Length-Based Assessment of the Fisheries Targeting Snappers, Groupers and Emperors in Indonesia, Fishery Management Area 717

YKAN Technical Paper

Peter J. Mous, Wawan B. IGede, Jos S. Pet

DECEMBER 31, 2020



Konservasi Alam Nusantara

Untuk Indonesia Lestari


PEOPLE \& NATURE CONSULTING INTERNATIONAL

## Suggestion citation

Peter J. Mous, Wawan B. I Gede, and Jos S. Pet (2021). Length-based assessment of the fisheries targeting snappers, groupers, and emperors in Indonesia, Fishery Management Area 717. Yayasan Konservasi Alam Nusantara and People and Nature Consulting, Jakarta Indonesia. Report AR_717_311220


#### Abstract

This document provides an overview of fleet characteristics and catch composition of the demersal fishery targeting snappers in Indonesia Fishery Management Area 717. It also presents trends in length-based stock health indicators of the top- 20 species in this FMA. The report presents overfishing risk levels of the top 50 species, both in terms of current status and trend. Finally, the report presents a table with the contribution of other species to the total catch. The findings are based on YKAN's Crew-Operated Data Recording System, an initiative that involves fishers in data collection using digital imagery.


```
Yayasan Konservasi Alam Nusantara
Ikat Plaza Building - Blok L
Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan
Kota Denpasar }8022
Bali, Indonesia
Ph. +62-361-244524
People and Nature Consulting International
Jalan Tukad Pancoran 15X, Panjer, Denpasar Selatan
Kota Denpasar }8022
Bali, Indonesia
```


## TABLE OF CONTENTS

1 Introduction ..... 3
2 Materials and methods for data collection, analysis and reporting ..... 7
2.1 Frame Survey ..... 7
2.2 Vessel Tracking and CODRS ..... 7
2.3 Data Quality Control ..... 8
2.4 Length-Frequency Distributions, CpUE, and Total Catch ..... 8
2.5 I-Fish Community ..... 30
3 Fishing grounds and traceability ..... 35
4 Length-based assessments of Top 20 most abundant species in CODRS samples ..... 37
5 Discussion and conclusions ..... 80
6 References ..... 86

## 1 Introduction

This report presents a length-based assessment of multi-species and multi gear demersal fisheries targeting snappers, groupers, emperors and grunts in fisheries management area (WPP) 717, covering mostly deep western Pacific waters as well as the large Cenderawasih Bay area and coastal waters with steep slopes of the northern coast of West Papua and the Halmahera Sea to the north east of Halmahera (Figure 1.1). WPP 717 borders WPP 715 in the northern Halmahera Sea and WPP 716 in the western Pacific Ocean. WPP 717 has international boundaries with Palauan waters and territories to the northwest and with Papua New Guinean (PNG) waters to the East. On the north side WPP 717 connects to International waters in the Western Pacific Ocean.

The deep demersal fishing grounds in WPP 717 (Figure 1.2) form a continuous habitat with the shelf area of the Halmahera Sea to the west and with coastal fishing grounds in PNG to the east. Fleet segments from WPP 717 hardly ever operate in the adjacent waters of WPP 716 and WPP 715 or beyond. Fishing boats from West Papua sometimes cross WPP boundaries into neighbouring WPPs but are not known to stray into foreign waters.

The majority of fleets and vessels on the fishing grounds in WPP 717 are very small scale, originating mostly from West Papua, and they generally fish at depths ranging from 50 meters on the shelf to 350 meters down the deeper slopes into the Halmahera Sea, in Cenderawasih Bay and in the western Pacific Ocean. Drop lines, bottom long lines and traps are the most important gear types in the fisheries targeting snappers, groupers, emperors and grunts, but deep set bottom gillnets are also used. The drop line fishery is an active vertical hook and line fishery operating at depths from 50 to 250 meters, whereas long lines and traps are set horizontally along the bottom at depths usually ranging from 50 to 150 meters only. Some boats in WPP 717 use multiple gear types, even within single trips, in "mixed gear" fisheries.

The Indonesian deep demersal fisheries catches a large number of species, and stocks of 100 of the most common species are monitored on a continuous basis through a Crew Operated Data Recording System (CODRS). The current report presents the top 50 most abundant species of fish in CODRS samples (Tables 1.1 and 1.2) in WPP 717, and analyses length frequencies of the 50 most important species in the combined deep demersal catches in this fisheries management area. For a complete overview of the species composition with images of all 100 target species, please refer to the ID guide prepared for these fisheries ${ }^{1}$. For further background on species life history characteristics, and data-poor length based assessment methods, as applied in this report, please refer to the assessment guide that was separately prepared for these fisheries ${ }^{2}$.

Data in this report mostly represent complete catches by small scale vessels from the above described fleets. All fish captured were photographed on measuring boards by fishing crew participating in our Crew Operated Data Recording System or CODRS. Images were analysed by project staff to generate the species specific length frequency distributions of the catches which served as the input for our length based assessment. Fishing grounds were recorded with SPOT tracers placed on contracted vessels.

[^0]

Figure 1.1: Fisheries Management Areas (Wilayah Pengelolaan Perikanan or WPP) in Indonesian marine waters.


Figure 1.2: Bathymetric map of WPP 717, in Eastern Indonesia. Black lines are WPP boundaries, blue lines are MPA boundaries.

Table 1.1: Length-weight relationships, trading limits and total sample sizes (including all years) for the 50 most abundant species in CODRS samples from deep water demersal fisheries in 717

| Rank | \#ID | Species | Reported <br> Trade <br> Limit <br> Weight (g) | $W=$ a | $a L^{b}$ $b$ | Length <br> Type <br> for a \& b TL-FL-SL | Converted <br> Trade <br> Limit <br> L(cm) | $\begin{gathered} \hline \text { Plotted } \\ \text { Trade } \\ \text { Limit } \\ \text { TL }(\mathrm{cm}) \\ \hline \end{gathered}$ | Sample <br> Sizes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | Etelis radiosus | 1000 | 0.056 | 2.689 | FL | 38.05 | 43.15 | 3214 |
| 2 | 7 | Pristipomoides multidens | 500 | 0.020 | 2.944 | FL | 31.18 | 34.92 | 2811 |
| 3 | 1 | Aphareus rutilans | 1000 | 0.015 | 2.961 | FL | 42.20 | 49.61 | 2332 |
| 4 | 28 | Lutjanus boutton | 300 | 0.034 | 3.000 | FL | 20.75 | 21.56 | 2130 |
| 5 | 45 | Epinephelus areolatus | 300 | 0.011 | 3.048 | FL | 28.18 | 28.77 | 1832 |
| 6 | 19 | Lutjanus timorensis | 500 | 0.009 | 3.137 | FL | 33.11 | 33.34 | 1658 |
| 7 | 6 | Etelis coruscans | 500 | 0.041 | 2.758 | FL | 30.28 | 37.85 | 1453 |
| 8 | 4 | Etelis boweni | 500 | 0.022 | 2.950 | FL | 30.16 | 32.84 | 1309 |
| 9 | 34 | Paracaesio kusakarii | 500 | 0.011 | 3.135 | FL | 30.96 | 34.80 | 1207 |
| 10 | 82 | Elagatis bipinnulata | 1000 | 0.013 | 2.920 | FL | 46.53 | 55.37 | 1133 |
| 11 | 22 | Pinjalo lewisi | 300 | 0.014 | 2.970 | FL | 28.42 | 29.64 | 947 |
| 12 | 8 | Pristipomoides typus | 500 | 0.014 | 2.916 | TL | 36.16 | 36.16 | 847 |
| 13 | 11 | Pristipomoides argyrogrammicus | 300 | 0.013 | 3.140 | FL | 24.70 | 28.46 | 711 |
| 14 | 20 | Lutjanus gibbus | 500 | 0.015 | 3.091 | FL | 28.87 | 31.09 | 669 |
| 15 | 67 | Lethrinus amboinensis | 300 | 0.029 | 2.851 | FL | 25.49 | 28.06 | 652 |
| 16 | 9 | Pristipomoides filamentosus | 500 | 0.038 | 2.796 | FL | 29.70 | 33.27 | 475 |
| 17 | 70 | Gymnocranius grandoculis | 500 | 0.032 | 2.885 | FL | 28.43 | 30.53 | 448 |
| 18 | 81 | Caranx tille | 2000 | 0.032 | 2.930 | FL | 43.43 | 49.51 | 427 |
| 19 | 84 | Seriola rivoliana | 2000 | 0.006 | 3.170 | FL | 54.23 | 60.03 | 352 |
| 20 | 35 | Paracaesio stonei | 500 | 0.024 | 2.960 | FL | 28.78 | 32.35 | 334 |
| 21 | 33 | Paracaesio xanthura | 300 | 0.023 | 3.000 | SL | 23.64 | 27.39 | 332 |
| 22 | 43 | Epinephelus morrhua | 300 | 0.061 | 2.624 | FL | 25.59 | 25.59 | 311 |
| 23 | 80 | Caranx sexfasciatus | 2000 | 0.032 | 2.930 | FL | 43.43 | 49.51 | 269 |
| 24 | 3 | Etelis carbunculus | 500 | 0.017 | 3.010 | FL | 30.44 | 33.15 | 251 |
| 25 | 27 | Lutjanus vitta | 300 | 0.017 | 2.978 | FL | 26.72 | 27.64 | 243 |
| 26 | 66 | Lethrinus olivaceus | 300 | 0.029 | 2.851 | FL | 25.49 | 27.50 | 234 |
| 27 | 15 | Lutjanus argentimaculatus | 500 | 0.034 | 2.792 | FL | 31.22 | 31.78 | 222 |
| 28 | 32 | Paracaesio gonzalesi | 300 | 0.020 | 3.050 | FL | 23.24 | 24.96 | 186 |
| 29 | 85 | Erythrocles schlegelii | 1500 | 0.011 | 3.040 | FL | 48.55 | 53.60 | 181 |
| 30 | 94 | Sphyraena forsteri | 500 | 0.005 | 3.034 | FL | 43.51 | 49.16 | 171 |
| 31 | 17 | Lutjanus malabaricus | 500 | 0.009 | 3.137 | FL | 33.11 | 33.11 | 170 |
| 32 | 69 | Wattsia mossambica | 500 | 0.040 | 2.824 | FL | 28.21 | 29.34 | 167 |
| 33 | 30 | Lipocheilus carnolabrum | 500 | 0.149 | 2.488 | FL | 26.13 | 28.32 | 162 |
| 34 | 10 | Pristipomoides sieboldii | 300 | 0.022 | 2.942 | FL | 25.52 | 29.21 | 140 |
| 35 | 62 | Variola albimarginata | 300 | 0.012 | 3.079 | FL | 26.68 | 30.44 | 127 |
| 36 | 97 | Ostichthys japonicus | 300 | 0.018 | 3.020 | FL | 25.10 | 26.23 | 100 |
| 37 | 71 | Gymnocranius griseus | 500 | 0.032 | 2.885 | FL | 28.43 | 30.56 | 97 |
| 38 | 61 | Plectropomus leopardus | 500 | 0.012 | 3.060 | FL | 32.56 | 33.38 | 87 |
| 39 | 13 | Pristipomoides flavipinnis | 300 | 0.030 | 2.825 | FL | 26.09 | 29.92 | 83 |
| 40 | 96 | Parascolopsis eriomma | 100 | 0.012 | 2.990 | FL | 20.47 | 21.90 | 74 |
| 41 | 72 | Carangoides coeruleopinnatus | 1000 | 0.032 | 2.902 | FL | 35.35 | 40.12 | 73 |
| 42 | 83 | Seriola dumerili | 2000 | 0.022 | 2.847 | TL | 54.74 | 54.74 | 71 |
| 43 | 40 | Cephalopholis igarashiensis | 300 | 0.049 | 2.748 | FL | 23.86 | 23.86 | 67 |
| 44 | 16 | Lutjanus bohar | 500 | 0.016 | 3.059 | FL | 29.70 | 31.31 | 64 |
| 45 | 55 | Epinephelus epistictus | 1500 | 0.009 | 3.126 | TL | 47.01 | 47.01 | 63 |
| 46 | 50 | Epinephelus coioides | 1500 | 0.011 | 3.084 | TL | 46.94 | 46.94 | 59 |
| 47 | 42 | Epinephelus radiatus | 300 | 0.061 | 2.624 | FL | 25.59 | 25.59 | 58 |
| 48 | 38 | Cephalopholis sexmaculata | 300 | 0.027 | 3.000 | SL | 22.37 | 28.24 | 50 |
| 49 | 25 | Lutjanus russelli | 300 | 0.020 | 2.907 | FL | 27.28 | 28.49 | 48 |
| 50 | 36 | Saloptia powelli | 300 | 0.008 | 3.175 | FL | 27.28 | 27.28 | 44 |

Table 1.2: Sample sizes over the period 2016 to 2024 for the 50 most abundant species in CODRS samples of deepwater demersal fisheries in WPP 717

| Rank | Species | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Etelis radiosus | 0 | 0 | 0 | 795 | 2419 | 0 | 0 | 0 | 0 | 3214 |
| 2 | Pristipomoides multidens | 0 | 0 | 0 | 895 | 1916 | 0 | 0 | 0 | 0 | 2811 |
| 3 | Aphareus rutilans | 0 | 0 | 0 | 827 | 1505 | 0 | 0 | 0 | 0 | 2332 |
| 4 | Lutjanus boutton | 0 | 0 | 0 | 541 | 1589 | 0 | 0 | 0 | 0 | 2130 |
| 5 | Epinephelus areolatus | 0 | 0 | 0 | 445 | 1387 | 0 | 0 | 0 | 0 | 1832 |
| 6 | Lutjanus timorensis | 0 | 0 | 0 | 720 | 938 | 0 | 0 | 0 | 0 | 1658 |
| 7 | Etelis coruscans | 0 | 0 | 0 | 348 | 1105 | 0 | 0 | 0 | 0 | 1453 |
| 8 | Etelis boweni | 0 | 0 | 0 | 241 | 1068 | 0 | 0 | 0 | 0 | 1309 |
| 9 | Paracaesio kusakarii | 0 | 0 | 0 | 185 | 1022 | 0 | 0 | 0 | 0 | 1207 |
| 10 | Elagatis bipinnulata | 0 | 0 | 0 | 489 | 644 | 0 | 0 | 0 | 0 | 1133 |
| 11 | Pinjalo lewisi | 0 | 0 | 0 | 250 | 697 | 0 | 0 | 0 | 0 | 947 |
| 12 | Pristipomoides typus | 0 | 0 | 0 | 339 | 508 | 0 | 0 | 0 | 0 | 847 |
| 13 | Pristipomoides argyrogrammicus | 0 | 0 | 0 | 173 | 538 | 0 | 0 | 0 | 0 | 711 |
| 14 | Lutjanus gibbus | 0 | 0 | 0 | 133 | 536 | 0 | 0 | 0 | 0 | 669 |
| 15 | Lethrinus amboinensis | 0 | 0 | 0 | 150 | 502 | 0 | 0 | 0 | 0 | 652 |
| 16 | Pristipomoides filamentosus | 0 | 0 | 0 | 186 | 289 | 0 | 0 | 0 | 0 | 475 |
| 17 | Gymnocranius grandoculis | 0 | 0 | 0 | 97 | 351 | 0 | 0 | 0 | 0 | 448 |
| 18 | Caranx tille | 0 | 0 |  | 182 | 245 | 0 | 0 | 0 | 0 | 427 |
| 19 | Seriola rivoliana | 0 | 0 | 0 | 79 | 273 | 0 | 0 | 0 | 0 | 352 |
| 20 | Paracaesio stonei | 0 | 0 | 0 | 81 | 253 | 0 | 0 | 0 | 0 | 334 |
| 21 | Paracaesio xanthura | 0 | 0 | 0 | 98 | 234 | 0 | 0 | 0 | 0 | 332 |
| 22 | Epinephelus morrhua | 0 | 0 | 0 | 82 | 229 | 0 | 0 | 0 | 0 | 311 |
| 23 | Caranx sexfasciatus | 0 | 0 | 0 | 117 | 152 | 0 | 0 | 0 | 0 | 269 |
| 24 | Etelis carbunculus | 0 | 0 | 0 | 42 | 209 | 0 | 0 | 0 | 0 | 251 |
| 25 | Lutjanus vitta | 0 | 0 | 0 | 41 | 202 | 0 | 0 | 0 | 0 | 243 |
| 26 | Lethrinus olivaceus | 0 | 0 | 0 | 56 | 178 | 0 | 0 | 0 | 0 | 234 |
| 27 | Lutjanus argentimaculatus | 0 | 0 | 0 | 68 | 154 | 0 | 0 | 0 | 0 | 222 |
| 28 | Paracaesio gonzalesi | 0 | 0 | 0 | 53 | 133 | 0 | 0 | 0 | 0 | 186 |
| 29 | Erythrocles schlegelii | 0 | 0 |  | 18 | 163 | 0 | 0 | 0 | 0 | 181 |
| 30 | Sphyraena forsteri | 0 | 0 | 0 | 77 | 94 | 0 | 0 | 0 | 0 | 171 |
| 31 | Lutjanus malabaricus | 0 | 0 | 0 | 59 | 111 | 0 | 0 | 0 | 0 | 170 |
| 32 | Wattsia mossambica | 0 | 0 | 0 | 63 | 104 | 0 | 0 | 0 | 0 | 167 |
| 33 | Lipocheilus carnolabrum | 0 | 0 | 0 | 20 | 142 | 0 | 0 | 0 | 0 | 162 |
| 34 | Pristipomoides sieboldii | 0 | 0 | 0 | 32 | 108 | 0 | 0 | 0 |  | 140 |
| 35 | Variola albimarginata | 0 | 0 | 0 | 42 | 85 | 0 | 0 | 0 | 0 | 127 |
| 36 | Ostichthys japonicus | 0 | 0 | 0 | 24 | 76 | 0 | 0 | 0 | 0 | 100 |
| 37 | Gymnocranius griseus | 0 | 0 |  | 39 | 58 | 0 | 0 | 0 | 0 | 97 |
| 38 | Plectropomus leopardus | 0 | 0 | 0 | 23 | 64 | 0 | 0 | 0 | 0 | 87 |
| 39 | Pristipomoides flavipinnis | 0 | 0 | 0 | 41 | 42 | 0 | 0 | 0 | 0 | 83 |
| 40 | Parascolopsis eriomma | 0 | 0 | 0 | 15 | 59 | 0 | 0 | 0 | 0 | 74 |
| 41 | Carangoides coeruleopinnatus | 0 | 0 | 0 | 33 | 40 | 0 | 0 | 0 | 0 | 73 |
| 42 | Seriola dumerili | 0 | 0 | 0 | 27 | 44 | 0 | 0 | 0 | 0 | 71 |
| 43 | Cephalopholis igarashiensis | 0 | 0 |  | 27 | 40 | 0 | 0 | 0 | 0 | 67 |
| 44 | Lutjanus bohar | 0 | 0 | 0 | 16 | 48 | 0 | 0 | 0 | 0 | 64 |
| 45 | Epinephelus epistictus | 0 | 0 |  | 28 | 35 | 0 | 0 | 0 | 0 | 63 |
| 46 | Epinephelus coioides | 0 | 0 | 0 | 20 | 39 | 0 | 0 | 0 | 0 | 59 |
| 47 | Epinephelus radiatus | 0 | 0 | 0 | 10 | 48 | 0 | 0 |  | 0 | 58 |
| 48 | Cephalopholis sexmaculata | 0 | 0 | 0 | 17 | 33 | 0 | 0 | 0 | 0 | 50 |
| 49 | Lutjanus russelli | 0 | 0 | 0 | 7 | 41 | 0 | 0 | 0 | 0 | 48 |
| 50 | Saloptia powelli | 0 | 0 | 0 | 10 | 34 | 0 | 0 | 0 | 0 | 44 |

