and FJ10) on Viti Levu and ranks even higher in terms of bird density.

4.2 Introduction

Fiji's bats play an essential role as seed dispersing agents, major pollinators, and insect control agents in the rainforest and other terrestrial ecosystems (Palmeirim *et al.*, 2007). However, bats are understudied in Fiji in terms of ecological research and there is little public awareness of their role and importance. Bats are the only native terrestrial mammals of Fiji and six species occur in Fiji, four of which are native and two endemic (Flannery, 1995, Palmeirim *et al.*, 2007). Four bat species are listed as threatened (Palmeirim *et al.*, 2007).

Like bats, birds are also very important indicators of the forest health. They are important seed dispersers, pollinators and insect control agents. In a pristine forest system, one would expect to find more native and endemic species. There are 68 species of land birds found in Fiji, eleven of which are introduced species.

No previous bird or bat surveys have been carried out in the Emalu area. A few recent studies were carried to areas close to Emalu, including a bat survey of the Tatuba caves in the vicinity of Saweni in the Namataku District (Palmeirim *et al.*, 2007). The most recent bird survey close to the study area was carried out by Birdlife International (Fiji) in the Southern Viti Levu Highlands (IBA FJ10), which is to the south of Emalu, Sovi Basin (IBA FJ08) to the east and the Rairaimatuku Plateau (IBA FJ09) to the north (Masibalavu and Dutson, 2006).

The main objectives of this survey were to:

- Provide a checklist of all avifauna species (birds and bats) present in the site,
- Highlight species that are of conservation importance (focal species),
- Provide preliminary abundances of species present, and to
- Develop a methodology for avifauna monitoring work in the future.

4.3 Methodology

The survey methods used in the survey were the:

- Point count method (for both bats and birds),
- Evening counts for bats,
- Bat detector surveys in the evenings,
- Opportunistic surveys,
- Interviews with local communities.

The point count method was the most commonly used method to survey for the bats and birds. It was only carried out in the morning and afternoons when birds are more active. Counts in a point were restricted within a 50m radius for a period of ten minutes according to an established methodology (Naikatini, 2009). Stations were not randomly located, due to the rugged terrain of the area, but were placed along tracks and accessible areas. To maximise the size of the area covered, points were placed at least 200 – 400m apart. This was also done to minimise the likelihood of double counts. Each morning or afternoon session would last two to four hours depending on the weather. All birds detected within the 50m radius area were recorded and GPS locations noted. The inclusion of as many sub-habitats as possible – riparian, flat, slope, ridge and ridge top - in disturbed and undisturbed areas was attempted. The total number of points, birds and species recorded were tabulated to give the relative abundance or density of each species.

Bat surveys were also carried out by conducting bat counts in the early evenings (from about one hour before sunset – 17:00 to 18:00) from a good lookout or open area to determine what bat species were flying over and their direction of flight. The total number of bats counted in an hour would give an idea of the bat activity and abundance in the study area. Bat detectors were also used in the evenings near the camp site by walking along the trail and stopping at various points where there was an opening or gap in the canopy and pointing the bat detector into the direction of the sky. The bat detector enabled us to tune to the frequencies at which the two micro-bat species (present in Fiji) would be detected if they flew over or were feeding

nearby. These surveys were only carried out for about an hour between 1900 and 2200 hours, and also when weather conditions were favorable for such surveys.

Opportunistic surveys were also conducted whilst travelling from one point station to another, or whilst travelling within the area from one base camp to another. Interviews with the local guides were carried out on some evenings. Local guides knew the area well, including where the main bat roosts are located, as well as the species of birds they may have encountered in the area previously.

4.4 Results and discussion

In total approximately 4000 minutes were spent actively conducting bat and bird surveys, and over 70 hectares were covered using the point count method. A total of 35 species of land birds and two species of bats were recorded in the study site, and these are listed in Appendix 7. Identifications were verified using a published field guide (Watling, 2001). A total of 96 point stations were surveyed during the 20 days of survey. These point stations (shown on Map 6) were located in the different sub-habitat types found with the main vegetation systems; lowland rainforest (<600m elevation), upland rainforest (600-800m elevation) and cloud forest (>800m elevation). A table of the location and habitat of each station and a summary of the species diversity and bird abundance is provided in Appendix 8

Of the 35 species of land birds recorded, one is an exotic species and 25 are endemic to Fiji. The exotic species, commonly known as the red-vented bulbul (*Pycnotus cafer*) on the IUCN Red List as being a species of Least Concern (Birdlife International, 2012a) and is more common on the western edges of the Emalu site. Eight species of birds recorded are listed as focal bird species for conservation in Fiji because of their status (Appendix 9). Stations where bird and bat focal species were recorded are marked on (Map 7).

The long-leggd warbler (Fig. 18), classified as Endangered on the IUCN Red List (Birdlife International, 2012b) was found to be common in the upland and undisturbed riparian vegetation; an example of this habit is shown in Fig. 17. Sightings of the collared lorry, *Phigys solitarius* (Fig. 19), and the golden dove, *Ptilinopus luteovirens* (Fig. 20), were also made during the survey.

Only two species of bats were recorded throughout the survey; *Pteropus samoensis*, the Samoan flying-fox and *P. tonganus* the Pacific flying-fox. *Pteropus samoensis* (Fig. 21) is listed in the IUCN Red List as Near Threatened (Brooke and Wiles, 2008). *P. tonganus* (Fig. 22) was not commonly encountered in the study area in 2012 however it was common in the areas surveyed in 2013 and seemed to be more common in the upper Mavuvu catchment. Here, two of the guides were able to catch seven bats one evening in just one hour, with sticks. The guides also mentioned that the upper Mavuvu area was well known for bats. No bat roost for *P. tonganus* was sighted in the Emalu REDD+ site. The closest roost was located outside the study area, and

consisted of over 1000 bats. There could be roosts located in the forested areas on the Namosi side of Emalu however time constraints did not allow for a confirmation of this. No micro-bats were detected using the bat detectors. However this should not imply that there are no micro-bats foraging for food in Emalu as there needs to be more follow up studies to confirm this.

Table 1. Comparison of Emalu to the four largest Important Bird Areas (IBAs) of Viti Levu.

Emalu & IBAs	Area	Native species	Endemic
Emalu	57km ²	34	25
Greater Tomaniivi	175km ²	34	24
Rairaimatuku	287km ²	34	24
Sovi Basin	407km ²	34	24
Viti Levu Southern Highlands	670km ²	34	24

Table 1 shows that native bird species diversity in Emalu is comparable to Viti Levu's four largest Important Bird Areas (IBAs), and has a slightly higher number of endemic species. In terms of species density it is the highest ever recorded for anywhere in Fiji to date.

4.5 Recommendations

To better understand the ecology and abundance of the avifauna of Emalu there is a need to carry out further monitoring work. To monitor the bird and *Pteropus samoensis* populations, we recommend the use of the point count method with a fixed 50m radius and 8-10 minute counts per station. For best practice, future monitoring surveys should include approximately 70 point count stations spread out over the various vegetation systems present; cloud forest (10 stations), upland rainforest (20 stations), lowland rainforest (20 stations), grassland (10 stations), secondary forest(10 stations), and ensuring within these that there is coverage across the different subhabitats (riparian, flat, slope, ridge, and ridge-top).

To monitor for the other bat species a further survey of the area is needed to locate the roosts, both in the area and the surrounding forest systems as it is most likely that bats roosting outside the Emalu site will be flying in to forage for food, e.g. from the *P. tonganus* roost at Vurunamasima near Navitilevu Village and the *Notopteris macdonaldi* roost in Saweni (Navosa) and Nabukelevu (Serua). These roosts are both about 10 km from the edge of the Emalu site. When the roosts are located, population counts will be performed for monitoring purposes.

The Emalu REDD+ site should be an area of conservation priority for the Government of Fiji. As yet Fiji has no dedicated bird reserve and it is recommended that, given the species diversity and high endemism levels as well as its ideal location, the Emalu area be designated an established protected bird area.

Conservation should be a priority and logging should not be permitted in this area if you take into account the true value of the site ecosystem function, rich biodiversity, cultural and spiritual importance, all of which are invaluable monetarily.

CHAPTER 5: TERRESTRIAL INSECTS

Hilda Waqa-Sakiti

5.1 Summary

A total of 26 families of the target taxa Coleoptera (beetles) was recorded in the Emalu areas, as well as a high abundance of the family Formicidae (ants). These taxa provide critical ecosystem services in forests systems such as soil processing, decomposition, herbivory, pollination and seed dispersal. Insects of conservation value recorded from Emalu included: *Hypolimnas inopinata* (a rare and endemic butterfly), *Nysirus spinulosus* and *Cotylosoma dipneusticum* (rare and endemic stick insects) and *Raiateana knowlesi* (the rare and endemic cicada). These findings suggest that the Emalu area is pristine and an important site for rare insects on Viti Levu.

5.2 Introduction

This was the first entomological survey to be conducted within the Emalu forest. A baseline survey was carried out with the primary aim of determining the general diversity of insects in the area. The survey targeted a diversity of habitats (slopes, flats, ridges and riparian areas) and vegetation types (grassland, lowland, upland and cloud forest). A variety of collection techniques (light traps, leaf litter sampling, pitfall trapping, 1km transect counts, active and opportunistic surveys) was employed. The general diversity of insects and those species of higher conservation value (i.e. focal species) were sampled as an indicator of the status or health of the forest in Emalu.

5.3 Methodology

Site selection and habitat considerations

A number of key habitat types (shown on Map 3 and Map 4) were surveyed to maximise the chance of encountering individuals of focal species as well as to adequately sample the diversity of insects;

- Lowland forest areas: targeted specifically to find Fiji's rare endemic butterflies *Papilio schmeltzi* and *Hypolimnas inopinata*.
- Upland forest areas: leaf litter sampling, pitfall traps and light traps on slopes mainly targeted the general diversity of insects within this specific habitat. Active searches for the endemic phasmids (stick insects) were also conducted.
- Ridges: leaf litter sampling and light traps on ridges targeting the general diversity of insects found within this specific habitat. A high diversity of

insects (and in particular the focal order Coleoptera) is indicative of intact forest systems.

• Riparian surveys in all vegetation types: These sruveys specifically targeted butterflies (namely Fiji's rare endemic butterfly, *H. inopinata*) and damselflies (namely those of the endemic genus *Nesobasis*). These often fly out to open areas on a fine day in search for sunlight and food, and usually aggregate along the streams in forested areas. Their presence, abundance and richness are excellent indicators of forest and stream systems in good health.

Survey methods and sites

Nocturnal surveys

Nocturnal surveys were conducted using ultra violet (UV) light traps. These were set up and left to run for 12hour periods from 6pm-6am. Insect specimens were sorted to Order and then to Family level. Specimens are currently being curated, catalogued and stored at the South Pacific Regional Herbarium, USP.

Leaf Litter surveys

Leaf litter surveys were conducted targeting different habitat types (i.e. river flats, slopes and ridges) in the lowland and upland vegetation types. 1m² quadrats were laid at 5m intervals along a 50m transect. Leaf litter from each quadrat was sieved through 12mm mesh sieves and transferred into Winkler bags (Fig. 24 and Fig. 25). The Winkler bags were hung out for at least 48 hours to allow drying of the leaf litter. Insect specimens were stored in ethanol for further sorting and identification.

Pitfall Traps

Pitfall traps were set in varous habitat types (i.e. river flats, slopes and ridges) in the lowland and upland forest areas. Pitfall traps were placed at 5m intervals along a 50m transect within the vegetation plots used by the botany team. Specimens were collected and transferred into ethanol after 48 hours.

Active sampling- Lepidoptera (butterflies) and Odonates (damselflies)

Butterflies and damselflies were also actively sampled in open grassland and riparian areas along creeks and streams using handheld nets. Voucher specimens were taken for identification.

1km Transect Count Method

1 km transect counts were conducted for the indicator taxa *Hypolimnas inopinata* (for abundance) and Odonata (damselfly) diversity along streams within the Mavuvu and Waikarakarawa catchments.

Opportunistic Encounters

In addition to the survey methods described above, collections were made during the course of the survey period in response to opportunistic encounters of interesting taxa.

Identification and curation

Identification of specimens was carried out with the aid of available taxonomic references for each of the main groups; butterflies and moths (Waterhouse, 1920, Robinson, 1975, Prasad and Waqa-Sakiti, 2007), dragonflies and damselflies (Donnelly, 1990, Van Gossum *et al.*, 2006), ants (Folgarait, 1998), beetles (Lawrence and Britton, 1994) and spiders (McGavin, 2000). The specimens are currently being curated and catalogued at the South Pacific Regional Herbarium.

5.4 Results and discussion

Insect Diversity

The results of the insect survey of each catchment are provided in Appendix 10, Appendix 11 and Appendix 12. A total of 26 Coleopteran (beetle) families were sampled from within the entire study area. The most abundant taxa sampled included the beetle families Curculionidae (weevils) and Scolytidae (bark beetles) and from the Order Hymenoptera, Family Formicidae (ants). Rare beetle families: Cerambycidae (long-horn beetles), Eucnemidae, Cantharidae, Lathrididae and Passalidae were also encountered in the surveys. The great diversity of the target taxa Coleoptera and the Hymenopteran family Formicidae are a good indication that ecosystem services such as soil processing, decomposition, herbivory, pollination and seed dispersal within the study area of the lowland, upland and cloud forests in Emalu are well intact.

Another interesting find was in the order Odonata (i.e. damselflies). The endemic genus *Nesobasis* were abundantly found along tributaries, creeks, stream and rivers especially for the species *Nesobasis angolicolis* (Fig. 26), *N. erythrops* and *N. heteroneura*. Their diversity along streams is an excellent indicator of good water quality and intact status of neighbouring ecosystems. Moths sampled from light traps (nocturnal surveys) were also significant especially for a few species which are native and known to be restricted to primary forested areas i.e. *Cleora diversa, Agathia pisina, Pyrrhorachis pyrrhogona, Thallasodes figurate* and *Mecodina variata*.

Focal Species

Hypolimnas inopinata (Order Lepidoptera)

Hypolimnas inopinata (Fig. 27 and Fig. 28) is a rare butterfly, endemic to the Fiji Islands. It is a montane species and lives in rainforests. It is often found in or near

pristine mountain areas, usually in semi-open areas along streams leading up to the mountains. Its presence and abundance has also proven to be a very good indicator of the pristine nature of the rainforest system. *H. inopinata* was sampled along the Nasa Creek, adjacent tributaries including the Wairovurovu stream (Tovatova catchment), Waikutukutu stream (Waikarakarawa catchment) and the Wainasiga stream and Wainasoba Creek (Mavuvu catchment) suggesting that these catchment areas in Emalu are intact and pristine (i.e. sites P4, P7, P11 & P16, P26, P30, P31, P32, P33, P39 & P40 on Map 8). Extent populations have only been located on Viti Levu in the forests of Navai and Nasoqo (Ra Province) and Waisoi, Wainavadu and Saliadrau (Namosi Province) and Naikorokoro (Rewa Province). This find is a first record for the Navosa Province and the study area has a healthy population of this species.

Nysirus (syn. *Cotylosoma*) *spinulosus* and *Cotylosoma dipneusticum* (Order Phasmida)

Nysirus spinulosus (Fig. 29), a rare endemic stick insect was first described in 1877, and previously recorded from Viti Levu, Fiji and only recently (i.e. 2008 & 2009) from Nakauvadra and Nakorotubu ranges in the Ra Province. *Cotylosoma dipneusticum* is another rare endemic stick insect and has been previously recorded from Taveuni and Viti Levu (Nakorotubu range and Savura Forest Reserve). Both were sampled from intact upland rainforests near Tovatova Creek, a tributary of the Nasa Creek and upland forest within the Waikarakarawa catchment. From previous observations, these two species of stick insects have been known to be closely associated with such pristine forest systems (P13, 14, 15, 20, 21 on Map 8).

Raiateana knowlesi (Order Hemiptera: Family Cicadidae)

Raiateana knowlesi (Fig. 23) is an endemic and rare cicada with a unique life cycle in which adults emerge every eight years (periodic emergence). The last appearance of the adults was in 2009 from within this vicinity. It is locally known as <u>nanai</u> and has been previously recorded from parts of the Serua and Navosa provinces. It is of great cultural significance to the mataqali Emalu, being one of their 'totem' species. The chiefly daughters of the mataqali are usually accorded the title <u>Rokonai</u>. Also the year of emergence of the <u>nanai</u> signifies <u>yabaki ni sautu</u>, i.e. a year of plenty from their agricultural produce. The <u>tobu ni nanai</u>, a sacred natural pool which provides the final resting place for these endemic cicada is also located within the Nasa catchment. The <u>nanai</u> also bears a national significance; it is the insect that is featured on Fiji's highest legal tender note (\$100), an acknowledgment of the magnitude of its importance.

5.5 Discussion and recommendations

The Emalu forest is of great significance as it harbors a good population for one of Fiji's rare and endemic butterflies, *H. inopinata*, owing to the pristine nature of its habitat i.e. one of Fiji's last remaining primary forests. More importantly, it is home to one of Fiji's rare and localised endemic cicada, *Raiateana knowlesi* (nanai) that has

both cultural significance (as the totem of the mataqali Emalu) and national significance (as featured on Fiji's \$100 note).

This area is also significant for the Odonates (i.e. damselflies) which recorded a good diversity along the Nasa Creek, Wainisiga stream, Wainikutukutu stream and adjacent tributaries. This included the genus *Nesobasis* which is endemic to Fiji and has radiated successfully in Fiji having a total of 36 species, a few of which are currently new to science. With extensive sampling targeting this group within this pristine inland forest of the Navosa Province, it is suspected that there may still be species new to science within the Emalu area. This however warrants further research.

With an overall high diversity of insects, it further suggests that ecosystem services provided by the abundant and diverse Coleoptera (beetles, 26 families) and Formicidae (ants) are well represented with forests systems being quite intact. These groups of insects have proven to be excellent indicators of the forest and water systems and their abundance and richness further suggests that much of the Emalu forest area is pristine.

Recommendations

- Sampling efforts within the study sites were compromised due to adverse (rainy) weather conditions in some areas. A long-term monitoring and seasonality study of the insects in Emalu is recommended.
- The results of this suvey in terms of this area's insect diversity and the presence of focal and iconic species strongly support that Emalu be identified as a Key Biodiversity Area for Fiji.

CHAPTER 6: FRESHWATER FISHES

Lekima Copeland

6.1 Summary

A total of ten species of fish from eight genera and six families were recorded in the Emalu site through sampling and interviews. Three species were documented from the Gobiidae family (Awaous guamensis, Sicyopus zosterophorum, Sicyopterus lagocephalus). In addition two species of eels from the family Anguillidae were also collected (Anguilla marmorata and Anguilla megastoma) as well as the freshwater snake eel from the family Opicthidae (Lamnostoma kampeni). Mavuvu mid reach had an exceptionally high abundance and biomass of jungle perch (Kuhlia rupestris) compared to other streams in Fiji. Also documented were the introduced exotic species tilapia (Oreochromis niloticus) family Cichilidae. Notable absences around the headwaters of Nasa Creek were the gobies Stiphodon spp. and the monkey river prawn Macrobrachium lar. No endemic species were observed or caught during this survey. Water quality was well within habitable range in terms of dissolved oxygen, conductivity, temperature and turbidity across all sampling stations. The introduced tilapia (Oreochromis spp.) are present in mid and lower reach sites and may account for the low abundance and diversity of native stream fishes. Around areas of human habitation there is evidence of the removal of riparian buffer zones as well as unrestricted livestock access to waterways which, coupled with uncontrolled slash and burn activity has exacerbated environmental degradation in these areas. The use of *Derris* roots (a traditional fish poison) is also a common problem seen throughout the survey area. Reforestation of buffer zones and the setting of a riparian buffer width for agricultural or development purposes are reccommended.

6.2 Introduction

The freshwater fishes of the Fiji Islands have only been extensively studied in the last decade, by various researchers that have discovered species new to science and elucidated some of the various factors affecting these insular fish assemblages (Jenkins and Boseto, 2005, Boseto, 2006, Boseto and Jenkins, 2006, Jenkins, 2009, Jenkins and Mailautoka, 2010, Larson, 2010, Jenkins and Jupiter, 2011). On a global scale the freshwater fishes of Fiji have been recently recognised in terms of endemic species per unit land area (Abell *et al.*, 2008). The oceanic islands of the Pacific are distinct from continental land masses in that they have developed unique freshwater fish assemblages that have important ecological linkages between marine and freshwater environments (McDowall, 2008a). In Fiji, 166 species (47 families) have been recorded from tidal reaches upwards, with 156 of these (43 families) indigenous to Fiji (Jenkins, 2009). Ten species (4 families) have established invasive or non-indigenous populations in the wild although at least fifteen non-indigenous species

have been introduced (Jenkins, 2009). At least eleven species (in 3 families), which constitute 7% of freshwater fish in Fiji, are considered endemic.

This survey constitutes the first documented work carried out on freshwater fishes for Nasa River, but work has been undertaken previously in neighbouring water systems. King (2004) documented several species of fish and invertebrates in the neighboring Solikana stream. The species documented by her were *Kuhlia marginata*, *K. rupestris* (flagtails), *Anguilla* sp. (eels), gobys (Gobiidae family), *Oreochromis niloticus*, *O. mossambicus* (tilapia) and an eel. The eel that King recorded as *Archirophichthys kamperi* is most likely *Lamnostoma kampeni*.

Invertebrate species such as several crustacean species of *Macrobrachium* spp. (Paleomonidae) were also noted by King (2004). In the lower reaches of the Sigatoka River, Fowler (1953) based on two badly damaged specimens described a presumed endemic genus of freshwater fish collected from hoof print puddles *Lairdina hopletupus*, (Eleotridae, Fig. 31). However the voucher specimens have since been redescribed and this species is now known as *Giuris margaritacea*.

The Mavuvu River drains into the Navua River, where previous research by Jenkins & Boseto (2003) within the Upper Navua River Conservation Area documented thirteen species, including two Fiji endemic species i.e. *Redigobius leveri* and *Schismatogobius vitiensis*, and an introduced species *Oreochromis mossambicus*.

6.3 Methodology

Due to the remoteness of the study area, several methods of gathering data were used. The field methods described herein were designed to enable the most comprehensive documentation of fishes present in Emalu. A portable Global Positioning System (Garmin eTrex 20) was used to take the position and altitude of the sampling sites. A map of the study area and several pictures of the locations sampled are provided (Map 9, Fig. 35 - Fig. 38).

Physiochemical parameters

Before fishing commenced water quality parameters were recorded to minimise disturbances to in-situ water quality characteristics. Temperature, pH, conductivity, salinity and dissolved oxygen were measured using a commercial hand held GPS Aquameter and AP-1000 Aquaprobe.

In-stream fish sampling

The beach seine (3m x 2m, 1mm mesh) was set several meters downstream and held by two people. Upstream, one person kicked and dislodge rubbled to enable the collection of bottom dwelling fish. This was done for about an hour, over approximately a 100m stretch of stream. To get a thorough documentation of species presence or absence, snorkeling was also undertaken in streams sampled. This was also aided by visual observations on the side of the stream bank, as some species of the gobies are easily distinguishable due to their bright colors. Opportunistic collections and interviews with villagers were also documented.

Preservation

Voucher specimens were collected, fixed in a 10% formalin solution and transferred to 70% ethanol solution after five days of fixation. Voucher specimens were deposited at the University of the South Pacific marine collection.

6.4 Results and discussion

Species richness and abundance

Overall a total of six species of fish were directly observed or collected during this survey (Appendix 13). There was high species richness near villages compared to the headwaters of Nasa stream. This is characteristic of insular systems of Oceania where this attenuation in species richness with increase in altitude has been documented by Jenkins & Jupiter (2011). Three of the species collected were from the Gobiidae family i.e. *Sicyopus zosterophorum* (Fig. 32), *S. lagocephalus* and *Awaous guamensis*. In addition, two species of eels (family Anguillidae) were also collected, *Anguilla marmorata* and *Anguilla megastoma*. The jungle perch, *Kuhlia rupestris*, was also collected. A further four species were documented from village interviews as being present in the area i.e. *Kulia marginata*, *Oreochromis niloticus*, *Eleotris fusca*, and *Lamnostoma kampeni*.

Upper reaches of the Nasa stream

The headwater sections surveyed ranged in altitude from 500-570m. The freshwater fish found at this altitude are characteristic of upper catchments on oceanic islands of the Indo-West Pacific. The native species *Sicyopus zosterophorum* and *S. lagocephalus* found here are known as amphidromous fish in which the adults spawn in freshwater, fertilised eggs hatch within a period of 48 hours. Larvae are transported to the sea for several weeks of growth and then return upstream (as post-larvae or juveniles) to complete their lifecycle (McDowall, 2008b). These two species are hardy fish and are ubiquitous in geographic range. Both are capable of surmounting large barriers such as waterfalls and can survive in degraded catchments.

There were also two native species of catadromous eels found at this altitude (*Anguilla marmorata* and *Anguilla megatsoma*). Catadromous species are those in which adults migrate to sea to breed. The juvenile eels then return upstream for more feeding and growth before returning to sea to complete their lifecycle (McDowall, 2008a). On the last day of the survey a total of 55 eels were caught by villagers (Fig. 30) in Wainirovurovu stream. It is highly likely that traditional fish poison (*Derris* roots) were used to catch these eels.

The use of traditional fish poison and other chemicals occurs in inland fishing communities. A study undertaken in Nawairabe Village (about 10 km west of Emalu) found that 2.2% of households blamed the use of *Derris* roots and other fish-suffocants for the depletion of fish but "excessive burning (46.7%); and the associated soil erosion in the wet season (17.8%) were by far the most important environmental problems in Nawairabe" (King, 2004).

Mid to lower reaches of the Emalu area within and outside the boundary

There were no mid and lower reach sites sampled during this survey though some visual observations around Navitilevu settlement found the native goby *S. lagocephalus*. Informal interviews with villagers recorded native species such *Kuhlia marginata, Awaous guamensis, Eleotris fusca, Lamnostoma kampeni* and the introduced tilapia *Oreochromis niloticus*. The presence of these species can only be confirmed using proper survey techniques such as electrofishing around this site.

A total of eleven jungle perch *Kuhlia rupestris* (Fig. 33) were caught around mid Mavuvu. The size of these fishes ranged from 11 to 39cm. This mid-reach site just below the waterfall is traditionally known as <u>sukasuka ni ika droka</u>, a natural barrier to fish migration (Fig. 34). Only those species adapted to climbing are able to surmount such barriers. This area within Emalu is an important area in terms of fish biomass and strict measures must be taken to protect it from over-fishing and unsustainable practices such as the use of *Derris* roots.

Water Quality

Results of the on-site measurements are tabulated in Appendix 14. Temperature at the sites was between 19.7°C and 20.4°C. Dissolved oxygen levels were fairly high, above 8mg/L, making it readily available for fish at the six stations sampled. Conductivity at all sites ranged from 0.047-0.084 μ S which is well within the suitable habitat range for stream fish. Turbidity was very low at all sites (<10 NTU), and the bottom was visible at all the stations.

6.5 Conclusion and recommendations

The proper management and use of aquatic resources in Emalu entails a holistic approach due to life-history strategies employed by aquatic fauna that traverse different habitats throughout their life. It is true that management must begin at the catchment level; however, it goes hand in hand with the protection of marine and coastal habitats such as reefs, seagrass meadows, mangrove habitats, including lower and mid sections of rivers and streams. This survey did not find any endemic species, for several reasons such as degradation of buffer zones along mid-reach sites, the high number of introduced species such as tilapia which is known to prey on the larval species of native fauna and the possible use of *Derris* roots in the streams surveyed.

The following are suggestions for the proper management and conservation of aquatic fauna in Emalu:

- 1. The first priority is protection of the catchment areas of the Sigatoka River. The headwaters should be set up as a protected area with a complete ban on slash-and-burn techniques around the catchments.
- 2. Secondly, the other major issue identified is the importance of restoring buffer zones around mid-reach sites. This will also require the proper education of farmers (landowners) on setting up farms near rivers, and the importance of a buffer width and restricting livestock access across streams.
- 3. A complete ban should be in place on the use of poison for fish capture. *Derris* roots, weedicides and pesticides should be banned in Emalu.
- 4. The need for proper waste management care. In the three villages visited, the use of flush toilets is strongly recommended. Villagers have running tap water and flush toilets should be implemented for all households.
- 5. Pit toilets in the village need to be built away from the stream. The majority of the toilets seen across the villages are built on sandy areas within the vicinity of the stream and are directly leaching into the stream.

CHAPTER 7: FRESHWATER MACROINVERTEBRATES

Bindiya Rashni

7.1 Summary

A total of 76 freshwater macroinvertebrate taxa were identified from the 16,370 specimens collected. Of these 76 taxa, a total of 57 (75%) were endemic to Fiji, most of them insects. A total of fourteen macroinvertebrate taxa were selected as potential bioindicators. These include four species of mayfly larvae (Ephemeroptera: two *Pseudocloeon* spp. and two *Cloeon* spp.); two species of damselfly larvae (Odonata: *Nesobasis* "orangish", *Nesobasis* "dark green"); four species of caddisfly larvae (Trichoptera: *Apsilochorema* "light green", *Hydrobiosis* "pinkish", *Hydrobiosis* "green" and *Chimarra* sp.); one cranefly larvae (Tipulidae: *Tipula* sp.); one snail (*Fluviopupa* spp.); one nematode worm (unknown species) and one moth larvae (Lepidoptera: unknown species). The high number of endemic taxa recorded, together with a large number of species with large populations, is indicative of the intactness of both the stream system and the surrounding forest.

7.2 Introduction

The freshwater macroinvertebrate fauna of Fiji is currently represented by 45 families, namely; 25 families of insects, eight families of molluscs, four families of crustaceans, three families of segmented worms, two families of nematodes, two families of sponges, and one family of flatworms (Haynes, 1988, Haynes, 1999, Haynes, 2001, Jeng *et al.*, 2003, Haynes, 2009). Many of these are yet to be fully described to genus and species level and many aquatic insect larvae need to be matched with their described flying adults.

Prior to this study, no surveys had been carried out to identify the composition of macroinvertebrate communities within the waterways of this study site or their tributaries. There is, however, some documentation of previous macroinvertebrate surveys in other waterways of Viti Levu.

Three tributaries of the upper Sigatoka River (which is located about 23km from Emalu) were surveyed for possible effects of the Sigatoka-Ba hydropower dam. Damselfly and mayfly species were noted to be of very sensitive nature to this development (Haynes, 2004).

In Namosi province macroinvertebrate composition from an unlogged catchment drained by Wainikovu Creek (23km from Emalu) was compared to that of Nabukavesi Creek in a logged catchment. After five years, the abundance of invertebrates in both streams was the same except Nabukavesi Creek had lost five species which had been present in sparse populations prior to logging and Wainikovu Creek had more species of an endemic genus of damselfly, *Nesobasis* spp (Haynes, 1999). A survey of Lake Monasavu revealed the presence of damselfly nymphs (*Nesobasis* spp.) prior to dam construction. But eight years after the dam construction, the damselfly nymph species were wiped out (Haynes, 1994).

These studies were conducted in areas outside the Emalu catchment boundary. Therefore the present study represents the first detailed and comprehensive study of freshwater macroinvertebrates and aquatic habitat within the three catchments of Emalu; Tovatova, Mavuvu and Waikarakarawa.

The key objectives of the study were:

To provide a comprehensive list of taxa.

Describe community structure.

Identify taxa that are unique, rare and endangered in Fiji.

Identify taxa that can be used as indicators of environmental changes.

This report also provides information relating to water physiochemistry and invertebrate habitats which will assist with interpretation of freshwater macroinvertebrate results and identify potential areas of monitoring interest related to the identified biological indicative taxa.