## 2 Materials and methods for data collection, analysis and reporting

### 2.1 Frame Survey

A country-wide frame survey was implemented to obtain complete and detailed information on the deep demersal fishing fleet in Indonesia, using a combination of satellite image analysis and ground truthing visits to all locations where either satellite imagery or other forms of information indicated deep demersal fisheries activity. During the frame survey, data were collected on boat size, gear type, port of registration, licenses for specific FMAs, captain contacts and other details, for all fishing boats in the fleet. Following practices by fisheries managers in Indonesia, we distinguished 4 boat size categories including "nano" $(<5 \mathrm{GT})$, "small" ( $5-<10 \mathrm{GT}$ ), "medium" ( $10-30 \mathrm{GT}$ ), and "large" ( $>30 \mathrm{GT}$ ). We also distinguished 4 gear types used in these fisheries, including vertical drop lines, bottom set long lines, deep water gillnets and traps.

Frame survey data are continuously updated to keep records of the complete and currently active fishing fleet in the deep demersal fisheries. Fleet information is summarized by registration port and home district (Table 2.13), while actual fishing grounds are determined by placing SPOT Trace units on all fishing boats participating in the program. By late 2020, most (over 90\%) of the Indonesian coastline had been surveyed and the vast majority of the fleet was on record. The total fleet in each WPP is a dynamic number, as boats are leaving and being added to the local fleet all the time, and therefore the fleet survey data are updated continuously.

### 2.2 Vessel Tracking and CODRS

Vessel movement and fishing activity as recorded with SPOT data generates the information on fleet dynamics. When in motion, SPOT Trace units automatically report an hourly location of each fishing boat in the program, and when at rest for more than 24 hours, they relay daily status reports. Data on species and size distributions of catches, as needed for accurate length based stock assessments, are collected via Crew Operated Data Recording Systems or CODRS. This catch data is georeferenced as the CODRS works in tandem with the SPOT Trace vessel tracking system. Captains were recruited for the CODRS program from across the full range of boat size and gear type categories.

The CODRS approach involves fishers taking photographs of the fish in the catch, displayed on measuring boards, while the SPOT tracking system records the positions. Data recording for each CODRS fishing trip begins when the boat leaves port with the GPS recording the vessel tracks while it is steaming out. After reaching the fishing grounds, fishing will start, changing the track of recorded positions into a pattern that shows fishing instead of steaming. During the fishing activity, fish is collected on the deck or in chiller boxes on deck. The captain or crew will then take pictures of the fish, positioned over measuring boards (Figure 2.1), before moving the fish from the deck or from the chiller to the hold (to be stored on ice) or to the freezer. The process is slightly different on some of the "nano" boats (around 1 GT), where some crew take pictures upon landing instead of at sea. In these situations, the timestamps of the photographs are still used as an indication of the fishing day, even though most fishing may have happened on the day before.

At the end of the trip, the storage chip from the camera is handed over for processing of the images by expert staff. Processing includes ID of the species and measurement of the length of the fish (Figure 2.2), double checking by a second expert, and data storage in the IFish data base. Sets of images from fishing trips with unacceptable low quality photographs are not further processed and not included in the dataset. Body weight at length is calculated for all species using length-weight relationships to enable estimation of total catch weights as well as catch weights per species for individual fishing trips by CODRS vessels. Weight converted catch length frequencies of individual catches is verified against sales records of landings. These sales receipts or ledgers represent a fairly reliable estimate of the total weight of an individual catch (from a single trip, and including all species) that is independent from CODRS data.

### 2.3 Data Quality Control

With information from sales records we verify that individual catches are fully represented by CODRS images and we flag catches when they are incomplete, judging from comparison with the weight converted catch size frequencies. When estimated weights from CODRS are above $90 \%$ of landed weights from receipts, they are considered complete and accepted for use in length-based analysis and calculations of CpUE. CpUE is calculated on a day by day basis, in $\mathrm{kg} / \mathrm{GT} /$ day, using only those days from the trip when images were actually collected. Medium size and larger vessels (10 GT and larger) do trips of at least a week up to over a month. There may be some days on which weather or other conditions are such that no images are collected, but sufficient days with images, within those trips usually remain for daily CpUE estimates and to supply samples for length-based analysis. For boats of 10 GT and above, incomplete data sets with $30 \%$ to $90 \%$ coverage are still used for analysis, using only those days on which images were collected. For boats below 10 GT (doing day trips or trips of just a few days) only complete data sets are used for CpUE calculations. All data sets on catches with less than $30 \%$ coverage are rejected and are not used in any analysis.

### 2.4 Length-Frequency Distributions, CpUE, and Total Catch

By the end of 2020, more than 400 boats participated in the CODRS program (Figure 2.3) across all fishing grounds in Indonesia, with close to 40 boats enrolled in each WPP (Table 2.1). Recruitment of captains from the overall fleet into the CODRS program iss not exactly proportional to composition of the fleet in terms of vessel size, gear type and the FMA where the boat normally operates. Actual fleet composition by boat size and gear type, and activity in terms of numbers of active fishing days per year for each category, are therefore used when CODRS data are used for CpUE and catch calculations. Species composition in the catch is also not exactly the same as species composition in the CODRS samples. Catch information by WPP and by fleet segment from CODRS samples is combined with fleet composition and activity information to obtain accurate annual catch information and species composition for each segment of the fleet.

Converted weights from catch size frequencies on individual fishing days, in combination with activity data from onboard trackers are used to estimate catch per unit of effort (CpUE) by fleet segment (boat size * gear type), by FMA, by species, and over time. Plotted data show clear differences between CpUE values for different gear types and different boat size categories (Figure 2.4) and we therefore work with separated gear
types and boat size categories to generate CpUE values for each distinct segment of the fleet (Table 2.2 and Table 2.3). Activity data from onboard trackers on more than 400 fishing boats are used to estimate the number of active fishing days per year for each segment of the fleet (Table 2.4) and the total (hull) Gross Tonnage in each fleet segment is combined with fleet activity to establish a measure of effort. With this information, CpUE is precisely defined in kg per GT per active fishing day for each type of gear and each category of boat size in each FMA. Annual averages of CpUE by fleet segment are plotted for the top 7 species in each FMA (Figures 2.5 through 2.11), as indicators for stock health, and to compare with indicators from length-based analysis (i.e. Spawning Potential Ratio and percentage of immature fish in the catch).

Information on fleet activity, fleet size by gear type and boat size, and average size frequencies by species (per unit of effort) is used to estimate total catch. Fishing effort in terms of the average number of active fishing days per year for each gear type and boat size category (Table 2.4), is derived from SPOT data looking at movement patterns. Fleet size by gear type and boat size category (Table 2.5) is obtained from field surveys, where each vessel is recorded in a data base with estimated GT. Average size frequency distributions by fleet segment and species for each FMA, in combination with the information on effort by fleet segment, are thus used to estimate CATCH LFD (over the entire fleet) from average CODRS LFD by fleet segment. Only annual sample sizes larger than 200 fish per species and 50 fish per fleet segment are used for further calculations. Numbers per size class for each species in the catch are multiplied with weights per size class from lengthweight relationships, to calculate catches by fleet segment (Table 2.7), species distribution in the total catch (Table 2.8), and catch by species for each gear type separately (Tables 2.9 through 2.12).

As the CODRS program is still in final stage of development, some parts for the fleet ("fleet segments", a combination of WPP, gear type, and boat size category) are not yet represented. For those missing fleet segments, we apply the following approach to estimate annual catch. First, within each WPP, we estimate the total catch and the total effort for all fleet segments where we have representation by CODRS. We express annual effort as "tonnage-days", i.e. the GT of each vessel times the annual number of fishing days. Then, we calculate the average catch-per-unit-effort, over all fleet segments that have CODRS representation within each WPP (in metric tons per tonnage-day). This results in one catch-per-unit-effort estimate for each WPP (CPUE-estimate-per-WPP). Then, we calculate the effort, in tonnage-days, for the fleet segments where we do not have CODRS representation, and we multiply this effort with CPUE-estimate-per-WPP to get the estimated total annual catch for that fleet segment. This means that, within each WPP, fleet segments that do not have CODRS representation all have the same CPUE estimate-per-WPP, but their total catch estimates vary because effort between those fleet segments vary.

Trends in CpUE by species and by fleet segment (Figures 2.5 through 2.11) can be used as indicator for year-on-year changes in status of the stocks, for as far as time series are available within each fleet segment. Note, however, that these time series sometimes are incomplete or interrupted. This is due to variations in the presence of fleet segments between years in each WPP, and sometimes the CODRS vessels representing a fleet segment may disappear from one WPP and show up in another WPP. This may happen due to problems with processing permits at local authorities, but also due to the emerging differences in efficiencies between gear types and boat size categories, as well as due to perceptions on opportunities in other WPPs.


Figure 2.1: Fishing crew preparing fish on a measuring board.


Figure 2.2: Fish photographed by fishing crew on board as part of CODRS.


Figure 2.3: Number of CODRS contractors by gear type actively fishing in Indonesian waters.


Fishing day (date)
Figure 2.4: Catch per Unit of Effort in WPP 717.

Table 2.1: Number of CODRS deployed by gear type and boat size category in WPP 717

| N | Dropline | Longline | Gillnet | Trap | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nano | 32 | NA | NA | NA | 32 |
| Small | NA | NA | NA | NA | 0 |
| Medium | NA | NA | NA | NA | 0 |
| Large | NA | NA | NA | NA | 0 |
| NA | 32 | 0 | 0 | 0 | 32 |

Nano less than 5 GT. Small 5-<10 GT. Medium 10-30 GT. Large $>30$ GT.

Table 2.2: CpUE by fishing gear and boat size category in WPP 717 in 2020

| $\mathrm{kg} / \mathrm{GT} /$ Day | Dropline | Longline | Gillnet | Trap |
| :---: | :---: | :---: | :---: | :---: |
| Nano | 17.12 | NA | NA | NA |
| Small | NA | NA | NA | NA |
| Medium | NA | NA | NA | NA |
| Large | NA | NA | NA | NA |

Nano less than 5 GT. Small 5-<10 GT. Medium 10-30 GT. Large $>30$ GT.
Table 2.3: Number of CODRS observations that contribute to CpUE value in WPP 717 in 2020

| N | Dropline | Longline | Gillnet | Trap |
| :---: | :---: | :---: | :---: | :---: |
| Nano | 874 | NA | NA | NA |
| Small | NA | NA | NA | NA |
| Medium | NA | NA | NA | NA |
| Large | NA | NA | NA | NA |

Nano less than 5 GT. Small 5-<10 GT. Medium 10-30GT. Large $>30$ GT.
Table 2.4: Average active-fishing days per year by fishing gear and boat size category in all WPP

| Days / Year | Dropline | Longline | Gillnet | Trap |
| :---: | :---: | :---: | :---: | :---: |
| Nano Dedicated | 201 | 235 | 224 | 194 |
| Nano Seasonal | 100 | 118 | 112 | 97 |
| Small Dedicated | 213 | 258 | 247 | 277 |
| Small Seasonal | 107 | 129 | 124 | 139 |
| Medium Dedicated | 204 | 213 | 258 | 219 |
| Medium Seasonal | 102 | 107 | 129 | 110 |
| Large Dedicated | 166 | 237 | 151 | 185 |
| Large Seasonal | 83 | 119 | 75 | 92 |

Nano less than 5 GT. Small 5-<10 GT. Medium 10-30 GT. Large $>30$ GT.
Table 2.5: Current number of boats in the fleet by fishing gear and boat size category in WPP 717

| Number of Boat | Dropline | Longline | Gillnet | Trap | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nano Dedicated | 1847 | 0 | 0 | 0 | 1847 |
| Nano Seasonal | 35 | 0 | 0 | 0 | 35 |
| Small Dedicated | 0 | 0 | 0 | 0 | 0 |
| Small Seasonal | 0 | 0 | 0 | 0 | 0 |
| Medium Dedicated | 0 | 0 | 0 | 0 | 0 |
| Medium Seasonal | 0 | 0 | 0 | 0 | 0 |
| Large Dedicated | 0 | 0 | 0 | 0 | 0 |
| Large Seasonal | 0 | 0 | 0 | 0 | 0 |
| Total | 1882 | 0 | 0 | 0 | 1882 |

Nano less than 5 GT. Small 5-<10 GT. Medium 10-30 GT. Large $>30$ GT.

Table 2.6: Current total gross tonnage of all boats in the fleet by fishing gear and boat size category in WPP 717

| Total GT | Dropline | Longline | Gillnet | Trap | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nano Dedicated | 1886 | 0 | 0 | 0 | 1886 |
| Nano Seasonal | 58 | 0 | 0 | 0 | 58 |
| Small Dedicated | 0 | 0 | 0 | 0 | 0 |
| Small Seasonal | 0 | 0 | 0 | 0 | 0 |
| Medium Dedicated | 0 | 0 | 0 | 0 | 0 |
| Medium Seasonal | 0 | 0 | 0 | 0 | 0 |
| Large Dedicated | 0 | 0 | 0 | 0 | 0 |
| Large Seasonal | 0 | 0 | 0 | 0 | 0 |
| Total | 1944 | 0 | 0 | 0 | 1944 |

Table 2.7: Total catch in metric tons per year by fishing gear and boat size category in WPP 717 in 2020

| Total Catch | Dropline | Longline | Gillnet | Trap | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nano Dedicated | 6491 | 0 | 0 | 0 | 6491 |
| Nano Seasonal | 99 | 0 | 0 | 0 | 99 |
| Small Dedicated | 0 | 0 | 0 | 0 | 0 |
| Small Seasonal | 0 | 0 | 0 | 0 | 0 |
| Medium Dedicated | 0 | 0 | 0 | 0 | 0 |
| Medium Seasonal | 0 | 0 | 0 | 0 | 0 |
| Large Dedicated | 0 | 0 | 0 | 0 | 0 |
| Large Seasonal | 0 | 0 | 0 | 0 | 0 |
| Total | 6590 | 0 | 0 | 0 | 6590 |

Nano less than 5 GT. Small 5-<10 GT. Medium 10-30GT. Large $>30$ GT.
Table 2.8: Top 20 species by volume in deepwater demersal fisheries with \% immature fish in the catch in WPP 717 in 2020.

| Species | Weight <br> MT | Weight <br> $\%$ | Cumulative <br> $\%$ | Immature <br> \% Weight | Immature | Risk <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Etelis radiosus | 1036 | 16 | 16 | 82 | 37 | High |
| Aphareus rutilans | 865 | 13 | 29 | 69 | 35 | High |
| Pristipomoides multidens | 686 | 10 | 39 | 64 | 33 | High |
| Etelis boweni | 578 | 9 | 48 | 80 | 43 | High |
| Etelis coruscans | 455 | 7 | 55 | 84 | 51 | High |
| Paracaesio kusakarii | 326 | 5 | 60 | 50 | 31 | High |
| Seriola rivoliana | 298 | 5 | 64 | 12 | 2 | Med |
| Elagatis bipinnulata | 290 | 4 | 69 | 9 | 3 | Low |
| Caranx tille | 264 | 4 | 73 | 2 | 0 | Low |
| Caranx sexfasciatus | 143 | 2 | 75 | 18 | 3 | Med |
| Lutjanus argentimaculatus | 134 | 2 | 77 | 6 | 2 | Low |
| Lutjanus timorensis | 132 | 2 | 79 | 46 | 22 | High |
| Lethrinus olivaceus | 110 | 2 | 81 | 17 | 5 | Med |
| Lutjanus boutton | 105 | 2 | 82 | 10 | 4 | Low |
| Pristipomoides typus | 99 | 2 | 84 | 65 | 37 | High |
| Gymnocranius grandoculis | 87 | 1 | 85 | 40 | 23 | High |
| Epinephelus areolatus | 86 | 1 | 86 | 4 | 1 | Low |
| Erythrocles schlegelii | 79 | 1 | 88 | 3 | 0 | Low |
| Lethrinus amboinensis | 68 | 1 | 89 | 11 | 4 | Med |
| Lutjanus malabaricus | 64 | 1 | 90 | 26 | 9 | Med |
| Total Top 20 Species | 5908 | 90 | 90 | 49 | 28 | High |
| Total Top 100 Species | 6590 | 100 | 100 | 47 | 28 | High |

Table 2.9: Top 20 species by volume in Dropline fisheries with $\%$ immature fish in the catch in WPP 717 in 2020.

| Species | Weight <br> MT | Weight <br> $\%$ | Cumulative <br> $\%$ | Immature <br> $\%$ | Immature | Risk <br> \% Nomber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Etelis radiosus | 1036 | 16 | 16 | 82 | 37 | Height | Immature

Table 2.10: Top 20 species by volume in Longline fisheries with \% immature fish in the catch in WPP 717 in 2020.

| Species | Weight MT | Weight \% | Cumulative \% Weight | Immature \% Number | Immature \% Weight | Risk Immature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| Total Top 20 Species | 0 | 0 | 0 | NA | NA | NA |
| Total Top 100 Species | 0 | 0 | 0 | NA | NA | NA |

Table 2.11: Top 20 species by volume in Gillnet fisheries with \% immature fish in the catch in WPP 717 in 2020.

| Species | Weight <br> $M T$ | Weight <br> $\%$ | Cumulative <br> $\%$ | Immature <br> $\%$ | Immature <br> $\%$ | Risk <br> Immature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| Total Top 20 Species | 0 | 0 | 0 | NA | NA | NA |
| Total Top 100 Species | 0 | 0 | 0 | NA | NA | NA |

Table 2.12: Top 20 species by volume in Trap fisheries with $\%$ immature fish in the catch in WPP 717 in 2020.

| Species | Weight <br> MT | Weight <br> $\%$ | Cumulative <br> $\%$ | Immature <br> $\%$ | Immature <br> $\%$ | Risk <br> Immature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| NA |
| Total Top 20 Species | 0 | 0 | 0 | NA | NA | NA |
| Total Top 100 Species | 0 | 0 | 0 | NA | NA | NA |



Figure 2.5: Catch per Unit of Effort per calendar year for Etelis radiosus
in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.


Figure 2.6: Catch per Unit of Effort per calendar year for Aphareus rutilans in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.


Figure 2.7: Catch per Unit of Effort per calendar year for Pristipomoides multidens in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.


Figure 2.8: Catch per Unit of Effort per calendar year for Etelis boweni in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.


Figure 2.9: Catch per Unit of Effort per calendar year for Etelis coruscans in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.


Figure 2.10: Catch per Unit of Effort per calendar year for Paracaesio kusakarii in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.


Figure 2.11: Catch per Unit of Effort per calendar year for Seriola rivoliana in WPP 717 for Dropline and Longline catches by fleet segment.
Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear. (Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District |  | Boat Size | Gear | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | Total GT

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5 - $<10$ GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59 | 572 | PP. Pulau Baai | Kota Bengkulu | Small | Dropline | 12 | 70 |
| 60 | 572 | PP. Pulau Baai | Kota Bengkulu | Small | Gillnet | 1 | 6 |
| 61 | 572 | Desa Taluak | Kota Pariaman | Nano | Longline | 10 | 16 |
| 62 | 572 | Desa Keuneukai | Kota Sabang | Nano | Dropline | 2 | 3 |
| 63 | 572 | PP. Sibolga | Kota Sibolga | Medium | Trap | 6 | 87 |
| 64 | 572 | PP. Sibolga | Kota Sibolga | Nano | Dropline | 4 | 14 |
| 65 | 572 | PP. Sibolga | Kota Sibolga | Nano | Trap | 12 | 47 |
| 66 | 572 | PP. Sibolga | Kota Sibolga | Small | Dropline | 3 | 18 |
| 67 | 572 | PP. Sibolga | Kota Sibolga | Small | Trap | 9 | 55 |
| 68 | 572 | PP. Muara Piluk Bakauheni | Lampung | Nano | Longline | 16 | 43 |
| 69 | 572 | PP. Muara Piluk Bakauheni | Lampung | Small | Longline | 1 | 5 |
| 70 | 572 | PP. Pasar Bantal | Mukomuko | Small | Dropline | 20 | 100 |
| 71 | 572 | Kec. Teluk Dalam | Nias Selatan | Nano | Dropline | 5 | 18 |
| 72 | 572 | Desa Botolakha | Nias Utara | Small | Dropline | 25 | 197 |
| 73 | 572 | Desa Helera | Nias Utara | Nano | Longline | 13 | 21 |
| 74 | 572 | Desa Helera | Nias Utara | Small | Longline | 2 | 11 |
| 75 | 572 | Muara Padang | Padang | Medium | Longline | 1 | 11 |
| 76 | 572 | Muara Padang | Padang | Small | Dropline | 4 | 21 |
| 77 | 572 | PP. Bungus | Padang | Small | Longline | 1 | 8 |
| 78 | 572 | PP. Muaro | Padang | Medium | Dropline | 4 | 52 |
| 79 | 572 | PP. Muaro | Padang | Medium | Longline | 5 | 61 |
| 80 | 572 | PP. Muaro | Padang | Small | Dropline | 1 | 5 |
| 81 | 572 | PP. Muaro | Padang | Small | Longline | 5 | 41 |
| 82 | 572 | Pantai Ulakan | Padang Pariaman | Nano | Longline | 10 | 17 |
| 83 | 572 | PP. Labuan | Pandeglang | Small | Dropline | 29 | 152 |
| 84 | 572 | PP. Carocok Tarusan | Pesisir Selatan | Medium | Longline | 4 | 40 |
| 85 | 572 | PP. Kambang | Pesisir Selatan | Medium | Longline | 3 | 30 |
| 86 | 572 | Desa Pulau Tunda | Serang | Nano | Dropline | 5 | 23 |
| 87 | 572 | Desa Pulau Tunda | Serang | Small | Dropline | 16 | 103 |
| 88 | 573 | Desa Alor Kecil | Alor | Nano | Dropline | 25 | 17 |
| 89 | 573 | PP. Kedonganan | Badung | Nano | Dropline | 30 | 56 |
| 90 | 573 | PP. Grajagan | Banyuwangi | Nano | Dropline | 452 | 1446 |
| 91 | 573 | PP. Grajagan | Banyuwangi | Small | Dropline | 150 | 780 |
| 92 | 573 | PP. Pancer | Banyuwangi | Medium | Dropline | 1 | 15 |
| 93 | 573 | PP. Pancer | Banyuwangi | Nano | Dropline | 174 | 348 |
| 94 | 573 | PP. Pancer | Banyuwangi | Small | Dropline | 125 | 625 |
| 95 | 573 | Atapupu | Belu | Nano | Dropline | 2 | 3 |
| 96 | 573 | PP. Atapupu | Belu | Nano | Dropline | 3 | 4 |
| 97 | 573 | PP. Rompo | Bima | Nano | Dropline | 15 | 15 |
| 98 | 573 | PP. Rompo | Bima | Nano | Longline | 57 | 44 |
| 99 | 573 | PP. Sape | Bima | Nano | Dropline | 162 | 553 |
| 100 | 573 | PP. Sape | Bima | Small | Dropline | 1 | 6 |
| 101 | 573 | PP.Tambakrejo | Blitar | Nano | Longline | 15 | 30 |
| 102 | 573 | PP.Tambakrejo | Blitar | Small | Longline | 1 | 6 |
| 103 | 573 | Jetis | Cilacap | Nano | Longline | 30 | 26 |
| 104 | 573 | Pelabuhan Benoa | Denpasar | Medium | Dropline | 11 | 241 |
| 105 | 573 | Pelabuhan Benoa | Denpasar | Medium | Longline | 1 | 27 |
| 106 | 573 | PP. Tenau Kupang | Denpasar | Medium | Dropline | 1 | 22 |
| 107 | 573 | PP. Hu'u | Dompu | Small | Dropline | 38 | 236 |
| 108 | 573 | PP. Puger | Jember | Nano | Longline | 50 | 160 |
| 109 | 573 | Desa Yeh Kuning | Jembrana | Nano | Longline | 150 | 126 |
| 110 | 573 | PP. Pengambengan | Jembrana | Nano | Longline | 20 | 40 |
| 111 | 573 | Desa Tablolong | Kupang | Nano | Dropline | 36 | 97 |
| 112 | 573 | Pelabuhan Benoa | Kupang | Medium | Dropline | 1 | 27 |
| 113 | 573 | Pelabuhan Sulamu | Kupang | Nano | Dropline | 50 | 87 |
| 114 | 573 | PP. Mayangan | Kupang | Medium | Longline | 1 | 29 |
| 115 | 573 | PP. Oeba Kupang | Kupang | Nano | Dropline | 5 | 5 |
| 116 | 573 | PP. Tenau Kupang | Kupang | Medium | Dropline | 21 | 347 |

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District |  | Boat Size | Gear | N |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :---: | Total GT

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District |  | Boat Size | Gear | N |
| :---: | :---: | :--- | :--- | :--- | :--- | :---: | :---: | Total GT

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 233 | 712 | Kelurahan Pulau Untung Jawa | Kepulauan Seribu | Nano | Trap | 20 | 36 |
| 234 | 712 | Kelurahan Pulau Untung Jawa | Kepulauan Seribu | Small | Trap | 8 | 51 |
| 235 | 712 | PP. Brondong | Lamongan | Medium | Dropline | 167 | 2158 |
| 236 | 712 | PP. Brondong | Lamongan | Medium | Longline | 14 | 176 |
| 237 | 712 | PP. Brondong | Lamongan | Small | Dropline | 115 | 880 |
| 238 | 712 | PP. Brondong | Lamongan | Small | Longline | 1 | 9 |
| 239 | 712 | PP. Bajomulyo | Pati | Large | Longline | 30 | 1432 |
| 240 | 712 | PP. Bajomulyo | Pati | Medium | Longline | 13 | 355 |
| 241 | 712 | PP. Asem Doyong | Pemalang | Small | Dropline | 10 | 57 |
| 242 | 712 | PP. Mayangan | Probolinggo | Medium | Longline | 1 | 29 |
| 243 | 712 | PP. Pondok Mimbo | Situbondo | Nano | Longline | 100 | 156 |
| 244 | 712 | Desa Bancamara | Sumenep | Medium | Dropline | 2 | 28 |
| 245 | 712 | Desa Bancamara | Sumenep | Nano | Dropline | 1 | 4 |
| 246 | 712 | Desa Bancamara | Sumenep | Small | Dropline | 102 | 702 |
| 247 | 712 | Desa Masalima | Sumenep | Small | Dropline | 12 | 84 |
| 248 | 712 | Pagerungan Besar | Sumenep | Medium | Longline | 4 | 41 |
| 249 | 712 | Pagerungan Besar | Sumenep | Nano | Longline | 21 | 28 |
| 250 | 712 | Pagerungan Besar | Sumenep | Small | Longline | 45 | 312 |
| 251 | 712 | Pagerungan Kecil | Sumenep | Nano | Longline | 30 | 36 |
| 252 | 712 | PP. Dungkek | Sumenep | Medium | Dropline | 3 | 32 |
| 253 | 712 | PP. Dungkek | Sumenep | Nano | Dropline | 2 | 9 |
| 254 | 712 | PP. Dungkek | Sumenep | Small | Dropline | , | 43 |
| 255 | 712 | Sumenep | Sumenep | Small | Dropline | 300 | 2196 |
| 256 | 712 | Pagatan | Tanah Bumbu | Small | Dropline | 2 | 10 |
| 257 | 712 | PP. Cituis | Tanggerang | Small | Trap | 7 | 64 |
| 258 | 713 | PP. Filial Klandasan | Balikpapan | Nano | Dropline | 2 | 8 |
| 259 | 713 | PP. Filial Klandasan | Balikpapan | Small | Dropline | 22 | 126 |
| 260 | 713 | PP. Klandasan | Balikpapan | Small | Dropline | 3 | 21 |
| 261 | 713 | PP. Manggar Baru | Balikpapan | Medium | Dropline | 16 | 274 |
| 262 | 713 | PP. Manggar Baru | Balikpapan | Nano | Longline | 1 | 3 |
| 263 | 713 | PP. Manggar Baru | Balikpapan | Small | Dropline | 1 | 6 |
| 264 | 713 | PP. Manggar Baru | Balikpapan | Small | Longline | 7 | 39 |
| 265 | 713 | PP. Tanjung Pandan | Belitung | Nano | Trap | 1 | 3 |
| 266 | 713 | PP. Tanjung Pandan | Belitung | Small | Dropline | 1 | 5 |
| 267 | 713 | PP. Tanjung Pandan | Belitung | Small | Trap | 4 | 21 |
| 268 | 713 | PP. Kore | Bima | Nano | Dropline | 10 | 33 |
| 269 | 713 | Lok Tuan | Bontang | Nano | Dropline | 4 | 13 |
| 270 | 713 | PP. Tanjung Limau | Bontang | Nano | Dropline | 5 | 11 |
| 271 | 713 | PP. Tanjung Limau | Bontang | Small | Dropline | 4 | 24 |
| 272 | 713 | Tanjung Laut | Bontang | Nano | Dropline | 1 | 1 |
| 273 | 713 | Desa Sangsit | Buleleng | Nano | Dropline | 50 | 15 |
| 274 | 713 | PP. Dannuang | Bulukumba | Nano | Dropline | 20 | 20 |
| 275 | 713 | PP. Kalumeme | Bulukumba | Nano | Dropline | 20 | 20 |
| 276 | 713 | PP. Kota Bulukumba | Bulukumba | Nano | Dropline | 300 | 300 |
| 277 | 713 | PP. Keramat | Dompu | Nano | Longline | 10 | 4 |
| 278 | 713 | PP. Malaju | Dompu | Nano | Dropline | 1 | 1 |
| 279 | 713 | PP. Malaju | Dompu | Nano | Longline | 1 | 0 |
| 280 | 713 | PP. Malaju | Dompu | Small | Dropline | 10 | 52 |
| 281 | 713 | PP. Soro Kempo | Dompu | Nano | Longline | 32 | 13 |
| 282 | 713 | PP. Soro Kempo | Dompu | Small | Dropline | 17 | 88 |
| 283 | 713 | PP. Labean | Donggala | Nano | Dropline | 27 | 24 |
| 284 | 713 | Anawoi | Kolaka | Medium | Trap | 5 | 64 |
| 285 | 713 | PP. Beba | Kota Makassar | Medium | Dropline | 25 | 349 |
| 286 | 713 | PP. Beba | Kota Makassar | Medium | Longline | 61 | 735 |
| 287 | 713 | PP. Beba | Kota Makassar | Nano | Longline | 1 | 3 |
| 288 | 713 | PP. Beba | Kota Makassar | Small | Dropline | 1 | 8 |
| 289 | 713 | PP. Beba | Kota Makassar | Small | Longline | 3 | 24 |
| 290 | 713 | Gang Kakap, Muara Jawa | Kutai Kartanegara | Nano | Longline | 20 | 60 |