7.3 Methodology

Survey Stations

During the first phase of the Emalu survey (July 2012), three main stations were sampled within Tovatova catchment inclusive of the upstream Nasa Creek and its tributary, Wainirovurovu Creek. During the second phase of the survey (March 2013), six main stations were sampled within the Mavuvu and Waikarakarawa catchments, including the headwaters of Mavuvu River (Qalibovitu stream), the Mid Mavuvu River (Wainasoba Stream) and Waikarakarawa Creek. The descriptions of the sampling stations are summarised in Appendix 15 and their locations shown in Map 10.

The area is densely forested with numerous tributaries connected to the main riparian systems; Nasa Creek and Mavuvu River. The mid to upper portion of the Nasa Creek is a medium to high gradient undisturbed stream with well vegetated, highly stable bank and good or moderate canopy cover providing suitable habitat conditions for thriving freshwater community. The mid Mavuvu River tributary (Wainasoba Creek) and upper Mavuvu River tributary (Qalibovitu Creek) are undisturbed waterways with well-vegetated, stable to highly stable banks and good or moderate canopy cover, providing suitable habitat conditions for thriving freshwater communities.

Water physiochemistry

Water physiochemical parameters were measured at each sampling station using a calibrated multi-water quality meter (Aquaread AV 1000). Parameters measured included temperature, dissolved oxygen (DO), conductivity (milisiemens per centimeter (mS/cm), pH, Total Dissolved Solids (TDS), turbidity (Nephelometric Turbidity Units (NTU)) and salinity.

Habitat characteristics and aquatic flora

Habitat characteristics were assessed along 20m reaches per site to assist with interpretation of macroinvertebrate community data. The following habitat data was either measured or visually estimated and recorded on a standard habitat assessment form:

Channel Description:

Wetted width and water depth – channel width (m) was measured using a 30m measuring tape. Water depth (m) at wadeable sites was measured using a calibrated meter ruler or estimated at sites that were too deep (i.e. >1m).

Water velocity – velocity was calculated by timing how many seconds a specimen bottle cap took to travel over a set distance of three metres. This procedure was repeated three times and averaged to give a mean velocity for each site.

Habitat type – the relative proportion of each habitat type (e.g. run, riffle, pool and chute) present at each site was visually estimated.

Streambed substrate – streambed substrate composition was assessed at each sampling station. Assessment procedure involved measuring approximately 100 sediment particles following the Wolman scale (Wolman, 1954). Size classes included bedrock, boulder (>256mm), large cobble (128-256mm), small cobble (64-128mm), large gravel (32-64mm), medium-large gravel (16-32mm), small-medium gravel (8-16mm), small gravel (2-8mm) and sand/silt (<2mm). Gravel size classes were combined into a single gravel class (2-64mm) for easier data presentation.

Streambank stability – this involved visual characterisation of streambank stability at each site as (i.e. stable, partially stable or unstable).

Organic matter present – observation of woody debris, leaf litter and detritus at sampling stations. This provides an indication of potential food availability for certain macroinvertebrate functional feeding groups or additional stable habitat.

Riparian character and channel shade – at each sampling station, a general assessment of percentage channel shade and the riparian vegetation characteristics was carried out.

Periphytons (algae) – visual estimation of present streambed periphyton cover (%) and type (i.e. film, mat, filamentous) and colour (i.e. green, light brown, dark brown, reddish) at wadeable sampling sites.

Macrophytes (aquatic plants) – an assessment of macrophyte streambed cover and species present at sampling stations

Macroinvertebrate sampling

Macroinvertebrate samples were collected using both quantitative and qualitative survey methods to allow an assessment of macroinvertebrate density at selected stations and to compile a list of suitable taxa as potential bioindicators for future monitoring. The quantitative and qualitative sampling methods were adapted from Stark *et al.* (2001) and modified to suit the time constraints and objectives of this particular survey. They are described as follows:

Quantitative assessment – This is a quantitative method that provides a measure of macroinvertebrate density is adapted and modified from Protocol C3 (Stark *et al.* 2001). Two replicate Surber samples (area $0.1m^2$, 0.5 mm mesh) were collected from riffle habitats at stony streambed sites. A riffle is a shallow area (water depth $\leq 0.5m$) where water flows swiftly over stones, creating surface turbulence. Surber samples were collected from the Nasa Creek and its tributary, Wainirovurovu stream in Tovatova catchment and Waikarakarawa Creek in Waikarakarawa catchment. Samples were collected by placing the Surber sampler over a defined area of streambed in riffle habitat and disturbing the habitat by washing the particles with the water flowing through the net to collect dislodged macroinvertebrates. A sample was also quantitatively collected using a kick-net sampler in Wainasoba Creek (WSLQT), collecting from same surface area as that of Surber sampler.

Qualitative assessment – a single sample was collected from each sampling station either via kick-net or visually inspecting slow flowing edge habitats for taxa that prefer these habitats (e.g. snails and damselflies). Typical habitats sampled included runs, riffles, chutes, pool edges, trifles, woody debris, leaf litter, stream edges, and tree roots along banks, streambank vegetation and sand/silt substrates.

Macroinvertebrate samples collected from the Surber sampler, kick-net or hand collection were placed into 250ml specimen jars with 70% ethanol for sorting and identification by the author. New taxa were verified by Dr. Haynes. The guides referenced in the identification process included; Haynes (2009), Haynes (in prep.), Haase *et al.* (2006), Williams (1980) Winterbourn *et al.* (2006), and Nandlal (unpub). Identified macroinvertebrates were placed for preservation in small vials containing 70% ethanol for long term storage.

Data analysis

Community composition and structure: the combined Surber and opportunistic data set was used to calculate the relative abundance of the main taxonomic groups.

Macroinvertebrate density: an assessment was made of macroinvertebrate density in riffle habitats at selected stony streambed sites based on quantitative Surber sample data by multiplying the mean Surber sample abundance data (per 0.1m²) by a factor of ten to give abundance/m².

Status and distribution of taxa: taxa were classified as either endemic to Fiji, native to other regions (e.g. Pacific, South Pacific, Indo-Pacific, Fiji-Australia and South East Asia), introduced tropical species or other (i.e. marine, worldwide).

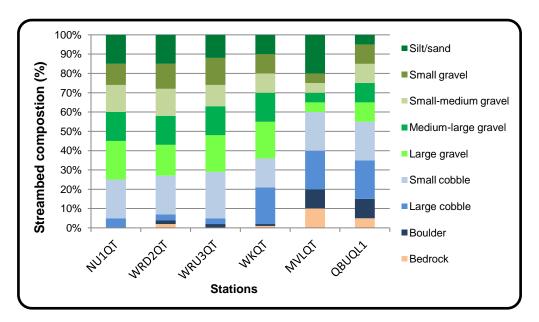
Focal species/ taxa of interest: macroinvertebrate taxa of potential interest for being key indicators of environmental change in the catchment were selected.

7.4 Results

Water physiochemistry

The water physicochemistry parametres measured at the different stations are summarised in Appendix 16. Waterways sampled ranged from almost neutral to slightly acidic. The freshwater macroinvertebrate communities described in this study are unlikely to be significantly affected by pH values within this range.

Conductivity is a measure of the total ions in water and ranged between 0.084 mS/cm in the mid Mavuvu (MLVQT) and 0.047 mS/cm in the upper Nasa (NU1QT).


Turbidity (NTU) is a measurement of particles in the water column and provides an indication of water clarity. Turbidity values ranged between 0 NTU in the Wainirovurovu Creek sites (WRD2QT & WRU3QT) and Mavuvu catchment streams (WKQT, WSLQT & QB1QL) to 5.8 NTU in the Nasa Creek (NU1QT). Turbidity in Nasa Creek was higher due to heavy rainfall the night prior to surveying. Though turbidity above 5 NTU signifies poor water quality; this was a temporary impact and water clarity had returned to normal by late afternoon with NTU of less than 5. In Wainirovurovu Creek (WRD2QT & WRU3QT), turbidity values were 0 NTU, which signifies excellent water quality for macroinvertebrate survival as well as the absence of sediment-raising activities in the catchment.

Dissolved oxygen concentrations ranged between 8.27g/m³ in Waikarakarawa Stream (WKQT) and 8.99 g/m³ in Nasa Stream (NU1QT) All dissolved oxygen concentrations were above the level considered sufficient for macroinvertebrate survival (i.e. >5 /m³). This was due to unaltered waterway hydrology allowing suitable water flow coupled with sufficient canopy cover to reduce excess temperature and highly stable bank reducing any sedimentation impacts. Salinity measurements at the survey stations

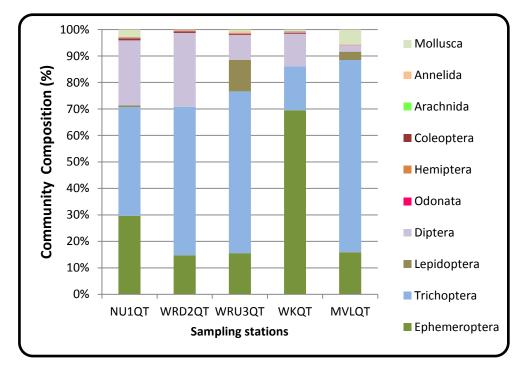
demonstrated levels that are expected in the headwaters of any tropical inland stream.

Habitat Characteristics

The aquatic habitat and riparian characteristics of the stations surveyed are summarised and presented in Appendix 17. The streambed of waterways surveyed was dominated by cobble/gravel and sand and provided a diverse stable habitat for the macroinvertebrate community (Graph 1).

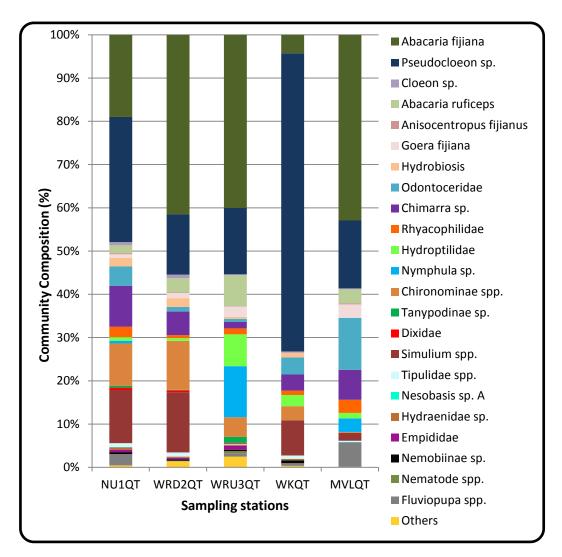
Graph 1. Streambed composition at sampling stations.

Periphyton


Thin light/dark brown films (<0.5mm) (i.e., 40-80% cover) was the most common form of periphyton recorded at sampling stations with stony streambeds. This periphyton type is a source of food directly or indirectly for macroinvertebrates and fishes in streams.

Macroinvertebrate density

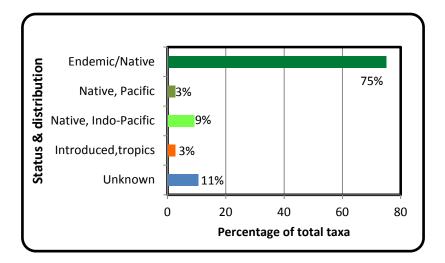
A summary of the freshwater macroinvertebrates collected and their abundance is presented in Appendix 18 (Surber sampling) and Appendix 19 (opportunistic collections). The abundance is given as numbers of individuals, and is also grouped into abundance categories as follows: very abundant (>100), abundant (20-99), common (5-19), few (2-4) and very few (1). The overall (all taxa) abundance ranged from 2049 individuals/m² at Waikarakarawa Creek downstream (WKQT) to 3686 individuals/m² in Nasa Creek upstream (NU1QT).


Insect larvae/nymphs were the most dominant taxa at all three sites (Graph 2). This was strongly represented by caddisfly, mayfly and dipteran larvae. This result is typical of the headwaters of tropical inland streams with intact or pristine

catchments. Insect larvae are well adapted to fast flowing waters of stream/river headwaters, compared to crustaceans and molluscs which are found in higher numbers in lower reaches of streams/rivers with swifter flows. The small *Fluviopupa* (<4 mm) snails were also recorded as abundant at two sites and very abundant at one site. These particular gastropods are usually catchment endemic and found in higher densities in headwaters with narrow channels, swift flows and very clean water. They have been found to be only present in streams undisturbed from cattle/horse grazing. Hence they were abundant in the intact waterways surveyed. The moth larvae (*Nymphula* spp.) also ranged from abundant to very abundant at two stations. They are known to be found in higher densities in streams with adequate algal film covering stream substrata and open-partial canopy shading and good water quality; hence there abundance in these streams.

Graph 2. Community composition by major taxonomic group.

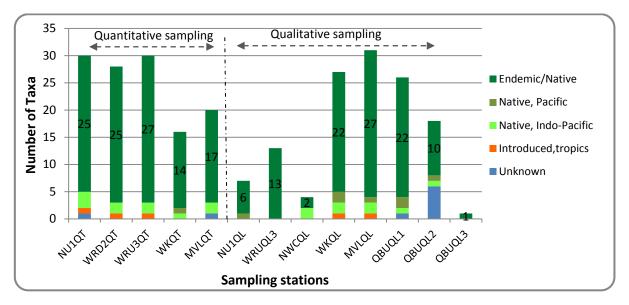
The macroinvertebrate communities documented were typical of pristine/intact inland tropical stream headwaters. The waterways sampled provided suitable habitats for diverse taxa composition. The sites surveyed had coarse stony streambed substrates and a high proportion of turbulent riffle/chute habitats, which resulted in caddisflies (Trichoptera) being the most dominant group at the majority of stations, followed by mayflies (Ephemeroptera) and flies (Diptera). These groups combined to give 95% (NU1QT), 98% (WRD2QT), 85% (WRU3QT) and 98% (WKQT) of the total species recorded (Graph 2). An exception to this pattern is at site MVLQT whereby the Mollusca group was more abundant than the Diptera, and togther with the Trichoptera and Ephemeroptera comprised 80% of species composition.


Graph 3. Community composition by taxa.

The most abundant caddisfly taxon recorded was the net-spinning filter-feeder *Abacaria fijiana*. This species were most abundant in riffle habitats at Mid Mavuvu tributary, Wainasoba Creek (WSLQT) and Wainirovurovu downstream (WRD3QT) where they represented between 40 and 43% of total abundance respectively. Other caddisfly larvae such as *A. ruficeps*, Odontoceridae, Hydroptilidae and *Chimarra* sp. were also common or abundant but represented less than 9% of total abundance. *Chimarra* sp. was recorded in highest proportions in the Nasa Creek (NU1QT) and Wainasoba Creek, in the downstream Mavuvu (WSLQT).

Mayflies were also a dominant taxonomic group recorded at survey sites and represented 69% of the community in the Waikarakawa Creek and 30% in the Nasa Creek (NU1QT). The most abundant mayfly taxon was *Pseudocloeon* sp. This is because *Pseudocloeon* sp. has a dorso-ventrally flattened body that allows it to graze on thin algal films covering the surfaces of large boulder/cobble substrates in turbulent riffle/chute habitats. In contrast, *Cloeon* sp. mayflies which are mostly associated with gentle flowing habitats and are more common along stream margins and runs were recorded in much lower proportions across the sites. Therefore many *Cloeon* spp. were part of the opportunistic collection.

Conservation status and distribution of taxa


A total of 57 of the macroinvertebrate taxa recorded as part of the survey were endemic to Fiji and represented 75% of the total number of taxa recorded (Graph 4).

Graph 4. Status and distribution of taxa across all sites.

Apart from a few unique specimens (~15), many of the endemic taxa recorded are common throughout the headwaters of Fiji Island streams. The remaining 15% of taxa were either native to Fiji, the Pacific or the Indo-Pacific region, or introduced tropical species or unknown species.

Graph 5 shows the total number of taxa recorded at each sampling station and their status/distribution shown as a proportion of total taxa richness within each community. The number of endemic/native taxa recorded at sampling stations as part of quantitative survey ranged between 14 endemic/native taxa at Waikarakarawa stream (WKQT) to 27 at Wainirovurovu upstream (WRU3QT). This amounted to 88% and 90% of the total taxa per sites respectively; highlighting that endemic species are the dominant taxa at all sites. The majority of endemic/native taxa recorded were insects; inclusive of both qualitative and quantitative collection (53 taxa in total). Other endemic taxa recorded were the small (<4mm) snail *Fluviopupa* spp. and nereid and nematode worms. A single juvenile specimen of the introduced tropical snail Melanoides tuberculata was also found in riffle habitat at Nasa stream (NU1QT) of Tovatova catchment, although no adults were observed around the edges of streams during the qualitative survey. This could possibly be an inadvertent introduction into the stream via footwear worn by villagers/surveyors. This tropical snail was however present in adult and juvenile sizes along the sides of stream channel at Waikarakarawa stream and Wainasoba Creek. The common introduced mosquitoe larvae (Culicidae) was found at Wainirovurovu stream. These species are usually limited to stagnant waters (pools) in streams but due to the previous night's rainfall they might have been washed into the riffles.

Graph 5. Status and distribution of taxa across individual sites.

A lower number of endemic taxa were observed as part of the quantitative survey at Waikarakarawa Creek (WKQT) (14 taxa) and Wainasoba Creek (WSLQT) (17 taxa). The qualitative survey at both stations (WKQL & WSLQL) showed a high increase in endemic/native taxa. This is probably due to species becoming habitat specific with changing physical parameters such as an increase in flow with increasing elevation and steepness coupled with a decrease in channel width. Damselflies, shrimps and some caddisfly species were more abundant on the sides of the streams which supported slow flows, compared to riffles with swift flows. The sides of the streams also had mass fibrous roots extended into the channel that provided habitats for damselflies, shrimps, whirligig beetles and some caddisfly species.

Focal species / taxa of interest

Certain macroinvertebrate taxa that were recorded during the surveys and that may be of potential ecological interest are shown in Fig. 45 - Fig. 61. These highly sensitive species are typical of pristine streams draining intact watersheds. Furthermore, some of these taxa, such as *Fluviopupa* spp., *Nesobasis* "orangish", the unknown moth larvae and the nematode worm, have a very high chance of being catchment endemic or localised endemic.

7.5 Discussion

Dense forest cover, intact riparian zone and highly stable banks along these rivers and their tributaries provide suitable conditions for a thriving freshwater macroinvertebrate community. Dense forests ensure enough volume and clear water entering the creeks and tributaries; maintaining a natural state of waterway hydrology to provide different habitats such as runs, riffles, pools and chutes coupled with appropriate streambed substrates and good water quality. Intact riparian vegetation acted as an excellent buffer zone for any sediment intrusion from land, thereby maintaining water quality. Adequate canopy cover along waterway edges provide for shade to control water temperature, leaf litter for nutrient cycle, sufficient light for algal cover (food for macroinvertebrates) on stream substrata, while native tree roots, shrubs, ferns and big boulders ensured bank stability. At Waikarakarawa Creek a few cases of natural landslides were observed, while Qalibovitu upstream had more than six cases of landslides. These landslides caused large trees to fall in the waterways which altered the waterway hydrology but also provided additional habitats via branches, leaf litter and twigs. The landslides also caused abrasion of stream banks resulting in the addition of sediment to the streambed. However, this impact is a temporary one.

The freshwater macroinvertebrate community of Emalu (in total 76 taxa) showed that the endemic taxa were the most dominant with insects making up the majority of the taxa. This is typical of pristine inland tropical riverine system headwaters. In comparison with other studies in pristine headwater catchments (by the author), 27 taxa were identified from Wainavadu Creek and the headwaters of the Waidina River in Namosi and Naitasiri Provinces, and 32 taxa were identified from the Wainibuka River headwaters in the Nakauvadra Range. Waterways in the Emalu area therefore supports much higher taxa richness (almost threefold more) than other creek/river headwaters that have been surveyed in Viti Levu.

A total of fourteen macroinvertebrate taxa collected as part of the survey may be of potential ecological interest. These include four species of mayfly nymphs (Ephemeroptera: two *Pseudocloeon* spp. and two *Cloeon* spp.), two species of damselfly nymphs (Odonata: *Nesobasis* "orangish" & *Nesobasis* "dark green"), four species of caddisfly larvae (Trichoptera: *Apsilochorema* "light green", *Hydrobiosis* "pinkish" sp., *Hydrobiosis* sp. "green" and *Chimarra* sp.), one Cranefly larvae (Tipulidae: *Tipula* sp.), one snail (*Fluviopupa* spp. (< 4mm), one nematode worm (Unknown 1 sp.) and one moth larvae (Lepidoptera: Unknown 2 sp.). These highly sensitive species are very good bioindicators. They are also typical of pristine streams draining intact watersheds. In addition special taxa such as rissooidean snails (*Fluviopupa* spp.), *Nesobasis* "orangish", the unknown moth larvae and the nematode worm are very likely to be catchment endemic or area endemic species. *Fluviopupa* snails, ten species of which are already known to be endemic to Fiji, have restricted distribution and are usually catchment endemic, inhabiting springs and small creeks or riffles (Haase *et al.*, 2006).

The slender red headed (*Pseudocloeon* sp. A) and the dark brown (*Cloeon* sp. A) mayfly nymphs also have a high chance of being catchment endemic species. The nematode worm has only been found in the Wainrovurovu tributary and not in Nasa Creek, possibly due to the narrower stream channel and the difference in water depth. Since the catchment is unimpacted by cattle grazing, these worms have naturally been part of the freshwater macroinvertebrate community or may have been introduced by birds etc. The orangish damselfly nymph and the moth larvae (Black with orangish spots and prolegs) have been encountered for the first time. These two taxa have not been observed in any streams surveyed prior to this survey.

However, these are only the larval stage and have not been matched with the adult stage as yet. Therefore it cannot be confirmed if they are new species or not. In addition, the amphipod and the caridean shrimps (*Caridina* sp. B-F) found in Qalibovitu Creek QB1QL and QB2QL have a very great chance of being new species as they do not resemble the crustaceans described so far from Fiji or Asia.

CHAPTER 8: INVASIVE SPECIES

Isaac Rounds and Sarah Pene

8.1 Summary

Trapping and opportunistic surveys were used to record the presence and abundance of invasive plants and animals in the Nasa, Mavuvu and Waikarakarawa catchments of the mataqali Emalu forests, Viti Levu. The checklist of 26 invasive plants and eleven invasive animals recorded as present in the area includes thirteen species which are listed in the 100 most invasive species in the world, namely;

Plants: Spathodea campanulata, Mikania micrantha, Leucaena leucocephala, Lantana camara, Imperata cylindrica, Arundo donax and Clidemia hirta. Animals: Rattus rattus, Sus scrofa, Felis cattus, Pycnonotus cafer, Bufo marinus and Herpestes auropunctatus.

In general the occurrence and abundance of invasive species in the Emalu boundary was associated with proximity to human habitation and to disturbed areas such as tracks, temporary campsites and cultivated areas. The invasive plant species were generally low in abundance, with the exception of *Piper aduncum* which was locally common, and *Clidemia hirta* and *Mikania micrantha* which were both widespread.

The faunal component of the invasive species was comprised primarily of the most common (and most serious) global invasives such as rats, mongooses, mynah birds and cane toads, as well as feral animals of domesticated species, such as cats, dogs and pigs. Some invasive animal species such as the Polynesian rat (*Rattus exulans*), the Norwegian rat (*Rattus norvegicus*) and the house mouse (*Mus musculus*) were not observed directly in the field but they were reported by the guides to be present in and around the villages in the area.

8.2 Introduction

Because of their isolation and relatively recent human occupation, Pacific islands are especially vulnerable to invasive species, to such an extent that invasive species are the primary cause of the extinction of island native species (Tye, 2009). Previous work from numerous authors has focussed on documenting their presence and to some extent their distribution and abundance within Fiji.

Pernetta and Watling (1978) compiled a list of native and introduced vertebrates which included reptiles. Since then monitoring of some of the major invasives have revealed new additions for example, a second mongoose species (Morley *et al.*, 2007). Some species (rats, mongooses and goats) have also been the target of concerted eradication efforts on some smaller islands to protect native biodiversity.

In terms of invasive plants, 52 species have been identified as being present in Fiji (Meyer, 2000). These have been classified under three groups according to their degree of invasiveness, namely: thirteen dominant invaders, seventeen medium invaders and 22 potential invaders. For some of these individual species, such as *Mikania micrantha* (Macanawai *et al.* 2010) and *Spathodea campanulata* (Auld and Nagatalevu-Seniloli, 2003), research has focussed on their ecology and control.

Invasive species surveys have been a component of wider biodiversity assessments done in eastern Viti Levu (Morrison and Nawadra, 2009, Morrison *et al.*, 2010, Morrison, 2003). This is however, the first survey of invasive species in the Emalu area.

8.3 Methodology

Rodent Survey

Traps were laid for rodents (rats and mice) on three consecutive nights during the July 2012 survey in the Nasa River catchment. Traps were baited with roasted coconuts and positioned in protected spots under hanging boulders, large tree bases and below fallen logs. The traps were laid in pairs along a transect, according to the established methodology of Cunningham and Moors (2006). The location of the three trapping transects is shown in Map 11.

A total of 88 traps were set over the 3-day period, each for one night. The nose-to-tail length and the weight of captured animals were measured using vernier calipers and a 1kg spring balance. The species and sex of each captured animal was recorded, along with an estimate of its age (based on body size).

Other Mammals

Opportunistic surveys were conducted to identify the presence of other invasive mammal species such mongooses, feral cats, cows, dogs, horses, cows and goats. This included simple visual surveys for individuals, or for traces such as footprints, scat, and feeding evidence. Information was also obtained from other teams conducting surveys in other parts of the forest study site. One of the guides used dogs to hunt feral pigs, and these captures were also recorded.

Invasive Plants

A checklist of all invasive plants sighted was compiled during the survey with notes taken as to their relative abundance and habitat preferences.

8.4 Results

A full checklist of all invasive and potentially invasive animals documented during the survey is provided in Appendix 20.

Rodent Trapping

A summary of the trapping results is provided in Appendix 21. The trapping transects only successfully captured one rat; a juvenile male black rat (*Rattus rattus*) that weighed 135g. This rat was captured on the first trap night in Transect 1.

Another individual of the same species (*Rattus rattus*) was caught opportunistically by one of the guides without a trap during the survey of the Waikarakarawa River catchment (Fig. 62). The other two species of rats, *Rattus exulans, Rattus norvegicus* and the mouse *Mus musculus* were not caught or observed during this trip, but it is highly likely that they are present in the area.

Other Animals

Pigs

Six pigs were caught with the use of hunting dogs, including one pregnant female. Descriptions of the pigs caught are given in Appendix 22. Numerous wild pig wallows were observed in the forest including resting areas such as large tree hollows. Plantations near the village of Navitilevu showed some evidence of pig damage, including the uprooting of root crops such as cassava, taro and giant taro.

Cats

A juvenile male feral cat (*Felis cattus*) was caught at the Tovatova base camp. The cat managed to escape but was seen around the camp several times looking for food. Cat scat was also found along one of the tracks. No cats or evidence of cats were found around the Waikarakarawa Creek base camp.

Horses

Due to the remoteness of the area and villagers depend greatly on their horses (*Equus caballus*) for transportation to their plantations or into the forest. Horses were used for transportation of equipment and supplies to the campsites in the Mavuvu and Waikarakarawa Creek catchments during this study (Fig. 63). There was no evidence of the presence of feral horses in the Emalu area.

Mongooses

Although no mongooses were observed within Emalu forest, according to the guides they are present in and around their villages. Since no individuals were sighted it is not known if both species of mongoose (*Herpestes auropunctatus, Herpestes fuscus*) are present in the area, or just one.

Cane toads

Cane toads (*Bufo marinus*) were present in the area, and several were caught and photographed (Fig. 64). They tended to be larger in size than those in urban areas.

Invasive Plants

A total of 26 invasive plant species were observed to be present within the area. Seven of these are currently listed in the top 100 of the World's Worst Invasive Alien Species (Lowe *et al.,* 2000). The complete list of all invasive and potentially invasive plant species found in the Emalu forest is in Appendix 23.

The majority of species and the highest abundances were recorded in proximity to human habitation and to roads and agricultural land, with a much reduced number penetrating into the forest. Stream flats and embankments often had multiple invasive species in close proximity to each other (Fig. 65).

African tulip (*Spathodea campanulata*)

Spathodea campanulata, although one of the most problematic invasive plant species in Fiji, was recorded as only two individual trees within the forested area of the Nasa catchment. One other tree was found near the basecamp in the Waikarakarawa catchment. In and around villages and roadsides however this species was more common.

False kava (*Piper aduncum*)

Large monotypic stands of *Piper aduncum* were observed outside the Emalu boundary especially around Navitilevu Village, but within the Emalu site it is generally restricted to creek banks and disturbed open areas.

Mikania micrantha and Clidemia hirta

Although generally occurring at low densities within the forest, these two species are the most pervasive. Both were observed in higher altitudes, even in closed forest, above 700m and *Clidemia hirta* was also recorded in the cloud forest of Mt Vonolevu. Although both species are capable of growing in the low light conditions beneath canopy, they are found in much higher density in open and disturbed areas especially around tracks and stream banks.

Ornamentals

Several ornamentals plants introduced deliberately, probably as aboriginal introductions, were found in the area. These included species such as *Brugmansia* suaveolens, Musa x paradisiaca, Saccharum edule, Citrus grandis, Bambusa vulgaris, Artocarpus altilis, Citrus limon, Derris malaccensis and Bischofia javanica. Large terraces

were observed within the Nasa and Waikarakarawa river catchments indicating that at one time the area was intensively farmed.

8.5 Discussion

In general the occurrence and abundance of invasive species in the Emalu forest was associated with proximity to human habitation and to disturbed areas such as tracks and past or present campsites, fallow land, old village sites, burnt out forest and cultivated areas.

A total of 26 invasive plants species were recorded during the trip including some ornamental plant species that have the potential to become invasive. The majority of the invasive plant species were found along stream banks, abandoned plantations and old village sites. Continuous clearing of forest for plantation will certainly facilitate the incursion of invasive plants into the forest. Disturbance and both human and animal traffic along tracks will also contribute to the spread of invasive plants into the interior of the forest.

Compared to invasive plants, invasive animals tend to have a more negative effect on the native fauna. Even though there is a high possibility that all rat species are present in the Nasa catchment of Emalu forest, the low trapping rate indicated either a low density of rodents or the need to improve trapping methods. It is possible that a grid system (Weihong *et al.*, 1999) would have had a higher trapping success than the transect system. Trapping data suggest the rat abundances are not very significant but the presence of the black rat (*Rattus rattus*) is worrisome as they are a very agile and frequent climber and therefore can easily access nesting birds.

The presence of feral cats could have also impacted the number of rats caught. Some farms are located at a significant distance from villages and farmers prefer to build temporary shelter where they camp and tend to their farms during the week and return to the village during the weekend. Domestic animals such as cats and dogs can aggregate around such makeshift camps and in this way become feral. Feral cats in particular are a major threat to native birdlife.

Other invasive mammals observed during the trip included one juvenile feral cat and six wild pigs caught by guide Aporosa Maya. Wild pig wallows are common throughout the Emalu forest and according to the guides the wild pigs are a significant cause of crop damage. Pigs can also cause damage to native biodiversity, in particular through destroying seedlings, and contributing to soil erosion. Although mongooses were not directly observed within the Emalu Forest according to guides they can be seen around the villages, and it is likely there is incursion into the forest where, like cats they pose a significant threat to native birdlife.

8.6 Recommendations

In terms of the potential for further study of invasive species, the following have been identified as areas for further action:

- 1. Long-term monitoring of *Spathodea campanulata*. Emalu is an ideal site for long-term monitoring as this species is considered highly invasive, but currently has very low abundance in the area. Assessing its spread in relation to disturbances or other ecological factors over time would elucidate further information as to its invasiveness potential in Fiji.
- 2. A dedicated mongoose-trapping study over a longer time period is needed to definitively establish if one or both of the two mongoose species in Fiji are present in the Emalus area.