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 291 | 713 | Kampung Terusan | Kutai Kartanegara | Small | Longline | 10 | 85 |
| 292 | 713 | Kuala Samboja | Kutai Kartanegara | Small | Longline | 3 | 15 |
| 293 | 713 | Pantai Biru Kersik | Kutai Kartanegara | Nano | Dropline | 16 | 48 |
| 294 | 713 | Semangkok | Kutai Kartanegara | Nano | Dropline | 10 | 31 |
| 295 | 713 | Maloy | Kutai Timur | Small | Dropline | 1 | 5 |
| 296 | 713 | Muara Selangkau | Kutai Timur | Nano | Dropline | 40 | 120 |
| 297 | 713 | PP. Kenyamukan | Kutai Timur | Medium | Dropline | 3 | 32 |
| 298 | 713 | PP. Kenyamukan | Kutai Timur | Nano | Dropline | 40 | 40 |
| 299 | 713 | PP. Kenyamukan | Kutai Timur | Small | Dropline | 11 | 75 |
| 300 | 713 | PP. Sangatta | Kutai Timur | Medium | Dropline | 1 | 10 |
| 301 | 713 | PP. Sangatta | Kutai Timur | Small | Dropline | 5 | 31 |
| 302 | 713 | PP. Brondong | Lamongan | Medium | Trap | 1 | 19 |
| 303 | 713 | Desa Wangatoa | Lembata | Nano | Dropline | 20 | 23 |
| 304 | 713 | Majene | Majene | Nano | Longline | 38 | 114 |
| 305 | 713 | Majene | Majene | Small | Dropline | 1 | 7 |
| 306 | 713 | Majene | Majene | Small | Longline | 12 | 84 |
| 307 | 713 | Pelabuhan Majene | Majene | Nano | Longline | 34 | 96 |
| 308 | 713 | PP. Rangas Majene | Majene | Nano | Longline | 2 | 6 |
| 309 | 713 | PP. Kasiwa | Mamuju | Nano | Dropline | 31 | 93 |
| 310 | 713 | PP. Kasiwa | Mamuju | Small | Dropline | 4 | 20 |
| 311 | 713 | PP. Labuhan Bajo | Manggarai Barat | Nano | Dropline | 40 | 15 |
| 312 | 713 | PP. Konge | Nagekeo | Nano | Dropline | 30 | 8 |
| 313 | 713 | Sumbawa | Pangkep | Nano | Longline | 50 | 50 |
| 314 | 713 | Muara Pasir | Paser | Nano | Longline | 10 | 20 |
| 315 | 713 | PP. Bajomulyo | Pati | Large | Longline | 3 | 130 |
| 316 | 713 | Kampung Pejala | Penajam Paser Utara | Nano | Dropline | 2 | 7 |
| 317 | 713 | Kampung Pejala | Penajam Paser Utara | Small | Dropline | 17 | 85 |
| 318 | 713 | Nenang | Penajam Paser Utara | Small | Trap | 50 | 253 |
| 319 | 713 | PP. Mayangan | Probolinggo | Medium | Longline | 1 | 27 |
| 320 | 713 | Desa Labuhan Sangoro | Sumbawa | Nano | Longline | 20 | 37 |
| 321 | 713 | Labuhan Sumbawa | Sumbawa | Medium | Dropline | 1 | 17 |
| 322 | 713 | Labuhan Sumbawa | Sumbawa | Nano | Dropline | 3 | 12 |
| 323 | 713 | Labuhan Sumbawa | Sumbawa | Small | Dropline | 4 | 27 |
| 324 | 713 | PP. Labuhan Terata | Sumbawa | Nano | Dropline | 4 | 7 |
| 325 | 713 | PP. Beba | Takalar | Medium | Dropline | 2 | 25 |
| 326 | 713 | PP. Beba | Takalar | Medium | Gillnet | 12 | 185 |
| 327 | 713 | PP. Beba | Takalar | Medium | Longline | 19 | 244 |
| 328 | 713 | PP. Beba | Takalar | Small | Dropline | 2 | 17 |
| 329 | 713 | PP. Beba | Takalar | Small | Gillnet | 1 | 9 |
| 330 | 714 | Kabola | Alor | Nano | Dropline | 15 | 10 |
| 331 | 714 | Kokar | Alor | Nano | Dropline | 100 | 88 |
| 332 | 714 | Banggai Kepulauan | Banggai Kepulauan | Nano | Dropline | 10 | 10 |
| 333 | 714 | Banggai Laut | Banggai Laut | Nano | Dropline | 50 | 50 |
| 334 | 714 | Bontosi | Banggai Laut | Nano | Dropline | 1 | 3 |
| 335 | 714 | Desa Bontosi | Banggai Laut | Nano | Dropline | 1 | 2 |
| 336 | 714 | Desa Matanga | Banggai Laut | Nano | Longline | 5 | 4 |
| 337 | 714 | Desa Tinakin Laut | Banggai Laut | Nano | Dropline | 1 | 1 |
| 338 | 714 | Kasuari | Banggai Laut | Nano | Longline | 14 | 16 |
| 339 | 714 | PP. Tanjung Pandan | Belitung | Small | Dropline | 1 | 6 |
| 340 | 714 | Desa Balimu | Buton | Nano | Dropline | 5 | 6 |
| 341 | 714 | Kelurahan Watolo | Buton Tengah | Nano | Gillnet | 4 | 4 |
| 342 | 714 | Kelurahan Watolo | Buton Tengah | Nano | Longline | 13 | 13 |
| 343 | 714 | Desa Tanjung Batu | Kepulauan Tanimbar | Nano | Dropline | 1 | 2 |
| 344 | 714 | Kampung Babar | Kepulauan Tanimbar | Nano | Dropline | 1 | 4 |
| 345 | 714 | Kampung Barbar | Kepulauan Tanimbar | Nano | Dropline | 6 | 12 |
| 346 | 714 | Pasar Baru Omele Saumlaki | Kepulauan Tanimbar | Nano | Dropline | 6 | 13 |
| 347 | 714 | Pasar Baru Omele Saumlaki | Kepulauan Tanimbar | Nano | Longline | 1 | 3 |
| 348 | 714 | Pasar Lama Saumlaki | Kepulauan Tanimbar | Nano | Dropline | 1 | 2 |

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 349 | 714 | Saumlaki | Kepulauan Tanimbar | Nano | Dropline | 3 | 8 |
| 350 | 714 | PPI Soropia | Konawe | Medium | Trap | 1 | 12 |
| 351 | 714 | PPI Soropia | Konawe | Nano | Trap | 1 | 1 |
| 352 | 714 | Desa Labengki | Konawe Utara | Nano | Dropline | 5 | 5 |
| 353 | 714 | Labengki | Konawe Utara | Nano | Dropline | 4 | 5 |
| 354 | 714 | Labengki | Konawe Utara | Nano | Longline | 1 | 1 |
| 355 | 714 | Asilulu | Maluku Tengah | Nano | Dropline | 30 | 56 |
| 356 | 714 | Batu Lubang | Maluku Tengah | Nano | Dropline | 30 | 53 |
| 357 | 714 | PP. Tulehu | Maluku Tengah | Large | Dropline | 1 | 34 |
| 358 | 714 | Desa Langgur | Maluku Tenggara | Small | Dropline | 1 | 10 |
| 359 | 714 | Desa Selayar | Maluku Tenggara | Nano | Dropline | 5 | 7 |
| 360 | 714 | Desa Watdek | Maluku Tenggara | Small | Dropline | 5 | 32 |
| 361 | 714 | PP. Kema | Minahasa Utara | Large | Dropline | 1 | 30 |
| 362 | 714 | Desa Bahonsuai | Morowali | Nano | Dropline | 3 | 3 |
| 363 | 714 | Desa Moahino | Morowali | Nano | Longline | 2 | 4 |
| 364 | 714 | Desa Umbele | Morowali | Nano | Dropline | 2 | 2 |
| 365 | 714 | Desa Umbele | Morowali | Nano | Longline | 2 | 4 |
| 366 | 714 | Desa Limbo | Pulau Taliabu | Nano | Longline | 30 | 18 |
| 367 | 714 | Dusun Anauni | Seram Bagian Barat | Nano | Dropline | 15 | 15 |
| 368 | 714 | Dusun Anauni | Seram Bagian Barat | Nano | Longline | 35 | 44 |
| 369 | 714 | Dusun Huaroa | Seram Bagian Barat | Nano | Dropline | 50 | 74 |
| 370 | 714 | Dusun Huhua | Seram Bagian Barat | Nano | Dropline | 20 | 27 |
| 371 | 714 | Dusun Naeselan | Seram Bagian Barat | Nano | Dropline | 20 | 33 |
| 372 | 714 | Dusun Patinea | Seram Bagian Barat | Nano | Dropline | 15 | 21 |
| 373 | 714 | Dusun Pohon Batu | Seram Bagian Barat | Nano | Dropline | 10 | 11 |
| 374 | 714 | Dusun Waisela | Seram Bagian Barat | Nano | Dropline | 4 | 4 |
| 375 | 714 | Desa Mangon | Tual | Small | Dropline | 1 | 7 |
| 376 | 714 | PP. Tual | Tual | Medium | Dropline | 1 | 28 |
| 377 | 714 | PP. Tual | Tual | Nano | Dropline | 1 | 2 |
| 378 | 714 | PP. Tual | Tual | Small | Dropline | 4 | 25 |
| 379 | 714 | Binongko | Wakatobi | Medium | Dropline | 1 | 13 |
| 380 | 714 | Binongko | Wakatobi | Nano | Dropline | 28 | 16 |
| 381 | 714 | Dermaga Desa Wali | Wakatobi | Small | Dropline | 1 | 5 |
| 382 | 714 | Desa Lagongga | Wakatobi | Nano | Dropline | 7 | 26 |
| 383 | 714 | Desa Lagongga | Wakatobi | Small | Dropline | 1 | 6 |
| 384 | 714 | Desa Wali | Wakatobi | Nano | Dropline | 2 | 8 |
| 385 | 714 | Pelabuhan Lagelewa | Wakatobi | Nano | Dropline | 1 | 3 |
| 386 | 715 | Desa Jayabakti | Banggai | Nano | Dropline | 51 | 40 |
| 387 | 715 | Desa Jayabakti | Banggai | Nano | Longline | 5 | 4 |
| 388 | 715 | Pagimana | Banggai | Nano | Dropline | 2 | 4 |
| 389 | 715 | Pangkalaseang | Banggai | Nano | Dropline | 10 | 10 |
| 390 | 715 | Kampung Sekar | Fakfak | Nano | Dropline | 7 | 7 |
| 391 | 715 | Kampung Sosar, Kokas | Fakfak | Nano | Dropline | 7 | 7 |
| 392 | 715 | Kampung Ugar | Fakfak | Nano | Dropline | 17 | 11 |
| 393 | 715 | Pasar Sorpeha | Fakfak | Nano | Dropline | 9 | 22 |
| 394 | 715 | PP. PP. Dulan Pok-Pok | Fakfak | Nano | Dropline | 215 | 206 |
| 395 | 715 | Bacan | Halmahera Selatan | Nano | Dropline | 9 | 5 |
| 396 | 715 | Bacan | Halmahera Selatan | Nano | Longline | 1 | 0 |
| 397 | 715 | Bacan Barat | Halmahera Selatan | Nano | Dropline | 6 | 2 |
| 398 | 715 | Bacan Tengah | Halmahera Selatan | Nano | Dropline | 24 | 8 |
| 399 | 715 | Bacan Timur | Halmahera Selatan | Nano | Dropline | 4 | 1 |
| 400 | 715 | Bacan Utara | Halmahera Selatan | Nano | Dropline | 5 | 2 |
| 401 | 715 | Desa Akegula | Halmahera Selatan | Nano | Dropline | 15 | 16 |
| 402 | 715 | Desa Amasing Kota Barat | Halmahera Selatan | Nano | Longline | 1 | 2 |
| 403 | 715 | Desa Babang | Halmahera Selatan | Nano | Dropline | 7 | 4 |
| 404 | 715 | Desa Jikotamo | Halmahera Selatan | Nano | Dropline | 15 | 20 |
| 405 | 715 | Desa Laiwui | Halmahera Selatan | Nano | Dropline | 12 | 13 |
| 406 | 715 | Desa Lalei | Halmahera Selatan | Nano | Dropline | 29 | 17 |

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 407 | 715 | Desa Sali Kecil | Halmahera Selatan | Nano | Dropline | 20 | 8 |
| 408 | 715 | Desa Tabapoma | Halmahera Selatan | Nano | Dropline | 11 | 4 |
| 409 | 715 | Gane Barat | Halmahera Selatan | Nano | Dropline | 15 | 5 |
| 410 | 715 | Gane Timur Selatan | Halmahera Selatan | Nano | Dropline | 40 | 13 |
| 411 | 715 | Kep. Batang Lomang | Halmahera Selatan | Nano | Dropline | 12 | 4 |
| 412 | 715 | Kep. Joronga | Halmahera Selatan | Nano | Dropline | 7 | 2 |
| 413 | 715 | Mandioli Selatan | Halmahera Selatan | Nano | Dropline | 13 | 4 |
| 414 | 715 | Mandioli Utara | Halmahera Selatan | Nano | Dropline | 17 | 5 |
| 415 | 715 | Pasar Tembal | Halmahera Selatan | Nano | Dropline | 30 | 13 |
| 416 | 715 | Puau Obilatu | Halmahera Selatan | Nano | Dropline | 10 | 3 |
| 417 | 715 | Pulau Obi | Halmahera Selatan | Nano | Dropline | 62 | 18 |
| 418 | 715 | Buli | Halmahera Timur | Nano | Dropline | 7 | 7 |
| 419 | 715 | Halmahera Timur | Halmahera Timur | Nano | Dropline | 48 | 78 |
| 420 | 715 | Desa Trikora | Kaimana | Nano | Dropline | 10 | 10 |
| 421 | 715 | Kampung Air Merah | Kaimana | Nano | Dropline | 33 | 33 |
| 422 | 715 | Kampung Air Tiba | Kaimana | Nano | Dropline | 10 | 10 |
| 423 | 715 | Namatota | Kaimana | Medium | Dropline | 2 | 49 |
| 424 | 715 | Namatota | Kaimana | Medium | Longline | 2 | 30 |
| 425 | 715 | PU. Kaimana | Kaimana | Large | Longline | 1 | 30 |
| 426 | 715 | PU. Kaimana | Kaimana | Medium | Longline | 2 | 43 |
| 427 | 715 | Pasar Galala | Kota Tidore Kepulauan | Nano | Dropline | 10 | 10 |
| 428 | 715 | Desa Sawai | Maluku Tengah | Nano | Dropline | 55 | 61 |
| 429 | 715 | PP. Kema | Minahasa Utara | Large | Dropline | 3 | 130 |
| 430 | 715 | PP. Kema | Minahasa Utara | Medium | Dropline | 11 | 320 |
| 431 | 715 | Desa Geser | Seram Bagian Timur | Nano | Dropline | 44 | 62 |
| 432 | 715 | Desa Kilfura | Seram Bagian Timur | Nano | Dropline | 31 | 27 |
| 433 | 715 | Desa Kiltay | Seram Bagian Timur | Nano | Dropline | 25 | 25 |
| 434 | 715 | Desa Namalena | Seram Bagian Timur | Nano | Dropline | 26 | 26 |
| 435 | 715 | Desa Pantai Pos, Bula | Seram Bagian Timur | Nano | Dropline | 10 | 17 |
| 436 | 715 | Desa Pantai Pos, Bula | Seram Bagian Timur | Nano | Longline | 10 | 17 |
| 437 | 715 | Desa Waru | Seram Bagian Timur | Nano | Longline | 2 | 3 |
| 438 | 715 | Pulau Parang | Seram Bagian Timur | Nano | Dropline | 10 | 17 |
| 439 | 715 | Desa Kali Remu | Sorong | Nano | Dropline | 2 | 6 |
| 440 | 715 | Desa Kali Remu | Sorong | Nano | Trap | 1 | 3 |
| 441 | 715 | Jembatan Puri Sorong | Sorong | Medium | Dropline | 4 | 75 |
| 442 | 715 | Jembatan Puri Sorong | Sorong | Small | Dropline | 3 | 20 |
| 443 | 715 | PP. Sorong | Sorong | Medium | Dropline | 9 | 170 |
| 444 | 715 | PP. Sorong | Sorong | Medium | Longline | 1 | 17 |
| 445 | 715 | PP. Sorong | Sorong | Medium | Trap | 10 | 153 |
| 446 | 715 | PP. Sorong | Sorong | Nano | Dropline | 3 | 11 |
| 447 | 715 | PP. Sorong | Sorong | Small | Trap | 2 | 18 |
| 448 | 715 | Bajugan | Tolitoli | Nano | Dropline | 10 | 6 |
| 449 | 716 | Biduk-biduk | Berau | Medium | Dropline | 1 | 22 |
| 450 | 716 | Biduk-biduk | Berau | Nano | Dropline | 23 | 69 |
| 451 | 716 | Desa Tanjung Batu | Berau | Nano | Dropline | 64 | 192 |
| 452 | 716 | Giring-giring | Berau | Nano | Dropline | 22 | 66 |
| 453 | 716 | Labuan Cermin | Berau | Nano | Dropline | 1 | 3 |
| 454 | 716 | P. Derawan | Berau | Nano | Trap | 4 | 7 |
| 455 | 716 | Pantai Harapan | Berau | Nano | Dropline | 20 | 60 |
| 456 | 716 | Tanjung Batu | Berau | Nano | Trap | , | 18 |
| 457 | 716 | Tanjung Batu | Berau | Small | Trap | 1 | 8 |
| 458 | 716 | Teluk Sulaiman | Berau | Nano | Dropline | 29 | 87 |
| 459 | 716 | Desa Sampiro | Bolaang Mongondow Utara | Nano | Dropline | 11 | 4 |
| 460 | 716 | Desa Bulontio | Gorontalo Utara | Nano | Dropline | 11 | 5 |
| 461 | 716 | Desa Buluwatu | Gorontalo Utara | Nano | Dropline | 21 | 16 |
| 462 | 716 | Desa Huntokalo | Gorontalo Utara | Nano | Dropline | 10 | 3 |
| 463 | 716 | Desa Tihengo | Gorontalo Utara | Nano | Dropline | 26 | 7 |
| 464 | 716 | Desa Dalako Bembanehe | Kepulauan Sangihe | Nano | Dropline | 4 | 2 |

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 465 | 716 | Desa Lipang | Kepulauan Sangihe | Nano | Dropline | 5 | 2 |
| 466 | 716 | Desa Paruruang | Kepulauan Sangihe | Nano | Dropline | 16 | 8 |
| 467 | 716 | Desa Parururang | Kepulauan Sangihe | Nano | Dropline | 5 | 2 |
| 468 | 716 | Kampung Lipang | Kepulauan Sangihe | Nano | Dropline | 5 | 1 |
| 469 | 716 | Sangihe | Kepulauan Sangihe | Nano | Dropline | 2 | 0 |
| 470 | 716 | Tariang Baru | Kepulauan Sangihe | Nano | Longline |  | 3 |
| 471 | 716 | Buhias | Kepulauan Sitaro | Nano | Dropline | 153 | 124 |
| 472 | 716 | Mahongsawang Tagulandang | Kepulauan Sitaro | Nano | Dropline | 8 | 4 |
| 473 | 716 | Mongsawang | Kepulauan Sitaro | Nano | Dropline | 16 | 6 |
| 474 | 716 | Pulau Biaro | Kepulauan Sitaro | Nano | Dropline | 29 | 7 |
| 475 | 716 | Desa Damau | Kepulauan Talaud | Nano | Dropline | 8 | 3 |
| 476 | 716 | Dusun Bawunian | Kepulauan Talaud | Nano | Dropline | 26 | 29 |
| 477 | 716 | Belakang BRI, Selumit Pantai | Tarakan | Nano | Longline | 46 | 138 |
| 478 | 716 | Belakang BRI, Selumit Pantai | Tarakan | Small | Longline | 4 | 20 |
| 479 | 716 | Mamburungan Dalam | Tarakan | Nano | Dropline | 48 | 144 |
| 480 | 717 | Biak | Biak | Nano | Dropline | 1796 | 1793 |
| 481 | 717 | Desa Nikakamp | Biak | Nano | Dropline | 4 | 7 |
| 482 | 717 | Desa Tanjung Barari | Biak | Nano | Dropline | 5 | 4 |
| 483 | 717 | Fanindi Pantai | Manokwari | Nano | Dropline | 10 | 26 |
| 484 | 717 | Kampung Arowi 2 | Manokwari | Nano | Dropline | 4 | 9 |
| 485 | 717 | Kampung Borobudur 2 | Manokwari | Nano | Dropline | 12 | 30 |
| 486 | 717 | Kampung Fanindi | Manokwari | Nano | Dropline | 20 | 22 |
| 487 | 717 | Kampung Kimi | Nabire | Nano | Dropline | 1 | 1 |
| 488 | 717 | Kampung Smoker | Nabire | Nano | Dropline |  | 9 |
| 489 | 717 | Kampung Waharia | Nabire | Nano | Dropline | 2 | 2 |
| 490 | 717 | Pasar Kalibobo | Nabire | Nano | Dropline | 1 | 4 |
| 491 | 717 | PP. Sanoba | Nabire | Nano | Dropline | 4 | 14 |
| 492 | 717 | Wasior | Teluk Wondama | Nano | Dropline | 19 | 23 |
| 493 | 718 | PP. Nizam Zachman | Jakarta Utara | Large | Longline | 4 | 205 |
| 494 | 718 | Namatota | Kaimana | Large | Longline |  | 72 |
| 495 | 718 | Dusun Wamar Desa Durjela | Kepulauan Aru | Medium | Longline | 4 | 73 |
| 496 | 718 | PP. Bajomulyo | Kepulauan Aru | Large | Gillnet | 1 | 82 |
| 497 | 718 | PP. Benjina | Kepulauan Aru | Large | Longline | 2 | 92 |
| 498 | 718 | PP. Dobo | Kepulauan Aru | Large | Gillnet | 8 | 527 |
| 499 | 718 | PP. Dobo | Kepulauan Aru | Large | Longline | 10 | 596 |
| 500 | 718 | PP. Dobo | Kepulauan Aru | Medium | Dropline | 93 | 1658 |
| 501 | 718 | PP. Dobo | Kepulauan Aru | Medium | Gillnet | 5 | 121 |
| 502 | 718 | PP. Dobo | Kepulauan Aru | Medium | Longline | 10 | 185 |
| 503 | 718 | PP. Dobo | Kepulauan Aru | Nano | Dropline | 11 | 30 |
| 504 | 718 | PP. Dobo | Kepulauan Aru | Nano | Longline | 8 | 23 |
| 505 | 718 | PP. Dobo | Kepulauan Aru | Small | Dropline | 7 | 56 |
| 506 | 718 | PP. Dobo | Kepulauan Aru | Small | Longline | 1 | 7 |
| 507 | 718 | PP. Kaimana | Kepulauan Aru | Large | Longline | 1 | 51 |
| 508 | 718 | PP. Klidang Lor | Kepulauan Aru | Large | Gillnet | 1 | 73 |
| 509 | 718 | PP. Mayangan | Kepulauan Aru | Large | Longline | 19 | 1405 |
| 510 | 718 | PP. Merauke | Kepulauan Aru | Large | Longline | 4 | 397 |
| 511 | 718 | PP. Nizam Zachman | Kepulauan Aru | Large | Gillnet | 1 | 92 |
| 512 | 718 | PP. Pekalongan | Kepulauan Aru | Large | Gillnet | 1 | 115 |
| 513 | 718 | PU. Dobo | Kepulauan Aru | Large | Gillnet | 3 | 285 |
| 514 | 718 | PU. Dobo | Kepulauan Aru | Large | Longline | 36 | 2670 |
| 515 | 718 | Saumlaki | Kepulauan Tanimbar | Nano | Dropline | 37 | 109 |
| 516 | 718 | Saumlaki | Kepulauan Tanimbar | Small | Dropline | 1 | 5 |
| 517 | 718 | Saumlaki | Kepulauan Tanimbar | Small | Longline | 5 | 37 |
| 518 | 718 | PP. Bajomulyo | Merauke | Large | Gillnet | 1 | 91 |
| 519 | 718 | PP. Merauke | Merauke | Large | Gillnet | 48 | 3873 |
| 520 | 718 | PP. Merauke | Merauke | Large | Longline | 2 | 213 |
| 521 | 718 | PP. Merauke | Merauke | Medium | Gillnet | 5 | 138 |
| 522 | 718 | PP. Nizam Zachman | Merauke | Large | Gillnet | 13 | 841 |

Table 2.13: Total Number and Gross Tonnage of Snapper Fishing Boats by Main Target WPP, Registration Port, Home District (Kabupaten), Boat Size Category and Type of Fishing Gear.
(Nano $<5$ GT, Small 5-<10 GT, Medium 10-30 GT, Large $>30$ GT)

| Row | WPP | Registration Port | Home District | Boat Size | Gear | N | Total GT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 523 | 718 | PP. Nizam Zachman | Merauke | Large | Longline | 1 | 60 |
| 524 | 718 | PP. Poumako | Merauke | Medium | Gillnet | 3 | 88 |
| 525 | 718 | PP. Tegal | Merauke | Large | Gillnet | 1 | 148 |
| 526 | 718 | PP. Bajomulyo | Mimika | Large | Longline | 1 | 82 |
| 527 | 718 | PP. Dobo | Mimika | Large | Gillnet | 1 | 75 |
| 528 | 718 | PP. Mayangan | Mimika | Large | Gillnet | 1 | 129 |
| 529 | 718 | PP. Merauke | Mimika | Large | Gillnet | 2 | 123 |
| 530 | 718 | PP. Merauke | Mimika | Medium | Gillnet | 2 | 49 |
| 531 | 718 | PP. Muara Angke | Mimika | Large | Gillnet | 1 | 92 |
| 532 | 718 | PP. Nizam Zachman | Mimika | Large | Gillnet | 1 | 88 |
| 533 | 718 | PP. Paumako | Mimika | Large | Gillnet | 1 | 30 |
| 534 | 718 | PP. Paumako | Mimika | Medium | Gillnet | 2 | 58 |
| 535 | 718 | PP. Pekalongan | Mimika | Large | Gillnet | 1 | 112 |
| 536 | 718 | PP. Pomako | Mimika | Medium | Gillnet | 1 | 16 |
| 537 | 718 | PP. Poumako | Mimika | Large | Gillnet | 2 | 60 |
| 538 | 718 | PP. Poumako | Mimika | Medium | Gillnet | 12 | 284 |
| 539 | 718 | PP. Poumako | Mimika | Small | Gillnet | 3 | 28 |
| 540 | 718 | Timika | Mimika | Medium | Longline | 3 | 88 |
| 541 | 718 | PP. Bajomulyo | Pati | Large | Longline | 1 | 119 |
| 542 | 718 | Bagansiapiapi | Probolinggo | Large | Longline | 1 | 40 |
| 543 | 718 | PP. Dobo | Probolinggo | Large | Longline | 2 | 142 |
| 544 | 718 | PP. Mayangan | Probolinggo | Large | Gillnet | 3 | 124 |
| 545 | 718 | PP. Mayangan | Probolinggo | Large | Longline | 34 | 2103 |
| 546 | 718 | PP. Mayangan | Probolinggo | Medium | Longline | 7 | 199 |
| 547 | 718 | Probolinggo | Probolinggo | Large | Longline | 20 | 1460 |
| 548 | 718 | PP. Lappa | Sinjai | Large | Dropline | 1 | 35 |
| 549 | 718 | PP. Lappa | Sinjai | Medium | Dropline | 10 | 235 |
| 550 | 718 | PP. Bajomulyo | Tual | Large | Longline | 1 | 87 |
| TOTAL |  |  |  |  |  | 11536 | 62678 |

### 2.5 I-Fish Community

I-Fish Community only stores data that are relevant to fisheries management, whereas data on processed volume and sales, from the Smart Weighing and Measuring System, remain on servers at processing companies. Access to the I-Fish Community database is controlled by user name and password. I-Fish Community has different layers of privacy, which is contingent on the user's role in the supply chain. For instance, boat owners may view exact location of their boats, but not of the boats of other owners.

I-Fish Community has an automatic length-frequency distribution reporting system for length-based assessment of the fishery by species. The database generates length frequency distribution graphs for each species, together with life history parameters including length at maturity (Lmat), optimum harvest size (Lopt: Beverton, 1992), asymptotic length (Linf), and maximum total length (Lmax). Procedures for estimation of these length based life history characteristics are explained in the "Guide to Length Based Stock Assessment" (Mous et al., 2020). The data base also includes size limits used in the trade. These "trade limit" lengths are derived from general buying behavior (minimal weight) of processing companies. The weights are converted into lengths by using species-specific length- weight relationships.

Each length frequency distribution is accompanied by an automated length-based assessment on current status of the fishery by species. Any I-Fish Community user can access these graphs and the conclusions from the assessments. The report produces an assessment for the 50 most abundant species in the fishery, based on complete catches from the most recent complete calendar year (to ensure full year data sets). Graphs for the Top 20 species show the position of the catch length frequency distributions relative to various life history parameter values and trading limits for each species. Relative abundance of specific size groups is plotted for all years for which data are available, to indicate trends in status by species.

Immature fish, small mature fish, large mature fish, and a subset of large mature fish, namely "mega-spawners", which are fish larger than 1.1 times the optimum harvest size (Froese 2004), make up the specific size groups used in our length based assessment. For all fish of each species in the catch, the percentage in each category is calculated for further use in the length based assessment. These percentages are calculated and presented as the first step in the length based assessment as follows: W\% is immature (smaller than the length at maturity), $\mathrm{X} \%$ is small matures (at or above size at maturity but smaller than the optimum harvest size), and Y\% is large mature fish (at or above optimum harvest size). The percentage of mega-spawners is $\mathrm{Z} \%$.

The automated assessment comprises of five elements from the catch length frequencies. These elements all work with length based indicators of various kinds to draw conclusions from species specific length frequencies in the catch.

## 1. Minimum size as traded compared to length and maturity.

We use a comparison between the trade limit (minimum size accepted by the trade) and the size at maturity as an indicator for incentives from the trade for either unsustainable targeting of juveniles or for more sustainable targeting of mature fish that have spawned at least once. We consider a trade limit at $10 \%$ below or above the length at maturity to be significantly different from the length at maturity and we consider trade limits to provide incentives for targeting of specific sizes of fish through price differentiation.

IF "TradeLimit" is lower than 0.9 * L-mat THEN: "The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high."

ELSE, IF "TradeLimit" is greater than or equal to 0.9 * L-mat AND "TradeLimit" is lower than or equal to $1.1^{*}$ L-mat THEN: "The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium."

ELSE, IF "TradeLimit" is greater than 1.1 * L-mat THEN: "The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low."

## 2. Proportion of immature fish in the catch.

With $0 \%$ immature fish in the catch as an ideal target (Froese, 2004), a target of $10 \%$ or less is considered a reasonable indicator for sustainable (or safe) harvesting (Fujita et al., 2012; Vasilakopoulos et al., 2011). Zhang et al. (2009) consider $20 \%$ immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem based fisheries assessment. Results from meta-analysis over multiple fisheries showed stock status over a range of stocks to fall below precautionary limits at $30 \%$ or more immature fish in the catch (Vasilakopoulos et al., 2011). The fishery is considered highly at risk when more than $50 \%$ of the fish in the catch are immature (Froese et al, 2016).

IF "\% immature" is lower than or equal to $10 \%$ THEN: "At least $90 \%$ of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low."

ELSE, IF "\% immature" is greater than 10\% AND "\% immature" is lower than or equal to $20 \%$ THEN: "Between $10 \%$ and $20 \%$ of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium."

ELSE, IF "\% immature" is greater than 20\% AND "\% immature" is lower than or equal to $30 \%$ THEN: "Between $20 \%$ and $30 \%$ of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium."

ELSE, IF "\% immature" is greater than 30\% AND "\% immature" is lower than or equal to $50 \%$ THEN: "Between $30 \%$ and $50 \%$ of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high."

ELSE, IF "\% immature" is greater than $50 \%$ THEN: "The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high."

## 3. Current exploitation level.

We use the current exploitation level expressed as the percentage of fish in the catch below the optimum harvest size as an indicator for fisheries status. We consider a proportion of $65 \%$ of the fish (i.e. the vast majority in numbers) in the catch below the optimum harvest size as an indicator for growth overfishing. We therefore consider a majority in the catch around or above the optimum harvest size (large matures) as an indicator for minimizing the impact of fishing (Froese et al., 2016). This indicator will be achieved when less than $50 \%$ of the fish in the catch are below the optimum harvest size.

IF "\% immature + \% small mature" is greater than or equal to $65 \%$ THEN: "The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high."

ELSE, IF "\% immature $+\%$ small mature" is lower than or equal to $50 \%$ THEN: "The majority of the catch consists of size classes around or above the optimum harvest size (large mature fish). This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low."

ELSE, IF "\% immature + \% small mature" is greater than 50\% AND "\% immature + \% small mature" is lower than $65 \%$ THEN: "The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium."

## 4. Proportion of mega spawners in the catch.

Mega spawners are fish larger than 1.1 times the optimum harvest size. We consider a proportion of $30 \%$ or more mega spawners in the catch to be a sign of a healthy population (Froese, 2004), whereas lower proportions are increasingly leading to concerns, with proportions below $20 \%$ indicating great risk to the fishery.

IF "\% mega spawners" is greater than $30 \%$ THEN: "More than $30 \%$ of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low."

ELSE, IF "\% mega spawners" is greater than $20 \%$ AND "\% mega spawners" is lower than or equal to $30 \%$ THEN: "The percentage of mega spawners is between 20 and $30 \%$. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium."

ELSE, IF "\% mega spawners" is lower than or equal to 20\%, THEN: "Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

## 5. Spawning Potential Ratio.

As an indicator for Spawning Potential Ratio (SPR, Quinn and Deriso, 1999), we used the estimated spawning stock biomass as a fraction of the spawning stock biomass of that population if it would have been pristine (Meester et al 2001). We calculated SPR on a per-recruit basis from life-history parameters M, F, K, and Linf, and from gear selectivity parameters in the smaller part of the size spectrum caught by the fishery.

We estimated the instantaneous total mortality (Z) from the equilibrium Beverton-Holt estimator from length data using Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq of the R Fishmethods package. For this estimation, we used the length range of the catch length-frequency distribution starting with the length $5 \%$ higher than the modal length and ending with the 99th percentile. We assumed that Z, and its constituents M and F , were constant over length range that we used to estimate Z . We calculated F (fishing mortality) as the difference between Z and M , assuming full selectivity for the size range starting at modal length and ending with the largest fish in the catch. We assumed an S-shaped (logistic) selectivity curve, with $99 \%$ selectivity achieved at modal length, and with the length at $50 \%$ selectivity halfway between the first percentile and modal length of the catch length-frequency distribution.