Some general control measures which would help lessen the damage done by invasive species, and on which there needs to be awareness-raising in the villages are:

- 3. Control of feral pig populations through de-sexing of alpha male pigs, and a bounty system for pig hunters.
- 4. Limitation of the establishment of new farms to reduce encroachment on grassland and secondary forest.

CHAPTER 9: ARCHAEOLOGICAL SURVEY

Elia Nakoro and Sakiusa Kataiwai

9.1 Summary

The land belonging to the mataqali Emalu is rich in historical and cultural material remains that have not been documented until this survey. The historical remains are scattered all throughout the mataqali land, a widespread distribution of elaborate hilltop and lowland settlement and fortifications some of which are associated with sophisticated irrigation systems for terrace agriculture.

The general physical setup of settlements depicts various forms of insecurity in the past, a time of great rivalry and competition. Supporting evidence for this can be found in some of the structures of the hill fortifications that were encountered. Constructing on high elevation is a survival strategy whereby communities used their natural environment and rugged terrain to provide security.

Further evidence to support the notion that the area was densely populated was given by the series of large intricate irrigation systems discovered during this survey. The discovery of these elaborate channels suggests larger populations to implement and maintain this agricultural system. The study of the cultural footprints within the Emalu study area is vital in understanding why the people of Emalu chose to live in such remoteness and rugged terrain, as well as their socio-cultural relations and their responses to altering natural and climatic conditions.

Generally, the archaeological finds during this survey have considerable cultural value to the local community as well as at the national level. The significance of these sites can be determined and derived by deconstructing the value of the individual sites into the following components; aesthetic, symbolic, social, historic, authenticity and spiritual values.

9.2 Introduction

A collaborative archaeological survey was undertaken to outline the cultural connection the land has to the people of the mataqali Emalu and surrounding communities with an emphasis on identifying and describing cultural sites of significance for which there is tangible evidence.

The mataqali Emalu, from the village of Draubuta, possesses a rich historical background with ancestral ties and links connected to the Emalu forest in which their generational history and cultural livelihood have been strongly maintained. The Emalu forest plays a primary role in the cultural identity and history of the mataqali, as their forefathers inhabited the area utilizing its resources and settling extensively

throughout the land as highlighted in this extract by A. Brewster, the Commissioner of Colo North and East provinces in the late 1800s:

At the time when the ancestral gods were sent forth, Qicatabua went to Qamo, which is near to Serua. Having arrived there, he disliked being on the sea coast, and made up his mind to proceed into the hills in the interior, and so departing thence he went upwards to Vautabu and came to the Wailevu, which he followed down to Navua and then he arrived at Busa Levu. (Note: The great plateau of moorland and swamp in which rises the Wainisavulevu or River of the great falls, a feeder of the Wainimala head of the Rewa. North of the Busa Levu is the valley of the Sigatoka River and south west of the Navua River. This plateau is very nearly in the centre of Viti Levu. A.B.B.) He followed the plateau up until he came to a hill, which he called **Emalu** and thought that he would build his village there. He did build houses and made clearings for gardens but he took a dislike to it, and arising he went on his way. He followed the Mavuvu River (a tributary of the Navua) until he came to Veinuga, afterwards arriving at a place called Nasaqaruku. Some of his men who were with him said they would like to remain there and Qicatabua gave them permission to do so, and they built some houses there at Nasaqaruku. Now the name of the clan who remained at that place is Nataritale. Then he went upstream to Toluga, and then some more of his followers said they would stop there. Then he went on to another place called Nasakikisagora. There stayed his priest, Siliece. Then he went on to Sirowala, and there stopped another of his followers whose name was Vadra. Then he went along the ridge at Naonou and descending followed another ridge, Naraiyawa, then he got down to the river (the Sigatoka River) and got to a place called Nakavu, and there stayed another of his young men by the name Quna. Then he came to another stream, the Wainimosi, which he followed up to a marsh called Nabudoi. Then he ascended a ridge and he said he would rest there, and called the place **Emalu...** (Brewster, 1921)

9.3 Methodology

With the assistance of village guides through collaboration of oral history and correspondence, areas of interest were identified and located in the study area. Location data of each site was captured utilising a GPS unit (Garmin GPSmap 76CSx). Site notation was carried out and photographic documentation of sites was made with a camera (Practica Luxmedia 14-Z4).

9.4 Results

During the field survey, a total of 77 sites were documented. Their locations are shown in Map 12 and Map 13 and a brief description of each site is given in Appendix 24. Photographs of some of the sites are shown in Fig. 68 - Fig. 97.

9.4.1 Sites of interest

Seven of the most interesting sites are described in detail below.

M28-0008

Extending along a flatland situated in lowland forest, the site displayed identified features approximately within a 20m length zone from the first identified feature to the furthest. Altogether, three evident house mound features were identified: the first of which exuded significance in structure as the mound was more elevated than usual, at a height of about 3m, containing a stone alignment that was demonstrated along a portion of the mound surface. According to locals, this significant mound may be the remains of a temple mound or <u>burekalou</u> indicated by the elevation in the structure. The remaining identified features were two house mounds which were sufficiently preserved, displaying a vague structure that demonstrated an adequate appearance of its original formation.

M28-0016

This is a significant site of sentimental value to the mataqali Emalu as it represents an aspect linked directly to the ancestral relations, background, oral accounts and values that define and verify the mataqali and its cultural affiliations. The site is demarcated by a pool, in which flows the Nasa Creek. According to the local oral narrative, the pool is the final resting place for the endemic cicada, locally known as <u>nanai</u> (*Raiateana knowlesi*). In the final stages of their life cycle, the cicadas flock to this pool to perish, an event that occurs every eight years. The <u>nanai</u> is the traditional <u>manumanu</u> or animal totem of the mataqali Emalu and through this site identification, a considerable part of the historical link the mataqali Emalu has with the land or vanua of Emalu, was established.

M28-0055

The site is quite extensive, covering a large area along the ridgeline with a total of nine house mounds identified among two platforms that are conjoined, forming a terrace-like construction over an extensive distance, as the landscape descends towards the west. The first identified platform is situated at the initial area of inspection on the east side of the site area. This platform reached a total length of 50m from either end with an identified width of 30m accommodating much of the identified cultural features belonging to this site.

The first identified mound is rectangular in structure, 8.5 x 6.5m and is highly raised compared to associated mounds-at least a meter above the ground. Due to its elevated structure, this mound feature may represent a rank or status associated in cultural communities. The second identified mound has a diameter of 8m and is raised at 60cm from the ground displaying a well-preserved structure of its original form. The third mound is circular and has a diameter of 8m with height raised at 60cm. The fourth mound is the largest mound feature identified in the area and is centrally located. The mound is rectangular structured, having a length of 9m with a width of 7.5m. The fifth house mound is identified as circular with a diameter of 7m

and a height of 150cm, well preserved. The sixth identified house mound is situated on the western edge as the landscape descends to the second identified platform. The mound is circular structured with a diameter of 7.5m and raised at 50cm, however, closer inspection revealed that this mound has undergone disturbance through erosion processes. At the edge of the northern wall of the platform, the team identified the seventh house mound that was conjoined to the platform unlike the associated mounds which were situated upon the platform. This mound is circular structured and extends outwards from the platform. The platform is elevated 40cm higher than the mound feature, creating a terrace-like structure. The mound has a diameter of 7m and is raised 60cm from ground level.

As inspection continued towards the west, the team descended onto a second platform that accommodated two house mounds. The initial identified mound on this platform is the eighth house mound. This mound is circular structured with a diameter of 7m and raised at 50cm. Along with this mound is the ninth identified feature of another circular mound with a diameter of 6.5m and raised at 60cm. Both mounds are situated on this second platform on the west section of the site area. This platform extends 12 x 9.5m and is thickly vegetated with little undergrowth.

M28-0059 – Nanaga

This site has been designated for site monitoring due to cultural material remains in the form of stone alignment which are quite intact. The site is bordered by the Mavuvu Creek which borders the east and south of the unique study area. The site is elevated from the banks of the Mavuvu Creek and is quite extensive covering an area of about 70m in a north to south orientation and a width of 65m along an east to west orientation however, areas beyond may be included but could not be surveyed as dense vegetation and thickets limited access to these areas.

The site consisted of well-preserved cultural features that may define traditions that were once practiced in the past. Upon inspection, the team identified rock walls or baivatu, which were constructed elaborately around the site area. These rock walls were measured at 1.2m wide and constructed in a circular manner with a portion of the rock wall redirected from its key route to form another parallel formation along the east side of the rock wall system. This parallel formation of the outer rock wall extended to about 15m in a north-east orientation, ending at the eastern edge of the elevated platform which the site is situated upon. The rock wall system encircles until it ends as a three-quarter circle formation as a portion of the remainder has undergone disturbance. A protruding rock wall formation projects southwards from the main system extending to about 10m. At the centre of the surrounding rock wall is a hollow area with the surface dipping gradually. The vegetation of the area is predominately covered with bamboo and some moli kana (*Citrus grandis*), yasiyasi (*Syzygium fijiense*), makita (*Parinari glaberrima*), sawira (*Dysoxylum richii*) and sago palm shoots, locally known as soga.

Several researchers have conducted thorough studies on the ceremonial use of the remarkable stone enclosure known as <u>nanaga</u> sites. The extent of these sites is confined to a small area- less than a third of Viti Levu. These are the provinces of Serua and Navosa with two sites in the upper Wainimala River, Narokorokoyawa area, Naitasiri and appear to have been used up until 1876 during the end of the Colo (highland) rebellion and the acceptance of Christianity caused them to fall into disuse (Palmer, 1971). According to Palmer (1971), the <u>nanaga</u> sites are an archaeological manifestation pertaining to certain Fijian ceremonials marking their New Year about the end of October or the beginning of November. Palmer's research sufficiently connects the use of the <u>nanaga</u> sites with initiation, circumcision, pig worship and perhaps preparations for warfare.

Considered a cult or a secret religious society bound together by the common link of initiation resembling certain Australian and Melanesian rites, the <u>nanaga</u> was the "bed" of the ancestors, that is where their descendants might hold communion with them; the <u>baki</u> were the rites celebrated in the <u>nanaga</u>, from the initiation of youths or presenting the first fruits, recovering the sick, or winning charms against wounds in battle (Thomson, 1908).

M28-0065

This is the most extensive old village site that was recorded within the mataqali Emalu boundary. The site is known as Nasaqaruku and was documented by Brewster (1921) in his records of the migration of the mataqali Emalu.

The site begins on a stretch of flat land and includes a nearby ridge. Nasaqaruku contains 30 identified house mounds and more would have been uncovered if the lush vegetation cover was cleared. The level of erosion in the area is high and could also contribute to the loss of several house mound features at the foot of the ridge. Most of the house mounds are aligned with stones and have been displaced over time by surface runoff. Similarly, wild pig trails and human harvesting of wild yams are widely evident. On the south-western side of the settlement and along the ridge stands a house mound 3m high and has a diameter of 6m. The structure is typical of a traditional temple or <u>burekalou</u> and constructed on a platform so that it is higher above all the other house mounds. The structure is raised earthen material and has withstood the devastating forces of natural elements. Apart from the evidence of house mounds, other cultural remains include plain pottery sherds found scattered in some parts of the area, and the culturally introduced plant indicators such as <u>moli kana</u>, <u>vasili</u>, <u>saqiwa</u> and <u>kavika</u>.

M28-0066

This is a fortified settlement strategically constructed on a hill east-southeast of the rock shelter site M28-00071. The hill fortification is immense and contains several exceptional features that are well preserved. Outlined in a north-northwest to south-

southeast direction, the site runs along a ridge. Habitational platforms are carved onto the surface and accommodated four house mounds. Each house mound is embedded with stone lining some of which have been displaced due to natural causes.

As the ridge line drops on the south-southeast end of the site, rocks are piled in a heap up to 2.5m high. The stones are piled as if to await adversaries and probably were never used, as the stones are stacked in a dome like structure. Further down the slope two defensive pits are dug deep into the floor of the ground separated by a 1m wide causeway. The pits are about 2.5m long and about 1.5m wide and dug following the direction of the ridge line. As the relief begins to ascend to the next ridge level another set of stones piled up to form a defensive wall that is about 2.5m high, half a meter wide and about 4m long. At the end of the stone wall are two huge rock outcrops to strengthen the western corner of the wall aided with a steep slope, leaving no room for safe passage through. The vegetation of the area is that of scattered secondary vegetation cover of huge trees like <u>dakua makadre</u> (*Agathis macrophylla*), <u>baka</u> (*Ficus obliqua*), and <u>marasa</u> (*Elattostachys falcata*). The stone features are cloaked with thickets of vines that have held the stones in place over the years.

M28-0068

Similar to Nasaqaruku old village site (M28-0065), the footprint of this cultural relic is extensive and stretches approximately 530m along a ridgeline southwest of the site described above. A total of 26 house remains were surveyed with sizes that vary all throughout the site. The average size of the house mounds is 6.8m to 8.6m.

In different parts of the site there are massive platforms upon which several house mounds are constructed. The eastern corner contains an oval platform that is 5m high, 30m long, 16m wide and holds three house mounds. The foot of the platform is enclosed with a 15m flat area where four house mounds can be found on the east of the platform. This is the only portion of the site where the mounds and the platform are symmetrical. The mid-section of the site contains three platforms each more than 30m long and highly raised well above 3m. The first platform is separated from the next by a ditch that is 2.5m deep and 4m wide. Several obvious house mounds of raised earthen materials are constructed on these platforms. The house mounds are well intact with slow erosion seen on the edges. The thick canopy cover and floor vegetation preserved the cultural remains from heavy downpour.

Towards the west of the settlement, the ridge runs southwest and the cultural remains continues for another 121m consisting of a platform that is almost 30m long, 9m wide and raised 5m from the ground surface. The platform holds four house mounds while several more were constructed on the lower elevation. A 5m wide ditch seals off the end of the settlement as the ridge begins to slope downward to the lower reaches of the hill.

The increasingly intensive use and modification of the landscape resulting from modern demands for efficient infrastructure and land use (agricultural production, mining, energy sources, logging, etc.) exerts growing pressure on cultural heritage in the landscape. A summary of the threats and disturbances affecting the sites is provided in Table 2.

Type of	Disturbance/threat	Sites affected
disturbance/threat	description	
Nature	These threats occur	All the sites documented the effects of
	naturally and cause	natural events on the remains of cultural
	irreversible damage -	heritage site features. The dominant natural
	tropical cyclones,	element affecting the structures is heavy rain
	earthquakes, heavy rain	which leads to the erosion of the edges of the
	and erosion processes	house mounds, infilling of fortification
	contribute to changing	ditches and causeways. Heavy rain also
	and shaping the natural	results in fluvial formation of rills and gullies
	and cultural landscape.	thus displacing stone alignment and washing
		away the material remains.
Human	These are threats that	About 95% of the sites identified contained
	are caused or related to	human trails either travelling between
	human inhabitance &	provinces but mostly from hunting and
	activities in and around	gathering.
	the area of study.	
Animal	These are threats that	Pig hooves and snout trails covered about 60-
	are caused or related to	70% of the sites surveyed. Dog trails were
	animals-grazing,	also encountered but pose little threat to the
	breeding and	sites.
	inhabitation activities	
	specifically wild pigs	

Table 2. Site disturbance factors and threats within Emalu.

The 77 culturally significant sites encountered and documented during this survey are widely distributed across the study area. Since the Emalu land boundary is vast and accessibility is hindered by rugged terrain, the Archaeology team recommends that two sites, M28-0059 and M28-0046, be used for monitoring purposes. A summary of the framework within which this monitoring could occur is presented in Table 3.

Site M28-0059 can be easily accessed from either Navitilevu Village or Draubuta Village, both in the province of Navosa and located on the valley flats along Mavuvu Creek. However, site M28-0046 is located upland and results from the assessment will be used for comparison of threats that affect cultural heritage sites. These sites are most suitable for such a study given the outstanding cultural remains found here. The degradation of the site will be examined every two years by using traditional methods of site visitation and capturing still images of the area during the period of

the REDD+ program. Data from other teams such as aerial/satellite images of the forest cover can also be a tool used for the process depending on data availability.

Table 3. Indicators and monitoring plan for cultural sites in Emalu.

Remote sensing even though costly, could also be a useful tool to map out the changes in the monitoring site by using laser-based sensors and radar in particular Synthetic Aperture Radar to see the ground or surface changes or even identify subsurface remains.

9.5 Conclusion

The land belonging to the mataqali Emalu is rich in historical cultural material remains that have never been documented. The historical remains are scattered all throughout the mataqali land, a widespread distribution of elaborate hilltop and lowland settlement and fortifications some of which are associated with the sophisticated irrigation systems for terrace agriculture.

The cultural footprints indicate the vast number of activities at one stage in history occurring in the remote highlands of Navosa. It also demonstrates the dense populations of the area where the sites occur close to each other and are mostly constructed along the ridgeline. The general physical setup of settlements depicts various forms of insecurity at that time-a time of great rivalry and competition. Supporting evidence can be found in some of the structures of the hill fortifications that were encountered. Constructing on high elevation is a survival strategy whereby communities used their natural environment and rugged terrain to provide security.

Further evidence to support the notion that the area was densely populated was given by the series of large intricate irrigation systems discovered during this survey. The discovery of these elaborate channels suggests larger populations to implement and maintain this agricultural system. However the drive and intentions of the local people related to the social structure and hierarchy in Fijian communities still remain undefined.

The study of the cultural footprints within the Emalu study area is vital in understanding the patterns and motivational factors related to inland migration: why the people of Emalu chose to live in such remoteness and rugged terrain, sociocultural relations and their responses to altering natural and climatic conditions.

Generally, the archaeological finds during this survey have considerable cultural value to the local community and at national level. The significance of these sites can be determined and derived by deconstructing the value of the individual sites into the following components; aesthetic, symbolic, social, historic, authenticity and spiritual values. All the sites identified include one of these values while some may incorporate all, however an absent values does not lessen the significance of a site as it holds the ancestral history of the hill tribes of Fiji.

9.6 Conservation recommendations

Fiji has an ancient, complex and unique cultural heritage preserved in its archaeological sites. Unfortunately much of this record has been carelessly destroyed through human activity. The large scale of current and planned land development activity in Fiji poses a great threat to remaining sites, thus preservation activities are crucial to saving Fiji's archaeological heritage. Fiji's archaeological environment represents a valuable and irreplaceable record of the nation's cultural and social development. For this reason alone it is important that these sites be maintained well. In addition to its historical, cultural and archaeological merits the historic heritage also forms a readily available resource of considerable amenity, education, scientific, recreational and tourism value to the people of Fiji and visitors alike.

The archaeological assessment revealed valuable information pertaining to the mataqali Emalu and neighbouring communities historically linked to the land. Various findings of cultural assets were able to ascertain that these ancestral sites conveyed immeasurable knowledge and understanding of the history pertaining to traditional and cultural developments, linked closely to the identity of its people. It depicts the movement and settlement patterns of their ancestors and the forms of survival which defined their everyday lives.

Such history must be preserved whether tangible or intangible, however, various threats and disturbances of these cultural sites have, to an extent, altered important aspects of material history of the vanua of Emalu. All the sites identified are protected in Fiji under the Preservation of Objects of Archaeological and Palaeontological Interest Act (1940).

Recommendations are:

• that proper documentation of the assessment and oral history be undertaken to avoid the loss of traditional knowledge and history of the study area,

- the Fiji Museum Archaeology department is included in any future surveys to allow for completion of assessments of areas that have been overlooked, namely, the area on the southwest of the land boundary,
- a presentation of significant findings be done to raise awareness in the region, an activity for which the Fiji Museum is available.

APPENDICES

Appendix 1	. Species checklist	t of the non-vascular	flora and lichens
------------	---------------------	-----------------------	-------------------

Family	Species	
Hornworts		
Anthocerotaceae	Folioceros amboinensis (Schiffn.) Piippo	
Anthocerotaceae	Folioceros fuciformis (Mont.) D.C.Bharadwaj	
Anthocerotaceae	Folioceros gladulosus (Lehm. et Lindenb.) D.C.Bharadwaj	
Anthocerotaceae	Folioceros pinnilobus (Steph.) D.C.Bharadwaj	
Dendrocerotaceae	Dendroceros cavernosus J.Haseg.	
Dendrocerotaceae	Dendroceros granulatus Mitt.	
Dendrocerotaceae	Dendroceros javanicus (Nees) Nees	
Dendrocerotaceae	Megaceros flagellaris (Mitt.) Steph.	
Notothyladaceae	Phaeoceros carolinianus (Michx.) Prosk.	
Liverworts		
Anastrophyllaceae	Plicanthus birmensis (Steph.) R.M.Schust.	
Anastrophyllaceae	Plicanthus hirtellus (F.Weber) R.M.Schust.	
Aneuraceae	Aneura maxima (Schiffn.) Steph.	
Aneuraceae	Lobatiriccardia coronopus (De Not. Ex Steph.) Furuki	
Aneuraceae	Riccardia alba (Colenso) E.A.Br.	
Aneuraceae	Riccardia graeffei (Steph.) Hewson	
Dumortieraceae	Dumortiera hirsuta (Sw.) Nees	
Geocalycaceae	Heteroscyphus argutus (Reinw., Blume et Nees) Schiffn	
Geocalycaceae	Heteroscyphus aselliformis (Reinw., Blume et Nees) Schiffn	
Geocalycaceae	Heteroscyphus coalitus (Hook.) Schiffn.	
Geocalycaceae	Heteroscyphus succulentus (Gottsche) Schiffn.	
1		
Geocalycaceae	Notoscyphus lutescens (Lehm. et Lindenb.) Mitt.	
Hymenophytaceae Jamesoniellaceae	Hymentophyton flabellatum (Labill.) Dumort. ex. Trevis.	
Jamesoniellaceae	Cuspidatula contracta (Reinw., Blume et Nees) Steph.	
	Denotarisia linguifolia (De Not.) Grolle	
Jubulaceae	Frullania apiculata (Reinw., Blume et Nees) Nees	
Jubulaceae	Frullania arecae (Spreng.) Gottsche var. arecae	
Jubulaceae Jubulaceae	Frullania cf. capillaris Frullania chevalieri (R.M.Schust.) R.M.Schust.	
Jubulaceae		
	Frullania cordistipula (Reinw., Blume et Nees) Dumort.	
Jubulaceae	Frullania ericoides (Nees) Mont.	
Jubulaceae	Frullania f. intermedia	
Jubulaceae	Frullania f. intesmed	
Jubulaceae	Frullania gaudichaudii (Nees et Mont.) Nees et Mont.	
Jubulaceae	Frullania gracilis (Reinw., Blume et Nees) Gottsche, Lindenb. et Nees	
Jubulaceae	<i>Frullania intermedia</i> (Reinw., Blume et Nees) Gottsche, Lindenb. et Nees Dumort.	
Jubulaceae	Frullania meyeniana Lindenb.	
Jubulaceae	Frullania neurota Taylor	
Jubulaceae	Frullania nodulosa (Reinw., Blume et Nees) Nees	
Jubulaceae	Frullania ramuligera (Nees) Mont.	
Jubulaceae	Frullania ternatensis Gottsche	
Jungermanniaceae	Conoscyphus trapezioides (Sande Lac.) Schiffn.	
Jungermanniaceae	Jamesoniella flexicaulis (Nees) Schiffn.	
Lejeuneaceae	Acrolejeunea pycnoclada (Taylor) Schiffn.	
Lejeuneaceae	Archilejeunea planiuscula (Mitt.) Steph.	
Lejeuneaceae	Caudalejeunea reniloba (Gottsche) Steph.	

Family	Species
Lejeuneaceae	Ceratolejeunea belangeriana (Gottsche) Steph.
Lejeuneaceae	Ceratolejeunea vitiensis Steph.
Lejeuneaceae	Cheilolejeunea decursiva Steph.
Lejeuneaceae	Cheilolejeunea falsinervis (Sande Lac.) R.M.Schust. et Kachroo
Lejeuneaceae	Cheilolejeunea intertexta (Lindenb.) Steph.
Lejeuneaceae	Cheilolejeunea lindenbergii (Gottsche) Mizut.
Lejeuneaceae	Cheilolejeunea trapezia (Nees, Lindenb. Et. Gottsche) R.M.Schutst et Kachroo
Lejeuneaceae	Cheilolejeunea trifaria (Reinw., Blume et Nees) Mizut.
Lejeuneaceae	Cololejeunea aequabilis (Sande Lac.) Schiffn.
Lejeuneaceae	Cololejeunea amphibola B. Thiers
Lejeuneaceae	Cololejeunea augustiflora (Steph.) Mizut.
Lejeuneaceae	Cololejeunea cardiocarpa (Mont.) A.Evans
Lejeuneaceae	Cololejeunea cocoscola (Angstr.) Steph.
Lejeuneaceae	Cololejeunea diaphana A.Evans
Lejeuneaceae	Cololejeunea equialbi Tixier
Lejeuneaceae	Cololejeunea falcata (Horik.) Benedix
Lejeuneaceae	Cololejeunea floccosa (Lehm.et Lindenb.) Schiffn.
Lejeuneaceae	Cololejeunea huerlimannii (Austin) Steph.
Lejeuneaceae	Cololejeunea inflectens Tixier
Lejeuneaceae	Cololejeunea kulenensis (Mitt.) Benedix
Lejeuneaceae	Cololejeunea longifolia (Mitt.) Benedix ex Mizut.
Lejeuneaceae	Cololejeunea metzgeriopsis (K.I.Goebel) Gradst., R.Wilson, IlkBorg. et Heinrichs
Lejeuneaceae	Cololejeunea minutissima (Sm.) Schiffn.
Lejeuneaceae	Cololejeunea obligua (Nees et Mont.) Schiffn.
Lejeuneaceae	Cololejeunea peraffinis (Schiffn.) Schiffn.
Lejeuneaceae	Cololejeunea pseudoserrata Tixier
Lejeuneaceae	Cololejeunea raduliloba Steph.
Lejeuneaceae	Cololejeunea schmidtii Steph.
Lejeuneaceae	Cololejeunea sintenisii (Steph.) Pocs
Lejeuneaceae	Cololejeunea societatis Tixier
Lejeuneaceae	Cololejeunea stylosa (Steph.) Steph.ex Mizut.
Lejeuneaceae	Cololejeunea wightii Steph.
Lejeuneaceae	Colura acroloba (Mont. ex Steph.) Ast
Lejeuneaceae	Colura ari (Steph.) Steph.
Lejeuneaceae	Colura brevistyla Herzog
Lejeuneaceae	Colura conica (Sande Lac.) K.I.Goebel
Lejeuneaceae	Colura corynophora (Nees, Lindeb. Et.Gottsche) Trevis.
Lejeuneaceae	Colura crispiloba Ast
Lejeuneaceae	Colura cristata Ast
Lejeuneaceae	Colura Ieratii Ast
Lejeuneaceae	Colura pluridentata Ast
Lejeuneaceae	Colura gueenslandica B.M. Thiers
Lejeuneaceae	Colura superba (Mont.) Steph.
Lejeuneaceae	Colura tenuicornis (A.Evans) Steph.
Lejeuneaceae	Colura vitiensis Pocs et J.Eggers
Lejeuneaceae	Dendrolejeunea fruticosa (Lindenb. Et Gottsche) Lacout.
Lejeuneaceae	Diplasiolejeunea cavifolia Steph.
Lejeuneaceae	Drepanolejeunea angustifolia (Mitt.) Grolle
Lejeuneaceae	Drepanolejeunea dactylophora (Nees, Lindend. et Gottsche) Schiffn.
Lejeuneaceae	Drepanolejeunea ternatensis (Gottsche) Spruce ex Schiffn.
Lejeuneaceae	Drepanolejeunea vesiculosa (Mitt.) Steph.
Lejeuneaceae	Harpalejeunea filicuspis (Steph.) Mizut.
Lejeuneaceae	Lejeunea alata Gottsche

Family	Species
Lejeuneaceae	Lejeunea anisophylla Mont.
Lejeuneaceae	Lejeunea capensis Gottsche
Lejeuneaceae	Lejeunea discreta Lindenb.
Lejeuneaceae	Lejeunea exilis (Reinw., Blume et Nees) Grolle
Lejeuneaceae	Lejeunea flava (Sw.) Nees
Lejeuneaceae	Lejeunea lumbricoides (Nees) Nees
Lejeuneaceae	Lejeunea sordida (Nees) Nees
Lejeuneaceae	Lejeunea umbilicata (Nees) Nees
Lejeuneaceae	Lepidolejeunea bidentula (Steph.) R.M.Schust.
Lejeuneaceae	Lepidolejeunea borneensis (Steph.) R.M.Schust.
Lejeuneaceae	Lepidolejeunea graeffei (J.B.Jack et Steph.) R.M.Schust.
Lejeuneaceae	Lepidolejeunea integristipula (J.B.Jack et Steph.) R.M.Schust.
Lejeuneaceae	Lepidolejeunea involuta (Gottsche) Grolle
Lejeuneaceae	Leptolejeunea elliptica (Lehm. Et Lindenb.) Schiffn.
Lejeuneaceae	Leptolejeunea epiphylla (Mitt.) Steph.
Lejeuneaceae	Lopholejeunea eulopha (Taylor) Schiffn.
Lejeuneaceae	Lopholejeunea hispidissima Steph.
Lejeuneaceae	Lopholejeunea nigricans (Lindenb.) Schiffn.
Lejeuneaceae	Lopholejeunea subfusca (Nees) Schiffn.
Lejeuneaceae	Lopholejeunea sublasca (Nees) Schiffn.
Lejeuneaceae	Mastigolejeunea auriculata (Wilson) Schiffn.
Lejeuneaceae	Mastigolejeunea calcarata (Mitt. ex Steph.) Verd.
Lejeuneaceae	Masigorejeunea calcarata (Mitt. ex Steph.) verd. Metalejeunea cucullata (Reinw., Blume et Nees) Grolle
1	Phaeolejeunea amicorum (Hurl.) Pocs
Lejeuneaceae Lejeuneaceae	Ptychanthus striatus (Lehm. Et Lindenb.) Nees
Lejeuneaceae	Spruceanthus polymorphus (Sande Lac.) Verd.
Lejeuneaceae	<i>Thysananthus retusus</i> (Reinw., Blume et Nees) B.M.Thiers et Gradst.
Lepicoleaceae	Lepicolea rara (Steph.) R.M.Schust.
Lepicoleaceae	Mastigophora diclados (Brid. Ex F.Weber) Nees
Lepidoziaceae	Bazzania erosa (Reinw.Blume et Nees) Trevis.
Lepidoziaceae	Bazzania erosa (Reinw.Blume et Nees) Trevis.
Lepidoziaceae	Bazzania unicegera(Reinw.Blume et Nees) Trevis.
Lepidoziaceae	Bazzania unicegera(Neinw.Diume et Nees) Trevis.
Lepidoziaceae	Kurzia gonyotricha (Sande Lac.) Grolle
Lepidoziaceae	Psiloclada clandestina Mitt.
Lepidoziaceae	<i>Telaranea lindenbergii</i> (Gottsche) J.J.Engel et G.L.Merr.
	<i>Telaranea pruinosa</i> (Herzog) J.J.Engel et G.L.Merr.
Lepidoziaceae Lepidoziaceae	Telaranea prunosa (Herzog) J.J.Engeret G.L.Men. Telaranea rosarioana H.A.Mill.
Lepidoziaceae	Zoopsidella caledonica (Steph.) R.M.Schust.
Marchantiaceae	Marchantia vitiensis Steph.
Metzgeriaceae	Metzgeria ciliata Raddi
Metzgeriaceae	Metzgeria furcata (L.) Corda
Metzgeriaceae	Metzgeria leptoneura Spruce
Pallaviciniaceae	Pallavicinia Iyellii (Hook.) Carruth.
Pallaviciniaceae	Symphyogynopsis gottscheana (Mont. Et Nees) Grolle
Plagiochilaceae	<i>Chiastocaulon dendroides</i> (Nees) Carl
Plagiochilaceae	Chiloscyphus muricatus (Lehm.) J.J.Engel et R.M.Schust.
Plagiochilaceae	Plagiochila abietina (Nees) Nees et Mont.
Plagiochilaceae	Plagiochila abletina (Nees) Nees et Mont. Plagiochila arbuscula (Brid. ex Lehm. et Lindenb.) Lindenb.
Ŭ	
Plagiochilaceae	Plagiochila bantamensis (Reinw., Blume et Nees) Mont.
Plagiochilaceae	Plagiochila hampenana Gottsche
Plagiochilaceae	Plagiochila javanica (Sw.) Nees et Mont.
Plagiochilaceae	Plagiochila oppositum Dozy ex Sande Lac

PleuroziaceaePleurozia conchiPleuroziaceaePleurozia gigantPorellaceaePorella elegantuPseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula formosaSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila fijieSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	nannii Sande unianum (Nees) S.Hatt. folia (Hook. Et Arn.) Austin ea (F.Weber) Lindb. fa (Mont.) E.A.Hodgs. rum (Lindenb.) R.M.Schust. osa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
PlagiochilaceaePlagiochila teysrPlagiochilaceaePlagiochilion braPleuroziaceaePleurozia conchPleuroziaceaePleurozia gigantPorellaceaePorella elegantuPseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula refroflexaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	nannii Sande unianum (Nees) S.Hatt. folia (Hook. Et Arn.) Austin ea (F.Weber) Lindb. fa (Mont.) E.A.Hodgs. rum (Lindenb.) R.M.Schust. osa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
PlagiochilaceaePlagiochilion braPleuroziaceaePleurozia conchiPleuroziaceaePleurozia gigantPorellaceaePorella elegantuPseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula protensaRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila bluiSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repiSchistochilaceaeSchistochila repiSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	unianum (Nees) S.Hatt. folia (Hook. Et Arn.) Austin ea (F.Weber) Lindb. la (Mont.) E.A.Hodgs. rrum (Lindenb.) R.M.Schust. osa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
PleuroziaceaePleurozia conchiPleuroziaceaePleurozia gigantPorellaceaePorella elegantuPseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila ceaeSchistochilaceaeSchistochila replexitochila replexitochila sciluSolenostomataceaeSolenostoma ari	folia (Hook. Et Arn.) Austin ea (F.Weber) Lindb. la (Mont.) E.A.Hodgs. rum (Lindenb.) R.M.Schust. osa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
PleuroziaceaePleurozia gigantPorellaceaePorella elegantuPseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila ceaeSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	ea (F.Weber) Lindb. la (Mont.) E.A.Hodgs. rum (Lindenb.) R.M.Schust. psa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
PorellaceaePorella elegantuPseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula lingulataRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	la (Mont.) E.A.Hodgs. rum (Lindenb.) R.M.Schust. Isa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
PseudolepicoleaceaeTemnoma setigeRadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula javanicaRadulaceaeRadula ingulataRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	rum (Lindenb.) R.M.Schust. psa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
RadulaceaeRadula amentulaRadulaceaeRadula campaniRadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula ingulataRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	osa Mitt. gera Mont. s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
RadulaceaeRadula campaniRadulaceaeRadula decurrerRadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula lingulataRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	s Mitt. (C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
RadulaceaeRadula formosaRadulaceaeRadula formosaRadulaceaeRadula javanicaRadulaceaeRadula lingulataRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula scariosaSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	(C.F.W.Meissn. Ex Spreng.) Nees Gottsche Gottsche Lindenb. ees et Mont.
RadulaceaeRadula javanicaRadulaceaeRadula lingulataRadulaceaeRadula protensaRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula scariosaSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	Gottsche Gottsche Lindenb. ees et Mont.
RadulaceaeRadula javanicaRadulaceaeRadula lingulataRadulaceaeRadula protensaRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula scariosaSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	Gottsche Gottsche Lindenb. ees et Mont.
RadulaceaeRadula lingulataRadulaceaeRadula protensaRadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeSchistochilaceaeSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	Gottsche Lindenb. ees et Mont.
RadulaceaeRadula protensaRadulaceaeRadula reflexa NRadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula tjibodensSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blutSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repuSchistochilaceaeSchistochila repuSchistochilaceaeSchistochila scituSolenostomataceaeSolenostoma ariti	Lindenb. ees et Mont.
RadulaceaeRadula reflexa NRadulaceaeRadula retroflexaRadulaceaeRadula scariosaRadulaceaeRadula scariosaRadulaceaeRadula tjibodensSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	ees et Mont.
RadulaceaeRadula scariosaRadulaceaeRadula tjibodensSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila sciuSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	
RadulaceaeRadula scariosaRadulaceaeRadula tjibodensSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila sciuSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	a Taylor
RadulaceaeRadula tjibodensSchistochilaceaeSchistochila aligSchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila repSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	
SchistochilaceaeSchistochila aligSchistochilaceaeSchistochila bluiSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	
SchistochilaceaeSchistochila blurSchistochilaceaeSchistochila caleSchistochilaceaeSchistochila fijierSchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	era (Nees et Blume) J.B.Jack et Steph.
SchistochilaceaeSchistochila fijieSchistochilaceaeSchistochila repuSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	nei (Nees) Trevis
SchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	donica Steph.
SchistochilaceaeSchistochila reprSchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	nsis H.Buch et Herzog
SchistochilaceaeSchistochila sciuSolenostomataceaeSolenostoma ari	eta (Hook.f.et Taylor) Steph
	rea (Nees) Schiffn.
	adne (Taylor ex Lehm.) R.M.Schust. ex Vana et D.G.Long
Solenostomataceae Solenostoma ha	skarlianum (Nees) R.M.Schust. ex Vana et D.G.Long
	ragonum (Lindenb.) R.M.Schust. ex Vana
Solenostomataceae Solenostoma tru	ncatum (Nees) R.M.Schust. Ex Vana et D.G.Long
Treubiaceae Treubia lacunos	a (Colenso) Prosk.
Trichocoleaceae Trichocolea tom	entella (Ehrh.) Dumort.
Mosses	
? Cyclodictyum blu	imeaniim
Calymperaceae Calymperes sp.	
	um (Mitt.) H. Rob.
· · ·	<i>isifolium</i> (Lindb.) H. Rob.
Calymperaceae <i>Mitthyridium</i> sp.	
Calymperaceae Syrrhopodon sp.	
, , , , , , , , , , , , , , , , , , , ,	tichus Nees ex Schwägr.
	nulata (Broth. & Paris) Thér.
~ ~ ~	euphorocladum (Müll. Hal.) Besch.
	oflexus (Hedw.) Brid.
1,2,1	bellatus (Schwägr. & Gaudich. ex Arn.) Paris
Dicranaceae <i>Leucoloma</i> sp.	
Dicranaceae Leucoloma tenu	folium Mitt.
	eri (Ångström) A. Jaeger
Fissidentaceae <i>Fissidens</i> sp.	
	gerum (Sull.) Broth.
Garovagliaceae Euptychium vitie	
Hookeriaceae Cyathophorum s	
Hookeriaceae Cyathophorum ta	
Hookeriaceae Daltonia contort	ρ.
	p. ahitense Besch.
Hookeriaceae Distichophyllum	p. ahitense Besch.

Family	Species
Hookeriaceae	Distichophyllum vitianum (Sull.) Mitt.
Hypnaceae	Ectropothecium sp.
Hypnaceae	Hypnum sp.
Hypnodendraceae	Bescherellia cryphaeoides (Müll. Hal.) M. Fleisch.
Hypnodendraceae	Hypnodendron dendroides (Brid.) Touw
Hypopterygiaceae	Hypopterygium vriesei Bosch & Sande Lac.
Lembophyllaceae	Camptochaete porotrichoides (Besch.) Broth.
Lembophyllaceae	Camptochaete subporotrichoides (Broth. & Geh.) Broth.
Leucobryaceae	Leucobrym sanctum (Brid.) Hampe
Leucobryaceae	Leucobryum aduncum Dozy & Molk.
Leucobryaceae	Leucobryum candidum (Brid. ex P. Beauv.) Wilson
Leucobryaceae	Leucobryum scalare Müll. Hal. ex M. Fleisch.
Meteoriaceae	Aerobryopsis longistima (Dozy & Molk.) M.Fleisch.
Meteoriaceae	Aerobryopsis vitiana (Sull.) M. Fleisch.
Meteoriaceae	Aerobryopsis wallichii (Brid.) M. Fleisch.
Meteoriaceae	Floribundaria aeruginosa (Mitt.) M. Fleisch.
Meteoriaceae	Papillaria helictophylla (Mont.) Broth.
Meteoriaceae	Papillaria leuconeura (Müll. Hal.) A. Jaeger
Neckeraceae	Himantocladium plumula (Nees) M. Fleisch.
Neckeraceae	Homaliodendron flabellatum (Sm.) M. Fleisch.
Neckeraceae	Neckeropsis lepineana (Mont.) M. Fleisch.
Neckeraceae	Nedceropsis sp.
Neckeraceae	Pinnatella ct. ambiqua
Neckeraceae	Pinnatella kuehliana (Bosch & Sande Lac.) M. Fleisch.
Neckeraceae	Pinnatella sp.
Orthorrhynchiaceae	Orthorrhynchium elegans (Hook. f. & Wilson) Reichardt
Orthotrichaceae	Macromitrium angulatum Mitt.
Orthotrichaceae	Macromitrium incurvifolium (Hook. & Grev.) Schwägr.
Orthotrichaceae	Macromitrium involutifolium (Hook. & Grev.) Schwägr.
Pallaviciniaceae	Pallavicinia sp.
Pleuroziaceae	Pleurozia gigantea (F. Weber) Lindb.
Pterobryaceae	Calyptothecium seminerve E.B. Bartram is an unresolved name
Pterobryaceae	Garovaglia elegans (Dozy & Molk.) Hampe ex Bosch & Sande Lac.
Pterobryaceae	Garovaglia powellii Mitt.
Pterobryaceae	Symphysodon vitianus (Sull.) Broth.
Pterobryaceae	Symphysodontella cylindracea (Mont.) M. Fleisch.
Ptychomniaceae	Ptychomnion aciculare (Brid.) Mitt.
Racopilaceae	Racopilum sp.
Rhizogoniaceae	Pyrrhobryum sp.
Rhizogoniaceae	Pyrrhobryum spiniforme (Hedw.) Mitt.
Rhizogoniaceae	Rhizogonium graeffeanum (Müll. Hal.) A. Jaeger
Sematophyllaceae	Acroporium sp.
Sematophyllaceae	Meiothecium hamatum (Müll. Hal.) Broth.
Spiridentaceae	Spiridens aristifolius Mitt.
Thuidiaceae	Thuidium sp.
Lichen	
Baeomycetaceae	Baemyces heteromorphus Nyl.ex C.Bab.&Mitt.
Baeomycetaceae	Dibaeis absoluta Kalb & Gierl
Baeomycetaceae	Dibaeis sorediata Kalb & Gierl
Brigantiaceae	Brigantiaea leucoxantha (Spreng.)R. Sant. & Hafellner
Chrysotrichaceae	Chrysothrix xanthina (Vain.)Kalb
Cladoniaceae	Cladonia macilenta Hoffm.
Coccocarpiaceae	Coccocarpis glaucina Kremp.

Family	Species
Coccotremataceae	Coccotrema cucurbitula (Mont.) Mull.Arg.
Coenogoniaceae	Coenogonium congense Dodge
Gomphillaceae	Calenia depressa Mull.Arg.
Gomphillaceae	Gyalectidium filicinum Mull.Arg.
Gomphillaceae	Gyalectidium imperfectum Vezda
Gomphillaceae	Gyalideopsis intermedia Lucking
Graphidaceae	Fissurina dumastioides (Fink) Staiger
Graphidaceae	Graphis duplicata Vain
Graphidaceae	Leucodecton albidulum (Nyl.) Mangold
Graphidaceae	Leucodecton phaeosporum (Nyl.) Rivas
Graphidaceae	Thelotrema circumscriptum C.Knight
Graphidaceae	Thelotrema defossum (Mull.Arg.) Mangold
Graphidaceae	Thelotrema pachysporum Nyl.
Graphidaceae	Thelotrema porinaceum Mull.Arg.
Graphidaceae	Thelotrema porinoides (Mont. & Bosh)
? Hymenochaetales	Cyphellostereum pusiolum (Berk.&M.A.Curtis) D.A.Reid
Megalosporaceae	Megalospora sulphurata Meyen
Meruliaceae	Dictyonema irpicinum (Mont.) Nyl.
Pannariaceae	Pannaria tavaresii P.M.Jorg
Parmeliaceae	Hypotrachyna imbricatula (Zahlbr.) Hale
Parmeliaceae	Parmotrema abessinicum (Nyl.ex Kremp.) Hale
Parmeliaceae	Relicina abstrusa (Vain.) Hale
Peltigeraceae	Peltigera sumatrana Gyeln.
Physciaceae	Heterodermia incana (Stirt.) D.D.Awasthi
Piliocarpaceae	Badimia elegans (Vain.) Vezda
Pilocarpaceae	Byssoloma leucoblepharum (Nyl.)Vain.
Porinaceae	Porina brisbanensis Mull.Arg.
Pyrenulaceae	Pyrenula kurzii Ajay Singh & Upreti
Stereocaulaceae	Lepraria lobificans Nyl.
Strigulaceae	Strigula maculata (Cooke & Massee)
Thelotremateae	Melanotopelia rugosa (Kantvilas & Vezda) Mangold & Lumbsch
SUMMARY: 72 Families	, 133 Genera

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end	I.=endemic, cmm=common, intrintroduced, cu	Itcultivated, edv.=adventive
Angiosperm – Dic	cotyledons		
Alangiaceae	Alangium vitiense (A.Gray) Baill. ex Harms	dalovoci, dokonisau	Indg., nat., end.
Anacardiaceae	Buchanania attenuata A.C.Smith	Kaukaro	Indg., nat., poss.end
Anacardiaceae	Buchanania vitiensis Engl.	maqo ni veikau	Indg., nat., end.
Anacardiaceae	Dracontomelon vitiense Engl.	Tarawau	Indg.pres.
Anacardiaceae	Pleiogynium timoriense (DC.) Leenh.	tarawau	Intrd., cult.
Anacardiaceae	Rhus simarubifolia A.Gray		Indg., nat., cmm.
Anacardiaceae	Semecarpus vitiensis (A.Gray) Engl.	Kaukaro	Indg., nat., cmm.
Annonaceae	Cananga odorata (Lam.) Hook.f.& Thoms.	Makosoi	Indg.pres.
Annonaceae	Cyathocalyx cf. insularis	Mako	Indg., nat., end.
Annonaceae	Cyathocalyx insularis A.C.Sm.	makosoi ni veikau	Indg., nat., end.
Annonaceae	Cyathocalyx sp.	dulewa, makosoi ni veikau	Indg., nat., end.
Annonaceae	Polyalthia laddiana A.C.Smith		Indg., nat., end.
Annonaceae	Xylopia sp.	dulewa	Indg., nat., end.
Apiaceae	Centella asiatica (L.) Urb.		Indg., poss.nat.
Apocynaceae	Alstonia montana Turrill	sorua	Indg., nat., cmm.
Apocynaceae	Alstonia pacifica (Seem.) A.C.Smith	sorua lailai	Indg., nat., cmm.
Apocynaceae	Alstonia vitiensis Seem.	sorua levu	Indg., nat., end.
Apocynaceae	Alyxia sp.		Indg., nat., cmm.
Apocynaceae	Cerbera manghas L.	vasa	Indg., nat., cmm.
Araliaceae	Plerandra insolita A.C.Sm.	sole	Indg., nat., end.
Araliaceae	Plerandra pickeringii A.Gray	sole	Indg., nat., end.
Araliaceae	Polyscias joskei Gibbs	sole	Indg., nat., end.
Araliaceae	Polyscias multijuga (A.Gray) Harms	danidani	Indg., nat., cmm.
Araliaceae	Schefflera vitiensis (A.Gray) Seem.	sole	Indg., nat., end.
Araucariaceae	Agathis macrophylla (Lindl.) Mast.	dakua makadre	Intrd., cult.
Asclepiadaceae	Hoya australis R.Br.	hoya	Intrd., poss.cult.
Asteraceae	Ageratum conyzoides L.	botebotekoro	Intrd., cult.
Asteraceae	Conyza bonariensis (L.) Cronquist		Intrd., cult.
Asteraceae	Crassocephalum crepidioides (Benth.) S.Moore		Indg., nat., cmm.
Asteraceae	Cyanthillium cinereum (L.) H.Rob.	ironweed	Indg., nat., cmm.
Asteraceae	Elephantopus mollis H.B.K.		Intrd., cult.

Appendix 2. Annotated checklist of the vascular flora of Emalu.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=end	emic, cmm=common, intrintroducec	I, cultcultivated, edv.=adventive
Asteraceae	Emilia sonchifolia (L.) DC.		Indg., nat., cmm.
Asteraceae	Mikania micrantha H.B.K.	mile a minute	Intrd., cult.
Asteraceae	Pseudelephantopus spicatus (B.Juss. ex Aubl.) C.F.Baker		Intrd., cult.
Asteraceae	Synedrella nodiflora (L.) Gaertn.		Intrd., cult.
Asteraceae	Vernonia cinerea (L.) Less.	ironweed	Indg.pres.
Asteraceae	Wedelia trilobata (L.) Hitchc.		Intrd., adv.
Asteraceae	Wollastonia biflora (L.) DC.		Indg., nat., cmm.
Balanophoraceae	Balanophora fungosa J.R.&G.Forst.		Indg., nat., cmm.
Barringtoniaceae	Barringtonia sp.	vutu	Indg., nat., cmm.
Burseraceae	Canarium harveyi Seem.	kaunicina, kaunigai	Indg., nat., cmm.
Burseraceae	Canarium vanikoroense Leenh.	kaunisiga	Indg., nat., cmm.
Burseraceae	Canarium vitiense A.Gray	kaunicina B	Indg., nat., cmm.
Burseraceae	Haplolobus floribundus (K.Schum) Lam	kaunigai, kaunigai	Indg., nat., cmm.
Caesalpiniaceae	Caesalpinia major (Medik.) Dandy & Exell	soni	Indg., nat., cmm.
Caesalpiniaceae	Chamaecrista nictitans (L.) Moench		Intrd., cult.
Caesalpiniaceae	Cynometra falcata A.Gray	moivi	Indg., nat., end.
Caesalpiniaceae	Cynometra insularis A.C.Sm.	moivi	Indg., nat., end.
Caesalpiniaceae	Kingiodendron platycarpum B.L.Burtt	moivi	Indg., nat., end.
Caesalpiniaceae	Maniltoa grandiflora (A.Gray) Scheffer	cibicibi, moivi	Indg., nat., cmm.
Caesalpiniaceae	Senna occidentalis (L.) Link		Indg., nat., cmm.
Caesalpiniaceae	Senna tora (L.) Roxb.		Intrd., cult.
Caesalpiniaceae	Storckiella vitiensis Seem.	marasa	Indg., nat., end.
Cassythaceae	Cassytha filiformis L.		Indg., nat., cmm.
Casuarinaceae	Casuarina equisetifolia J.R.& G.Forst.	nokonoko	Indg., nat., cmm.
Casuarinaceae	Gymnostoma vitiense L.A.S.Johnson	velau	Indg., nat., end.
Ceasalpiniaceae	Maniltoa floribunda A.C.Smith	cibicibi	Indg., nat., end.
Chrysobalanaceae	Parinari insularum A.Gray	Sea/sa	Indg., nat., cmm.
Clusiaceae	Calophyllum ambiphyllum A.C.Smith & S.Darwin	damanu dilodilo	Indg., nat., end.
Clusiaceae	Calophyllum cerasiferum Vesque	damanu draulevu	Indg., nat., end.
Clusiaceae	Calophyllum inophyllum L.	damanu (lailai)	Indg., nat., cmm.
Clusiaceae	Calophyllum leptocladum A.C.Sm. & S.P.Darwin	damanu draulailai	Indg., nat., end.
Clusiaceae	Calophyllum neo-ebudicum Guillaumin	damanu kula	Indg., nat., cmm.
Clusiaceae	Calophyllum vitiensis Turrill	damanu	Indg., nat., end.
Clusiaceae	Garcinia adinantha A.C.Sm. & S.P.Darwin	bulu	Indg., nat., end.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=en	ndemic, cmm=common, intrintroduce	ed, cultcultivated, edv.=adventive
Clusiaceae	Garcinia myrtifolia A.C.Smith	bulu	Indg., nat., cmm.
Clusiaceae	Garcinia pseudoguttifera Seem.	bulu m, laubu	Indg., nat., cmm.
Clusiaceae	Garcinia sessilis (Forst.f.) Seem.		Indg., nat., cmm.
Clusiaceae	Garcinia vitiensis (A.Gray) Seem.	bulu wai	Indg., nat., cmm.
Combretaceae	Terminalia catappa L.	tavola	Intrd., cult.
Connaraceae	Connarus pickeringii A.Gray		Indg., nat., end.
Crassulaceae	Kalanchöe pinnata (Lam.) Pers.		Intrd., adv.
Cucubitaceae	Momordica charantia L.		Intrd., adv.
Cunoniaceae	Geissois ternata A.Gray	vure	Indg., nat., end.
Cunoniaceae	Weinmannia vitiensis Seem.		Indg., nat., end.
Degeneriaceae	Degeneria vitiensis I.W.Bailey & A.C.Smith	masiratu/vavaloa	Indg., nat., end.
Dichapetalaceae	Dichapetalum vitiense (Seem.) Engl.		Indg., nat., cmm.
Dioscoreaceae	Dioscorea bulbifera L.	kaile	Intrd., cult.
Ebenaceae	Diospyros elliptica (J.R.&G.Forst) P.S.Green		Indg., nat., cmm.
Ebenaceae	Diospyros foliosa (Rich ex A.Gray) Bakh.	kauloa	Indg., nat., end.
Ebenaceae	Diospyros major (G.Forst.) Bakh.	kauloa	Indg., nat., cmm.
Ebenaceae	Diospyros sp.	kauloa	Indg., nat., cmm.
Elaeocarpaceae	Elaeocarpus chelonimorphus Gillespie	kabi	Indg., nat., cmm.
Elaeocarpaceae	Elaeocarpus kambi Gibbs.	kabi	Indg., nat., end.
Euphorbiaceae	Acalypha insulana Müll.Arg.		Indg., nat., cmm.
Euphorbiaceae	Acalypha repanda Müll.Arg.		Indg., nat., cmm.
Euphorbiaceae	Acalypha rivularis Seem.		Indg., nat., end.
Euphorbiaceae	Acalypha sp.	kalabuci	Indg., nat., cmm.
Euphorbiaceae	Aleurites moluccana (L.) Willd.	lauci	Indg., nat., cmm.
Euphorbiaceae	Antidesma elassophyllum A.C.Sm.	molau	Indg., nat., end.
Euphorbiaceae	Baccaurea pulvinata A.C.Sm.	midra	Indg., nat., end.
Euphorbiaceae	Baccaurea sp.	midra	Indg., nat., end.
Euphorbiaceae	Bischoffia javanica Blume	koka	Intrd., adv.
Euphorbiaceae	Croton microtiglium Burkill	danidani	Indg., nat., cmm.
Euphorbiaceae	Drypetes vitiensis Croizat		Indg., nat., cmm.
Euphorbiaceae	Endospermum macrophyllum (Muell.Arg.) Pax & Hoffm.	kauvula	Indg., nat., end.
Euphorbiaceae	Euphorbia cyathophora Murray		Indg., nat., cmm.
Euphorbiaceae	Glochidion anfractuosum Gibbs	makovatu	Indg., nat., end.
Euphorbiaceae	Glochidion concolor Müll.Arg.	molau	Indg., nat., cmm.

Family	Scientific Name	Local name	Distribution
-	indg.=indigenous, nat.=native,	end.=endemic, cmm=common, intrintroduce	ed, cultcultivated, edv.=adventive
Euphorbiaceae	Glochidion vitiense (Müll.Arg.) Gillespie	molau	Indg., nat., end.
Euphorbiaceae	Homalanthus nutans (G.Forst.) Guill.	tadano	Intrd., adv.
Euphorbiaceae	Macaranga graeffeana Pax & K.Hoffm.	gadoa	Indg., nat., end.
Euphorbiaceae	Macaranga harveyana (Muell.Arg.) Muell.	dava	Indg., nat., cmm.
Euphorbiaceae	Macaranga seemannii (Muell.Arg.) Muell.		Indg., nat., cmm.
Euphorbiaceae	Phyllanthus sp.		Indg., nat., cmm.
Fabaceae	Crotalaria pallida Ait.		Intrd., cult.
Fabaceae	Derris trifoliata Lour.	duva	Indg., poss.nat.
Fabaceae	Milletia elliptica (Roxb.) Steud.	vesi wai	Intrd., adv.
Fabaceae	Mucuna cf. platyphylla		Indg., nat., cmm.
Fabaceae	Mucuna gigantea (Willd.) DC.		Indg., nat., cmm.
Flacourtiaceae	Flacourtia sp.?		Indg., nat., end.
Flacourtiaceae	Homalium pallidum A.C.Smith	molaca	Indg., nat., end.
Flacourtiaceae	Homalium vitiense Benth.		Indg., nat., end.
Gonystylaceae	Gonystylus punctatus A.C.Sm.	mavota	Indg., nat., end.
Goodeniaceae	Scaevola floribunda A.Gray		Indg., nat., end.
Hernandiaceae	Hernandia olivacea Gillespie	dalovoci, duvula	Indg., nat., end.
Icacinaceae	Citronella vitiensis R.Howard	nuqanuqa	Indg., nat., end.
Icacinaceae	Medusanthera vitiensis Seem.	duvu	Indg., nat., end.
Lamiaceae	Hyptis pectinata (L.) Poit.		Intrd., cult.
Lauraceae	Cryptocarya sp.	damabi	Indg., nat., cmm.
Lauraceae	Cryptocarya turrilliana A.C.Sm.	lidi	Indg., nat., end.
Lauraceae	Endiandra elaeocarpa Gillespie	damabi	Indg., nat., cmm.
Lauraceae	Endiandra gillespiei A.C.Sm.	diriniu	Indg., nat., end.
Lauraceae	Endiandra monticola A.C.Sm.	damabi	Indg., nat., end.
Lauraceae	Endiandra sp.		Indg., nat., cmm.
Lauraceae	Litsea sp.		Indg., nat., cmm.
Loganiaceae	Geniostoma macrophyllum Gillespie	boiboida	Indg., nat., end.
Loganiaceae	Geniostoma vitiense Gilg & Benedict	boiboida lailai	Indg., nat., cmm.
Loganiaceae	Neuburgia corynocarpa (A. Gray) Leenh.	bo	Indg., nat., cmm.
Malvaceae	Grewia sp.	siti	Indg., nat., cmm.
Malvaceae	Hibiscus tiliaceus L.	vau	Intrd., adv.
Malvaceae	Sida acuta Burm.f.Fl.		Indg., nat., cmm.
Malvaceae	Sida rhombifolia L.		Indg., nat., cmm.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end	I.=endemic, cmm=common, intrintroduced	I, cultcultivated, edv.=adventive
Malvaceae	Urena lobata L.		Indg., nat., cmm.
Melastomaceae	Astronidium confertiflorum (A.Gray) Markgraf	dava	Indg., nat., end.
Melastomaceae	Astronidium degeneri A.C.Sm.	astronidium	Indg., nat., end.
Melastomaceae	Astronidium inflatum (A.C.Smith) A.C.Smith	astronidium	Indg., nat., end.
Melastomaceae	Astronidium macranthum (A.C.Smith) A.C.Smith	astronidium	Indg., nat., end.
Melastomaceae	Astronidium parviflorum A.Gray	astronidium	Indg., nat., end.
Melastomaceae	Astronidium robustum (Seem.) A.C.Smith	astronidium	Indg., nat., end.
Melastomaceae	Astronidium sessile (A.C.Smith) A.C.Smith	astronidium	Indg., nat., end.
Melastomaceae	Astronidium sp.	dava	Indg., nat., cmm.
Melastomaceae	Astronidium storckii Seem.	astronidium	Indg., nat., end.
Melastomaceae	Astronidium tomentosum (Seem.) A.C.Smith	astronidium	Indg., nat., end.
Melastomaceae	Clidemia hirta (L.)D.	koster's curse	Indg., nat., cmm.
Melastomaceae	Melastoma denticulatum Labill.		Indg., nat., cmm.
Meliaceae	Aglaia achiboldiana	kautoa	Indg., nat., end.
Meliaceae	Aglaia elegans Gillespie	kautoa	Indg., nat., end.
Meliaceae	Aglaia sp.	kautoa levu	Indg., nat., cmm.
Meliaceae	Aglaia vitiensis A.C.Sm.	mala	Indg., nat., end.
Meliaceae	Dysoxylum lenticellare Gillespie	malamala	Indg., nat., end.
Meliaceae	Dysoxylum quercifolium (Seem.) A.C.Smith	mala	Indg., nat., end.
Meliaceae	Dysoxylum richii (A.Gray) C.DC.	tarawau kei rakaka	Indg., nat., end.
Meliaceae	Dysoxylum seemannii Gillespie		Indg., nat., end.
Meliaceae	Dysoxylum sp.	malamala	Indg., nat., end.
Meliaceae	Swietenia macrophylla King	mahogany	Intrd., cult.
Meliaceae	Swietenia mahagoni (L.) Jacq.	mahogany	Intrd., cult.
Meliaceae	Vavaea amicorum Benth.	cevua	Indg., nat., cmm.
Meliaceae	Vavaea degeneri A.C.Sm.	cevua	Indg., nat., end.
Meliaceae	Vavaea harveyi Seem.	cevua	Indg., nat., end.
Meliaceae	Vavaea megaphylla C.H.Wright	cevua draulevu	Indg., nat., end.
Mimosaceae	Albizia lebbek (L.) Benth.		Intrd., adv.
Mimosaceae	Entada phaseoioides (L.) Merr.	walai	Indg., nat., cmm.
Mimosaceae	Leucaena leucocephala (Lam.) de Wit	vaivai	Indg., nat., cmm.
Mimosaceae	Mimosa pudica L.		Intrd., adv.
Mimosaceae	Samanea saman (Jacq.) Merr.	raintree	Intrd., adv.
Moraceae	Ficus barclayana (Miq.) Miq.	ai masi	Indg., nat., end.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=	endemic, cmm=common, intrintroduced	d, cultcultivated, edv.=adventive
Moraceae	Ficus fulvopilosa Summerh.	ai masi	Indg., nat., end.
Moraceae	Ficus greenwoodii Summerhayes		Indg., nat., end.
Moraceae	Ficus masonii Horne ex Baker	ai masi	Indg., nat., end.
Moraceae	Ficus obliqua Forst.f.Fl.	ai masi/baka ni viti	Indg., nat., cmm.
Moraceae	Ficus pritchardii Seem.	ai masi	Indg., nat., end.
Moraceae	Ficus smithii Horne ex Baker		Indg., nat., cmm.
Moraceae	Ficus sp.	lololo/losilosi	Indg., nat., cmm.
Moraceae	Ficus storckii (scabrous) Seem.	ai masi, nunu	Indg., nat., cmm.
Moraceae	Ficus tinctoria Forst.f.Fl.		Indg., nat., cmm.
Moraceae	Ficus vitiensis Seem.	ai masi/lolo/lololo	Indg., nat., end.
Moraceae	Malaisia scandens (Lour.) Plaunch.		Indg., nat., cmm.
Moraceae	Streblus anthropophagorum (Seem.) Corner		Indg., nat., cmm.
Myrisinaceae	Rapanea myricifolia (A.Gray) Mez		Indg., nat., cmm.
Myrisinaceae	Tapeinosperma sp.		Indg., nat., cmm.
Myristicaceae	Myristica castaneifolia A.Gray	kaudamu	Indg., nat., end.
Myristicaceae	Myristica chartacea Gillespie	kaudamu draulailai	Indg., nat., end.
Myristicaceae	Myristica gillespieana A.C.Smith	kaudamu male	Indg., nat., end.
Myristicaceae	Myristica grandifolia A.DC.	kaudamu	Indg., nat., end.
Myristicaceae	Myristica macarantha A.C.Smith	male waqa	Indg., nat., end.
Myrsinaceae	Tapeinosperma hornei Mez	dasia	Indg., nat., end.
Myrtaceae	Decaspermum vitiense (A.Gray) Niedenzu	nuqa	Indg., nat., end.
Myrtaceae	Metrosideros collina (J.R.Forst. & G.Forst.) A.Gray	vuga	Indg., nat., cmm.
Myrtaceae	Psidium guajava L.	quawa	Intrd., cult.
Myrtaceae	Syzygium amicorum (A.Gray) Müll.Stuttg.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium confertiflorum (A.Gray) Müll.Stuttg.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium corynocarpum (A.Gray) Müll.Stuttg.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium curvistylum (Gillespie) Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium diffusum (Turrill) Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium dubium (L.M.Perry) A.C.Sm.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium effusum (A.Gray) Müll.Stuttg.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium fijiense Perry	yasidravu	Indg., nat., end.
Myrtaceae	Syzygium gillespiei Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium gracilipes (A.Gray) Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium grayi (Seem.) Merr. & L.M.Perry	yasiyasi	Indg., nat., end.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=ender	nic, cmm=common, intrintrodu	ced, cultcultivated, edv.=adventive
Myrtaceae	Syzygium jambos (L.) Alston	yasiyasi	Intrd., cult.
Myrtaceae	Syzygium leucanthum L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium malaccense (L.) Merr. & Perry	kavika	Intrd., cult.
Myrtaceae	Syzygium minus A.C.Sm.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium neurocalyx (A.Gray) Christoph.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium nidie Guillaumin	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium oblongifolium (Gillespie) Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium phaeophyllum Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium purpureum (L.M.Perry) A.C.Sm.	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium quadrangulatum (A.Gray) Merr. & Perry		Indg., nat., cmm.
Myrtaceae	Syzygium seemannianum Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium sp.		Indg., nat., cmm.
Myrtaceae	Syzygium tetrapleurum L.M.Perry	yasiyasi	Indg., nat., end.
Myrtaceae	Syzygium wolfii (Gillespie) Merr. & L.M.Perry	yasiyasi	Indg., nat., end.
Nyctaginaceae	Pisonia umbellifera (J.R. Forst. & G. Forst.) Seem.	roro	Indg., nat., cmm.
Olacaceae	Anacolosa lutea Gillespie	kaukau makita	Indg., nat., cmm.
Oleaceae	Jasminum didymum G.Forst.		Indg., nat., cmm.
Oleaceae	Jasminum simplicifolium G.Forst.		Indg., nat., cmm.
Oleaceae	Jasminum sp.	nuqanuqa	Indg., nat., cmm.
Onagraceae	Ludwigia octovalvis (Jacq.) P.H.Raven		Intrd., adv.
Oxalidaceae	Oxalis corniculata L.		Intrd., cult.
Passifloraceae	Passiflora foetida L.var.hispida (DC.ex Triana & Planch.) Killip		Intrd., adv.
Passifloraceae	Passiflora suberosa L.		Intrd., cult.
Phytolaccaceae	Rivina humilis L.		Indg., nat., cmm.
Piperaceae	Peperomia lasiostigma var. carnosa C.DC.		Indg., nat., end.
Piperaceae	Peperomia subroseispica C.DC.		Indg., nat., end.
Piperaceae	Piper aduncum L.	honulu	Indg., nat., cmm.
Piperaceae	Piper insectifugum C.DC. ex Seem.		Indg., nat., end.
Pittosporaceae	Pittosporum arborescens Rich ex A.Gray		Indg., nat., end.
Pittosporaceae	Pittosporum pickeringii A.Gray	duva ni veikau	Indg., nat., end.
Pittosporaceae	Pittosporum rhytidocarpum A.Gray		Indg., nat., end.
Polygalaceae	Polygala paniculata L.		Intrd., adv.
Proteaceae	Turrillia ferruginea (A.C.Sm.) A.C.Sm.	kauceuti, tivi	Indg., nat., end.
Proteaceae	Turrillia vitiensis (Turrill) A.C. Sm., comb.nov.	kauceuti	Indg., nat., end.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=	endemic, cmm=common, intrintroduced, cult.	-cultivated, edv.=adventive
Rhamnaceae	Alphitonia franguloides A.Gray	doi	Indg., nat., end.
Rhamnaceae	Alphitonia zizyphoides (Spreng.) A.Gray	doi	Indg., nat., cmm.
Rhizophoraceae	Crossostylis harveyi Benth.		Indg., nat., end.
Rubiaceae	Dolicholobium latifolium A.Gray	soso ni ura	Indg., nat., end.
Rubiaceae	Dolicholobium macgregorii Horne ex Baker	soso ni ura levu	Indg., nat., end.
Rubiaceae	Dolicholobium oblongifolium A.Gray	soso ni ura	Indg., nat., end.
Rubiaceae	Gardenia taitensis DC.	jale ni veikau	Indg., nat., cmm.
Rubiaceae	Hedyotis sp.		Indg., nat., cmm.
Rubiaceae	Mastixiodendron sp.	duvula	Indg., nat., end.
Rubiaceae	Morinda citrifolia L.	kura	Intrd., cult.
Rubiaceae	Morinda myrtifolia A.Gray		Indg., nat., cmm.
Rubiaceae	Mussaenda raiateensis J.W.Moore		Indg., nat., cmm.
Rubiaceae	Ophiorrhiza peploides A.Gray		Indg., nat., end.
Rubiaceae	Psychotria ampullacea A.C.Sm.	psychotria	Indg., nat., end.
Rubiaceae	Psychotria argantha A.C.Sm.	psychotria	Indg., nat., end.
Rubiaceae	Psychotria confertiloba A.C.Sm.	psychotria	Indg., nat., end.
Rubiaceae	Psychotria eumorphanthus Fosberg	psychotria	Indg., nat., end.
Rubiaceae	Psychotria glabra (Turrill) Fosberg	psychotria	Indg., nat., end.
Rubiaceae	Psychotria gracilior A.C.Sm.	psychotria	Indg., nat., end.
Rubiaceae	Psychotria leptantha A.C.Sm.	psychotria	Indg., nat., end.
Rubiaceae	Psychotria roseata (Fosberg) A.C.Sm.	psychotria	Indg., nat., end.
Rubiaceae	Psychotria sp.	degedege, tabulina	Indg., nat., end.
Rubiaceae	Psychotria turbinata A.Gray	soso ni ura levu	Indg., nat., end.
Rubiaceae	Psychotria vitiensis Fosberg	psychotria	Indg., nat., end.
Rubiaceae	Psydrax odorata (Forst.f.) A.C.Smith & S.Darwin		Indg., nat., cmm.
Rubiaceae	Spermacoce sp.		Intrd., cult.
Rubiaceae	Tarenna sambucina (G.Forst.) T.Durand ex Drake	vakarube ni davui	Intrd., adv.
Rubiaceae	Timonius affinis A.Gray	dogo ni vanua/dogo ni veikau	Intrd., adv.
Rutaceae	Citrus grandis (L.) Osbeck	moli kana	Intrd., cult.
Rutaceae	Citrus maxima (Burm.) Osbeck	moli kana	Intrd., cult.
Rutaceae	Euodia hortensis J.R. Forst. & G. Forst.	uci	Intrd., cult.
Rutaceae	Melicope cucullata (Gillespie) A.C.Smith	drautolu	Indg., nat., end.
Rutaceae	Melicope vitiensis (A.C.Sm.) comb.nov.	drautolu	Indg., nat., end.
Rutaceae	Micromelum minutum(Forst.f.)Seem.	qiqila	Intrd., adv.