Gislason et al (2010) provides evidence that M increases with decreasing length, and fisheries scientists agree that the smaller size classes of each fish species experience higher mortality than larger fish due to higher predation risk. The method we used for calculating Z, however, assumes a Z that is constant, implicating a constant M, over the length range over which we estimated Z. To iron out this inconsistency, we applied the Gislason et al (2010) empirical relationship to the length classes ( 1 cm width) over which we estimated Z , we calculated the average M over these size classes, and we applied that average to the Z estimation range. Outside this range (i.e., at lengths below 1.05 times modal length and lengths above the 99th percentile), we assumed a varying M following Gislason's formula (Mous et al., 2020).

In a perfect world, fishery biologists would know what the appropriate SPR should be for every harvested stock based on the biology of that stock. Generally, however, not enough is known about managed stocks to be so precise. However, studies show that some stocks (depending on the species of fish) can maintain themselves if the spawning stock biomass per recruit can be kept at 20 to $35 \%$ (or more) of what it was in the un-fished stock. Lower values of SPR may lead to severe stock declines (Wallace and Fletcher, 2001). Froese et al. (2016) considered a total population biomass B of half the pristine population biomass Bo to be the lower limit reference point for stock size, minimizing the impact of fishing. Using SPR and B/Bo estimates from our own data set, this Froese et al. (2016) lower limit reference point correlates with an SPR of about $40 \%$, not far from but slightly more conservative than the Wallace and Fletcher (2001) reference point. We chose an SPR of $40 \%$ as our reference point for low risk and after similar comparisons
we consider and SPR between $25 \%$ and $40 \%$ to represent a medium risk situation. Risk levels on the basis of SPR estimates are determined as follows:

IF "SPR" is lower than $25 \%$ THEN: "SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high."

ELSE, IF "SPR" is greater than or equal to $25 \%$ AND "SPR" is lower than $40 \%$ THEN: "SPR is between $25 \%$ and $40 \%$. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium."

ELSE, IF "SPR" is greater than or equal to $40 \%$ THEN: "SPR is more than $40 \%$. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low."

## 3 Fishing grounds and traceability

Fish landings made at ports in any specific WPP are not necessarily originating from fishing grounds within that same WPP. This is especially true for snappers, groupers and emperors landed and processed in Java, on the coast of WPP 712 and in South Sulawesi, on the coast of WPP 713. The issue of landings originating from multiple WPP is illustrated clearly by the fish that are processed in major processing centres like Probolinggo in East Java, on the coast of WPP 712 and Makassar in South Sulawesi, on the coast of WPP 713. These fish commonly originate from a number of different fleets that can operate throughout the waters of Western, Central and Eastern Indonesian, including on distant fishing grounds in the Natuna Sea (WPP 711), the Timor Sea (WPP 573), the Arafura Sea (WPP 718) ad and the Halmahera Sea (WPP 715). Most of the demersal fish caught in WPP 717 however, is landed in West Papua and used locally while some is also processed in Sorong for transport to distant markets.

The current report with length based stock assessments for groupers, snappers, emperors and grunts in WPP 717 is based on catches that were made on WPP 717 fishing grounds only, regardless of vessel origin or landing place. SPOT Trace tracking devices on cooperating vessels indicate where catches are actually made, as dates on CODRS images can be related to locations of fishing vessels on the fishing grounds. Even without linking SPOT locations to CODRS data it is possible to distinguish between steaming and fishing activity, when SPOT data are plotted on the maps of the fishing grounds (Figure 3.1). Catches are allocated in our analysis to a specific WPP when SPOT data indicate that the vessel was mostly fishing in that particular WPP during the trip that the catches were photographed.

Fishing vessels from many home ports along the coastlines of West Papua and North Halmahera (Figure 3.2) operate in WPP 717 as well as in neighbouring WPP like WPP 715 and WPP 716, and even sometimes in Palauan waters in the north or PNG waters in the east. The Spot Trace data from WPP 717 and neighbouring snapper and grouper fisheries illustrate that effective management by WPP is only possible in close coordination with fisheries management in the neighbouring WPP, in neighbouring provinces and sometimes even in neighbouring countries.

Coordination of management across WPP boundaries is especially important when fishing grounds are continues across those boundaries, with fish stocks spread over multiple WPP, and when fishing fleets freely move across WPP boundaries to target these stocks. In the case of the snapper fisheries in WPP 717, some fleets are fishing right around the borders separating different management areas.

Potential IUU issues related to fish landed at ports in WPP 717 include the possible occurrence of illegal operation by various fleets outside Indonesian waters in Palauan or PNG waters. Additional issues include the under marking of medium scale vessels to below 30GT, the licensing of the various fleets for various WPP and the operation of fleets inside Marine Protected Areas.

All this needs to be discussed with fishing boat captains, fish processors and traders, to prevent issues of supply line "pollution" with IUU fish. Maps with projections of SPOT trace data that illustrate the fishing grounds can be helpful tools in support of those discussions.


Figure 3.1: Fishing positions of dropliners participating in the CODRS program over the years 2014 2019 in WPP 717, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.


Figure 3.2: A typical snapper fishing boat from Biak, Papua, operating around the Biak island (WPP 717) and on nearby fishing grounds.

4 Length-based assessments of Top 20 most abundant species in CODRS samples

Catch length frequency for Etelis radiosus (ID \#5, Lutjanidae) in WPP 717 in 2020. N (Catch) $=460,742, \mathrm{n}$ (Sample) $=\mathbf{2 , 2 2 2}$.


Trends in relative abundance by size group for Etelis radiosus (ID \#5, Lutjanidae) in WPP 717.


The percentages of Etelis radiosus (ID \#5, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=460,742, \mathrm{n}($ Sample $)=2,222$
Immature ( $<61 \mathrm{~cm}$ ): $82 \%$
Small mature ( $>=61 \mathrm{~cm},<82 \mathrm{~cm}$ ): $9 \%$
Large mature ( $>=82 \mathrm{~cm}$ ): $9 \%$
Mega spawner ( $>=90.2 \mathrm{~cm}$ ): $4 \%$ (subset of large mature fish)
Spawning Potential Ratio: 5 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis radiosus (ID \#5, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Pristipomoides multidens (ID \#7, Lutjanidae) in WPP 717 in 2020. N (Catch) $=358,058, \mathrm{n}$ (Sample) $=1,729$.


Trends in relative abundance by size group for Pristipomoides multidens (ID \#7, Lutjanidae) in WPP 717.


The percentages of Pristipomoides multidens (ID \#7, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=358,058, \mathrm{n}($ Sample $)=1,729$
Immature $(<49 \mathrm{~cm}): 64 \%$
Small mature ( $>=49 \mathrm{~cm},<66 \mathrm{~cm}$ ): $27 \%$
Large mature ( $>=66 \mathrm{~cm}$ ): $9 \%$
Mega spawner ( $>=72.6 \mathrm{~cm}$ ): $3 \%$ (subset of large mature fish)
Spawning Potential Ratio: 8 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides multidens (ID \#7, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Aphareus rutilans (ID \#1, Lutjanidae) in WPP 717 in 2020.
N (Catch) $=280,647, \mathrm{n}$ (Sample) $=1,355$.


Trends in relative abundance by size group for Aphareus rutilans (ID \#1, Lutjanidae) in WPP 717.


The percentages of Aphareus rutilans (ID \#1, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=280,647, \mathrm{n}($ Sample $)=1,355$
Immature ( $<64 \mathrm{~cm}$ ): $69 \%$
Small mature ( $>=64 \mathrm{~cm},<85 \mathrm{~cm}$ ): $24 \%$
Large mature ( $>=85 \mathrm{~cm}$ ): $7 \%$
Mega spawner ( $>=93.5 \mathrm{~cm}$ ): $2 \%$ (subset of large mature fish)
Spawning Potential Ratio: $8 \%$
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Aphareus rutilans (ID \#1, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Lutjanus boutton (ID \#28, Lutjanidae) in WPP 717 in 2020. N (Catch) $=289,967, \mathrm{n}$ (Sample) $=1,400$.


Trends in relative abundance by size group for Lutjanus boutton (ID \#28, Lutjanidae) in WPP 717.


The percentages of Lutjanus boutton (ID \#28, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=289,967, \mathrm{n}($ Sample $)=1,400$
Immature ( $<18 \mathrm{~cm}$ ): $10 \%$
Small mature ( $>=18 \mathrm{~cm},<24 \mathrm{~cm}$ ): $71 \%$
Large mature ( $>=24 \mathrm{~cm}$ ): $19 \%$
Mega spawner ( $>=26.4 \mathrm{~cm}$ ): $6 \%$ (subset of large mature fish)
Spawning Potential Ratio: $17 \%$
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least $90 \%$ of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus boutton (ID \#28, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Epinephelus areolatus (ID \#45, Epinephelidae) in WPP 717 in 2020. N (Catch) $=\mathbf{2 7 2 , 0 8 1}, \mathrm{n}$ (Sample) $=1,314$.


Trends in relative abundance by size group for Epinephelus areolatus (ID \#45, Epinephelidae) in WPP 717


The percentages of Epinephelus areolatus (ID \#45, Epinephelidae) in 2020.
$\mathrm{N}($ Catch $)=272,081, \mathrm{n}($ Sample $)=1,314$
Immature ( $<22 \mathrm{~cm}$ ): 4\%
Small mature ( $>=22 \mathrm{~cm},<38 \mathrm{~cm}$ ): $96 \%$
Large mature ( $>=38 \mathrm{~cm}$ ): $0 \%$
Mega spawner ( $>=41.8 \mathrm{~cm}$ ): $0 \%$ (subset of large mature fish)
Spawning Potential Ratio: $6 \%$
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least $90 \%$ of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Epinephelus areolatus (ID \#45, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Lutjanus timorensis (ID \#19, Lutjanidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=183,065, \mathrm{n}($ Sample $)=884$.


Trends in relative abundance by size group for Lutjanus timorensis (ID \#19, Lutjanidae) in WPP 717.


The percentages of Lutjanus timorensis (ID \#19, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=183,065, \mathrm{n}($ Sample $)=884$
Immature ( $<34 \mathrm{~cm}$ ): $46 \%$
Small mature ( $>=34 \mathrm{~cm},<46 \mathrm{~cm}$ ): $43 \%$
Large mature ( $>=46 \mathrm{~cm}$ ): $11 \%$
Mega spawner ( $>=50.6 \mathrm{~cm}$ ): $4 \%$ (subset of large mature fish)
Spawning Potential Ratio: $10 \%$
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between $30 \%$ and $50 \%$ of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus timorensis (ID \#19, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Etelis coruscans (ID \#6, Lutjanidae) in WPP 717 in 2020. N (Catch) $=202,679, \mathrm{n}$ (Sample) $=979$.


Trends in relative abundance by size group for Etelis coruscans (ID \#6, Lutjanidae) in WPP 717.


The percentages of Etelis coruscans (ID \#6, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=202,679, \mathrm{n}($ Sample $)=979$
Immature ( $<64 \mathrm{~cm}$ ): $84 \%$
Small mature ( $>=64 \mathrm{~cm},<85 \mathrm{~cm}$ ): $13 \%$
Large mature ( $>=85 \mathrm{~cm}$ ): $4 \%$
Mega spawner ( $>=93.5 \mathrm{~cm}$ ): $1 \%$ (subset of large mature fish)
Spawning Potential Ratio: $4 \%$
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis coruscans (ID \#6, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Etelis boweni (ID \#4, Lutjanidae) in WPP 717 in 2020. N (Catch) $=\mathbf{2 0 6 , 8 2 0 , ~} \mathrm{n}$ (Sample) $=997$.


Trends in relative abundance by size group for Etelis boweni (ID \#4, Lutjanidae) in WPP 717.


The percentages of Etelis boweni (ID \#4, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=206,820, \mathrm{n}($ Sample $)=997$
Immature ( $<63 \mathrm{~cm}$ ): $80 \%$
Small mature ( $>=63 \mathrm{~cm},<84 \mathrm{~cm}$ ): $17 \%$
Large mature ( $>=84 \mathrm{~cm}$ ): $4 \%$
Mega spawner ( $>=92.4 \mathrm{~cm}$ ): $1 \%$ (subset of large mature fish)
Spawning Potential Ratio: 4 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis boweni (ID \#4, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Paracaesio kusakarii (ID \#34, Lutjanidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=205,716, \mathrm{n}($ Sample $)=993$.


Trends in relative abundance by size group for Paracaesio kusakarii (ID \#34, Lutjanidae) in WPP 717.


The percentages of Paracaesio kusakarii (ID \#34, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=205,716, \mathrm{n}($ Sample $)=993$
Immature ( $<45 \mathrm{~cm}$ ): 50\%
Small mature ( $>=45 \mathrm{~cm},<60 \mathrm{~cm}$ ): $49 \%$
Large mature ( $>=60 \mathrm{~cm}$ ): $1 \%$
Mega spawner ( $>=66 \mathrm{~cm}$ ): $0 \%$ (subset of large mature fish)
Spawning Potential Ratio: 1 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between $30 \%$ and $50 \%$ of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Paracaesio kusakarii (ID \#34, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Elagatis bipinnulata (ID \#82, Carangidae) in WPP 717 in 2020. $N($ Catch $)=120,163, n($ Sample $)=580$.


Trends in relative abundance by size group for Elagatis bipinnulata (ID \#82, Carangidae) in WPP 717.


The percentages of Elagatis bipinnulata (ID \#82, Carangidae) in 2020.
$\mathrm{N}($ Catch $)=120,163, \mathrm{n}($ Sample $)=580$
Immature ( $<49 \mathrm{~cm}$ ): 9\%
Small mature ( $>=49 \mathrm{~cm},<64 \mathrm{~cm}$ ): $57 \%$
Large mature ( $>=64 \mathrm{~cm}$ ): $34 \%$
Mega spawner ( $>=70.4 \mathrm{~cm}$ ): $15 \%$ (subset of large mature fish)
Spawning Potential Ratio: 11 \%
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least $90 \%$ of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Elagatis bipinnulata (ID \#82, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Pinjalo lewisi (ID \#22, Lutjanidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=142,534, \mathrm{n}($ Sample $)=689$.


Trends in relative abundance by size group for Pinjalo lewisi (ID \#22, Lutjanidae) in WPP 717.


The percentages of Pinjalo lewisi (ID \#22, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=142,534, \mathrm{n}($ Sample $)=689$
Immature ( $<31 \mathrm{~cm}$ ): $58 \%$
Small mature ( $>=31 \mathrm{~cm},<41 \mathrm{~cm}$ ): $42 \%$
Large mature ( $>=41 \mathrm{~cm}$ ): $0 \%$
Mega spawner ( $>=45.1 \mathrm{~cm}$ ): $0 \%$ (subset of large mature fish)
Spawning Potential Ratio: 1 \%
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pinjalo lewisi (ID \#22, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Pristipomoides typus (ID \#8, Lutjanidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=101,720, \mathrm{n}($ Sample $)=491$.


Trends in relative abundance by size group for Pristipomoides typus (ID \#8, Lutjanidae) in WPP 717.


The percentages of Pristipomoides typus (ID \#8, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=101,720, \mathrm{n}($ Sample $)=491$
Immature ( $<45 \mathrm{~cm}$ ): $65 \%$
Small mature ( $>=45 \mathrm{~cm},<60 \mathrm{~cm}$ ): $26 \%$
Large mature ( $>=60 \mathrm{~cm}$ ): $8 \%$
Mega spawner ( $>=66 \mathrm{~cm}$ ): $4 \%$ (subset of large mature fish)
Spawning Potential Ratio: 8 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides typus (ID \#8, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Pristipomoides argyrogrammicus (ID \#11, Lutjanidae) in WPP 717 in 2020. N (Catch) $=95,366, \mathrm{n}$ (Sample) $=460$.


Trends in relative abundance by size group for Pristipomoides argyrogrammicus (ID \#11, Lutjanidae) in WPP


The percentages of Pristipomoides argyrogrammicus (ID \#11, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=95,366, \mathrm{n}($ Sample $)=460$
Immature ( $<20 \mathrm{~cm}$ ): $14 \%$
Small mature ( $>=20 \mathrm{~cm},<27 \mathrm{~cm}$ ): $76 \%$
Large mature ( $>=27 \mathrm{~cm}$ ): $9 \%$
Mega spawner ( $>=29.7 \mathrm{~cm}$ ): $4 \%$ (subset of large mature fish)
Spawning Potential Ratio: 14 \%
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

Between $10 \%$ and $20 \%$ of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides argyrogrammicus (ID \#11, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Lutjanus gibbus (ID \#20, Lutjanidae) in WPP 717 in 2020. N (Catch) $=110,216, \mathrm{n}$ (Sample) $=533$.


Trends in relative abundance by size group for Lutjanus gibbus (ID \#20, Lutjanidae) in WPP 717.


The percentages of Lutjanus gibbus (ID \#20, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=110,216, \mathrm{n}($ Sample $)=533$
Immature ( $<29 \mathrm{~cm}$ ): $53 \%$
Small mature ( $>=29 \mathrm{~cm},<39 \mathrm{~cm}$ ): $45 \%$
Large mature ( $>=39 \mathrm{~cm}$ ): $2 \%$
Mega spawner ( $>=42.9 \mathrm{~cm}$ ): $0 \%$ (subset of large mature fish)
Spawning Potential Ratio: 3 \%
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lutjanus gibbus (ID \#20, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Lethrinus amboinensis (ID \#67, Lethrinidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=101,719, \mathrm{n}($ Sample $)=492$.