Family	Scientific Name	Local name	Distribution
-	indg.=indigenous, nat.=native, end.=	endemic, cmm=common, intrintroduced, c	ultcultivated, edv.=adventive
Sapindaceae	Cardiospermum halicacabum L.		Indg., nat., cmm.
Sapindaceae	Dodonaea viscosa (L.) Jacq.	usi	Indg., nat., cmm.
Sapindaceae	Elattostachys falcata (A.Gray) Radlk.	vure/marasa	Indg., nat., cmm.
Sapindaceae	Guioa sp.		Indg., nat., cmm.
Sapindaceae	Koelreuteria elegans (Seem.) A.C.Smith	manawi	Indg., nat., end.
Sapindaceae	Pometia pinnata J.R. Forst. & G. Forst.	dawa	Intrd., adv.
Sapindaceae	Sapindus sp.		Indg., nat., cmm.
Sapindaceae	Sapindus vitiensis A.Gray		Indg., nat., cmm.
Sapotaceae	Burckella fijiensis (Hemsl.) A.C.Sm. & S.P.Darwin	bau	Indg., nat., end.
Sapotaceae	Burckella richii (A.Gray) H.J.Lam		Indg., nat., poss.end.
Sapotaceae	Burckella sp.	bau	Indg., nat., poss.end.
Sapotaceae	Palaquium fidjiense Pierre ex Dubard	bau	Indg., nat., end.
Sapotaceae	Palaquium hornei (Hartog ex Baker) Dubard	cevua, sacau	Indg., nat., end.
Sapotaceae	Palaquium porphyreum A.C.Sm. & S.P.Darwin	bauvudi	Indg., nat., end.
Sapotaceae	Planchonella grayana H.St.John	bausa	Indg., nat., cmm.
Sapotaceae	Planchonella sp.	sarosaro	Indg., nat., cmm.
Sapotaceae	Planchonella vitiensis Gillespie	sarosaro	Indg., nat., end.
Saurauiaceae	Saurauia rubicunda Seem.	midra/mimila	Indg., nat., end.
Simaroubaceae	Amaroria soulameoides A.Gray	vasa ni veikau, sasawira	Indg., nat., end.
Smilacaceae	Smilax vitiensis (Seem.) A.DC.	warusi	Indg., nat., cmm.
Solanaceae	Solanum torvum Sw.	kosipeli	Intrd., poss.cult.
Sterculiaceae	Heritiera ornithocephala Kosterm.	rosarosa/rogi	Indg., nat., cmm.
Sterculiaceae	Melochia vitiensis A.Gray		Indg., nat., end.
Thymelaeaceae	Wikstroemia foetida (L. f.) A. Gray		Indg., nat., cmm.
Tiliaceae	Grewia crenata (J.R.&G.Forst) Schinz & Guillaumin	siti	Indg., nat., cmm.
Tiliaceae	Trichospermum calyculatum (Seem.) Burret.	mako loa	Indg., nat., end.
Tiliaceae	Trichospermum richii (A.Gray) Seem.	mako	Indg., nat., cmm.
Tiliaceae	Triumfetta procumbens G. Forst.		Intrd., adv.
Triuridaceae	Andruris vitiensis (A.C.Sm.) Giesen		Indg., nat., end.
Ulmaceae	Girroniera celtidifolia Gaud.	sisisi	Indg., nat., cmm.
Ulmaceae	Parasponia andersonii Planch.	drou	Indg., nat., cmm.
Ulmaceae	Trema cannabina Lour.	drou	Indg., nat., cmm.
Urticaceae	Dendrocnide harveyi (Seem.) Chew	salato	Indg., nat., cmm.
Urticaceae	Elatostema tenellum A.C.Smith		Indg., nat., end.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=endemic,	cmm=common, intrintroduced,	cultcultivated, edv.=adventive
Urticaceae	Laportea interrupta (L.) Chew		Indg., nat., cmm.
Urticaceae	Leucosyke corymbulosa Benth. & Hook.f. ex Drake		Indg., nat., cmm.
Urticaceae	Pipturus vitiensis A.C.Smith		Indg., nat., end.
Urticaceae	Procris pedunculata (J.R. Forst. & G. Forst.) Wedd.		Indg., nat., cmm.
Verbenaceae	Faradaya ovalifolia (A.Gray) Seem.	wavudi	Indg., nat., end.
Verbenaceae	Lantana camara L.	lantana	Indg., nat., cmm.
Verbenaceae	Premna protrusa A.C.Smith & S.Darwin	yaro	Indg., nat., end.
Verbenaceae	Premna serratifolia L.	yaro	Indg., nat., cmm.
Verbenaceae	Stachytarpheta urticaefolia (Salisb.) Sims		Intrd., adv.
Verbenaceae	Vitex trifolia L.	dralakaka	Indg., nat., cmm.
Vitaceae	Cayratia seemanniana A.C.Smith		Indg., nat., end.
Vittariaceae	Pteris ensiformis Burm. f.		Intrd., adv.
Angiosperm – Mor	nocotyledons		
Agavaceae	Cordyline fruticosa (L.) A.Chev.	qai, vasili	Intrd., adv.
Amaryllidaceae	Crinum asiaticum L.	viavia	Intrd., cult.
Araceae	Alocasia macrorrhiza (L.) G.Don	via gaga	Intrd., cult.
Araceae	Epiprenum pinnatum (L.) Engl.	yalu	Intrd., cult.
Araceae	Xanthosoma sagittifolium (L.) Schott	dalo nitana	Intrd., cult.
Araliaceae	Cyphosperma tanga (H.E.Moore) H.E.Moore	tanga	Indg., nat., end.
Arecaceae	Balaka diffusa Hodel	balaka	Indg., nat., end
Arecaceae	Balaka longirostris Becc.	balaka (big fruit)	Indg., nat., end.
Arecaceae	Cocos nucifera L.	niu, coconut	Intrd., cult.
Arecaceae	Metroxylon vitiense (H.Wendl.) H.Wendl.ex Hook.f.	soga	Indg., nat., end.
Arecaceae	Physokentia rosea H.E.Moore	physokentia	Indg., nat., end.
Arecaceae	Veitchia joannis H.Wendl.	niusawa	Indg., nat., end.
Arecaceae	Veitchia vitiensis (H.Wendl.) H.E.Moore	niuniu	Indg., nat., end.
Commelinaceae	Aneilema vitiense Seem.		Indg., nat., cmm.
Cyperaceae	Kyllinga nemoralis (J.R.Forst. & G.Forst.) Dandy ex Hutch. & Dalziel	Intrd., adv.	
Cyperaceae	Kyllinga polyphylla Willd. ex Kunth	navua sedge	Intrd., adv.
Cyperaceae	Scleria lithosperma (L.) Sw.		Indg., nat., cmm.
Cyperaceae	Scleria polycarpa Boeck.		Indg., nat., cmm.
Euphorbiaceae	Macaranga seemannii (Müll.Arg.) Müll.Arg.	davo	Indg., nat., cmm.
Flagellariaceae	Flagellaria indica L.	alu	Indg., nat., cmm.
Orchidaceae	Appendicula sp.		Indg., nat., cmm.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=ende	emic, cmm=common, intrintrodu	ced, cultcultivated, edv.=adventive
Orchidaceae	Bulbophyllum incommodum Kores		Indg., nat., end.
Orchidaceae	Bulbophyllum longiscapum Rolfe		Indg., nat., cmm.
Orchidaceae	Bulbophyllum sp.		Indg., nat., cmm.
Orchidaceae	Calanthe hololeuca Rchb.f.		Indg., nat., cmm.
Orchidaceae	Corymborkis veratrifolia (Reinw.) Bl.		Indg., nat., cmm.
Orchidaceae	Cynorckis fastigiata Thouars		Intrd., adv.
Orchidaceae	Diplocaulobium tipuliferum (Reichenb.f.) Kraenzl.		Indg., nat., end.
Orchidaceae	Erythrodes parvula Kores		Indg., nat., cmm.
Orchidaceae	Hetaeria whitmeei Rchb.f.		Indg., nat., cmm.
Orchidaceae	Macodes cf. petola		Indg., nat., rare
Orchidaceae	Nervilia cf. aragoana		Indg; nat., rare
Orchidaceae	Nervilia cf. punctata		Indg; nat., rare
Orchidaceae	Oberonia cf. equitans		Indg., nat., cmm.
Orchidaceae	Pristiglottis longiflora (Rchb.f.) Kores		Indg., nat., cmm.
Orchidaceae	Spathoglottis pacifica Reichenb.f.	varavara	Indg., nat., cmm.
Pandanaceae	Freycinetia storckii Seem.	wame	Indg., nat., cmm.
Pandanaceae	Pandanus sp.	pandanus	Intrd., adv.
Pandanaceae	Pandanus tectorius Parkinson	vadra	Intrd., adv.
Poaceae	Brachiaria mutica (Forssk.) Stapf	paragrass	Indg., nat., cmm.
Poaceae	Centosteca lappacea (L.) Desv.		Indg., nat., cmm.
Poaceae	Coix lacryma-jobi L.	job's tears	Intrd., cult.
Poaceae	Digitaria ciliaris (Retz.) Koeler		Intrd., cult.
Poaceae	Eleusine indica (L.) Gaertn.		Intrd., cult.
Poaceae	Imperata conferta (Presl) Ohwi		Indg., nat., cmm.
Poaceae	Miscanthus floridulus (Labill.) Warb. ex K.Schum. & Lauterb.	gasau	Intrd., adv.
Poaceae	Paspalum conjugatum Bergius		Intrd., cult.
Poaceae	Paspalum distichum L.		Intrd., adv.
Poaceae	Paspalum orbiculare Forst.f.		Indg., nat., cmm.
Poaceae	Paspalum paniculatum L.		Intrd., cult.
Poaceae	Paspalum vaginatum Sw.		Intrd., cult.
Poaceae	Pennisetum polystachyon (L.) J.A.&J.H.Schultes	mission grass	Intrd., adv.
Poaceae	Saccharum edule Hassk.	duruka	Intrd., cult.
Poaceae	Schizostachyum glaucifolium (Rupr.)Munro		Indg., nat., cmm.
Poaceae	Setaria glauca (L.) Beauv.		Intrd., cult.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=ende	mic, cmm=common, intrintroduced	, cultcultivated, edv.=adventive
Poaceae	Sporobolus indicus (L.) R.Br.		Indg., nat., cmm.
Poaceae	Sporobolus sp.		Indg., nat., cmm.
Taccaceae	Tacca leontopetaloides (L.) Kuntze		Indg., poss.nat.
Zingiberaceae	Alpinia parksii (Gillespie) A.C.Sm.	locoloco	Indg., nat., end.
Zingiberaceae	Geanthus cevuga (Seem.) Loesener	cevuga damu	Indg., nat., rare.
Ferns and Fern A	lies		
Acanthaceae	Graptophyllum insularum (A.Gray) A.C.Smith		Indg., nat., cmm.
Aspidiaceae	Blechnum orientale L.		Indg., nat., cmm.
Aspidiaceae	Blechum pyramidatum (Lam.) Urb.		Indg., nat., cmm.
Aspidiaceae	Tectaria latifolia (Forster) Copeland	ota loa	Indg., nat., cmm.
Aspleniaceae	Asplenium australasicum Hooker	birds nest	Indg., nat., cmm.
Aspleniaceae	Asplenium nidus L.		Indg., nat., cmm.
Aspleniaceae	Asplenium polyodon Forster		Indg., nat., cmm.
Cyatheaceae	Culcita straminea (Labillardiere) Maxon		Indg., nat., cmm.
Cyatheaceae	Cyathea affinis (Forster) Swartz	balabala	Indg., nat., cmm.
Cyatheaceae	Cyathea alata Copeland	balabala	Indg., nat., cmm.
Cyatheaceae	Cyathea hornei (Baker) Copel.	balabala	Indg., nat., cmm.
Cyatheaceae	Cyathea lunulata (G. Forst.) Copel.	balabala	Intrd., adv.
Cyatheaceae	Cyathea medullaris Sw.	cyathea (monasavu)	Indg., nat., cmm.
Cyatheaceae	Cyathea propingua Mett.	balabala	Indg., nat., end.
Cyatheaceae	Cyathea sp.		Indg., nat., cmm.
Cyatheaceae	Cyathea truncata (Brackenridge) Copeland	balabala	Indg., nat., cmm.
Cyatheaceae	Dicksonia brackenridgei Mettenius	balabala	Indg., nat., cmm.
Davalliaceae	Davallia solida Ogata		Intrd., adv.
Davalliaceae	Nephrolepis biserrata (Swartz) Schott		Indg., nat., cmm.
Davalliaceae	Nephrolepis hirsutula (Forster) Presl		Indg., nat., cmm.
Dilleniaceae	Dillenia biflora (A.Gray) Martelli ex Dur.& Jacks	kuluva	Indg., nat., cmm.
Equisetaceae	Equisetum ramosissimum Desf. subsp. debile (Roxb.) Hauke		Indg., nat., end.
Gleicheniaceae	Dicranopteris linearis (Burmann) Underwood	qato	Indg., nat., cmm.
Gleicheniaceae	Dicranopteris sp.		Indg., nat., cmm.
Gleicheniaceae	Gleichenia sp.?		Indg., nat., cmm.
Hypolepidaceae	Histiopteris incisa (Thunberg) J.Smith		Indg., nat., cmm.
Lindsaeaceae	Lindsaea ensifolia Swartz		Indg., nat., cmm.
Marattiaceae	Angiopteris evecta (Forster) Hoffman	basovi	Indg., nat., cmm.

Family	Scientific Name	Local name	Distribution
	indg.=indigenous, nat.=native, end.=endemic,	cmm=common, intrintroduced, cult.	-cultivated, edv.=adventive
Marattiaceae	Marattia smithii Mettenius ex Kuhn		Indg., nat., cmm.
Polypodiaceae	Belvisia mucronata (Fee) Copeland		Indg., nat., cmm.
Polypodiaceae	Phymatosorus grossus (Langsdorff et Fischer) Brownlie		Indg., nat., cmm.
Psilotaceae	Psilotum nudum (L.) Palisot de Beauvois		Indg., nat., cmm.
Schizaeaceae	Lygodium reticulatum Schkuhr		Indg., nat., cmm.
Selaginellaceae	Selaginella sp.		Indg., nat., cmm.
Thelypteridaceae	Christella harveyi (Mettenius) Holttum		Indg., nat., cmm.
Gymnosperms			
Araucariaceae	Agathis macrophylla (Lindl.) Mast.	dakua makadre	Indg., nat., cmm.
Gnetaceae	Gnetum gnemon L.	sukau	Indg., nat., cmm.
Pinaceae	Pinus caribaea Morelet	caribbean pine	Indg., nat., cmm.
Podocarpaceae	Acmopyle sahniana Buchh.& N.E.Gray	drautabua	Indg., nat., end.
Podocarpaceae	Dacrycarpus imbricatus (Blume) de Laub.	amunu	Indg., nat., cmm.
Podocarpaceae	Dacrydium nidulum de Laubenfels	yaka	Indg., nat., cmm.
Podocarpaceae	Decussocarpus vitiensis (Seem.) de Laub.	dakua salusalu	Indg., nat., cmm.
Podocarpaceae	Podocarpus affinis Seem.	kuasi lailai	Indg., nat., end.
Podocarpaceae	Podocarpus neriifolius D.Don	kuasi	Indg., nat., cmm.
SUMMARY: 100 Fa	milies, 258 Genera		

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T1P1	17.94314, 177.95961	Dry Forest	River flat	13	6	Cit_gra	Dys_sp.	9	22.3	5.0-72.0	8404	Dys_sp.	47
	T1P2	17.94322, 177.95950	Dry Forest	River flat	12	4	Cit_gra	Dys_ric.	6	17.7	3.0- 42.0	6855	Dys_ric	76
	T1P3	17.94289, 177.95956	Dry Forest	River flat	9	5	Cit_gra	Cit_gra	5	10.5	6.0-17.0	666	Cit_gra	59
-	T1P4	17.94287, 177.95954	Dry Forest	River flat	13	8	Cit_gra	Dys_que	6	19.13	6.0-61.0	7099	Dys_len	40
-	T1P5	17.94297, 177.95960	Dry Forest	River flat	7	7	None	Dys_que	4	18.3	7.0-34.0	2331	Dys_len	39
	T1P6	17.94327, 177.95962	Dry Forest	River flat	11	5	Bac_sp.	Syz_mal	7	13.07	7.0-29.0	1608	Syz_mal	42
	T2P1	17.94543, 177.96419	Dry Forest	River flat	20	6	Syz_mal	Bis_jav	13	28	10.0-70.0	10432	Bis_jav	37
	T2P2	17.94533, 177.96411	Dry Forest	River flat	18	9	Syz_mal	Syz_mal	6	20	10.9-27.0	2411	Syz_mal	50
luk 10	T2P3	17.94533, 177.96421	Dry Forest	River flat	17	8	Syz_mal	Syz_spp.	10	26.57	10.0-57.0	7937	Syz_spp.	32
July 19	T2P4	17.94556, 177.96419	Dry Forest	River flat	15	5	Cit_gra	Syz_spp.	5	24.8	12.6-62.0	3807	Bis_jav	79
2012	T2P5	17.94560, 177.96428	Dry Forest	River flat	15	7	Syz_mal	Cit_gra	10	31.21	11.1-89.0	13645	Cit_gra	46
	T2P6	17.94539, 177.96440	Dry Forest	River flat	10	5	Syz_mal	Syz_mal	7	18.71	10.3-36.0	2319	Syz_mal	69
-	T2P7	17.94550, 177.96444	Dry Forest	River flat	15	10	Syz_mal	Dys_ric	8	23.75	10.4-86.0	7369	Dys_ric	80
-	T2P8	17.94530, 177.96448	Dry Forest	River flat	24	10	Den_har; Lit_sp; Dys_sp	Dys_sp.	16	30.93	10.4-61.2	22564	Dys_sp	61
	T2P9	17.94539, 177.96448	Dry Forest	River flat	12	5	Syz_mal	End_sp.	6	19.16	11.3-26.9	1847	End_sp.	31
-	T2P10	17.94530, 177.96438	Dry Forest	River flat	13	6	Syz_spp.	Deg_vit	7	14.45	10.4-34.0	1939	Deg_vit	48
-	T3P1	17.94335, 177.96243	Dry Forest	River flat	13	8	Cit_gra	Bis_jav	11	14	5.0-50.0	4148	Bis_jav	45
Ī	T3P2	17.943384, 177.96234	Dry Forest	River flat	12	11	Dys_sp.	Dys_sp.	13	23	7.5-51.0	9054	Dys_sp.	42
	T3P3	17.943268, 177.96216	Dry Forest	River flat	11	10	Syz_mal	Pom_pin	13	28	5.7-67.0	15753	Pom_pin	22
July 23	T4P1	17.94156, 177.95419	Dry Forest	Ridge top	23	13	Dys_sp.; Gar_myr	Fic_obl	16	23.1	10.5-132.0	23788	Fic_obl	57
2012	T4P2	17.94159, 177.95659	Dry Forest	Ridge flat	51	21	Lit_sp.; Cya_sp	Bis_jav	28	17.3	10.0-76.0	20999	Bis_jav	26

Appendix 3. Summary statistics of vegetation community structure assessment plots

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T4P3	17.94151, 177.95689	Dry Forest	Ridge flat	49	21	Lit_sp.	Bis_jav	28	23.34	10.3-52.0	14652	Bis_jav	32
	T4P4	17.94138, 177.95692	Dry Forest	Ridge flat	35	15	Cit_gra	Dys_sp.	18	28.8	10.0-67.0	15165	Dys_que	31
	T4P5	17.94133, 177.95702	Dry Forest	Ridge flat	28	13	Cit_gra; Psy _sp.	Bis_jav	14	31.07	11.3-86.0	15050	Bis-jav	47
	T4P6	17.94123, 177.95702	Dry Forest	Ridge flat	28	14	Lit_sp.	Dys_que	15	23.93	10.0-64.0	9955	Dys_que	32
	T4P7	17.94107, 177.95716	Dry Forest	Ridge flat	21	10	Den_vit	Can_sp.	17	13.65	10.0-33.3	3493	Can_sp.	12
	T4P8	17.94068, 177.95721	Dry Forest	Ridge flat	36	17	Lit_sp.	Bis_jav	21	27.86	11.0-77.0	18287	Bis_jav	48
	T4P9	17.94073, 177.95702	Dry Forest	Ridge flat	40	25	Syz_mal	Dys_sp.	24	19.58	10.0-76.0	11565	Dys_sp.	53
	T4P10	17.94082, 177.95722	Dry Forest	Ridge flat	34	14	Gar_myr	Bur_sp.	23	22	10.0-57.0	12037	Bur_sp.	21
	T5P1	17.94452, 177.96008	Dry Forest	Slope	16	8	Cal_vit; Cyn_ sp.	Cyn_sp.	9	13.6	6.0-34.0	2980	Cyn_sp.	66
	T5P2	17.94464, 177.96012	Dry Forest	Slope	9	6	Cal_vit	Cal_vit	8	18.4	6.0-40.0	2938	Cal_vit	67
	T5P3	17.94451, 177.96014	Dry Forest	Slope	13	10	Cal_vit	Mac_see	7	14.3	7.0-25.0	2160	Mac_see	40
	T5P4	17.94453, 177.95968	Dry Forest	Slope	8	7	Cya_lun	Cya_lun	4	13.5	7.0-28.0	1346	Cya_lun	36
	T5P5	17.94451, 177.95967	Dry Forest	Slope	13	10	Cya_lun	Neo_for	9	24.1	8.0-113.0	12844	Neo_for	76
	T6P1	17.94151, 177.95428	Dry Forest	Slope	27	11	Dys_sp.; Lit_sp.; Den_vit	Dys_que	13	40.62	11.0-120.0	28675	Dys_que	63
July 19	T6P2	17.94166, 177.95430	Dry Forest	Slope	34	13	Lit_sp.	Dys_que	18	25.6	10.0-64.3	13853	Dys_que	53
2012	T6P3	17.94180, 177.9543	Dry Forest	Slope	35	10	Lit_sp.	Dys_que	16	29.75	10.0-99.0	19330	Dys_que	77
	T6P4	17.94182, 177.95452	Dry Forest	Slope	27	9	Den_vit	Dys_len	11	22.18	10.5-67.0	6485	Dys_len	54
	T6P5	17.94196, 177.95440	Dry Forest	Slope	25	11	Den_vit; Lit_sp.	Fic_obl	17	26.35	11.3-148.0	23368	Fic_obl	74
	T6P6	17.94149, 177.95449	Dry Forest	Slope	37	14	Den_vit	Dys_sp.	20	20.35	10.0-58.0	9582	Dys_sp.	58
	T6P7	17.94148, 177.95459	Dry Forest	Slope	27	13	Lit_sp.	Dys_ric	19	25.1	10.0-67.0	12491	Dys_ric	36
	T6P8	17.94151, 177.95469	Dry Forest	Slope	20	14	Lit_sp.	Dys_ric	15	24.46	10.6-64.0	10208	Dys_ric	32
	T6P9	17.94161, 177.95473	Dry Forest	Slope	21	10	Lit_sp.	Ela_kam	11	18.63	10.4-340	3770	Ela_kam	24

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T6P10	17.94173, 177.95450	Dry Forest	Slope	23	14	Lit_sp.	Ela_kam	14	18.36	10.0-33.0	4547	Ela_kam	18
	T7P1	17.95583, 177.96355	Upland Rainforest	Ridge top	37	26	Cal_vit	Her_oli	29	22.97	10.1-64.3	15858	Cal_vit	38
	T7P2	17.95568, 177.96365	Upland Rainforest	Ridge top	32	21	Cal_vit	Cal_vit	21	18.33	10.2-30.7	6138	Cal_vit	35
	T7P3	17.95557, 177.96371	Upland Rainforest	Ridge top	22	16	Gar_myr	Cal_vit	11	17.63	10.0-49.0	3670	Cal_vit	55
	T7P4	17.95546, 177.96380	Upland Rainforest	Ridge top	40	21	Cal_vit; Lit_spp.	Dac_nid	23	19.14	10.0-41.0	7694	Dac_nid	17
	T7P5	17.95532, 177.96381	Upland Rainforest	Ridge top	29	16	Syz_spp.	Syz_spp.	10	30	12.0-65.0	9058	Syz_spp.	37
	T7P6	17.95492, 177.96363	Upland Rainforest	Ridge top	26	17	Gar_myr.	Syz_spp.	10	15.67	5.0-150.0	19772	Aga_mac	87
	T7P7	17.95481, 177.96358	Upland Rainforest	Ridge top	41	27	Cal_vit	End_mac	18	18.9	10.3-37.0	5938	Bur_sp.	23
	T7P8	17.95334, 177.96445	Upland Rainforest	Ridge top	34	17	Syz_spp.	Dac_nid	19	19.47	10.0-67.0	9115	Dac_nid	48
	T7P9	17.95330, 177.96435	Upland Rainforest	Ridge top	31	15	Syz_spp.	Dac_nid	18	21	10.0-59.0	8550	Dac_nid	63
July 20	T7P10	17.95340, 177.96434	Upland Rainforest	Ridge top	29	18	Syz_spp.	Syz_spp.; Agl_spp.	20	17.85	10.0-27.0	5575	Syz_spp.	39
,	T8P1/753	17.97304, 177.99869	Upland Rainforest	Ridge top	20	17	none	Cal_vit	12	17.55	7.0-50.0	4107	Cal_vit	28
2012	T8P2/750	17.97302, 177.99860	Upland Rainforest	Ridge top	24	17	Gir_cel	Dys_sp.	11	15.79	6.0-40.0	1437	Gir_cel	4
	T8P3/724	17.97271, 177.99871	Upland Rainforest	Ridge top	22	14	Gir_cel	Cal_vit	18	20.09	7.0-58.0	11231	Cal_vit	25
	T8P4/726	17.97259, 177.99869	Upland Rainforest	Ridge top	27	16	Gir_cel	Syz_sp.	12	12.93	5.0-27.0	2468	Lit_sp.	4
	T8P5/728	17.97259, 177.99867	Upland Rainforest	Ridge top	25	15	Syz_sp.	Aga_mac	14	20.12	5.0-111.0	16698	Aga_mac	56
	T8P6/731	17.97256, 177.99866	Upland Rainforest	Ridge top	20	16	Psy_ sp.	Cal_vit	16	15.63	7.0-46.0	4655	Cal_vit	34
	T8P7/721	17.97272, 177.99877	Upland Rainforest	Ridge top	21	16	Lit_sp.	Cal_vit	12	14.33	5.0-38.0	3120	Cal_vit	10
	T8P8/719	17.97277, 177.99882	Upland Rainforest	Ridge top	17	13	Lit_sp.	Lit_sp;. Fic_smi	12	16.11	7.0-30.0	4038	Lit_sp.	36
	T8P9/718	17.97278, 177.99886	Upland Rainforest	Ridge top	18	14	Lit_sp.	Lit_sp.	13	15.33	7.0-34.0	3947	Lit_sp.	45
	T8P10/753	17.97304, 177.99870	Upland Rainforest	Ridge top	18	12	Gir_cel; Lit_sp.	Myr_cas	11	18.94	5.0-75.0	8757	Myr_cas	49
	T10P1/733	17.97304, 177.99867	Upland Rainforest	Ridge top	53	29	Gar_pse	Aga_mac	23	13.54	5.0-140.0	23442	Aga_mac	63

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T10P2/731	17.94980, 177.99630	Upland Rainforest	Ridge top	51	21	Syz_sp.	Aga_mac	24	12.37	5.0-62.0	10229	Aga_mac	34
	T10P3/712	17.95120, 177.99072	Upland Rainforest	Ridge slope	55	24	Syz_sp.	Aga_mac	26	13.4	6.0-152.0	22879	Aga_mac	75
	T10P4/663	17.95328, 177.00103	Upland Rainforest	Ridge top	54	23	Gar-pse	Dec_vit	20	14.61	5.0-107.0	16135	Dec_vit	18
	T10P5/728	17.95050, 177.99830	Upland Rainforest	Flat	30	16	Cya_sp.	End_mac	16	15.03	5.0-58.0	95	End_mac	31
	T10P6/737	17.95051, 177.99851	Upland Rainforest	Flat	24	14	Gir_cel; Gar_pse	Myr_sp.	11	15.46	5.0-44.0	93	End_mac	34
	T11P1	17.95540, 177.96350	Upland Rainforest	Slope	32	20	Cry_spp.	Cal_vit	14	13.49	5.0-65.0	7205	Cal_vit	22
	T11P2	17.95530, 177.96342	Upland Rainforest	Slope	21	14	Cya_lun; Cal_vit	End_mac	18	20.65	5.0-65.0	13351	End_mac	33
	T11P3	17.95523, 177.96352	Upland Rainforest	Slope	23	19	None	End_spp.	16	19.2	5.0-61.5	10760	End_mac	27
July 21	T11P4	17.95271, 177.96400	Upland Rainforest	Slope	44	25	Cal_vit	Aga_mac	22	22.82	10.0-69.0	11958	Aga_mac	31
-	T11P5	17.95267, 177.96400	Upland Rainforest	Slope	44	23	Cya_aff	End_mac	21	19.71	10.5-48.0	8103	End_mac	23
2012	T11P6	17.95234, 177.96401	Upland Rainforest	Slope	34	23	Sau_rub	Sem_vit	14	25.5	10.7-47.0	8615	Sem_vit	20
	T11P7	17.95244, 177.96401	Upland Rainforest	Slope	30	18	Dol_lat	Deg_vit	10	18.48	10.0-33.0	3051	Deg_vit	27
	T11P8	17.95254, 177.96401	Upland Rainforest	Slope	23	18	None	Buc_vit	10	20.1	10.0-63.0	4901	Buc_vit	64
	T11P9	17.95234, 177.96351	Upland Rainforest	Slope	10	8	Gir_cel	End_mac	5	14.5	11.0-41.1	2717	End_mac	47
	T9P1/708	17.97644, 178.0018	Upland Rainforest	Slope	29	19	Gar_myr	Gar_myr	11	17.38	5.0-89.0	16348	Gar_myr	48
	T9P2/707	17.97345, 177.99920	Upland Rainforest	Slope	23	16	Gir_cel	Syz_sp.	14	18	7.0-63.0	8953	Syz_sp.	33
March 23	T9P3/698	17.97337, 177.99918	Upland Rainforest	Slope	22	13	none	Cal_vit	15	20.09	7.0-68.0	11541	Par_ins	31
2013	T9P4/699	17.97339, 177.99918	Upland Rainforest	Slope	20	14	Lit_ sp.	Lit_sp.	14	19.5	6.0-65.0	8776	Lit_sp.	58
	T10P5/726	17.95030, 177.99750	Upland Rainforest	Slope	25	12	Gar_pse; Gir_cel	Cya_sp.	17	15.72	5.0-54.0	7129	Cya_sp.	31
	T10P6/735	17.95000, 177.99770	Upland Rainforest	Slope	40	21	Gir_cel; Myr_sp.	Gar_pse	21	10.8	5.0-32.0	3320	Gar_pse	19
March 23	T12P1/1104	17.95310, 178.00850	Cloud Rainforest	Slope	47	12	Dic_bra	Cal_vit	25	10.51	5.0-22.0	4040	Cal_vit	85
2013	T12P2/1113	17.95300, 178.00840	Cloud Rainforest	Slope	34	11	Cya_sp.	Cal_vit	24	12.26	5.0-41.0	4720	Cal_vit	31

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T12P3/1090	17.95290, 178.00820	Cloud Rainforest	Slope	35	14	Cya_sp.	Cal_vit	16	11.91	5.0-60.0	5622	Cal_vit	48
	T12P4/1068	17.95260, 178.00770	Cloud Rainforest	Slope	31	16	Syz_sp.	Ast_ sp.	10	11.95	5.0-39.0	94	Ast_ sp.	18
	T12P5/1034	17.95220, 178.00720	Cloud Rainforest	Slope	32	12	Cya_sp.	Cya_med	16	12.94	5.0-34.0	91	Syz_sp.	18
	T12P6/1071	17.95270, 178.00790	Cloud Rainforest	Flat	42	12	Cya_ sp.	Syz_sp.	23	12.04	5.0-30.0	87	Syz_sp.	35
	T12P7/1035	17.95210, 178.00700	Cloud Rainforest	Flat	54	15	Mac_see	Deg_vit	28	13.7	5.0-43.0	15663	Deg_vit	16
	T12P8/1052	17.95250, 178.00750	Cloud Rainforest	Ridge top	41	22	Syz_sp.	Cya_cf.ins	21	12.84	5.0-30.0	87	Cya_cf.ins	26
	T12P9/1025	17.95180, 178.00610	Cloud Rainforest	Slope-ridge	30	13	Syz_sp.	Cya_sp.	18	11.95	5.0-31.0	4800	Cya_sp.	23
	T12P10/990	17.95150, 178.00580	Cloud Rainforest	Ridge top	42	19	Cit_ vit	Cal_vit	23	13.63	5.0-36.0	5526	Cal_vit	22
	T12P11/1022	17.94950, 177.98990	Cloud Rainforest	Ridge top	70	22	Syz_sp.	Syz_sp.	35		5.0-181.0	97	Syz_sp.	82
	T13P1/484	17.98216, 178.00836	Lowland Rainforest	Ridge top	33	19	Gir_ cel	Bur_fij	22	14.67	5.0-49.0	7670	Bur_ fij	23
	T13P2/482	17.98215, 178.00835	Lowland Rainforest	Ridge top	24	11	Gir_ cel; Vei_vit	Gon_pun	13	13.2	6.0-36.0	3909	Man_flo	23
	T13P3/480	17.98210, 178.00830	Lowland Rainforest	Ridge top	9	8	none	Syz_ sp.	6	15.22	5.0-42.0	2432	Syz_sp.	56
	T13P4/485	17.98218, 178.00837	Lowland Rainforest	Ridge top	17	9	Gar_ myr	Cal_vit	7	14.47	5.0-57.0	4825	Cal_vit	49
	T13P5/479	17.98209, 78.00830	Lowland Rainforest	Ridge top	18	8	Gar_myr	Myr_cas	11	22	5.0-74.0	11694	Cal_vit	42
March 23	T13P6/478	17.98208, 178.00829	Lowland Rainforest	Ridge top	17	10	Gar_ myr	Bur_fij	11	16.71	6.0-51.0	5218	Bur_fij	37
	T13P7/480	17.98206, 178.00825	Lowland Rainforest	Ridge top	24	12	Cal_vit; Gir_cel	Syz_sp.	14	16.1	5.0-32.0	4926	Syz_sp.	16
2013	T13P8/481	17.98200, 178.00820	Lowland Rainforest	Ridge top	24	11	Fic_smi	End_mac	14	22.77	5.0-98.0	16565	End_mac	45
	T13P9/482	17.98204, 178.00818	Lowland Rainforest	Ridge top	24	7	Gar_myr	Syz_sp.	3	8	5.0-15.0	425	Syz_sp.	25
	T13P10/482	17.98210, 178.00815	Lowland Rainforest	Ridge top	24	14	Gar_myr	Cal_vit	17	18	5.0-55.0	10226	Cal_vit	29
	T14P1/614	17.97558, 178.00117	Lowland Rainforest	Ridge top	39	19	Gar_myr	End_mac	17	14.21	5.0-95.0	12100	End_mac	55
	T14P2/610	17.97550, 178.00116	Lowland Rainforest	Ridge top	36	14	Gar_myr	Can_har	18	14.33	5.0-37.0	6551	Can_har	20
	T14P3/612	17.97555, 178.00115	Lowland Rainforest	Ridge top	28	17	Syz_sp.	Syz_sp.	12	14.14	6.0-41.0	5691	Syz_sp.	37

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T14P4/613	17.97558, 178.00114	Lowland Rainforest	Ridge top	22	9	Gar_myr	Fic_smi	13	13.2	5.0-25.0	3380	Gar_myr	69
	T14P5/619	17.97557, 178.00119	Lowland Rainforest	Ridge top	33	15	Gar_myr	Syz_sp.	16	12.72	5.0-40.0	5223	Syz_sp.	22
	T14P6/614	17.97556, 178.00118	Lowland Rainforest	Ridge top	28	12	Gar_myr	Cal_vit	13	13.32	6.0-48.0	5563	Cal_vit	42
	T14P7/612	17.97552, 178.00113	Lowland Rainforest	Ridge top	15	7	Gar_myr	Tur_vit	8	13.93	6.0-43.0	2910	Tur_vit	45
	T14P8/599	17.97549, 178.00109	Lowland Rainforest	Ridge top	25	12	Gar_myr	Cal_vit	12	15.12	6.0-82.0	11423	Cal_vit	44
	T14P9/595	17.97550, 178.00112	Lowland Rainforest	Ridge top	29	11	Gar_myr	Syz_sp.	20	16.34	5.0-62.0	8808	Syz_sp.	38
	T14P10/598	17.97540, 178.00109	Lowland Rainforest	Ridge top	25	16	Gar_myr	Myr_mac	14	12.16	5.0-32.0	3460	Myr_mac	21
	T15P1/490	17.98268, 178.00916	Lowland Rainforest	Slope	13	9	none	Fic_smi	8	14.08	5.0-24.0	114	Gar_myr	1
	T15P2/489	17.98267, 178.00910	Lowland Rainforest	Slope	11	9	Gar_myr	Myr_cas	5	15.09	5.0-50.0	3219	Myr_cas	1
	T15P3/488	17.98270, 178.00911	Lowland Rainforest	Slope	17	11	Gar_myr	Gar_myr	7	10.17	5.0-24.0	415	Gar_myr	19
March 23	T15P4/486	17.98265, 178.00915	Lowland Rainforest	Slope	12	8	Gar_myr	Gar_myr	7	17.5	5.0-52.0	3708	Gar_myr	61
	T15P5/492	17.98261, 178.00910	Lowland Rainforest	Slope	18	7	Gar_myr	Syz_sp.	10	14.72	5.0-35.0	2339	Gar_myr	30
2013	T15P6/480	17.98269, 178.00917	Lowland Rainforest	Slope	19	16	none	Pal_sp.	9	12.1	5.0-33.0	1836	Pal_sp.	1
	T15P7/479	17.98259, 178.00911	Lowland Rainforest	Slope	20	11	Gar_myr	Myr_cas	13	17.55	5.0-46.0	5636	Myr_cas	47
	T15P8/478	17.98258, 178.00910	Lowland Rainforest	Slope	13	8	Gar_myr	Sto_vit	7	15.08	5.0-78.0	8351	Sto_vit	2
	T15P9/476	17.98257, 178.00909	Lowland Rainforest	Slope	23	11	Gar_myr	Pal_ sp. ; Myr_cha	10	12.56	5.0-36.0	1006	Myr_cha	2
	T16P1/624	17.97644, 178.00183	Lowland Rainforest	Slope	26	14	Gar_myr	End_mac	19	21.81	6.0-100.0	17213	End_mac	45
	T16P2/623	17.97479, 178.00065	Lowland Rainforest	Slope	15	10	Gar_myr	Myr_cas	10	14.8	6.0-28.0	2962	Myr_cas	23
March 23	T16P3/622	17.97487, 178.00073	Lowland Rainforest	Slope	20	9	Gir_cel	Gar_myr	11	11.5	6.0-31.0	2478	Gar_myr	35
2013	T16P4/621	17.97491, 178.00079	Lowland Rainforest	Slope	19	12	Gar_myr	Xyl_sp.	10	12.79	6.0-25.0	90	Gar_myr	38
	T16P5/620	17.97450, 178.00083	Lowland Rainforest	Slope	22	11	Gar_myr	Bur_fij	15	15.32	5.0-36.0	5050	Bur_fij	19
	T16P6/619	17.97503, 178.00086	Lowland Rainforest	Slope	26	15	Gar_myr	Syz_sp.	17	14.96	6.0-33.0	5526	Syz_sp.	26

Date	Plot #	Coordinates	Principal Vegetation Type	Forest/Habitat Type	# Ind. ≥ 5cm	# Tree spp.	Most common spp.	Largest trees	# Ind. ≥ 10 cm	Av. dbh(cm)	Range (cm)	B. area (stems ≥ 10cm dbh)	Dom. sp.	Rel. dom. (%)
	T16P7/620	17.97508, 178.00088	Lowland Rainforest	Slope	28	13	Gar_myr	Cal_vit	13	12.32	5.0-40.0	3985	Cal_vit	29
	T16P8/ 618	17.974836, 178.00069	Lowland Rainforest	Slope	21	10	Gar_myr	Cal_vit	13	17.19	5.0-39.0	6494	Cal_vit	18
March 23	T2P1/492	17.98269, 178.00917	Lowland Rainforest	River flat	15	12	Gar_myr	Pal_por	10	18.67	5.0-48.0	5028	Pal_por	14
	T1P2/657	17.95400, 177.99150	Lowland Rainforest	River flat	33	15	Gar_pse	Dec_vit	15	16.42	5.0-131.0	24156	Dec_vit	86
2013	T1P3/656	17.95281, 177.99173	Lowland Rainforest	River flat	28	16	End_gil	Deg_vit	20	16.36	5.0-55.0	7417	Deg_vit	30

Keys to abbreviations of acronyms of species used are:

Aga_mac=Agathis macrophylla	Cr
Agl_sp.=Aglaia species	Су
Amo_sou=Amoraria soulameoides	Су
Ast_sp.=Astronidium species	Су
Bac_sp.=Baccaurea species	Су
Bis_jav=Bischofia javanica	Су
Buc_vit=Buchanania vitiensis	Cy
Bur_fij=Burckella fijiensis	Da
Bur_sp.=Burckella species	De
Cal_vit=Calophyllum vitiense	De
Can_har=Canarium harveyi	De
Can_sp.=Canarium species	De
Cit_gra=Citrus grandis	Die
Cit_vit=Citronella vitiensis	Do

 ry_sp.=Cryptocarya sp.
 1

 ya_aff=Cyathea affinis
 1

 ya_lun=Cyathea lunulata
 1

 ya_sp.=Cyathea species
 1

 ya_c.f. ins=Cyathocalyx cf. insularis
 1

 yn_fal=Cynometra falcata
 1

 yn_sp.=Cynometra falcata
 1

 yn_sp.=Cynometra species
 1

 ac_nid=Dacrydium nidulum
 1

 ec_vit=Decussocarpus vitiensis
 1

 eg_vit=Degeneria vitiensis
 1

 en_har=Dendrocnide harveyi
 0

 en_vit=Dendrocnide vitiensis
 0

 ic_bra=Dicksonia brackenridgei
 0

 ol lat=Dolicholobium latifolium
 0

Dys_len=Dysoxylum lenticellare Dys_que=Dysoxylum quercifolium Dys_sp.=Dysoxylum species Dys_ric=Dysoxylum richii Ela_kam=Elaeocarpus kambi End_gil=Endiandra gillespiei End_sp.=Endiandra species End_mac=Endospermum macrophyllum Fic_obl=Ficus oblique Fic_smi=Ficus smithii Gar_myr= Garcinia myrtifolia Gar_pse=Garcinia pseudoguttifera Gar_sp=Garcinia species Gir_cel=Gironniera celtidifolia Gon_pun=Gonystylus punctatus Hap_flo=Haplolobus floribundus Her_oli=Hernandia olivacea Lit_sp.=Litsea species Mac_see=Macaranga seemannii Mac_sp.=Macaranga species Man_flo=Maniltoa floribunda Man_gra=Maniltoa grandiflora Myr_cha=Myristica chartacea Myr_cas=Myristica castaneifolia Neo_for=Neonauclea forsteri Pal_por=Palaquium porphyreum Pal_sp.=Palaquium species Par ins=Parinari insularum Pom_pin=Pometia pinnata Psy_sp.=Psychotria species Psy_tur=Psychotria turbinata Sau_rub=Saurauia rubicunda Sem_vit=Semecarpus vitiensis Sto_vit=Storckiella vitiensis Syz_mal=Syzygium malaccense Syz_spp.=Syzygium species Tur_vit=Turrillia vitiensis Vei_vit=Veitchia vitiensis Xyl_sp.=Xylopia species

Other acronyms used are:

Veg. = Vegetation; #Ind. = number of individuals; com. = common; Av. = Average; dbh = diameter at breast height; B. area = Basal area; Dom. sp. = Dominant species; Rel. dom. = relative dominance

Appendix 4.	Description	of forest and	non-forest	habitat types
		•••••••••		

Cover	Veg. type	Forest type	Impacts	Habitat Description and its acronym	Assessment
Forested	Lowland	Flat (river flat)	Low	Primary forest, 75-100% canopy cover, 50-90% ground cover, >90% native flora; general absence of weeds and invasive species; no known history of logging. Farming and/or human habitation may have taken place since time immemorial.	Observed and assessed
Forested	Lowland	Flat	Medium	Transition (secondary and primary) forest; weeds, invasive and secondary succession plants are present; may have history of damage from natural disasters and/or human habitation. LfCF medium	Present but not observed and assessed.
Forested	Lowland	Ridge Top	Low	Primary forest; 75-100% crown cover with 25-50% ground cover; >90% native flora; general absence of weeds and invasive species; no known history of logging, mine exploration, farming; trees with dbh >35cm are common. LfCR low	Observed and assessed
Forested	Lowland	Ridge	Medium	Transition (secondary and primary) forest; 50-75% canopy and ground cover; high density of succession plants; history of selective logging and natural disaster; overall absence of large trees (dbh >50cm) LfCR medium	Present but not assessed
Forested	Lowland	Slope	Low	Primary forest, 75-100% canopy cover, <25-50% ground cover, >90% native flora; no known history of logging, mine exploration, farming; trees with DBH >35cm are common.	Observed and assessed
Forested	Lowland	Slope	Medium	Transition (secondary and primary) forest; 50-75% canopy cover; 75-100% ground cover; some invasive and weeds present and some culturally important species. The forest is regularly visited by the local inhabitants. LfCS medium	Present but not assessed
Forested	Upland	Flat	Low	Assumed to have primary forest; high percentage of native flora.	Not observed on this survey.
Forested	Upland	Ridge	Low	Primary forest, 75-100% canopy cover, 50-75% ground cover with greater diversity of herbs, shrubs and climbers; stems of trees covered with mosses and liverworts; no known history of logging, >98% native flora. Lots of large trees present.	Observed and assessed

Cover	Veg. type	Forest type	Impacts	Habitat Description and its acronym	Assessment
Forested	Upland	Slope	Low	Primary forest; 75-100% crown cover; 25-50% ground cover; stems of trees covered with mosses and liverworts; no known history of logging, >98% native flora.	Observed and assessed
Forested	Cloud Forest	Slope	Low	Assumed to have primary forest; high percentage of native flora.	Present but not visited
Forested	Cloud Forest	Flat	Low	Assumed to have primary forest; high percentage of native flora.	Present but not visited
Forested	Cloud Forest	Ridge	Low	Assumed to have primary forest; high percentage of native flora.	Present but not visited
Forested	Dry Forest	Riparian	Medium	Smaller creeks and streams without associated flood plains; 75-100% crown cover.	Present, observed but not assessed
Forested	Dry Forest	Riparian	Low	Mostly restricted to the upper streams/creek and head waters; canopy is closed with lots of bryophytes and filmy ferns on stream banks. General lack of invasive and weedy species.	Observed but not assessed
Non-forested	Talasiga/ grassland	Woody shrubland	Medium	Here a mixture of the grass <i>Pennisetum polystachyon</i> , the reed <i>Miscanthus floridulus</i> and woody shrubs of most secondary succession plants with an occasional clump of the native bamboo <i>Schizostachyum glaucifolium</i> characterises this habitat.	Observed but not assessed
Non-forested	Talasiga/ grassland	River bank/ riparian	High	These are systems that are dominated by the grass <i>P. polystachyon</i> , the ferns <i>Pteridium</i> spp. and <i>Dicranopteris</i> spp. Trees and shrubs are literally absent except for some that may be found in gullys.	Observed but not assessed.

Appendix 5. Herpetofauna suvey sites locations and sampling methods

Site	Location (map reference points)	Vegetation description	Date	Sampling method	Weather	Time Span	Hours
Nasa	catchment			1	I		
1	Ridge above base camp TOVH-15, 19	Ridge forest	21/7/2012	Opportunistic visual	100% cloud Rain	0900-1400	5
	TOVH-15, 16, 17, 18, 19	Ridge forest	22/7/2012	Standard sticky trap	100% cloud Fine	1150-1330	25.5
	TOVH-15, 19	Ridge forest	23/7/2012	Standard visual	100% cloud Fine	1133-1415	2.5
2	Wainirovurovu Stream	Stream and riparian vegetation	20/7/2012	Standard nocturnal	100% cloud Fine	1831-1931	1
3	Mataemalu TOVH- 3, 14	Lowland forest	23/7/2012	Standard visual	100% cloud Fine	0900-1330	4.5
	Mataemalu TOVH- 3, 4, 5, 6, 7, 8, 10, 11, 12, 14	Lowland forest	23/7/2012	Standard sticky trap	100% cloud Fine	0900-0900	24
4	Nasa River TOVH- 21, 22	Inland river bank	23/7/2012	Standard nocturnal	10% cloud Fine	1813-2036	2
Waika	arakarawa catchment						
1	Wainivilekutu	Stream and riparian vegetation	21/3/2013	Standard nocturnal	100% cloud Fine	1900-2000	1
2	Waikutukutuvatu	Stream and riparian vegetation	23/3/2013	Standard nocturnal	100% cloud Fine	1800-1930	1.5
}	Waikarakarawa Base Camp	Stream and riparian vegetation	23/3/2013	Standard nocturnal	100% cloud Fine	1930-2030	1
1	Waikarakarawa Base Camp	Stream bank	24/3/2012	Standard sticky trap	30% cloud Fine	1230-1430 (next day)	26

Site	Location (map reference points)	Vegetation description	Date	Sampling method	Weather	Time Span	Hours
5	Main ridge to Mt. Vonolevu	Upland cloud forest		Opportunistic visual	100% cloud Rain	1100-1500	4
6	Main ridge into Mavuvu catchment	Lowland rainforest		Opportunistic visual	60% cloud	0730-1230	4

Appendix 6. Conservation status of herpetofauna species known from Viti Levu

Scientific name	Common name	Fijian name (Navosa dialect)	Conservation Status
Iguanas			
Brachylophus bulabula	*Banded iguana	Vokai, saumure	Viti Levu endemic Critically Endangered
Snakes			, <u> </u>
Candoia bibronii	Pacific boa	Gata (qwata)	Native
Ogmodon vitianus	*Fiji burrowing snake	Gata/ Bolo	Viti Levu endemic
Geckoes			
Gehyra vorax	†Giant forest gecko	Moko kabi	Native
Gehyra oceanica	Oceanic gecko	Moko kabi	Native
Lepidodactylus lugubris	Mourning or Pacific gecko	Moko kabi	Introduced
Lepidodactylus manni	*Mann's Gecko	Moko kabi	Endemic
Nactus pelagicus	†Slender toed gecko	Moko	Native
Hemidactylus frenatus	House gecko		Introduced
Hemidactylus garnotti	Fox gecko		Introduced
Hemiphyllodactylus typus	Indopacific tree gecko		Native
Skinks			
Emoia nigra	*Pacific black skink	Moko loa	Native, extirpated from Viti Levu
Emoia trossular	*Barred tree skink	Moko sari	Native, extirpated from Viti Levu
Lipinia noctua	Moth skink		Native
Cryptoblepharus eximus	*Pygmy snake-eyed skink		Endemic
Emoia campbelli	*Montane tree skink		Endemic
Emoia concolor	*†Green tree skink	Moko sari	Endemic
Emoia sp. novum?	*		Endemic to Viti Levu
Emoia impar	Blue-tailed copper-striped skink	Moko sari	Native
Emoia cyanura	Brown-tailed copper-striped skink	Moko sari (Boliti)	Native
Emoia parkeri	*†Bronze-headed skink	Moko sari	Endemic
Amphibians		•	
Bufo marinus	†Cane toad	Boto karokaro	Introduced, invasive
Platymantis vitiensis	*†Fiji tree frog	Ula	Endemic, Near Threatened
Platymantis vitianus	*Fiji ground frog	Ula, Dreli, Botoniviti	Endemic, Critically Endangered

Target endemic and extirpated species (*) and species captured during this survey (†).