Trends in relative abundance by size group for Lethrinus amboinensis (ID \#67, Lethrinidae) in WPP 717.


The percentages of Lethrinus amboinensis (ID \#67, Lethrinidae) in 2020.
$\mathrm{N}($ Catch $)=101,719$, $\mathrm{n}($ Sample $)=492$
Immature ( $<26 \mathrm{~cm}$ ): $11 \%$
Small mature ( $>=26 \mathrm{~cm},<41 \mathrm{~cm}$ ): $81 \%$
Large mature ( $>=41 \mathrm{~cm}$ ): $8 \%$
Mega spawner ( $>=45.1 \mathrm{~cm}$ ): $3 \%$ (subset of large mature fish)
Spawning Potential Ratio: $15 \%$
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between $10 \%$ and $20 \%$ of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Lethrinus amboinensis (ID \#67, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Pristipomoides filamentosus (ID \#9, Lutjanidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=45,992, \mathrm{n}($ Sample $)=222$.


Trends in relative abundance by size group for Pristipomoides filamentosus (ID \#9, Lutjanidae) in WPP 71


The percentages of Pristipomoides filamentosus (ID \#9, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=45,992, \mathrm{n}($ Sample $)=222$
Immature ( $<48 \mathrm{~cm}$ ): $97 \%$
Small mature ( $>=48 \mathrm{~cm},<64 \mathrm{~cm}$ ): $3 \%$
Large mature ( $>=64 \mathrm{~cm}$ ): $0 \%$
Mega spawner ( $>=70.4 \mathrm{~cm}$ ): 0\% (subset of large mature fish)
Spawning Potential Ratio: 0 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides filamentosus (ID \#9, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Gymnocranius grandoculis (ID \#70, Lethrinidae) in WPP 717 in 2020. N (Catch) $=\mathbf{7 1 , 8 1 7 , ~} \mathrm{n}$ (Sample) $=347$.


Trends in relative abundance by size group for Gymnocranius grandoculis (ID \#70, Lethrinidae) in WPP 71


The percentages of Gymnocranius grandoculis (ID \#70, Lethrinidae) in 2020.
$\mathrm{N}($ Catch $)=71,817, \mathrm{n}($ Sample $)=347$
Immature ( $<36 \mathrm{~cm}$ ): $40 \%$
Small mature ( $>=36 \mathrm{~cm},<58 \mathrm{~cm}$ ): $60 \%$
Large mature ( $>=58 \mathrm{~cm}$ ): $0 \%$
Mega spawner ( $>=63.8 \mathrm{~cm}$ ): 0\% (subset of large mature fish)
Spawning Potential Ratio: 2 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between $30 \%$ and $50 \%$ of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Gymnocranius grandoculis (ID \#70, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Caranx tille (ID \#81, Carangidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=47,645, \mathrm{n}($ Sample $)=230$.


Trends in relative abundance by size group for Caranx tille (ID \#81, Carangidae) in WPP 717.


The percentages of Caranx tille (ID \#81, Carangidae) in 2020.
$\mathrm{N}($ Catch $)=47,645, \mathrm{n}($ Sample $)=230$
Immature $(<36 \mathrm{~cm}): 2 \%$
Small mature ( $>=36 \mathrm{~cm},<47 \mathrm{~cm}$ ): $11 \%$
Large mature ( $>=47 \mathrm{~cm}$ ): $87 \%$
Mega spawner ( $>=51.7 \mathrm{~cm}$ ): $84 \%$ (subset of large mature fish)
Spawning Potential Ratio: near 100 \%
The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least $90 \%$ of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.

More than $30 \%$ of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low.

SPR is more than $40 \%$. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low.

Trends in relative abundance by size group for Caranx tille (ID \#81, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Seriola rivoliana (ID \#84, Carangidae) in WPP 717 in 2020. $\mathrm{N}($ Catch $)=47,643, \mathrm{n}($ Sample $)=230$.


Trends in relative abundance by size group for Seriola rivoliana (ID \#84, Carangidae) in WPP 717.


The percentages of Seriola rivoliana (ID \#84, Carangidae) in 2020.
$\mathrm{N}($ Catch $)=47,643, \mathrm{n}($ Sample $)=230$
Immature ( $<60 \mathrm{~cm}$ ): $12 \%$
Small mature ( $>=60 \mathrm{~cm},<77 \mathrm{~cm}$ ): $32 \%$
Large mature ( $>=77 \mathrm{~cm}$ ): $56 \%$
Mega spawner ( $>=84.7 \mathrm{~cm}$ ): $19 \%$ (subset of large mature fish)
Spawning Potential Ratio: 4 \%
The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between $10 \%$ and $20 \%$ of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The majority of the catch consists of size classes around or above the optimum harvest size. This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than $25 \%$. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Seriola rivoliana (ID \#84, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Catch length frequency for Paracaesio stonei (ID \#35, Lutjanidae) in WPP 717 in 2020.
$\mathrm{N}($ Catch $)=42,471, \mathrm{n}($ Sample $)=205$.


Trends in relative abundance by size group for Paracaesio stonei (ID \#35, Lutjanidae) in WPP 717.


The percentages of Paracaesio stonei (ID \#35, Lutjanidae) in 2020.
$\mathrm{N}($ Catch $)=42,471, \mathrm{n}($ Sample $)=205$
Immature ( $<37 \mathrm{~cm}$ ): 58\%
Small mature ( $>=37 \mathrm{~cm},<50 \mathrm{~cm}$ ): $30 \%$
Large mature ( $>=50 \mathrm{~cm}$ ): $12 \%$
Mega spawner ( $>=55 \mathrm{~cm}$ ): $3 \%$ (subset of large mature fish)
Spawning Potential Ratio: 31 \%
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than $20 \%$ of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is between $25 \%$ and $40 \%$. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium.

Trends in relative abundance by size group for Paracaesio stonei (ID \#35, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
\% Immature trend not available.
\% Large Mature trend not available.
\% Mega Spawner trend not available.
\% SPR trend not available.

Table 4.1: Values of indicators in length-based assessments for the top 50 most abundant species by total CODRS samples in WPP 717 in 2020.

| Rank | \#ID | Species | Trade Limit Prop. Lmat | $\begin{gathered} \text { Immature } \\ \% \end{gathered}$ | $\begin{gathered} \text { Exploitation } \\ \% \end{gathered}$ | $\begin{gathered} \text { Mega Spawn } \\ \% \end{gathered}$ | $\begin{gathered} \text { SPR } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | Etelis radiosus | 0.71 | 82 | 91 | 4 | 5 |
| 2 | 7 | Pristipomoides multidens | 0.71 | 64 | 91 | 3 | 8 |
| 3 | 1 | Aphareus rutilans | 0.78 | 69 | 93 | 2 | 8 |
| 4 | 28 | Lutjanus boutton | 1.20 | 10 | 81 | 6 | 17 |
| 5 | 45 | Epinephelus areolatus | 1.31 | 4 | 100 | 0 | 6 |
| 6 | 19 | Lutjanus timorensis | 0.98 | 46 | 89 | 4 | 10 |
| 7 | 6 | Etelis coruscans | 0.59 | 84 | 96 | 1 | 4 |
| 8 | 4 | Etelis boweni | 0.52 | 80 | 96 | 1 | 4 |
| 9 | 34 | Paracaesio kusakarii | 0.77 | 50 | 99 | 0 | 1 |
| 10 | 82 | Elagatis bipinnulata | 1.13 | 9 | 66 | 15 | 11 |
| 11 | 22 | Pinjalo lewisi | 0.96 | 58 | 100 | 0 | 1 |
| 12 | 8 | Pristipomoides typus | 0.80 | 65 | 92 | 4 | 8 |
| 13 | 11 | Pristipomoides argyrogrammicus | 1.42 | 14 | 91 | 4 | 14 |
| 14 | 20 | Lutjanus gibbus | 1.07 | 53 | 98 | 0 | 3 |
| 15 | 67 | Lethrinus amboinensis | 1.08 | 11 | 92 | 3 | 15 |
| 16 | 9 | Pristipomoides filamentosus | 0.69 | 97 | 100 | 0 | 0 |
| 17 | 70 | Gymnocranius grandoculis | 0.85 | 40 | 100 | 0 | 2 |
| 18 | 81 | Caranx tille | 1.38 | 2 | 13 | 84 | near 100 |
| 19 | 84 | Seriola rivoliana | 1.00 | 12 | 44 | 19 | 4 |
| 20 | 35 | Paracaesio stonei | 0.87 | 58 | 88 | 3 | 31 |
| 21 | 33 | Paracaesio xanthura | 0.98 | 28 | 100 | 0 | 5 |
| 22 | 43 | Epinephelus morrhua | 0.83 | 25 | 99 | 0 | 10 |
| 23 | 80 | Caranx sexfasciatus |  | unknown | unknown | unknown | unknown |
| 24 | 3 | Etelis carbunculus |  | unknown | unknown | unknown | unknown |
| 25 | 27 | Lutjanus vitta |  | unknown | unknown | unknown | unknown |
| 26 | 66 | Lethrinus olivaceus |  | unknown | unknown | unknown | unknown |
| 27 | 15 | Lutjanus argentimaculatus |  | unknown | unknown | unknown | unknown |
| 28 | 32 | Paracaesio gonzalesi |  | unknown | unknown | unknown | unknown |
| 29 | 85 | Erythrocles schlegelii |  | unknown | unknown | unknown | unknown |
| 30 | 94 | Sphyraena forsteri |  | unknown | unknown | unknown | unknown |
| 31 | 17 | Lutjanus malabaricus |  | unknown | unknown | unknown | unknown |
| 32 | 69 | Wattsia mossambica |  | unknown | unknown | unknown | unknown |
| 33 | 30 | Lipocheilus carnolabrum |  | unknown | unknown | unknown | unknown |
| 34 | 10 | Pristipomoides sieboldii |  | unknown | unknown | unknown | unknown |
| 35 | 62 | Variola albimarginata |  | unknown | unknown | unknown | unknown |
| 36 | 97 | Ostichthys japonicus |  | unknown | unknown | unknown | unknown |
| 38 | 61 | Plectropomus leopardus |  | unknown | unknown | unknown | unknown |
| 40 | 96 | Parascolopsis eriomma |  | unknown | unknown | unknown | unknown |

Table 4.2: Risk levels in the fisheries for the top 50 most abundant species by total CODRS samples in WPP 717 in 2020.

| Rank | \#ID | Species | Trade Limit | Immature | Exploitation | Mega Spawn | SPR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | Etelis radiosus | high | high | high | high | high |
| 2 | 7 | Pristipomoides multidens | high | high | high | high | high |
| 3 | 1 | Aphareus rutilans | high | high | high | high | high |
| 4 | 28 | Lutjanus boutton | low | low | high | high | high |
| 5 | 45 | Epinephelus areolatus | low | low | high | high | high |
| 6 | 19 | Lutjanus timorensis | medium | high | high | high | high |
| 7 | 6 | Etelis coruscans | high | high | high | high | high |
| 8 | 4 | Etelis boweni | high | high | high | high | high |
| 9 | 34 | Paracaesio kusakarii | high | high | high | high | high |
| 10 | 82 | Elagatis bipinnulata | low | low | high | high | high |
| 11 | 22 | Pinjalo lewisi | medium | high | high | high | high |
| 12 | 8 | Pristipomoides typus | high | high | high | high | high |
| 13 | 11 | Pristipomoides argyrogrammicus | low | medium | high | high | high |
| 14 | 20 | Lutjanus gibbus | medium | high | high | high | high |
| 15 | 67 | Lethrinus amboinensis | medium | medium | high | high | high |
| 16 | 9 | Pristipomoides filamentosus | high | high | high | high | high |
| 17 | 70 | Gymnocranius grandoculis | high | high | high | high | high |
| 18 | 81 | Caranx tille | low | low | low | low | low |
| 19 | 84 | Seriola rivoliana | medium | medium | low | high | high |
| 20 | 35 | Paracaesio stonei | high | high | high | high | medium |
| 21 | 33 | Paracaesio xanthura | medium | medium | high | high | high |
| 22 | 43 | Epinephelus morrhua | high | medium | high | high | high |
| 23 | 80 | Caranx sexfasciatus | unknown | unknown | unknown | unknown | unknown |
| 24 | 3 | Etelis carbunculus | unknown | unknown | unknown | unknown | unknown |
| 25 | 27 | Lutjanus vitta | unknown | unknown | unknown | unknown | unknown |
| 26 | 66 | Lethrinus olivaceus | unknown | unknown | unknown | unknown | unknown |
| 27 | 15 | Lutjanus argentimaculatus | unknown | unknown | unknown | unknown | unknown |
| 28 | 32 | Paracaesio gonzalesi | unknown | unknown | unknown | unknown | unknown |
| 29 | 85 | Erythrocles schlegelii | unknown | unknown | unknown | unknown | unknown |
| 30 | 94 | Sphyraena forsteri | unknown | unknown | unknown | unknown | unknown |
| 31 | 17 | Lutjanus malabaricus | unknown | unknown | unknown | unknown | unknown |
| 32 | 69 | Wattsia mossambica | unknown | unknown | unknown | unknown | unknown |
| 33 | 30 | Lipocheilus carnolabrum | unknown | unknown | unknown | unknown | unknown |
| 34 | 10 | Pristipomoides sieboldii | unknown | unknown | unknown | unknown | unknown |
| 35 | 62 | Variola albimarginata | unknown | unknown | unknown | unknown | unknown |
| 36 | 97 | Ostichthys japonicus | unknown | unknown | unknown | unknown | unknown |
| 38 | 61 | Plectropomus leopardus | unknown | unknown | unknown | unknown | unknown |
| 40 | 96 | Parascolopsis eriomma | unknown | unknown | unknown | unknown | unknown |

Table 4.3: Trends during recent years for SPR and relative abundance by size group for the top 50 most abundant species by total CODRS samples in WPP 717.

| Rank | \#ID | Species | \% Immature | \% Large Mature | \% Mega Spawner | \% SPR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | Etelis radiosus | unknown | unknown | unknown | unknown |
| 2 | 7 | Pristipomoides multidens | unknown | unknown | unknown | unknown |
| 3 | 1 | Aphareus rutilans | unknown | unknown | unknown | unknown |
| 4 | 28 | Lutjanus boutton | unknown | unknown | unknown | unknown |
| 5 | 45 | Epinephelus areolatus | unknown | unknown | unknown | unknown |
| 6 | 19 | Lutjanus timorensis | unknown | unknown | unknown | unknown |
| 7 | 6 | Etelis coruscans | unknown | unknown | unknown | unknown |
| 8 | 4 | Etelis boweni | unknown | unknown | unknown | unknown |
| 9 | 34 | Paracaesio kusakarii | unknown | unknown | unknown | unknown |
| 10 | 82 | Elagatis bipinnulata | unknown | unknown | unknown | unknown |
| 11 | 22 | Pinjalo lewisi | unknown | unknown | unknown | unknown |
| 12 | 8 | Pristipomoides typus | unknown | unknown | unknown | unknown |
| 13 | 11 | Pristipomoides argyrogrammicus | unknown | unknown | unknown | unknown |
| 14 | 20 | Lutjanus gibbus | unknown | unknown | unknown | unknown |
| 15 | 67 | Lethrinus amboinensis | unknown | unknown | unknown | unknown |
| 16 | 9 | Pristipomoides filamentosus | unknown | unknown | unknown | unknown |
| 17 | 70 | Gymnocranius grandoculis | unknown | unknown | unknown | unknown |
| 18 | 81 | Caranx tille | unknown | unknown | unknown | unknown |
| 19 | 84 | Seriola rivoliana | unknown | unknown | unknown | unknown |
| 20 | 35 | Paracaesio stonei | unknown | unknown | unknown | unknown |
| 21 | 33 | Paracaesio xanthura | unknown | unknown | unknown | unknown |
| 22 | 43 | Epinephelus morrhua | unknown | unknown | unknown | unknown |
| 23 | 80 | Caranx sexfasciatus | unknown | unknown | unknown | unknown |
| 24 | 3 | Etelis carbunculus | unknown | unknown | unknown | unknown |
| 25 | 27 | Lutjanus vitta | unknown | unknown | unknown | unknown |
| 26 | 66 | Lethrinus olivaceus | unknown | unknown | unknown | unknown |
| 27 | 15 | Lutjanus argentimaculatus | unknown | unknown | unknown | unknown |
| 28 | 32 | Paracaesio gonzalesi | unknown | unknown | unknown | unknown |
| 29 | 85 | Erythrocles schlegelii | unknown | unknown | unknown | unknown |
| 30 | 94 | Sphyraena forsteri | unknown | unknown | unknown | unknown |
| 31 | 17 | Lutjanus malabaricus | unknown | unknown | unknown | unknown |
| 32 | 69 | Wattsia mossambica | unknown | unknown | unknown | unknown |
| 33 | 30 | Lipocheilus carnolabrum | unknown | unknown | unknown | unknown |
| 34 | 10 | Pristipomoides sieboldii | unknown | unknown | unknown | unknown |
| 35 | 62 | Variola albimarginata | unknown | unknown | unknown | unknown |
| 36 | 97 | Ostichthys japonicus | unknown | unknown | unknown | unknown |
| 38 | 61 | Plectropomus leopardus | unknown | unknown | unknown | unknown |
| 40 | 96 | Parascolopsis eriomma | unknown | unknown | unknown | unknown |

## 5 Discussion and conclusions

Deep drop line fishing, mainly at depths between 50 and 350 meters, is the most common demersal fishery in WPP 717 and occurs on deep slopes in the northern Halmahera Sea and in Cenderawasih Bay, and on the slopes dropping into the western Pacific Ocean. The deep water hook and line fisheries for snappers, groupers and emperors are fairly clean fisheries when it comes to the species spectrum in the catch, even though it is much more species-rich then is sometimes assumed, also within the snapper category. The catch of snappers, groupers and emperors in WPP 717 is mostly used locally, with some fish going to traders supplying middle and higher end markets for those species groups. There is some by-catch of various species (Table 5.7 and 5.8), which is sold separately.