Appendix 7. Avifauna species checklist, distribution and abundance

Common name	Status	Distribution	Abundance (#/ km²)
Barking Pigeon		Endemic	157
Black-face Shrikebill	VU	Native	5
Blued crested Broadbill		Endemic (subspecies endemic to Viti Levu)	51
Collared Lory	Cites Appendix II	Endemic	21
Fantail Cuckoo		Endemic (subspecies)	13
Fiji bush Warbler		Endemic	208
Fiji Goshawk	Cites Appendix II	Endemic (subspecies endemic to Viti Levu)	7
Fiji Parrotfinch		Endemic	31
Fiji Woodswallow		Endemic	9
Giant forest Honeyeater		Endemic	125
Golden Dove		Endemic	51
Golden Whistler		Endemic (subspecies)	36
Friendly ground Dove	VU	Native	7
Island Thrush		Endemic (subspecies)	52
Lesser Shrikebill		Endemic (subspecies)	23
Long-legged Warbler	EN	Endemic (subspecies endemic to Viti Levu)	16
Many-coloured fruit Dove		Native	5
Orange breasted Myzomela		Endemic	87
Pacific black Duck		Native	3
Pacific Harrier	Cites Appendix II	Native	4
Pink-billed Parrotfinch	VU	Endemic to Viti Levu	4
Polynesian Starling		Endemic (subspecies)	5
Polynesian Triller		Endemic (subspecies endemic to Viti Levu)	76
Red vented Bulbul	(exotic, invasive)	Introduced	16
Scarlet Robin		Endemic (subspecies)	33
Silvereye		Native	33
Slaty Monarch		Endemic	28
Streaked Fantail		Endemic (subspecies)	52
Yellow-breasted musk parrot		Endemic to Viti Levu	56
Vanikoro Broadbill		Endemic (subspecies)	39
Wattled Honeyeater		Native	77
White-collared Kingfisher		Endemic (subspecies)	5
White-rumped Swiftlet		Native	12

Common name	Status	Distribution	Abundance (#/ km ²)
White-throated Pigeon		Endemic (subspecies)	1
Fiji White-eye		Endemic	251
Samoan flying fox	Cites Appendix I	Endemic (subspecies)	15
Pacific flying fox	Cites Appendix I	Native	2
Species likely to be present,	but not recorded		
Eastern Reef heron		Native	
Peregrine falcon	AR	Native	
Red throated Lorikeet	CR	Endemic	
Barn Owl		Native	
IUCN Red List		ngered; VU=Vulnerable; EN=Endangered. status: AR, at risk	

Station	Longitude	Latitude	No. of birds	No. of species	Vegetation/habitat type	Habitat
1	177.93285	17.94032	12	6	secondary lowland forest	riparian
2	177.93155	17.94189	25	12	plantation, garden lowland	slope
3	177.93013	17.94394	3	2	secondary lowland forest	riparian
4	177.9292	17.94554	16	8	plantation, garden lowland	slope
5	177.93074	17.94513	16	7	grassland	slope
6	177.93211	17.94672	16	8	grassland	ridge slope
7	177.93391	17.94539	9	5	secondary lowland forest	ridge top
8	177.93318	17.94334	9	4	secondary lowland forest	ridge top
9	177.93517	17.9404	13	6	plantation, garden lowland	flat
10	177.93736	17.93911	5	4	secondary lowland forest	riparian
11	177.95975	17.94377	12	8	primary lowland forest	flat
12	177.95853	17.94216	16	14	primary lowland forest	steep slope
13	177.9563	17.9416	12	10	primary lowland forest	ridge slope
14	177.94504	17.94159	12	6	primary lowland forest	steep slope
15	177.96205	17.94467	15	9	primary lowland forest	flat
16	177.96169	17.94676	14	10	primary lowland forest	ridge top
17	177.96271	17.94855	11	9	primary lowland forest	steep slope
18	177.98424	17.9673	12	7	primary lowland forest	riparian
19	177.98227	17.96482	14	7	secondary lowland forest	flat
20	177.9807	17.96259	15	9	secondary lowland forest	flat
21	177.97766	17.95999	16	11	secondary lowland forest	flat
22	177.97585	17.95988	9	5	primary lowland forest	steep slope
23	177.97388	17.95921	21	12	primary lowland forest	ridge
24	177.97185	17.9572	9	8	primary lowland forest	ridge
25	177.96951	17.95697	17	10	primary lowland forest	ridge top
26	177.96312	17.94414	14	8	primary lowland forest	steep slope
27	177.96538	17.94351	17	8	primary lowland forest	ridge
28	177.96793	17.94335	25	14	primary lowland forest	ridge
29	177.96785	17.94516	10	8	primary lowland forest	ridge slope
30	177.96999	17.94598	10	8	primary lowland forest	riparian
31	177.97156	17.94579	13	7	primary lowland forest	riparian
32	177.95189	17.94689	10	8	secondary lowland forest	riparian
33	177.95375	17.94677	3	2	primary lowland forest	slope
34	177.95584	17.94637	11	5	primary lowland forest	steep slope

Appendix 8. Location of point count stations, habitat and birds recorded

Station	Longitude	Latitude	No. of birds	No. of species	Vegetation/habitat type	Habitat
35	177.9646	17.94497	21	10	primary lowland forest	flat
36	177.96185	17.94283	24	11	primary lowland forest	steep slope
37	177.96382	17.95281	23	13	primary lowland forest	ridge
38	177.97212	17.96587	7	5	primary lowland forest	riparian
39	177.97183	17.96945	11	9	secondary lowland forest	riparian
40	177.97214	17.97586	4	3	primary lowland forest	slope
41	177.97133	17.97986	13	8	primary lowland forest	flat
42	177.97057	17.99098	20	8	primary lowland forest	slope
43	177.97188	17.99266	12	8	primary lowland forest	ridge slope
44	177.9725	17.99568	15	10	primary lowland forest	ridge
45	177.97156	17.97309	6	4	primary lowland forest	slope
46	177.97331	17.99778	21	12	primary lowland forest	ridge slope
47	177.97435	17.00055	24	11	primary lowland forest	ridge
48	177.9769	17.00301	22	14	primary lowland forest	ridge
49	177.95966	17.99751	7	5	primary lowland forest	riparian
50	177.95729	17.99587	8	5	primary lowland forest	slope
51	177.95514	17.99372	8	6	primary lowland forest	slope
52	177.95357	17.99063	4	2	primary lowland forest	ridge
53	177.9523	17.98797	2	2	primary upland forest	ridge
54	177.94458	17.97956	12	8	primary cloud forest	ridge slope
55	177.9429	17.97705	8	8	primary upland forest	slope
56	177.94034	17.97512	7	6	primary lowland forest	slope
57	177.93669	17.97383	7	6	primary lowland forest	ridge
58	177.93285	17.97309	17	10	primary lowland forest	slope
59	177.92996	17.97395	18	12	secondary lowland forest	ridge slope
60	177.99716	17.97207	7	7	primary cloud forest	ridge
61	178.00037	17.96806	5	5	primary cloud forest	ridge
62	178.0006	17.96531	5	7	primary cloud forest	ridge top
63	177.99872	17.9638	8	5	primary cloud forest	ridge slope
64	177.99286	17.99286	6	5	primary upland forest	ridge
65	177.99152	17.95473	12	8	primary upland forest	riparian
66	177.99185	17.95199	5	6	primary upland forest	riparian
67	177.9931	17.95256	15	12	primary upland forest	flat
68	177.99527	17.9504	11	5	primary upland forest	slope
69	177.99924	17.9506	4	14	primary upland forest	ridge flat
70	178.00458	17.95373	7	11	primary cloud forest	ridge
71	178.00958	17.95391	7	4	secondary cloud forest	ridge top

Station	Longitude	Latitude	No. of birds	No. of species	Vegetation/habitat type	Habitat
72	178.00525	17.94992	12	6	primary cloud forest	ridge
73	178.0036	17.94737	10	6	primary cloud forest	slope
74	177.99036	17.94921	9	12	primary cloud forest	ridge top
75	177.99072	17.95205	8	10	primary upland forest	ridge
76	177.98587	17.9674	6	11	primary upland forest	slope
77	177.98634	17.96457	10	9	primary upland forest	ridge
78	177.98796	17.96216	7	7	primary upland forest	ridge
79	177.98918	17.95978	8	12	primary upland forest	riparian
80	177.98709	17.96027	11	7	primary upland forest	slope
81	177.98814	17.96805	5	8	primary upland forest	ridge
82	177.99052	17.96877	9	12	primary upland forest	ridge
83	177.99176	17.9706	12	9	primary upland forest	ridge slope
84	177.99113	17.97244	5	13	primary upland forest	slope
85	177.98918	17.97278	7	6	primary upland forest	slope
86	177.98708	17.97298	4	7	primary lowland forest	riparian
87	177.98601	17.97147	7	5	primary lowland forest	slope
88	177.98538	17.96977	5	6	primary lowland forest	slope
89	177.99361	17.9715	8	8	primary upland forest	ridge
90	177.99567	17.97143	7	13	primary cloud forest	ridge
91	177.99887	17.97315	5	7	primary upland forest	ridge
92	178.00041	17.97448	7	8	primary cloud forest	ridge
93	178.00175	17.97624	8	9	primary upland forest	ridge
94	178.00314	17.97803	4	5	primary lowland forest	ridge top
95	178.00414	17.98059	7	7	primary lowland forest	slope
96	178.00781	17.98191	6	7	primary lowland forest	slope
97*	177.91397	17.96840	>1000 inc	dividuals	Secondary lowland forest	Slope

* Location of Pteropus tonganus roost

Appendix 9. Focal avifauna species recorded within Emalu

Common name	Scientific name	Status	Abundance (#/km²)					
Land birds	_	_						
Black-face Shrikebill	Clytorhynchus nigrogularis	VU	5					
Collared Lory	Phigys solitarius simus	CITES Appendix II	21					
Fiji Goshawk	Accipiter rufitorques	CITES Appendix II	7					
Friendly ground Dove	Gallicolumba stairi	VU	7					
Long-legged Warbler	Trichocichla rufa rufa	EN	16					
Pacific Harrier	Circus approximans	CITES Appendix II	4					
Pink-billed Parrotfinch	Erythrura kleinschmidti	VU	4					
Red-vented Bulbul	Pycnotus cafer	Invasive*	16					
Bats		_						
Samoan flying fox	Pteropus samoensis	NT, CITES Appendix I	15					
Tongan flying fox	Pteropus tonganus	CITES Appendix I	2					
	IUCN Red List: NT=Near Threatened; VU=Vulnerable; EN=Endangered. *Exotic invasive, restricted to grassland and open secondary forest habitats							

Appendix 10.Species checklist of insects and arachnids in the Tovatova catchment

Order	Family	Scientific name	Light Traps	Leaf Litter	Pitfall Traps	Active search	Opportunistic
Coleoptera	Anthribidae		-	18	4	-	-
	Cerambycidae		1	-	-	-	-
	Chrysomelidae		1	7	7	-	-
	Corylophidae		-	20	13	-	-
	Curculionidae		3	83	26	-	-
	Elateridae		3	-	-	-	-
	Endomychidae		-	2	2	-	-
	Eucnemidae		1	-	-	-	-
	Languriidae		-	6	11	-	-
	Mordellidae		1	-	-	-	-
	Nitidulidae		-	4	4	-	-
	Passalidae		-	-	-	-	1
	Platypodidae		-	2	-	-	-
	Propalticidae		-	5	-	-	-
	Pselaphidae		-	23	1	-	-
	Salpingidae		-	4	3	-	-
	Scarabaeidae		13	-	-	-	-
	Scolytidae		5	46	50	-	-
	Staphylinidae		-	37	28	-	-
	Tenebrionidae		21	14	-	-	-
	Zopheridae		-	-	5	-	-
Diptera	Drosophilidae		-	-	1	-	-
	Others		4	-	-	-	-
Hymenoptera	Formicidae		2	139	8	-	-
	Ichneumonidae		7	-	-	-	-
Hemiptera	Cicadidae		11	-	-	-	-
	Others		-	-	2	-	-

Key: * = known endemics	s ** = endemic and focal species.
-------------------------	-----------------------------------

Order	Family	Scientific name	Light Traps	Leaf Litter	Pitfall Traps	Active search	Opportunistic
Dermaptera			1	-	-	-	-
Isoptera	Termitidae		13	-	-	-	-
Tricoptera			4	-	-	-	-
Lepidoptera	Lymantridae	Calliteara fidjiensis *	16	-	-	-	-
	Noctuidae	Dysgonia koroensis	1	-	-	-	-
		Pallaeocoleus sypnoides	2	-	-	-	-
		Stictoptera vitiensis	2	-	-	-	-
		Speiredonia mutabilis	1	-	-	-	-
		Ericeia inangulata	1	-	-	-	-
		Tricola plagiata	2	-	-	-	-
		Bocana manifestalis	1	-	-	-	-
	Geometridae	Cleora perstricta	1	-	-	-	-
		Cleora fowlesi	1	-	-	-	-
		Cleora sp	7	-	-	-	-
		Thallasodes liquenscens	8	-	-	-	-
	Limacodidae	Beggina sp*	6	-	-	-	-
	Pyralidae	Stemorrhages oceanitis	2	-	-	-	-
		Palpita sp	5	-	-	-	-
		Conogethes punctiferalis	1	-	-	-	-
		Botyodes asialis	6	-	-	-	-
		Lipararchis hyacinthopa	1	-	-	-	-
Lepidoptera	Nymphalidae	Hypolimnas inopinata **	-	-	-	5	3
		Hypolimnas bolina	-	-	-	1	-
		Tirumala hamata	-	-	-	3	-
		Melanitis leda	-	-	-	2	-
		Euploea boisduvalli	-	-	-	4	-
	Hesperiidae	Oriens augustula	-	-	-	1	-
	Papilionidae	Papilio schmeltzi *	-	-	-	1	1
	Satyridae	Xois sesara *	-	-		8	-

Key: * = known endemics ** = endemic and focal species.

Order	Family	Scientific name	Light Traps	Leaf Litter	Pitfall Traps	Active search	Opportunistic
Orthorptera			-	-	1	-	-
	Gryllacrididae		-	-	-	-	2
	Gryllidae		18	-	-	-	-
Odonata		Nesobasis spp. **	-	-	-	-	19
Phasmida	Phasmatidae	Nysirus spinulosus **	-	-	-	-	2
		Cotylosoma dipneusticum**	-	-	-	-	1
Arachnidae			-	10	5	-	1
Opiliones			-	16	1	-	-
Acari			-	46	-	-	-
Scorpions	Liochelidae		-	1	-	-	1

Key: * = known endemics ** = endemic and focal species.

Appendix 11. Species checklist of insects and arachnids in the Waikarakarawa catchment

Order	Family	Scientific name	Light Traps	Leaf Litter	1 km transect	Active search	Opportunistic
Coleoptera	Anobidae			22			
	Anthribidae			8			
	Brentidae		1				
	Carabidae			2			
	Cantharidae						2
	Curculionidae			64			
	Chrysomelidae			8			
	Elateridae			1			
	Eucnemidae		1				
	Lathrididae			72			
	Nitidulidae			39			
	Passalidae		1				
	Platypodidae		3				
	Pselaphidae			49			
	Scolytidae			296			
	Staphylinidae			100			
	Tenebrionidae		1	2			
Blattodea				1			
Diptera			1				
Hemiptera				19			
	Cicadidae		7				2
Hymenoptera	Formicidae			259			
Lepidoptera	Lymantridae	Calliteara fidjiensis*	7				
	Geometridae	Cleora diversa	8				
		Cleora ochricolis	1				
		Agathia pisina	2				

Key: * = known endemics ** = endemic and focal species.

Order	Family	Scientific name	Light Traps	Leaf Litter	1 km transect	Active search	Opportunistic
		Pyrrhorachis pyrrhogona	1				
		Petelia aesyla	3				
		Thallasodes figurata	4				
	Noctuidae	Mecodina variata	1				
		Sarbissa bostrychonota	1				
	Pyralidae	Palpita vitiensis	1				
		Cyadalima laticostalis	1				
		Botyodes asialis	2				
		Bradina chalcophea	2				
		Liparachis hyacinthopa	2				
		Stemorrhages oceantis	2				
	Torticidae		2				
	Nymphalidae	Euploea boisduvalii			8		
		Hypolimnas inopinata**			7		
		Hypolimnas bolina			3		
		Tirumala hamata			1		
Odonata	Agrionidae	Nesobasis erythrops**			4		
		Nesobasis angolicollis**			35		
		Nesobasis heteroneura**			5		
Orthoptera				49			
	Gryllacrididae		2				1
	Gryllidae		1				
	Tettigonidae		2				3
	Raphidophoridae						1
Phasmatodea	Phasmatidae	Cotylosoma dipneusticum**					1
		Nisyrus spinulosus**					2
Acari				5			
Araneae				55			1

Key: * = known endemics ** = endemic and focal species.

Key: * = known endemics ** = endemic and focal species.

Order	Family	Scientific name	Light Traps	Leaf Litter	1 km transect	Active search	Opportunistic
Scorpiones				4			
		Liocheles australasiae					3
Opiliones				36			

Appendix 12. Species checklist of insects and arachnids in the Mavuvu catchment

Order	Family	Scientific name	Light Traps	Leaf Litter	1km transect	Active search	Opportunistic
Coleoptera	Anthribidae			5			
	Curculionidae			46			
	Chrysomelidae			3			
	Lathrididae			4			
	Nitidulidae			10			
	Pselaphidae			17			
	Scolytidae			38			
	Staphylinidae			15			
Hemiptera				2			
Hymenoptera	Formicidae			27			
Lepidoptera	Nymphalidae	Hypolimnas inopinata**			8		
		Tirumala hamata			2		
		Euploea boisduvalii			4		
		Melanitis leda			1		
Odonata	Agrionidae	Nesobasis erythrops**			34		
		Nesobasis angolicollis**			58		
		Nesobasis heteroneura**			27		
Orthoptera				1			
Acari				18			
Araneae				10			
Opiliones				2			

Key: * = known endemics ** = endemic and focal species.

Site	Date	Coordinates	Method of collection	Species	Abundance
Nakoro, Navitilevu and Draubuta villages	18/07/2012	not recorded	Anecdotal (village interviews)	Anguilla marmorata Anguilla megastoma Kuhlia rupestris Kuhlia marginata* Oreochromis niloticus* Eleotris fusca* Lamnostoma kampeni* Awaous guamensis*	
NU1: Nasa upstream 1	19/07/2012	17.94593,177.96658	Visual observation	Sicyopterus lagocephalus Sicyopus zosterophorum	N/A
Nasa stream Upstream from basecamp	20/07/2012	not recorded	Opportunistic collection (spear)	Anguilla marmorata Anguilla megastoma	7 2
NU2: Nasa upstream 2	22/07/2012	17.94495,177.4431	Beach seine	Sicyopterus lagocephalus Sicyopus zosterophorum Anguilla marmorata	6 2 1
WL: Wainirovurovu lower	23/07/2012	17.94431,177.96056	Beach seine	Sicyopterus lagocephalus	2
WU: Wainirovurovu upper (above waterfall)	23/07/2012	17.94195,177.95972	Beach seine	Sicyopterus lagocephalus Anguilla marmorata	9 1
Wainirovurovu stream	24/07/2012	not recorded	Opportunistic collection (poison)	Anguilla marmorata Anguilla megastoma	39 16
Tributary to Nasa stream, downstream from Navitilevu	26/07/2012	17.95611,177.90222	Visual observation	Sicyopterus lagocephalus	N/A

Appendix 13. Species checklist of freshwater fish in the upper Sigatoka River tributaries

Site	Date	Coordinates	Method of collection	Species	Abundance
WK1: Waikarakarawa stream upstream from base camp	20/03/2013	17.98003,178.01088	Visual observation	Sicyopus zosterophorum Sicyopterus lagocephalus Anguilla marmorata Awaous guamensis	N/A
MV1: Upper Mavuvu upstream from base camp	22/03/2013	17.95007,177.99333	Visual observation	Sicyopterus lagocephalus Anguilla marmorata	N/A
MV2: Lower Mavuvu below waterfall	23/03/2013	17.96912,178.98687	Visual observation	Kuhlia rupestris	11

*presence of the species is yet to be verified by means of thorough fishing methods

Sampling Stations	Date	Disolved oxygen (mg/l)	рН	Conductivity (uS)	Temperature (°C)	Salinity (ppt)	TDS	Turbidity (NTU)	Altitude (m)
NS2 Nasa stream upstream	22/7/2012	8.95	8.05	0.047	19.7	0.02	0.03	5.8	511
WL Wainirovurovu lower	23/7/2012	8.86	7.37	0.084	19.6	0.04	0.053	0	507
WU Wainirovurovu upper	23/7/2012	8.77	8.05	0.081	20.2	0.04	0.052	0	556
Waikarakarawa stream (above base camp)	20/3/2013	8.27	6.88	0.077	21.9	0.03	0.049	0	404
Mavuvu upper	22/3/2013	8.36	6.84	0.066	21.1	0.03	0.042	0	550
Mavuvu mid	23/3/2013	8.60	7.01	0.091	21.4	0.04	0.057	0	459

Appendix 14. Water quality parametres at freshwater fish sampling stations

Catchment, Sampling dates	River/stream	Station Code	Location coordinates	Description	Survey type
Tovatova catchment, July 2012	Nasa Creek	NU1QT	17. 94477,177.96318	Upstream	Quantitative
		NU1QL	17.94685,177.965850	Upstream	Qualitative
	Wainirovurovu Stream (tributary)	WRD2QT	17.94431,177.96056	Downstream	Quantitative
		WRU3QT	17.941041,177.960060	Upstream-above waterfall	Quantitative
		WRU3QL	17.942233,177.959156	Upstream-above waterfall	Qualitative
	Nasa-Wainirovurovu Confluence	NWCQL	17.94476,177.96075	Confluence	Qualitative
Waikarakarawa catchment,	Waikarakarawa stream	WKQT	17.981617,178.009133	650m from ^{1st} campsite	Quantitative
March 2013		WKQL	17.979282,178.005956	600m from 1 st campsite	Qualitative
Mavuvu catchment,	Qalibovitu stream	QB1QL	17.948117,177.995467	Upstream	Qualitative
March 2013	(Upper Mavuvu)	QB2QL	17.951911,177.991813	200m from 2 nd campsite	Qualitative
		QB3QL	17.955224,177.990614	Downstream from campsite	Qualitative
	Wainasoba stream	WSLQT	17.968750,177.984850		Quantitative
	(Mid Mavuvu)	WSLQL	17.968750,177.984850	- Tributary of Mid Mavuvu River	Qualitative

Appendix 15. Location and descriptions of macroinvertebrate sampling stations

The four/five letter site codes are composed from the initials of the stream/creek, the station and the type of sampling, for example QB1QL indicates a station sampled in Qalibovitu stream (QB) at station 1 using Qualitative (QL) sampling technique.

Appendix 16. Physiochemical parameters of macroinvertebrate sampling stations

Station code	Temperature (°C)	рН	Conductivity (mS/cm)	TDS (g/l)	Turbidity (NTU)	Dissolved O ₂ (g/m ³)	Salinity (ppt)
NU1QT	19.7	8.05	0.047	0.030	5.8	8.95	0.02
WRD2QT	19.6	7.37	0.084	0.053	0	8.86	0.04
WRU3QT	20.2	8.05	0.081	0.052	0	8.77	0.04
WKQT	21.9	6.88	0.077	0.049	0	8.27	0.03
WSLQT	21.8	6.94	0.085	0.055	0	8.41	0.04
QB1QL	21.2	6.56	0.065	0.041	0	8.31	0.03

	Chann	el characte	eristics		Habit	at type		0	rganic ma	atter	Riparian	_
Station	Width (m)	Depth (m)	Velocity (m/s)	Pool (%)	Run (%)	Riffle (%)	Chute (%)	Logs (%)	Leaves (%)	Branches (%)	characteristics, % shade	Bank characteristics
NU1QT	3-5.6	0.22-2.4	0.30	5	70	20	5	-	10	<1	native trees and shrubs, 60%	well vegetated, gravel, sandy & highly stable
WRD2QT	2-5	0.14-0.8	0.40	20	20	10	40	-	10	-	native trees and shrubs, 95%	well vegetated, stony, sandy & highly stable
WRU3QT	2.5-4	0.1-1.5	0.50	20	40	20	20	<1	40	<1	native trees and shrubs, 20%	well vegetated, stony & highly stable
WKQT	4-6	0.10-1	0.32	20	30	30	20	<1	20	-	native trees and shrubs, 60%	well vegetated, rootmass, gravel, sandy & highly stable
WSLQT	1.2-8	0.10-0.85	0.35	10	50	20	20	-	30	-	native trees and shrubs, 90%	well vegetated, stony & highly stable
QB1QL	1.5-3	0.23-0.82	0.8	5	20	70	5	<1	30	<1	native trees and shrubs, 90%	Native trees and shrubs, well vegetated, stony, rootmass & highly stable

Appendix 17. Habitat and riparian characteristics of macroinvertebrate sampling stations

Group	Order/class/family	Таха	Distribution	Common name						
					NU1QT	WRD2QT	WRU3QT	WKQT	MVLQT	
nsecta	Ephemeroptera	Cloeon sp.	Endemic/Native	Mayfly	27	23	7	6	7	
		Pseudocloeon sp.	Endemic/Native	Mayfly	1050	390	433	1413	500	
		Cloeodes sp.	Endemic/Native	Mayfly	17	-	17	-	-	
	Trichoptera	Abacaria fijiana	Endemic	Caddisfly	700	1163	1177	87	1367	
		Abacaria ruficeps	Endemic	Caddisfly	67	93	210	-	103	
		Anisocentropus fijianus	Endemic	Caddisfly	10	3	3	-	7	
		Goera fijiana	Endemic	Caddisfly	30	33	70	-	100	
		Hydrobiosis spp.	Endemic/Native	Caddisfly	73	57	13	23	-	
		Odontoceridae spp.	Endemic/Native	Caddisfly	167	30	22	80	383	
		Chimarra sp.	Endemic/Native	Caddisfly	348	153	43	77	220	
		Rhyacophilidae spp.	Endemic/Native	Caddisfly	88	20	40	20	97	
		Hydroptilidae sp.	Endemic/Native	Caddisfly	30	17	217	53	40	
	Lepidoptera	Nymphula sp.	Endemic/Native	Moth	23	-	347	-	100	
		Unknown species	Endemic/Native		-	-	3	-	-	
	Diptera	Chironomus sp.	Endemic/Native	Midge	333	300	130	67	7	
		Chironominae sp. A	Endemic/Native	Midge	17	10	-	-	-	
		Chironominae sp. B	Endemic/Native	Midge	10	7	3	-	-	
		Tanypodinae sp.	Endemic/Native	Midge	17	3	40	-	-	
		Culicidae sp.	Introduced, tropics	Mosquitoes	-	20	57	-	-	
		Dixidae sp.	Endemic/Native	Dixid midges	20	13	-	-	-	
		Psychodidae sp.	Endemic/Native	Moth Fly	-	3	7	-	-	
		Simulium jolli	Endemic	Black fly	443	390	7	167	57	
		Simulium sp. B	Endemic/Native	Black fly	10	-	-	-	-	
		Tipula sp.	Endemic/Native	Crane fly	33	27	3	13	10	
		Tipulidae sp. B	Endemic/Native	Crane fly	-	-	3	3	-	

Appendix 18. Abundance of freshwater macroinvertebrates collected with Surber sampling

Group	Order/class/family	Таха	Distribution	Common name			Station			
					NU1QT	WRD2QT	WRU3QT	WKQT	MVLQT	
		Empididae sp.	Native (Indo-Pacific)	Lacewing fly	20	10	27	-	3	
		Muscidae sp.	Endemic/Native		-	-	-	-	3	
	Odonata	Nesobasis sp. A	Endemic/Native	Damselfly	3	-	-	-	3	
	Hemiptera	Vellidae sp.	Endemic/Native	Water bug	-	-	3	-	-	
	Coleoptera	Hydraenidae sp.	Endemic/Native	feather-winged beetles	20	7	7	7	-	
		Ptilodactylidae sp.	Endemic/Native		-	-	3	-	-	
		Dytiscidae sp.	Endemic/Native	diving beetles	7	3	-	-	-	
		Scirtidae sp.	Endemic/Native	marsh beetles	-	3	-	-	-	
		Hydrophilidae sp.	Endemic/Native	water scavenger beetles	-	3	-	-	-	
		Dineutus sp.	Native (Pacific)	Whirligig beetles	-	-	-	7	-	
	Orthoptera	Nemobiinae sp.	Native (Indo-Pacific)	Water cricket	17	10	10	13	-	
Arachnida	Araneae	Species 1	Unknown	Water spider	3	-	-	-	1	
Annelida	Oligochaeta	Oligochaeta spp.	Native (Indo-Pacific)	Worm	3	-	-	-	7	
	Nereidae	Nereid sp.	Endemic/Native		-	7	-	-	-	
Vematoda		Species 1	Endemic/Native		-	3	7	-	-	
		Species 2	Endemic/Native		-	-	7	-	-	
Nollusca	Gastropoda	Fluviopupa spp.	Endemic/Native	Snail	97	-	23	13	177	
		Melanoides tuberculata	Introduced, tropics	Snail	3	-	-	-	-	
Total abund	lance				3686	2801	2939	2049	3192	
Number of	taxa				30	28	30	16	20	

Таха	End./Nat./Intr.	Common name				Stat	ons			
			NU1QL	WRUQL3	NWCQL	WKQL	MVLQL	QBUQL1	QBUQL2	QBUQL3
<i>Cloeon</i> sp. A	Endemic/Native	Mayfly	-	1	-	-	-	-	-	-
<i>Cloeon</i> sp. B	Endemic/Native	Mayfly	-	1	-	1	2	3	9	-
Pseudocloeon sp. A	Endemic/Native	Mayfly	-	1	-	12	20	36	-	-
Pseudocloeon sp. B	Endemic/Native	Mayfly	-	1	-	20	30	22	2	-
Pseudocloeon sp. C	Endemic/Native	Mayfly	-	1	-	100	60	-	-	-
Pseudocloeon sp. D	Endemic/Native	Mayfly	-	1	-	38	46	-	-	-
Pseudocloeon spp.	Endemic/Native	Mayfly	-		-	-	-	242	-	-
Apsilochorema sp. 1 ("greenish")	Endemic/Native	Caddisfly	-	1	-	4	3	2	-	-
Apsilochorema sp. 2 ("pinkish")	Endemic/Native	Caddisfly	-		-	-	2	-	-	-
Hydrobiosis sp. 1 ("green")	Endemic/Native	Caddisfly	-	1	-	4	-	-	-	-
Hydrobiosis sp. 2 ("pinkish")	Endemic/Native	Caddisfly	-	1	-	-	-	-	-	-
Anisocentropus fijianus	Endemic/Native	Caddisfly	2	-	-	5	1	5	2	-
Odontoceridae spp.	Endemic/Native	Caddisfly	5	-	-	28	14	41	24	-
Abacaria fijiana	Endemic	Caddisfly	-	-	-	25	128	24	-	-
Abacaria ruficeps	Endemic	Caddisfly	-	-	-	-	-	2	-	-
Chimarra sp.	Endemic/Native	Caddisfly	-	-	-	19	3	3	-	-
Oxyethira sp.	Endemic/Native	Caddisfly	-	-	-	6	1	1	-	-
Goera fijiana	Endemic	Caddisfly	-	-	-	-	10	4	-	-
Trianodes fijiana	Endemic	Caddisfly	-	-	-	-	-		1	-
<i>Nymphula</i> sp.	Endemic/Native	Moth	-	-	-	-		2	-	-
Nesobasis sp. 1 ("dark green")	Endemic/Native	Damselfly	-	1	-	-	3	-	-	-
Nesobasis sp. 2 ("orangish")	Endemic/Native	Damselfly	-	1	-	-	-	-	-	-
Nesobasis sp. 3 ("light brown")	Endemic/Native.	Damselfly	-	-	2	1	3	_	20	-
Nesobasis sp. 4 ("dark brown")	Endemic/Native	Damselfly	-	-	2	-	4	-	10	-

Appendix 19. Abundance of freshwater macroinvertebrates collected opportunistically

Таха	End./Nat./Intr.	Common name				Stat	ions			
			NU1QL	WRUQL3	NWCQL	WKQL	MVLQL	QBUQL1	QBUQL2	QBUQL3
Hemicordulia sp.	Endemic/Native	Dragonfly	-	-	-	-	4	-	4	-
Procordulia sp.	Endemic/Native	Dragonfly	-	-	-	-	-	-	1	-
<i>Tipula</i> sp.	Endemic/Native	Cranefly	-	1	-	2	2	2	-	-
<i>Tipulidae</i> sp. B	Endemic/Native	Cranefly	-	-	-	1	1	-	-	-
Simulium jolli	Endemic	Blackfly	-	-	-	15	48	101	-	-
Empididae sp.	Endemic/Native	Dagger fly	-	-	-	1	-	-	-	-
Chironomus sp.	Endemic/Native	Midge	-	-	-	34	3	13	-	-
Corixidae sp.	Endemic/Native	Water bug	-	2	-	-	-	-	-	-
<i>Lymnogonus</i> sp.	Endemic/Native	Water-strider	-	-	-	-	1	-	-	-
<i>Hydraenidae</i> sp.	Endemic/Native	Featherwinged beetle	1	-	-	-	2	1	-	-
Dineutus sp.	Native (Pacific)	Whirligig beetle	1	-	-	3	4	5	3	-
Unknown species	Endemic/Native	Beetle	1	-	-	2	-	-	-	-
Unknown species	Endemic/Native	Diving beetle	-	-	-	1	1	4	-	-
Macrobrachium latimanus	Native (Indo-Pacific)	Prawn	-	-	1	-	-	-	-	-
Macrobrachium lar	Native (Indo-Pacific)	Prawn	-	-	-	3	2	-	1	-
Caridina sp. A	unknown	Shrimp	-	-	-	-	-	-	41	-
Caridina sp. B	unknown	Shrimp	-	-	-	-	-	-	2	-
Caridina sp. C	unknown	Shrimp	-	-	-	-	-	-	3	-
<i>Caridina</i> sp. D	unknown	Shrimp	-	-	-	-	-	-	1	-
Caridina sp. E	unknown	Shrimp	-	-	-	-	-	-	1	-
<i>Caridina</i> sp. F	unknown	Shrimp	-	-	-	-	-	-	1	-
Antecaridina sp.	Native (Indo-Pacific)	Shrimp	-	-	1	-	-	-	-	-
Atyoida pilipes	Native (Indo-Pacific)	Shrimp	-	-	-	1	-	-	-	-
Unknown species	unknown	Amphipod	-	-	-	-	-	1	-	-
Fluviopupa sp.	Endemic/Native	Snail	31	-	-	32	4	145	80	25

Таха	End./Nat./Intr.	Common name				Stati	ons			
			NU1QL	WRUQL3	NWCQL	WKQL	MVLQL	QBUQL1	QBUQL2	QBUQL3
Melanoides tuberculata	Introduced	Snail	-	-	-	2	1	-	-	-
Physastra nasuta	Native (Pacific)	Snail	-	-	-	1	-	4	-	-
Oligochaeta sp.	Native (Indo-Pacific)	Freshwater worm	-	-	-	-	1	2	-	-
Tricladida sp.	Endemic/Native	Flatworm	-	-	-	-	-	5	-	-
Total abundance		•	41	14	6	358	402	659	206	25
Number of taxa			6	13	4	24	27	21	18	1

Scientific Name	Common Name, Fijian Name	Abundance
Mus musculus*	House mouse, kucuve, kalavo	Uncommon
Rattus exulans*	Pacific rat, kucuve, kalavo	Uncommon
Rattus rattus	Black rat, ship rat, kucuve, kalavo	Rare
Rattus norvegicus*	Norway rat, kucuve, kalavo	Uncommon
Felis catus	Feral cat, <i>vusi, pusi</i>	Rare
Sus scrofa	Feral pig, <i>vuaka, vore</i>	Common
Bufo marinus	Cane toad, boto	Common
Herpestes fuscus**	Indian brown mongoose, manivusi	Rare
Herpestes auropunctatus**	Small Indian mongoose, manivusi	Locally common
Pycnonotus cafer	Bulbul, <i>ulurua</i>	Uncommon
Equus caballus	Horse, ohe, ose	Common

Appendix 20. Checklist of invasive and potentially invasive animals

Not directly observed but anecdotal evidence strongly indicates presence in village
 ** Presence of mongooses is confirmed but not which of the two possible species

Appendix 21. Locations of rodent transects in Tovatova catchment

Transect	Number of traps	Trap nights	Location	Transect coordinates
1	34 traps (17 pairs)	1	From Tovatova base camp towards the ridge	Start: -17.943719°, 177.961474° End: -17.943656°, 177.959597°
2	30 traps (15 pairs)	1	Uphill track from Tovatova base camp to Mavuvu Creek	Start: -17.943632°, 177.961495° End: -17.944801°, 177.962060°
3	24 traps (12 pairs)	1	In and around the Tovatova base camp	Start: -17.943683°, 177.961511° End: -17.943366°, 177.962837°

Appendix 22. Record of pigs (*Sus scrofa*) caught

Date	Gender and age
11/07/2012	Juvenile male
12/07/2012	Juvenile male
14/07/2012	Large pregnant female
15/07/2012	undetermined *
20/07/2012	Juvenile male
20/07/2012	undetermined *

* Eaten by dogs before determination could be made of gender and age

Appendix 23.	Checklist of invasive and potentially invasive plant	S
--------------	--	---

Family	Scientific Name	Common name, (Fijian)	Habitat	Abundance
1. Agavaceae	Dracaena fragrans	Vasili ni vavalagi	Found in secondary forest	Rare
2. Asteraceae	Crassocephalum crepidioides	thick head	Observed in abandoned plantations.	Uncommon
3. Asteraceae	Mikania micrantha	mile-a-minute, wabosucu	Abandoned farms.	Uncommon
4. Asteraceae	Tridax procumbens	coat buttons, tabu keka	Can be seen growing on village green in Navitilevu and Nakoro Village and also on abandoned plantations.	Uncommon
5. Bignoniaceae	Spathodea campanulata	African tulip, <i>pasi</i>	Two trees in the Nasa catchment, one in Waikarakarawa	Rare
6. Malvaceae	Sida rhombifolia	Broomweed	Common around horse tracks, grazing areas, former plantation areas.	Uncommon
7. Myrtaceae	Psidium guajava	guava, <i>quawa</i>	Commonly found in paddocks.	Common
8. Fabaceae	Derris malaccensis	Derris, duva, tuva	Very common near streams smothering the vegetation.	Common
9. Fabaceae	Samanea saman	rain tree, monkeypod, <i>Vaivai ni valagi</i>	Large stands can be seen growing along the river from Nakoro to Navitilevu village	Common
10. Fabaceae	Leucaena leucocephala	vaivai ni vavalgi	Observed along grazing areas and paddocks.	Common
11. Lamiaceae	Hyptis pectinata	tamoli ni vavalagi	Found in abandoned plantations and along creek-bed.	Uncommon
12. Lythraceae	Cuphea carthagenensis	tar weed	Observed along main track.	Uncommon
13. Melastomataceae	Clidemia hirta	Koster's curse, <i>karausiga, vuti</i>	Common through all forest types visited	Very common
14. Melastomataceae	Dissotis rotundifolia	pink lady	Stream banks in disturbed areas	Common

Family	Scientific Name	Common name, (Fijian)	Habitat	Abundance
15. Poaceae	Arundo donax	Giant reed, gasau ni valagi	Along creeks and streams	Uncommon
16. Poaceae	Bambusa vulgaris	bitu ni vavalagi		Rare
17. Poaceae	Imperata cylindrica		Open areas and in grassland	Uncommon
18. Poaceae	Pennisetum polystachyon	mission grass, <i>co</i> manivusi	Dominant species in grasslands.	Common
19. Piperaceae	Piper aduncum	Yaqoyaqona	Large monotypic stand found along the boundary of Emalu Forest and within disturbed areas within the Emalu Forest.	Common
20. Solanaceae	Brugmansia sp.	Angel's trumpet	Found along creeks and streams.	Common
21. Verbenaceae	Lantana camara	lantana, <i>lanitana</i>	Observed near grazing areas.	Uncommon
22. Solanaceae	Solanum torvum	Kosipeli	Favourite food for pigeons, found in abandoned plantations and fallow areas.	Uncommon
23. Zingiberaceae	Alpinia purpurata	Boia	Along creeks	Uncommon
24. Zingiberaceae	Curcuma longa	tumeric, <i>cago</i>	Grassland and abandoned plantations.	Common
25. Zingiberaceae	Hedychium coronarium	White ginger, <i>jija</i>	Along creeks and streams bank.	Uncommon
26. Zingiberaceae	Zingiber zerumbet	Lalaya	Locally common on some ridge-top	Uncommon

Appendix 24. Summary descriptions and locations of cultural heritage sites

Site Code	Site type	Site evidence	Vegetation	Site coordinates	Date
			zone		recorded
M28-0001	Old village site	House mounds	Lowland	17.955722, 177.913025	24/07/12
M28-0002	Traditional land boundary	Rock feature	Lowland	17.95156, 177.927147	25/07/12
M28-0003	Sacred Pool	Pool	Lowland	17.951434, 177.927296	25/07/12
M28-0004	House mound	Highly raised mound	Lowland	17.946785, 177.925627	18/07/12
M28-0005	House mound	House mound	Lowland	17.947028, 177.932636	18/07/12
M28-0006	Ditch	Causeway, ditch feature	Lowland	17.945145, 177.933914	18/07/12
M28-0007	Agricultural terrace	Terrace platforms, pottery sherds	Lowland	17.94184, 177.94267	18/07/12
M28-0008	Old village site	House mounds, pottery sherds	Lowland	17.94132, 177.94766	19/07/12
M28-0009	Old village site	House mounds, pottery sherds	Lowland	17.94554, 177.953848	21/07/12
M28-0010	Old village site	House mounds, terrace platforms, pottery sherds	Lowland	17.953684, 177.947787	21/07/12
M28-0011	Hill fortification	House mounds, terrace platforms	Lowland	17.953714, 177.948715	21/07/12
M28-0012	Old village site	House mounds, pottery sherds, metallic pot	Lowland	17.957585, 177.94673	21/07/12
M28-0013	Agricultural terrace	Terrace platforms	Lowland	17.943933, 177.960069	19/07/12
M28-0014	Old village site	House mounds, pottery sherds	Lowland	17.943989, 177.961356	18/07/12
M28-0015	Agricultural terrace	Terrace platforms	Lowland	17.945014, 177.959152	21/07/12
M28-0016	Sacred Pool	Natural pool (Tobu ni Nanai)	Lowland	17.945415, 177.959916	21/07/12
M28-0017	Hill fortification	Causeway, defensive ditch, house mound	Upland	17.956124, 177.96347	20/07/12
M28-0018	Hill fortification	House mound, defensive ditch	Upland	17.957459, 177.966507	20/07/12
M28-0019	Old village site	House mounds, pottery sherds	Lowland	17.945685, 177.964307	22/07/12
M28-0020	Old village site	House mound, pottery sherds, terrace platforms	Lowland	17.943541, 177.96696	22/07/12
M28-0021	Pottery site	Pottery sherds	Upland	17.941519, 177.968532	22/07/12
M28-0022	Old village site	Pottery sherds	Upland	17.942736, 177.96926	22/07/12
M28-0023	Hill fortification	House mounds, pottery sherds	Upland	17.956789, 177.971649	20/07/12
M28-0024	Old village site	House mounds, terrace platforms	Lowland	17.942156, 177.972743	23/07/12
M28-0025	Old village site	Terrace platform, pottery sherds, stone alignment feature	Lowland	17.941205, 177.973868	23/07/12
M28-0026	Old village site	House mounds, pottery sherds	Lowland	17.942908, 177.959728	19/07/12
M28-0027	Hill fortification	House mounds, pottery sherds	Upland	17.936667, 177.970696	22/07/12
M28-0028	House mound	House mound	Lowland	17.94112, 177.957129	19/07/12

Site Code	Site type	Site evidence	Vegetation zone	Site coordinates	Date recorded
M28-0029	Ditch	Raised flat platform	Lowland	17.9880039,178.008375	20/03/13
M28-0030	Platform	Flat terrace	Lowland	17.989214, 178.005662	20/03/13
M28-0031	Platform	Flat terrace	Lowland	17.989222, 178.004928	20/03/13
M28-0032	Ditch	Trench	Lowland	17.990073, 178.003454	20/03/13
M28-0033	House mound	House foundation, fire place, indicator plants	Lowland	17.991264, 178.001543	20/03/13
M28-0034	House mound	House foundation	Upland	17.991658, 178.000810	20/03/13
M28-0035	House mound	House foundation	Upland	17.990698, 177.998185	20/03/13
M28-0036	House mound	Flat terrace, stone alignment, house foundations	Upland	17.988996, 177.995172	20/03/13
M28-0037	Platform	Flat terrace	Upland	17.987994, 177.994121	20/03/13
M28-0038	Platform	Flat terrace, house foundation	Upland	17.987405, 177.993662	20/03/13
M28-0039	House mound	House foundation	Lowland	17.980532, 178.003924	20/03/13
M28-0040	House mound	House foundation	Lowland	17.982715, 178.009278	20/03/13
M28-0041	Agricultural terrace	Series of terraces	Lowland	17.984366, 178.011242	20/03/13
M28-0042	House mound	House foundation	Lowland	17.982227, 178.006033	20/03/13
M28-0043	Platform	Raised flat	Lowland	17.982030, 178.006467	20/03/13
M28-0044	House mound	House foundation, indicator plants and trees	Lowland	17.981805, 178.007046	20/03/13
M28-0045	Agricultural terrace	Series of terraces	Lowland	17.982740, 178.011033	20/03/13
M28-0046	Hill fortification	Circular ditches, causeways	Upland	17.988327, 177.994194	21/03/13
M28-0047	Agricultural terrace	Series of terraces	Lowland	17.983373, 177.006021	21/03/13
M28-0048	Platform	Raised flat	Lowland	17.982922, 178.005426	21/03/13
M28-0049	House mound	House foundation, indictor plant	Lowland	17.982736, 178.005193	21/03/13
M28-0050	Stone alignment	Stone wall	Lowland	17.981549, 178.003506	21/03/13
M28-0051	House mound	House foundation	Upland	17.982559, 177.991147	21/03/13
M28-0052	Hill fortification	Platform, trench, causeways, indicator plants	Lowland	17.984130, 177.986690	21/03/13
M28-0053	House mound	House foundation, stone alignment	Lowland	17.984486, 177.985674	21/03/13
M28-0054	House mound	House foundation	Lowland	17.984322, 177.986048	21/03/13
M28-0055	Old village site	House mounds, platforms, indicator plants,	Lowland	17.984255, 177.984087	21/03/13
M28-0056	Habitational terrace	Flat platform	Lowland	17.985933, 177.979203	21/03/13
M28-0057	House mound	House mound	Lowland	17.986574, 177.971813	21/03/13
M28-0058	House mound	House foundation	Lowland	17.986849, 177.971249	21/03/13

Note: Lowland and upland vegetation zones refer to those below and above 650m, respectively.					
Site Code	Site type	Site evidence	Vegetation	Site coordinates	Date
			zone		recorded
M28-0059	Old village site	House foundations, raised stone wall, stone alignment for initiation	Lowland	17.997551, 177.962255	21/03/13
M28-0060	House mound	House foundation	Lowland	17.987036, 177.970733	21/03/13
M28-0061	House mound	House foundation	Lowland	17.987265, 177.970283	21/03/13
M28-0062	Agricultural terrace	Series of terraces	Lowland	17.988284, 177.968851	21/03/13
M28-0063	House mound	House foundations, indicator plants	Lowland	17.989261, 177.969247	21/03/13
M28-0064	Agricultural terrace	Series of terraces	Lowland	17.995930, 177.965134	21/03/13
M28-0065	Old village site	House foundations, pottery sherds, stone alignment	Lowland	17.985088, 177.975448	22/03/13
M28-0066	Hill fortification	House foundations, fortification trench, fortification stone wall	Upland	17.993331, 177.980870	22/03/13
M28-0067	Habitational platform	Flat terraces,house mounds,indicator plants	Lowland	17.989834, 177.979605	22/03/13
M28-0068	Hill fortification	Platforms,house mounds,trenches	Lowland	18.001788, 177.964786	23/03/13
M28-0069	Hill fortification	Stone wall alignment, house foundations, indicator plants, rock shelter	Lowland	17.990722, 177.968911	23/03/13
M28-0070	Hill fortification	House mounds, fortification trench, stone alignment	Lowland	17.985345, 177.970595	24/03/13
M28-0071	Old village site	House foundations, indicator plants, pottery sherds	Lowland	17.975304, 177.977471	24/03/13
M28-0072	Hill fortification	Fortification trenches, house foundations, indicator plants, pottery sherds	Lowland	17.9698685,177.982617	24/03/13
M28-0073	House mound	House foundation, standing stones	Lowland	17.965324, 177.985803	24/03/13
M28-0074	House mound	House foundations	Lowland	17.963856, 177.986926	24/03/13
M28-0075	House mound	House foundations	Lowland	17.961816, 177.988338	24/03/13
M28-0076	House mound	House foundations	Lowland	17.960967, 177.987922	24/03/13
M28-0077	Platform	Flat terraces, pottery sherds	Lowland	17.973944, 178.004944	24/03/13

REFERENCES

1940. Preservation of Objects of Archaeological and Palaeontological Interest Act. Cap 264. Fiji.

- ABELL, R., THIEME, M. L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S. C., BUSSING, W., STIASSNY, M. L. J., SKELTON, P., ALLEN, G. R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J. V., HEIBEL, T. J., WIKRAMANAYAKE, E., OLSON, D., LOPEZ, H. L., REIS, R. E., LUNDBERG, J. G., PEREZ, M. H. S. & PETRY, P. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. *BioScience*, 58, 403-414.
- ANSDELL, G. 1882. A trip to the highlands of Viti Levu, being a description of a series of photographic views taken in the Fiji Islands during the dry season of 1881, London, Harrison and Sons.
- AULD, B. A. & NAGATALEVU-SENILOLI, M. 2003. African tulip tree in the Fijian Islands. *In:* LABRADA, R. (ed.) *Weed management for developing countries (Addendum 1).* Rome: FAO.
- BIRDLIFE INTERNATIONAL. 2012a. *Pycnotus cafer. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1* [Online]. Available: <u>www.iucnredlist.org</u> [Accessed August 15 2013].
- BIRDLIFE INTERNATIONAL. 2012b. Trichocichla rufa. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1 [Online]. Available: www.iucnredlist.org [Accessed August 15 2013].
- BOSETO, D. 2006. *Diversity, distribution and abundance of Fijian freshwater fishes*. MSc Thesis, University of the South Pacific.
- BOSETO, D. & JENKINS, A. P. 2006. A checklist of freshwater and brackish water fishes of the Fiji Islands. Suva, Fiji: University of the South Pacific, Institute of Applied Sciences.
- BREWSTER, A. B. 1921. The chronicles of the NoEmalu tribe or dwellers in Emalu. *Transactions of the Fijian Society for 1920*, 6-15.
- BROOKE, A. & WILES, G. 2008. *Pteropus samoensis*. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1 [Online]. Available: <u>www.iucnredlist.org</u> [Accessed August 15 2013].
- BROWNLIE, G. 1977. The pteridophyte flora of Fiji, Vaduz, Liechtenstein, J. Cramer.
- BROWNSEY, P. J. & PERRIE, L. R. 2011. A revised checklist of Fijian ferns and lycophytes. *Telopea*, 13, 513-562.
- CUNNINGHAM, D. M. & MOORS, P. J. 2006. Guide to the identification and collection of New Zealand rodents. 3rd ed. Wellington: Department of Conservation.
- DERRICK, R. A. 1951. The Fiji Islands: A Geographical Handbook, Suva, Government Print Department
- DONNELLY, T. W. 1990. The Fijian genus of *Nesobasis* 1. Species of Viti Levu, Ovalau and Kadavu (Odonata, Coenagrionidae). *New Zealand Journal of Zoology*, 17, 87-117.
- FIJI FORESTRY DEPARTMENT 2011. The Fiji REDD-Plus Policy. Ministry of Primary Industries.
- FISON, L. 1885. The nanga, or sacred stone enclosure, of Wainimala, Fiji. *The Journal of the Anthropological Institute of Great Britain and Ireland*, 14, 14-31.
- FLANNERY, T. 1995. *Mammals of the South-West Pacific and Moluccan Islands,* New York, Cornell University Press.
- FOLGARAIT, P. J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. *Biodiversity and Conservation*, 7, 1221-1244.
- FOREST CARBON PARTNERSHIP FACILITY. 2013. *What is REDD+?* [Online]. Available: <u>http://www.forestcarbonpartnership.org/what-redd</u> [Accessed August 15 2013].

- FOWLER, H. W. 1953. Two new Gobioid fishes from Oceania. *Transactions of the Royal Society of New Zealand*, 81, 385-388.
- HAASE, M., PONDER, W. F. & BOUCHET, P. 2006. The genus *Fluviopupa* Pilsbry, 1911 from Fiji (Caenogastropoda, Rissooidea). *Journal of Molluscan studies*, 72, 119-136.
- HASHIMOTO, S. 1986. Irrigated cultivation of taro in the Pacific. *Essays and Studies by Members of the Faculty of Letters, Kansai University*, 36, 705-788.
- HAYNES, A. 1988. The gastropods in the streams and rivers of five Fiji islands: Vanua Levu, Ovalau, Gau, Kadavu, and Taveuni. *Veliger*, 30, 377-383.
- HAYNES, A. 1994. The effects of development on Fijian island freshwater invertebrates. *Invertebrate Biodiversity and Conservation, Memoirs of the Queensland Museum*, 36, 87-91.
- HAYNES, A. 1999. The long term effect of forest logging on the macroinvertebrates in a Fijian stream. *Hydrobiologia*, 405, 79-87.
- HAYNES, A. 2001. Freshwater Snails of the Tropical Pacific Islands, Suva, Institute of Applied Sciences.
- HAYNES, A. 2004. Report on the freshwater invertebrates in the streams affected by the proposed Sigatoka – Ba hydropower project. *Baseline water quality biological survey of the proposed new hydro-electricity generating facility sites at the headwaters of the Ba and Sigatoka Rivers, Viti Levu, Fiji.* Suva: Institute of Applied Science, University of the South Pacific.
- HAYNES, A. 2009. Snails in Fiji's rivers and streams, Suva, Institute of Applied Sciences.
- HAYNES, A. in prep. Freshwater insects of Fiji's streams and rivers.
- JENG, M. S., LIU, H. C., TZENG, C. S. & NG, P. K. L. 2003. On the taxonomy and ecology of Labuanium trapezoideum (Decapoda, Brachyura, Sesarmidae), a crab living on riverine cliffs in Taiwan. *Crustaceana*, 76, 227-240.
- JENKINS, A. P. 2009. Freshwater and estuarine fishes of Fiji: current taxonomic knowledge and priorities for conservation. In: JENKINS, A. P., PRASAD, S. R., BACCHIOCHI, J., SKELTON, P. A. & YAKUB, N. (eds.) Proceedings of the Inaugural Fiji Islands Conservation Science Forum. Suva: Ecosystem Based Management-Fiji Project.
- JENKINS, A. P. & BOSETO, D. 2003. A preliminary investigation of priority ichthyofaunal areas and watershed ecosystem services for assessing representation in Fiji's forest reserve network. Suva: Wetlands International–Oceania.
- JENKINS, A. P. & BOSETO, D. 2005. *Schismatogobius vitiensis,* a new freshwater goby (Teleostei: Gobiidae) from the Fiji Islands. *Ichthyological Exploration of Freshwaters,* 16, 75-82.
- JENKINS, A. P. & JUPITER, S. D. 2011. Spatial and seasonal patterns in freshwater ichthyofaunal communities of a tropical high island in Fiji. *Environmental Biology of Fishes*, 91, 1-14.
- JENKINS, A. P. & MAILAUTOKA, K. 2010. *Hippichthys albomaculosus*, a new species of freshwater pipefish (Pisces: Syngnathidae) from Fiji. *Aqua, International Journal of Ichthyology*, 16, 111-116.
- KING, T. G. 2004. A burning question? Fire, livelihoods and sustainability in the Navosa region of the Fiji Islands. Phd thesis, Massey University.
- KIRKPATRICK, J. B. & HASSALL, D. C. 1985. The vegetation and flora along an altitudinal transect through tropical forest at Mount Korobaba, Fiji. *New Zealand Journal of Botany*, 23, 33-46.
- LARSON, H. K. 2010. A review of the gobiid fish genus *Redigobius* (Teleostei: Gobionellinae), with descriptions of two new species. *Ichthyological Exploration of Freshwaters*, 21 123-191.
- LAWRENCE, J. & BRITTON, E. B. 1994. Australian Beetles, Melbourne, Melbourne University Press.
- LICCIARDI, G. & AMIRTAHMASEB, R. (eds.) 2009. *The Economics of Uniqueness: Investing in Historic City Cores and Cultural Heritage Assets for Sustainable Development*, Washington D.C: The World Bank.

- LOWE, S., BROWNE, M., BOUDJELAS, S. & DE POORTER, M. 2000. 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database, The Invasive Species Specialist Group (ISSG).
- LUMBSCH, H. T., LUECKING, R., DIVAKAR, P., VON KONRAT, M. & NAIKATINI, A. 2011. New records of lichen-forming fungi from Fiji. *Telopea*, 13, 375-404.
- MACANAWAI, A., DAY, M. D., TUMANENG-DIETE, T. & ADKINS, S. W. Year. Some factors that may influence the invasiveness of *Mikania micrantha* Kunth ex H.B.K. in Fiji. *In:* ZYDENBOS, S. M., ed. Sevententh Australasian Weeds Conference, 2010 Christchurch, New Zealand. New Zealand Plant Protection Society, 95-98.
- MASIBALAVU, V. T. & DUTSON, G. 2006. Important Bird Areas in Fiji. Conserving Fiji's Natural Heritage, Suva, Birdlife International.
- MCDOWALL, R. M. 2008a. Diadromy, history and ecology: a question of scale. *Hydrobiologia*, 602, 5-14.
- MCDOWALL, R. M. 2008b. Early hatch: a strategy for safe downstream larval transport in amphidromous gobies *Reviews in Fish Biology and Fisheries*, 19, 1-8
- MCGAVIN, C. M. 2000. Insects, spiders and other terrestrial arthropods, London, Dorling Kindersley Ltd.
- MEYER, J.-Y. 2000. Preliminary review of the invasive plants in the Pacific islands. *In:* SHERLEY, G. (ed.) *Invasive species in the Pacific: a technical review and draft regional strategy*. Samoa: SPREP.
- MORLEY, C., MCLENACHAN, P. A. & LOCKHART, P. J. 2007. Evidence for the presence of a second species of mongoose in the Fiji Islands. *Pacific Conservation Biology*, 13, 29-34.
- MORRISON, C. (ed.) 2003. *Baseline flora and fauna survey of the Sovi Basin, Naitasiri,* Suva: Institute of Applied Science, University of the South Pacific.
- MORRISON, C. & NAWADRA, S. (eds.) 2009. A rapid biodiversity assessment of the Nakauvadra highlands, Ra Province, Fiji, Arlington, Virginia: Conservation International.
- MORRISON, C., NAWADRA, S. & TUIWAWA, M. V. (eds.) 2010. A rapid biodiversity assessment of the Nakorotubu range, Ra and Tailevu Provinces, Fiji, Arlington, Virginia: Conservation INternational.
- MUELLER-DOMBOIS, D. & FOSBERG, F. R. 1998. Vegetation of the tropical Pacific islands, New York, Springer.
- NAIKATINI, A. 2009. *Monitoring comparative and temporal variation in the land-birds of Vago-Savura*. MSc thesis, University of the South Pacific.
- NANDLAL, S. unpub. A key to the species of the genus Macrobrachium from Fiji.
- PALMEIRIM, J. M., CHAMPION, A., NAIKATINI, A., NIUKULA, J., TUIWAWA, M., FISHER, M., YABAKI-GOUNDER, M., THORSTEINSDOTTIR, S., QALOVAKI, S. & DUNN, T. 2007. Distribution, status and conservation of the bats of the Fiji Islands. *Oryx*, 41, 509-519.
- PALMER, B. 1971. Fijian Pottery Technologies: Their Relevance to Certain Problems of Southwest Pacific Prehistory. *In:* GREEN, R. & KELLY, M. (eds.) *Studies in Oceanic Culture History Volume* 2. *Pacific Anthropological Records*. Honolulu: Bishop Museum.
- PARRY, J. T. 1987. The Sigatoka Valley pathway into pre-history. Bulletin of the Fiji Museum, 9.
- PERNETTA, C. J. & WATLING, D. 1978. The introduced and native terrestrial vertebrates of Fiji. *Pacific Science*, 32, 223-244.
- PRASAD, S. R. & WAQA-SAKITI, H. 2007. *Butterflies of the Fiji Islands,* Suva, University of the South Pacific.
- RIBEIRO-JUNIOR, M. A., GARDNER, T. A. & AVILA-PIRES, T. A. 2006. The effectiveness of glue traps to sample lizards in a tropical rainforest. *South American Journal of Herpetology* 1, 131-137.

- RIBEIRO-JUNIOR, M. A., GARDNER, T. A. & AVILA-PIRES, T. C. S. 2008. Evaluating the effectiveness of herpetofaunal sampling techniques across a gradient of habitat change in a tropical forest landscape. *Journal of Herpetology*, 42, 733-749.
- ROBINSON, G. 1975. Macrolepidoptera of Fiji and Rotuma: a taxonomic and geographic study, Oxford, Classey Ltd.
- RODDA, P. 1967. Outline of the geology of Viti Levu. Geological Survey of Fiji Occasional Paper, 3.
- RODDA, P. 1976. Geology of northern and central Viti Levu (an explanation of Viti Levu sheets 2, 6 and 12) *Mineral Resources Department Bulletin*, 3.
- ROTH, J. & HOOPER, S. (eds.) 1990. The Fiji journals of Baron Anatole von Hugel 1875-1877, Suva: Fiji Museum.
- SMITH, A. C. 1979. *Flora Vitiensis Nova*: a new flora of Fiji (spermatophytes only). *Volume 1*. Hawaii: National Tropical Botanical Garden.
- SMITH, A. C. 1981. *Flora Vitiensis Nova*: a new flora of Fiji (spermatophytes only). *Volume 2*. Hawaii: National Tropical Botanical Garden.
- SMITH, A. C. 1985. *Flora Vitiensis Nova*: a new flora of Fiji (spermatophytes only). *Volume 3*. Hawaii: National Tropical Botanical Garden.
- SMITH, A. C. 1988. *Flora Vitiensis Nova*: a new flora of Fiji (spermatophytes only). *Volume 4*. Hawaii: National Tropical Botanical Garden.
- SMITH, A. C. 1991. *Flora Vitiensis Nova*: a new flora of Fiji (spermatophytes only). *Volume 5.* Hawaii: National Tropical Botanical Garden.
- SODERSTROM, L., HAGBORG, A., POCS, T., SASS-GYARMATI, A., BROWN, E., VON KONRAT, M. & RENNER, M. 2011. Checklist of hornworts and liverworts of Fiji. *Telopea*, 13, 405-454.
- STARK, J. D., BOOTHROYD, I. K. G., HARDING, J. S., MAXTED, J. R. & SCARSBROOK, M. R. 2001. Protocols for sampling macroinvertebrates in wadeable streams. *New Zealand Macroinvertebrate Working Group Report No. 1.* Ministry for the Environment.
- TANNER, A. 1996. Colo Navosa; local history and the social construction of region in interior Viti Levu, Fiji. *Oceania* 66, 230-251.
- THOMAS, P. 2013. Acmopyle sahniana. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1 [Online]. Available: www.iucnredlist.org [Accessed 15 August 2013].
- THOMSON, B. 1908. The Fijians: a Study of the Decay of Custom, London, William Heinemann.
- TISCHNER, H. 1984. Theodore Kleinschmidt's notes on the hill tribes of Viti Levu 1877-1878. *Domodomo*, 2, 146-190.
- TUIWAWA, M. V. 1999. The flora, ecology and conservation of botanical biodiversity of Waisoi and the southeastern slopes of the Korobasabasaga Range in Namosi Province, Fiji. MSc thesis, The University of the South Pacific.
- TWYFORD, I. T. & WRIGHT, A. C. S. 1965. The Soil Resources of the Fiji Islands, Suva, Government of Fiji.
- TYE, A. 2009. Guidelines for invasive species management in the Pacific: a Pacific strategy for managing pests, weeds and other invasive species. Apia, Samoa: Secretariat of the Pacific Regional Environmental Programme.
- VAN GOSSUM, H., BEATTY, C. & SHERRAT, T. 2006. The Zygoptera of Viti Levu and Vanua Levu, the two larger islands in the Fiji archipelago. *International Dragonfly Fund Report*, 9, 1-14.
- VON KONRAT, M., NAIKATINI, A., TUIWAWA, M., SODERSTROM, L., FIFE, A., RENNER, M., BROWNSEY, P., PERRIE, L., HAGBORG, A., POCS, T., LUMBSCH, H. T., BRAGGINS, J.,

SENECA, A. & BROWN, E. 2011. A brief history of the cryptogams of Fiji and prospects for the future. *Telopea*, 13, 361-374.

- WARD, R. G. 1960. Village agriculture in Viti Levu, Fiji. New Zealand Geographer, 16, 35-56.
- WARD, R. G. 1965. Land use and population in Fiji a geographical study. *Overseas Research Publication, no. 9.* London: Department of Technical Cooperation.
- WATERHOUSE, G. A. 1920. Descriptions of new forms of butterflies from the South Pacific. *Proceedings of the Linnean Society of New South Wales*, 45, 468-471.
- WATLING, D. 2001. *A guide to the Birds of Fiji and Western Polynesia,* Suva, Environmental Consultants (Fiji) Ltd.
- WATLING, D. 2005. Palms of the Fiji Islands, Suva, Environmental Consultants.
- WEIHONG, J., VEITCH, C. R. D. & CRAIG, J. L. 1999. An evaluation of the efficiency of rodent trapping methods: The effect of trap arrangement, cover type, and bait. *New Zealand Journal of Ecology*, 23, 45-51.
- WILLIAMS, T. & CALVERT, J. 1858. Fiji and the Fijians, New York, D. Appleton and Company.
- WILLIAMS, W. D. 1980. Australian Freshwater Life: the Invertebrates of Australian inland waters, Melbourne, Macmillan.
- WINTERBOURN, M. J., GREGSON, K. L. D AND DOLPHIN, C. H. 2006. Guide to the Aquatic Insects of New Zealand. *Bulletin of the Entomological Society of New Zealand*, 14.
- WOLMAN, M. G. 1954. A method of sampling coarse river-bed material. *Transactions of the American Geophysical Union*, 35, 951-956.
- WORLD CONSERVATION MONITORING CENTRE. 1998. Degeneria vitiensis. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1 [Online]. Available: <u>www.iucnredlist.org</u> [Accessed August 15 2013].