Drop line fisheries are characterized by a very low impact on habitat at the fishing grounds, whereas some more (but still limited) impact from entanglement can be expected from bottom long lines and traps. No major impact is evident from either one of the two demersal hook and line fisheries, certainly nothing near what is caused for example by destructive dragging gear. However, due to limited available habitat (fishing grounds) and predictable locations of fish concentrations, combined with a very high fishing effort on the best known fishing grounds, as well as the targeting of juveniles, there is a very high potential for overfishing in the demersal fisheries for snappers groupers and emperors.

Risks of overfishing is high for all target species in WPP 717 (Table 4.1 and Table 4.2), and SPR is dangerously low (Table 5.1) especially for those species which are easily caught with hook and line gears. Snapper feeding aggregations occur at predictable and well known locations and the snappers are therefore among the most vulnerable species in these fisheries. Fishing mortality (from deep slope hook and line fisheries) for all major target snapper species seems to be unacceptably high while the catches of these species include large percentages of relatively small and immature specimen. For many species of snappers, sizes are consistently targeted and landed well below the size where these fish reach maturity. Large specimen of the major target species are already becoming extremely rare on the main fishing grounds.

Fishing effort and fishing mortality have been far too high in recent years in WPP 717 and the situation is currently not improving (Table 4.3). Trends in length based indicators can also be compared with trends in CpUE by gear types and boat size category (Tables 5.2 to 5.6 ), although fishing at aggregating sites may be masking some of the direct effect on CpUE. Overall we are currently looking at a high risk of overfishing for all major target species in WPP 717, based on the size based stock assessments from the drop line fisheries.

The groupers seem to be somewhat less vulnerable to the deep demersal fisheries than the snappers. This may be because most groupers are staying closer to high rugosity bottom habitat, which is avoided by trap and long line vessels due to risk of entanglement, while drop line fishers are targeting schooling snappers that are hovering higher in the water column, above the grouper habitat.Fishing mortality (from deep demersal fisheries) in large mature groupers may be somewhat lower than what we see for the snappers. Groupers generally mature as females at a size relative to their maximum size which is lower than for snappers. This strategy enables them to reproduce before they are being caught, although fecundity is still relatively low at sizes below the optimum length. Fecundity for the population as a whole peaks at the optimum size for each species, and this is also the size around which sex change from females to males happens in groupers.

For those grouper species which spend all or most of their life cycle in deep water habitats, the relatively low vulnerability to the deep slope hook and line fisheries is very good news. For other grouper species which spend major parts of their life cycle in shallower habitats, like coral reefs or mangroves or estuaries for example, the reality is that their populations in general are not in good shape due to excessive fishing pressure by small scale fisheries in those shallower habitats. This situation is also evident for a few snapper species such as for example the mangrove jack.

Overall there is a clear scope for some straightforward fisheries improvements supported by relatively uncomplicated fisheries management policies and regulations. Our first recommendation for industry-led fisheries improvements is for traders to adjust trading limits (incentives to fishers) species by species to the length at maturity for each species. For a number of important species the trade limits need adjustments upwards, with government support through regulations on minimum allowable sizes. Many of the target species in the deep demersal fisheries are traded at sizes that are too small, and this impairs sustainability. The impact is clearly visible already in landed catches.

Adjustment upwards of trading limits towards the size at first maturity would be a straightforward improvement in these fisheries. By refusing undersized fish in high value supply lines, the market can provide incentives for captains of fishing boats to target larger specimen. The captains can certainly do this by using their day to day experiences, selecting locations, fishing depths, habitat types, hook sizes, etc. Literature shows that habitat separation between size groups is evident for many species, while size selectivity of specific hook sizes is obvious. Captains know about this from experience.

Besides size selectivity, fishing effort is a very important factor in resulting overall catch and size frequency of the catch. All major target species show a rapid decline in numbers above the size where the species becomes most vulnerable to the fisheries. This rapid decline in numbers, as visible in the LFD graphs, indicates a high fishing mortality for the vulnerable size classes. Fishing effort is probably too high to be sustainable and many species seem to be at risk in the deep demersal fisheries, judging from a number of indicators as presented in this report. At present these fisheries show clear signs of over-exploitation in WPP 717.

One urgently needed fisheries management intervention is to cap fishing effort (number of boats) at current level and to start looking at incentives for effort reductions. A reduction of effort will need to be supported and implemented by government to ensure an even playing field among fishing companies. An improved licensing system and an effort control system based on the Indonesia's mandatory Vessel Monitoring System, using more accurate data on Gross Tonnage for all fishing boats, could be used to better manage fishing effort. Continuous monitoring of trends in the various presented indicators will show in which direction these fisheries are heading and what the effects are of any fisheries management measures in future years.

Government policies and regulations are needed and can be formulated to support fishers and traders with the implementation of improvements across the sector. Our recommendations for supporting government policies in relation to the deep demersal fisheries include:

- Use scientific (Latin) fish names in fisheries management and in trade.
- Incorporate length-based assessments in management of specific fisheries.
- Develop species-specific length based regulations for these fisheries.
- Implement a controlled access management system for regulation of fishing effort on specific fishing grounds.
- Increase public awareness on unknown species and preferred size classes by species.
- Incorporate traceability systems in fleet management by fisheries and by fishing ground.
Recommendations for specific regulations may include:
- Make mandatory correct display of scientific name (correct labeling) of all traded fish (besides market name).
- Adopt legal minimum sizes for specific or even all traded species, at the length at maturity for each species.
- Make mandatory for each fishing vessel of all sizes to carry a simple GPS tracking device that needs to be functioning at all times. Indonesia already has a mandatory Vessel Monitoring System for vessels larger than 30 GT, so Indonesia could consider expanding this requirement to fishing vessels of smaller sizes.
- Cap fishing effort in the snapper fisheries at the current level and explore options to reduce effort to more sustainable levels.

Table 5.1: SPR values over the period 2016 to 2024 for the top 20 most abundant species in CODRS samples in WPP 717, based on total catch LFD analysis, for all gear types combined and adjusted for relative effort by gear type.

| Rank | Species | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Etelis radiosus | NA | NA | NA | 2 | 5 | NA | NA | NA | NA |
| 2 | Pristipomoides multidens | NA | NA | NA | 8 | 8 | NA | NA | NA | NA |
| 3 | Aphareus rutilans | NA | NA | NA | 11 | 8 | NA | NA | NA | NA |
| 4 | Lutjanus boutton | NA | NA | NA | 26 | 17 | NA | NA | NA | NA |
| 5 | Epinephelus areolatus | NA | NA | NA | 7 | 6 | NA | NA | NA | NA |
| 6 | Lutjanus timorensis | NA | NA | NA | 6 | 10 | NA | NA | NA | NA |
| 7 | Etelis coruscans | NA | NA | NA | 1 | 4 | NA | NA | NA | NA |
| 8 | Etelis boweni | NA | NA | NA | 7 | 4 | NA | NA | NA | NA |
| 9 | Paracaesio kusakarii | NA | NA | NA | NA | 1 | NA | NA | NA | NA |
| 10 | Elagatis bipinnulata | NA | NA | NA | 15 | 11 | NA | NA | NA | NA |
| 11 | Pinjalo lewisi | NA | NA | NA | NA | 1 | NA | NA | NA | NA |
| 12 | Pristipomoides typus | NA | NA | NA | 5 | 8 | NA | NA | NA | NA |
| 13 | Pristipomoides argyrogrammicus | NA | NA | NA | NA | 14 | NA | NA | NA | NA |
| 14 | Lutjanus gibbus | NA | NA | NA | NA | 3 | NA | NA | NA | NA |
| 15 | Lethrinus amboinensis | NA | NA | NA | NA | 15 | NA | NA | NA | NA |
| 16 | Pristipomoides filamentosus | NA | NA | NA | NA | 0 | NA | NA | NA | NA |
| 17 | Gymnocranius grandoculis | NA | NA | NA | NA | 2 | NA | NA | NA | NA |
| 18 | Caranx tille | NA | NA | NA | NA | 100 | NA | NA | NA | NA |
| 19 |  | Seriola rivoliana | NA | NA | NA | NA | 4 | NA | NA | NA |
| 20 | NA |  |  |  |  |  |  |  |  |  |
| 20 | Paracaesio stonei | NA | NA | NA | NA | 31 | NA | NA | NA | NA |

Table 5.2: CpUE (kg/GT/day) trends by fleet segment for Etelis radiosus in WPP 717

| CpUE | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nano Dropline | NA | NA | NA | 1.5 | 2.7 | NA | NA | NA | NA |
| Nano Longline | NA |
| Small Dropline | NA |
| Small Longline | NA |
| Medium Dropline | NA |
| Medium Longline | NA |
| Large Dropline | NA |
| Large Longline | NA |

Table 5.3: CpUE (kg/GT/day) trends by fleet segment for Aphareus rutilans in WPP 717

| CpUE | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nano Dropline | NA | NA | NA | 2.9 | 2.2 | NA | NA | NA | NA |
| Nano Longline | NA |
| Small Dropline | NA |
| Small Longline | NA |
| Medium Dropline | NA |
| Medium Longline | NA |
| Large Dropline | NA |
| Large Longline | NA |

Table 5.4: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides multidens in WPP 717

| CpUE | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nano Dropline | NA | NA | NA | 1.7 | 1.8 | NA | NA | NA | NA |
| Nano Longline | NA |
| Small Dropline | NA |
| Small Longline | NA |
| Medium Dropline | NA |
| Medium Longline | NA |
| Large Dropline | NA |
| Large Longline | NA |

Table 5.5: CpUE (kg/GT/day) trends by fleet segment for Etelis boweni in WPP 717

| CpUE | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nano Dropline | NA | NA | NA | 0.9 | 1.5 | NA | NA | NA | NA |
| Nano Longline | NA |
| Small Dropline | NA |
| Small Longline | NA |
| Medium Dropline | NA |
| Medium Longline | NA |
| Large Dropline | NA |
| Large Longline | NA |

Table 5.6: CpUE (kg/GT/day) trends by fleet segment for all species in WPP 717

| CpUE | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nano Dropline | NA | NA | NA | 14.4 | 17.1 | NA | NA | NA | NA |
| Nano Longline | NA |
| Small Dropline | NA |
| Small Longline | NA |
| Medium Dropline | NA |
| Medium Longline | NA |
| Large Dropline | NA |
| Large Longline | NA |

Table 5.7: Sample sizes over the period 2016 to 2024 for the others species in WPP 717 Dropline

| Family Name | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | \%Sample |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acanthuridae | 0 | 0 | 0 | 17 | 32 | 0 | 0 | 0 | 0 | 49 | 0.142 |
| Ariidae | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0.006 |
| Ariommatidae | 0 | 0 | 0 | 25 | 87 | 0 | 0 | 0 | 0 | 112 | 0.325 |
| Balistidae | 0 | 0 | 0 | 31 | 55 | 0 | 0 | 0 | 0 | 86 | 0.249 |
| Belonidae | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0.003 |
| Bramidae | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.003 |
| Caesionidae | 0 | 0 | 0 | 2 | 83 | 0 | 0 | 0 | 0 | 85 | 0.247 |
| Carangidae | 0 | 0 | 0 | 180 | 241 | 0 | 0 | 0 | 0 | 421 | 1.221 |
| Coryphaenidae | 0 | 0 | 0 | 25 | 3 | 0 | 0 | 0 | 0 | 28 | 0.081 |
| Epinephelidae | 0 | 0 | 0 | 165 | 365 | 0 | 0 | 0 | 0 | 530 | 1.537 |
| Gempylidae | 0 | 0 | 0 | 8 | 27 | 0 | 0 | 0 | 0 | 35 | 0.102 |
| Haemulidae | 0 | 0 | 0 | 4 | 17 | 0 | 0 | 0 | 0 | 21 | 0.061 |
| Holocentridae | 0 | 0 | 0 | 48 | 69 | 0 | 0 | 0 | 0 | 117 | 0.339 |
| Labridae | 0 | 0 | 0 | 8 | 7 | 0 | 0 | 0 | 0 | 15 | 0.044 |
| Lethrinidae | 0 | 0 | 0 | 136 | 290 | 0 | 0 | 0 | 0 | 426 | 1.235 |
| Lutjanidae | 0 | 0 | 0 | 474 | 527 | 0 | 0 | 0 | 0 | 1001 | 2.903 |
| Malacanthidae | 0 | 0 | 0 | 15 | 23 | 0 | 0 | 0 | 0 | 38 | 0.110 |
| Monacanthidae | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.003 |
| Mullidae | 0 | 0 | 0 | 28 | 54 | 0 | 0 | 0 | 0 | 82 | 0.238 |
| Muraenesocidae | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.003 |
| Nemipteridae | 0 | 0 | 0 | 108 | 321 | 0 | 0 | 0 | 0 | 429 | 1.244 |
| Other | 0 | 0 | 0 | 108 | 163 | 0 | 0 | 0 | 0 | 271 | 0.786 |
| Priacanthidae | 0 | 0 | 0 | 180 | 283 | 0 | 0 | 0 | 0 | 463 | 1.343 |
| Rays | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 4 | 0.012 |
| Scaridae | 0 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 7 | 0.020 |
| Scombridae | 0 | 0 | 0 | 354 | 213 | 0 | 0 | 0 | 0 | 567 | 1.644 |
| Serranidae | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0.006 |
| Sharks | 0 | 0 | 0 | 49 | 40 | 0 | 0 | 0 | 0 | 89 | 0.258 |
| Sphyraenidae | 0 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 10 | 0.029 |
| Trichiuridae | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 3 | 0.009 |
| Total | 0 | 0 | 0 | 1981 | 2916 | 0 | 0 | 0 | 0 | 4897 | 14.202 |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table 5.8: Sample sizes over the period 2016 to 2024 for the others species in WPP 717 Longline

| Family Name | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \%Sample 9

## 6 References

Australian Surveying \& Land Information Group (AUSLIG), 1996. Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Ehrhardt, N.M. and Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. Trans. Am. Fish. Soc. 121:115-122.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5: 86-91.

Froese, R. and Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 56:758-773.

Froese, R. and D. Pauly, (eds.) 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 p.

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R. and Pauly, D. 2016. Minimizing the impact of fishing. Fish and Fisheries DOI: 10.1111/faf.12146.

Fujita, R., Karr, K., Apel, A. and Mateo, I. 2012. Guide to the use of Froese sustainability indicators to assess and manage data-limited fish stocks. Oceans Program, Environmental Defense Fund, Research and Development Team.

Gislason, H., Daan, N., Rice, J.C. and J.G. Pope, 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11: 149 Ũ158.

Martinez-Andrade F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: lutjanidae). Dissertation http://etd.lsu.edu/docs/available/etd-1113103-230518/unrestricted/Martinez-Andrade_dis.pdf

Meester G.A., Ault J.S., Smith S.G., Mehrotra A. 2001. An integrated simulation modeling and operations research approach to spatial management decision making. Sarsia 86:543-558.

Prescott, V., 2000. East Timor's Potential Maritime Boundaries. East Timor and its Maritime Dimensions: Legal and Policy Implications for Australia, Australian Institute of International Affairs, Canberra.

Quinn, T.J. and Deriso R.B. 1999. Quantitative Fish Dynamics. New York: Oxford University Press.

Vasilakopoulos, P., O’Neill, F. G. and Marshall, C. T. 2011. Misspent youth: does catching immature fish affect fisheries sustainability? - ICES Journal of Marine Science, 68: 1525-1534.

Wallace, R.K. and Fletcher, K.M. 2001. Understanding Fisheries Management: A Manual for understanding the Federal Fisheries Management Process, Including Analysis of the 1996 Sustainable Fisheries Act. Second Edition. Auburn University and the University of Mississippi. 62 pp .

Zhang, C.I., Kim, S., Gunderson, D., Marasco, R., Lee, J.B., Park, H.W. and Lee, J.H. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fisheries Research 100: 26-41.


[^0]:    ${ }^{1}$ http://72.14.187.103:8080/ifish/pub/FishID.pdf
    ${ }^{2}$ http://72.14.187.103:8080/ifish/pub/IFishAssessmentGuide.pdf

